xref: /linux/drivers/i3c/master/svc-i3c-master.c (revision 7a5f93ea5862da91488975acaa0c7abd508f192b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Silvaco dual-role I3C master driver
4  *
5  * Copyright (C) 2020 Silvaco
6  * Author: Miquel RAYNAL <miquel.raynal@bootlin.com>
7  * Based on a work from: Conor Culhane <conor.culhane@silvaco.com>
8  */
9 
10 #include <linux/bitfield.h>
11 #include <linux/clk.h>
12 #include <linux/completion.h>
13 #include <linux/errno.h>
14 #include <linux/i3c/master.h>
15 #include <linux/interrupt.h>
16 #include <linux/iopoll.h>
17 #include <linux/list.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/pinctrl/consumer.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_runtime.h>
23 
24 /* Master Mode Registers */
25 #define SVC_I3C_MCONFIG      0x000
26 #define   SVC_I3C_MCONFIG_MASTER_EN BIT(0)
27 #define   SVC_I3C_MCONFIG_DISTO(x) FIELD_PREP(BIT(3), (x))
28 #define   SVC_I3C_MCONFIG_HKEEP(x) FIELD_PREP(GENMASK(5, 4), (x))
29 #define   SVC_I3C_MCONFIG_ODSTOP(x) FIELD_PREP(BIT(6), (x))
30 #define   SVC_I3C_MCONFIG_PPBAUD(x) FIELD_PREP(GENMASK(11, 8), (x))
31 #define   SVC_I3C_MCONFIG_PPLOW(x) FIELD_PREP(GENMASK(15, 12), (x))
32 #define   SVC_I3C_MCONFIG_ODBAUD(x) FIELD_PREP(GENMASK(23, 16), (x))
33 #define   SVC_I3C_MCONFIG_ODHPP(x) FIELD_PREP(BIT(24), (x))
34 #define   SVC_I3C_MCONFIG_SKEW(x) FIELD_PREP(GENMASK(27, 25), (x))
35 #define   SVC_I3C_MCONFIG_I2CBAUD(x) FIELD_PREP(GENMASK(31, 28), (x))
36 
37 #define SVC_I3C_MCTRL        0x084
38 #define   SVC_I3C_MCTRL_REQUEST_MASK GENMASK(2, 0)
39 #define   SVC_I3C_MCTRL_REQUEST_NONE 0
40 #define   SVC_I3C_MCTRL_REQUEST_START_ADDR 1
41 #define   SVC_I3C_MCTRL_REQUEST_STOP 2
42 #define   SVC_I3C_MCTRL_REQUEST_IBI_ACKNACK 3
43 #define   SVC_I3C_MCTRL_REQUEST_PROC_DAA 4
44 #define   SVC_I3C_MCTRL_REQUEST_AUTO_IBI 7
45 #define   SVC_I3C_MCTRL_TYPE_I3C 0
46 #define   SVC_I3C_MCTRL_TYPE_I2C BIT(4)
47 #define   SVC_I3C_MCTRL_IBIRESP_AUTO 0
48 #define   SVC_I3C_MCTRL_IBIRESP_ACK_WITHOUT_BYTE 0
49 #define   SVC_I3C_MCTRL_IBIRESP_ACK_WITH_BYTE BIT(7)
50 #define   SVC_I3C_MCTRL_IBIRESP_NACK BIT(6)
51 #define   SVC_I3C_MCTRL_IBIRESP_MANUAL GENMASK(7, 6)
52 #define   SVC_I3C_MCTRL_DIR(x) FIELD_PREP(BIT(8), (x))
53 #define   SVC_I3C_MCTRL_DIR_WRITE 0
54 #define   SVC_I3C_MCTRL_DIR_READ 1
55 #define   SVC_I3C_MCTRL_ADDR(x) FIELD_PREP(GENMASK(15, 9), (x))
56 #define   SVC_I3C_MCTRL_RDTERM(x) FIELD_PREP(GENMASK(23, 16), (x))
57 
58 #define SVC_I3C_MSTATUS      0x088
59 #define   SVC_I3C_MSTATUS_STATE(x) FIELD_GET(GENMASK(2, 0), (x))
60 #define   SVC_I3C_MSTATUS_STATE_DAA(x) (SVC_I3C_MSTATUS_STATE(x) == 5)
61 #define   SVC_I3C_MSTATUS_STATE_IDLE(x) (SVC_I3C_MSTATUS_STATE(x) == 0)
62 #define   SVC_I3C_MSTATUS_BETWEEN(x) FIELD_GET(BIT(4), (x))
63 #define   SVC_I3C_MSTATUS_NACKED(x) FIELD_GET(BIT(5), (x))
64 #define   SVC_I3C_MSTATUS_IBITYPE(x) FIELD_GET(GENMASK(7, 6), (x))
65 #define   SVC_I3C_MSTATUS_IBITYPE_IBI 1
66 #define   SVC_I3C_MSTATUS_IBITYPE_MASTER_REQUEST 2
67 #define   SVC_I3C_MSTATUS_IBITYPE_HOT_JOIN 3
68 #define   SVC_I3C_MINT_SLVSTART BIT(8)
69 #define   SVC_I3C_MINT_MCTRLDONE BIT(9)
70 #define   SVC_I3C_MINT_COMPLETE BIT(10)
71 #define   SVC_I3C_MINT_RXPEND BIT(11)
72 #define   SVC_I3C_MINT_TXNOTFULL BIT(12)
73 #define   SVC_I3C_MINT_IBIWON BIT(13)
74 #define   SVC_I3C_MINT_ERRWARN BIT(15)
75 #define   SVC_I3C_MSTATUS_SLVSTART(x) FIELD_GET(SVC_I3C_MINT_SLVSTART, (x))
76 #define   SVC_I3C_MSTATUS_MCTRLDONE(x) FIELD_GET(SVC_I3C_MINT_MCTRLDONE, (x))
77 #define   SVC_I3C_MSTATUS_COMPLETE(x) FIELD_GET(SVC_I3C_MINT_COMPLETE, (x))
78 #define   SVC_I3C_MSTATUS_RXPEND(x) FIELD_GET(SVC_I3C_MINT_RXPEND, (x))
79 #define   SVC_I3C_MSTATUS_TXNOTFULL(x) FIELD_GET(SVC_I3C_MINT_TXNOTFULL, (x))
80 #define   SVC_I3C_MSTATUS_IBIWON(x) FIELD_GET(SVC_I3C_MINT_IBIWON, (x))
81 #define   SVC_I3C_MSTATUS_ERRWARN(x) FIELD_GET(SVC_I3C_MINT_ERRWARN, (x))
82 #define   SVC_I3C_MSTATUS_IBIADDR(x) FIELD_GET(GENMASK(30, 24), (x))
83 
84 #define SVC_I3C_IBIRULES     0x08C
85 #define   SVC_I3C_IBIRULES_ADDR(slot, addr) FIELD_PREP(GENMASK(29, 0), \
86 						       ((addr) & 0x3F) << ((slot) * 6))
87 #define   SVC_I3C_IBIRULES_ADDRS 5
88 #define   SVC_I3C_IBIRULES_MSB0 BIT(30)
89 #define   SVC_I3C_IBIRULES_NOBYTE BIT(31)
90 #define   SVC_I3C_IBIRULES_MANDBYTE 0
91 #define SVC_I3C_MINTSET      0x090
92 #define SVC_I3C_MINTCLR      0x094
93 #define SVC_I3C_MINTMASKED   0x098
94 #define SVC_I3C_MERRWARN     0x09C
95 #define   SVC_I3C_MERRWARN_NACK BIT(2)
96 #define   SVC_I3C_MERRWARN_TIMEOUT BIT(20)
97 #define SVC_I3C_MDMACTRL     0x0A0
98 #define SVC_I3C_MDATACTRL    0x0AC
99 #define   SVC_I3C_MDATACTRL_FLUSHTB BIT(0)
100 #define   SVC_I3C_MDATACTRL_FLUSHRB BIT(1)
101 #define   SVC_I3C_MDATACTRL_UNLOCK_TRIG BIT(3)
102 #define   SVC_I3C_MDATACTRL_TXTRIG_FIFO_NOT_FULL GENMASK(5, 4)
103 #define   SVC_I3C_MDATACTRL_RXTRIG_FIFO_NOT_EMPTY 0
104 #define   SVC_I3C_MDATACTRL_RXCOUNT(x) FIELD_GET(GENMASK(28, 24), (x))
105 #define   SVC_I3C_MDATACTRL_TXFULL BIT(30)
106 #define   SVC_I3C_MDATACTRL_RXEMPTY BIT(31)
107 
108 #define SVC_I3C_MWDATAB      0x0B0
109 #define   SVC_I3C_MWDATAB_END BIT(8)
110 
111 #define SVC_I3C_MWDATABE     0x0B4
112 #define SVC_I3C_MWDATAH      0x0B8
113 #define SVC_I3C_MWDATAHE     0x0BC
114 #define SVC_I3C_MRDATAB      0x0C0
115 #define SVC_I3C_MRDATAH      0x0C8
116 #define SVC_I3C_MWMSG_SDR    0x0D0
117 #define SVC_I3C_MRMSG_SDR    0x0D4
118 #define SVC_I3C_MWMSG_DDR    0x0D8
119 #define SVC_I3C_MRMSG_DDR    0x0DC
120 
121 #define SVC_I3C_MDYNADDR     0x0E4
122 #define   SVC_MDYNADDR_VALID BIT(0)
123 #define   SVC_MDYNADDR_ADDR(x) FIELD_PREP(GENMASK(7, 1), (x))
124 
125 #define SVC_I3C_MAX_DEVS 32
126 #define SVC_I3C_PM_TIMEOUT_MS 1000
127 
128 /* This parameter depends on the implementation and may be tuned */
129 #define SVC_I3C_FIFO_SIZE 16
130 #define SVC_I3C_PPBAUD_MAX 15
131 #define SVC_I3C_QUICK_I2C_CLK 4170000
132 
133 #define SVC_I3C_EVENT_IBI	GENMASK(7, 0)
134 #define SVC_I3C_EVENT_HOTJOIN	BIT(31)
135 
136 struct svc_i3c_cmd {
137 	u8 addr;
138 	bool rnw;
139 	u8 *in;
140 	const void *out;
141 	unsigned int len;
142 	unsigned int actual_len;
143 	struct i3c_priv_xfer *xfer;
144 	bool continued;
145 };
146 
147 struct svc_i3c_xfer {
148 	struct list_head node;
149 	struct completion comp;
150 	int ret;
151 	unsigned int type;
152 	unsigned int ncmds;
153 	struct svc_i3c_cmd cmds[] __counted_by(ncmds);
154 };
155 
156 struct svc_i3c_regs_save {
157 	u32 mconfig;
158 	u32 mdynaddr;
159 };
160 
161 /**
162  * struct svc_i3c_master - Silvaco I3C Master structure
163  * @base: I3C master controller
164  * @dev: Corresponding device
165  * @regs: Memory mapping
166  * @saved_regs: Volatile values for PM operations
167  * @free_slots: Bit array of available slots
168  * @addrs: Array containing the dynamic addresses of each attached device
169  * @descs: Array of descriptors, one per attached device
170  * @hj_work: Hot-join work
171  * @ibi_work: IBI work
172  * @irq: Main interrupt
173  * @pclk: System clock
174  * @fclk: Fast clock (bus)
175  * @sclk: Slow clock (other events)
176  * @xferqueue: Transfer queue structure
177  * @xferqueue.list: List member
178  * @xferqueue.cur: Current ongoing transfer
179  * @xferqueue.lock: Queue lock
180  * @ibi: IBI structure
181  * @ibi.num_slots: Number of slots available in @ibi.slots
182  * @ibi.slots: Available IBI slots
183  * @ibi.tbq_slot: To be queued IBI slot
184  * @ibi.lock: IBI lock
185  * @lock: Transfer lock, protect between IBI work thread and callbacks from master
186  * @enabled_events: Bit masks for enable events (IBI, HotJoin).
187  * @mctrl_config: Configuration value in SVC_I3C_MCTRL for setting speed back.
188  */
189 struct svc_i3c_master {
190 	struct i3c_master_controller base;
191 	struct device *dev;
192 	void __iomem *regs;
193 	struct svc_i3c_regs_save saved_regs;
194 	u32 free_slots;
195 	u8 addrs[SVC_I3C_MAX_DEVS];
196 	struct i3c_dev_desc *descs[SVC_I3C_MAX_DEVS];
197 	struct work_struct hj_work;
198 	struct work_struct ibi_work;
199 	int irq;
200 	struct clk *pclk;
201 	struct clk *fclk;
202 	struct clk *sclk;
203 	struct {
204 		struct list_head list;
205 		struct svc_i3c_xfer *cur;
206 		/* Prevent races between transfers */
207 		spinlock_t lock;
208 	} xferqueue;
209 	struct {
210 		unsigned int num_slots;
211 		struct i3c_dev_desc **slots;
212 		struct i3c_ibi_slot *tbq_slot;
213 		/* Prevent races within IBI handlers */
214 		spinlock_t lock;
215 	} ibi;
216 	struct mutex lock;
217 	u32 enabled_events;
218 	u32 mctrl_config;
219 };
220 
221 /**
222  * struct svc_i3c_i2c_dev_data - Device specific data
223  * @index: Index in the master tables corresponding to this device
224  * @ibi: IBI slot index in the master structure
225  * @ibi_pool: IBI pool associated to this device
226  */
227 struct svc_i3c_i2c_dev_data {
228 	u8 index;
229 	int ibi;
230 	struct i3c_generic_ibi_pool *ibi_pool;
231 };
232 
233 static inline bool is_events_enabled(struct svc_i3c_master *master, u32 mask)
234 {
235 	return !!(master->enabled_events & mask);
236 }
237 
238 static bool svc_i3c_master_error(struct svc_i3c_master *master)
239 {
240 	u32 mstatus, merrwarn;
241 
242 	mstatus = readl(master->regs + SVC_I3C_MSTATUS);
243 	if (SVC_I3C_MSTATUS_ERRWARN(mstatus)) {
244 		merrwarn = readl(master->regs + SVC_I3C_MERRWARN);
245 		writel(merrwarn, master->regs + SVC_I3C_MERRWARN);
246 
247 		/* Ignore timeout error */
248 		if (merrwarn & SVC_I3C_MERRWARN_TIMEOUT) {
249 			dev_dbg(master->dev, "Warning condition: MSTATUS 0x%08x, MERRWARN 0x%08x\n",
250 				mstatus, merrwarn);
251 			return false;
252 		}
253 
254 		dev_err(master->dev,
255 			"Error condition: MSTATUS 0x%08x, MERRWARN 0x%08x\n",
256 			mstatus, merrwarn);
257 
258 		return true;
259 	}
260 
261 	return false;
262 }
263 
264 static void svc_i3c_master_enable_interrupts(struct svc_i3c_master *master, u32 mask)
265 {
266 	writel(mask, master->regs + SVC_I3C_MINTSET);
267 }
268 
269 static void svc_i3c_master_disable_interrupts(struct svc_i3c_master *master)
270 {
271 	u32 mask = readl(master->regs + SVC_I3C_MINTSET);
272 
273 	writel(mask, master->regs + SVC_I3C_MINTCLR);
274 }
275 
276 static void svc_i3c_master_clear_merrwarn(struct svc_i3c_master *master)
277 {
278 	/* Clear pending warnings */
279 	writel(readl(master->regs + SVC_I3C_MERRWARN),
280 	       master->regs + SVC_I3C_MERRWARN);
281 }
282 
283 static void svc_i3c_master_flush_fifo(struct svc_i3c_master *master)
284 {
285 	/* Flush FIFOs */
286 	writel(SVC_I3C_MDATACTRL_FLUSHTB | SVC_I3C_MDATACTRL_FLUSHRB,
287 	       master->regs + SVC_I3C_MDATACTRL);
288 }
289 
290 static void svc_i3c_master_reset_fifo_trigger(struct svc_i3c_master *master)
291 {
292 	u32 reg;
293 
294 	/* Set RX and TX tigger levels, flush FIFOs */
295 	reg = SVC_I3C_MDATACTRL_FLUSHTB |
296 	      SVC_I3C_MDATACTRL_FLUSHRB |
297 	      SVC_I3C_MDATACTRL_UNLOCK_TRIG |
298 	      SVC_I3C_MDATACTRL_TXTRIG_FIFO_NOT_FULL |
299 	      SVC_I3C_MDATACTRL_RXTRIG_FIFO_NOT_EMPTY;
300 	writel(reg, master->regs + SVC_I3C_MDATACTRL);
301 }
302 
303 static void svc_i3c_master_reset(struct svc_i3c_master *master)
304 {
305 	svc_i3c_master_clear_merrwarn(master);
306 	svc_i3c_master_reset_fifo_trigger(master);
307 	svc_i3c_master_disable_interrupts(master);
308 }
309 
310 static inline struct svc_i3c_master *
311 to_svc_i3c_master(struct i3c_master_controller *master)
312 {
313 	return container_of(master, struct svc_i3c_master, base);
314 }
315 
316 static void svc_i3c_master_hj_work(struct work_struct *work)
317 {
318 	struct svc_i3c_master *master;
319 
320 	master = container_of(work, struct svc_i3c_master, hj_work);
321 	i3c_master_do_daa(&master->base);
322 }
323 
324 static struct i3c_dev_desc *
325 svc_i3c_master_dev_from_addr(struct svc_i3c_master *master,
326 			     unsigned int ibiaddr)
327 {
328 	int i;
329 
330 	for (i = 0; i < SVC_I3C_MAX_DEVS; i++)
331 		if (master->addrs[i] == ibiaddr)
332 			break;
333 
334 	if (i == SVC_I3C_MAX_DEVS)
335 		return NULL;
336 
337 	return master->descs[i];
338 }
339 
340 static void svc_i3c_master_emit_stop(struct svc_i3c_master *master)
341 {
342 	writel(SVC_I3C_MCTRL_REQUEST_STOP, master->regs + SVC_I3C_MCTRL);
343 
344 	/*
345 	 * This delay is necessary after the emission of a stop, otherwise eg.
346 	 * repeating IBIs do not get detected. There is a note in the manual
347 	 * about it, stating that the stop condition might not be settled
348 	 * correctly if a start condition follows too rapidly.
349 	 */
350 	udelay(1);
351 }
352 
353 static int svc_i3c_master_handle_ibi(struct svc_i3c_master *master,
354 				     struct i3c_dev_desc *dev)
355 {
356 	struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
357 	struct i3c_ibi_slot *slot;
358 	unsigned int count;
359 	u32 mdatactrl;
360 	int ret, val;
361 	u8 *buf;
362 
363 	slot = i3c_generic_ibi_get_free_slot(data->ibi_pool);
364 	if (!slot)
365 		return -ENOSPC;
366 
367 	slot->len = 0;
368 	buf = slot->data;
369 
370 	ret = readl_relaxed_poll_timeout(master->regs + SVC_I3C_MSTATUS, val,
371 						SVC_I3C_MSTATUS_COMPLETE(val), 0, 1000);
372 	if (ret) {
373 		dev_err(master->dev, "Timeout when polling for COMPLETE\n");
374 		return ret;
375 	}
376 
377 	while (SVC_I3C_MSTATUS_RXPEND(readl(master->regs + SVC_I3C_MSTATUS))  &&
378 	       slot->len < SVC_I3C_FIFO_SIZE) {
379 		mdatactrl = readl(master->regs + SVC_I3C_MDATACTRL);
380 		count = SVC_I3C_MDATACTRL_RXCOUNT(mdatactrl);
381 		readsl(master->regs + SVC_I3C_MRDATAB, buf, count);
382 		slot->len += count;
383 		buf += count;
384 	}
385 
386 	master->ibi.tbq_slot = slot;
387 
388 	return 0;
389 }
390 
391 static int svc_i3c_master_ack_ibi(struct svc_i3c_master *master,
392 				   bool mandatory_byte)
393 {
394 	unsigned int ibi_ack_nack;
395 	u32 reg;
396 
397 	ibi_ack_nack = SVC_I3C_MCTRL_REQUEST_IBI_ACKNACK;
398 	if (mandatory_byte)
399 		ibi_ack_nack |= SVC_I3C_MCTRL_IBIRESP_ACK_WITH_BYTE;
400 	else
401 		ibi_ack_nack |= SVC_I3C_MCTRL_IBIRESP_ACK_WITHOUT_BYTE;
402 
403 	writel(ibi_ack_nack, master->regs + SVC_I3C_MCTRL);
404 
405 	return readl_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS, reg,
406 					 SVC_I3C_MSTATUS_MCTRLDONE(reg), 1, 1000);
407 
408 }
409 
410 static int svc_i3c_master_nack_ibi(struct svc_i3c_master *master)
411 {
412 	int ret;
413 	u32 reg;
414 
415 	writel(SVC_I3C_MCTRL_REQUEST_IBI_ACKNACK |
416 	       SVC_I3C_MCTRL_IBIRESP_NACK,
417 	       master->regs + SVC_I3C_MCTRL);
418 
419 	ret = readl_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS, reg,
420 					SVC_I3C_MSTATUS_MCTRLDONE(reg), 1, 1000);
421 	return ret;
422 }
423 
424 static int svc_i3c_master_handle_ibi_won(struct svc_i3c_master *master, u32 mstatus)
425 {
426 	u32 ibitype;
427 	int ret = 0;
428 
429 	ibitype = SVC_I3C_MSTATUS_IBITYPE(mstatus);
430 
431 	writel(SVC_I3C_MINT_IBIWON, master->regs + SVC_I3C_MSTATUS);
432 
433 	/* Hardware can't auto emit NACK for hot join and master request */
434 	switch (ibitype) {
435 	case SVC_I3C_MSTATUS_IBITYPE_HOT_JOIN:
436 	case SVC_I3C_MSTATUS_IBITYPE_MASTER_REQUEST:
437 		ret = svc_i3c_master_nack_ibi(master);
438 	}
439 
440 	return ret;
441 }
442 
443 static void svc_i3c_master_ibi_work(struct work_struct *work)
444 {
445 	struct svc_i3c_master *master = container_of(work, struct svc_i3c_master, ibi_work);
446 	struct svc_i3c_i2c_dev_data *data;
447 	unsigned int ibitype, ibiaddr;
448 	struct i3c_dev_desc *dev;
449 	u32 status, val;
450 	int ret;
451 
452 	/*
453 	 * According to I3C spec ver 1.1, 09-Jun-2021, section 5.1.2.5:
454 	 *
455 	 * The I3C Controller shall hold SCL low while the Bus is in ACK/NACK Phase of I3C/I2C
456 	 * transfer. But maximum stall time is 100us. The IRQs have to be disabled to prevent
457 	 * schedule during the whole I3C transaction, otherwise, the I3C bus timeout may happen if
458 	 * any irq or schedule happen during transaction.
459 	 */
460 	guard(spinlock_irqsave)(&master->xferqueue.lock);
461 
462 	/*
463 	 * IBIWON may be set before SVC_I3C_MCTRL_REQUEST_AUTO_IBI, causing
464 	 * readl_relaxed_poll_timeout() to return immediately. Consequently,
465 	 * ibitype will be 0 since it was last updated only after the 8th SCL
466 	 * cycle, leading to missed client IBI handlers.
467 	 *
468 	 * A typical scenario is when IBIWON occurs and bus arbitration is lost
469 	 * at svc_i3c_master_priv_xfers().
470 	 *
471 	 * Clear SVC_I3C_MINT_IBIWON before sending SVC_I3C_MCTRL_REQUEST_AUTO_IBI.
472 	 */
473 	writel(SVC_I3C_MINT_IBIWON, master->regs + SVC_I3C_MSTATUS);
474 
475 	/* Acknowledge the incoming interrupt with the AUTOIBI mechanism */
476 	writel(SVC_I3C_MCTRL_REQUEST_AUTO_IBI |
477 	       SVC_I3C_MCTRL_IBIRESP_AUTO,
478 	       master->regs + SVC_I3C_MCTRL);
479 
480 	/* Wait for IBIWON, should take approximately 100us */
481 	ret = readl_relaxed_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS, val,
482 					 SVC_I3C_MSTATUS_IBIWON(val), 0, 100);
483 	if (ret) {
484 		dev_err(master->dev, "Timeout when polling for IBIWON\n");
485 		svc_i3c_master_emit_stop(master);
486 		goto reenable_ibis;
487 	}
488 
489 	status = readl(master->regs + SVC_I3C_MSTATUS);
490 	ibitype = SVC_I3C_MSTATUS_IBITYPE(status);
491 	ibiaddr = SVC_I3C_MSTATUS_IBIADDR(status);
492 
493 	/* Handle the critical responses to IBI's */
494 	switch (ibitype) {
495 	case SVC_I3C_MSTATUS_IBITYPE_IBI:
496 		dev = svc_i3c_master_dev_from_addr(master, ibiaddr);
497 		if (!dev || !is_events_enabled(master, SVC_I3C_EVENT_IBI))
498 			svc_i3c_master_nack_ibi(master);
499 		else
500 			svc_i3c_master_handle_ibi(master, dev);
501 		break;
502 	case SVC_I3C_MSTATUS_IBITYPE_HOT_JOIN:
503 		if (is_events_enabled(master, SVC_I3C_EVENT_HOTJOIN))
504 			svc_i3c_master_ack_ibi(master, false);
505 		else
506 			svc_i3c_master_nack_ibi(master);
507 		break;
508 	case SVC_I3C_MSTATUS_IBITYPE_MASTER_REQUEST:
509 		svc_i3c_master_nack_ibi(master);
510 		break;
511 	default:
512 		break;
513 	}
514 
515 	/*
516 	 * If an error happened, we probably got interrupted and the exchange
517 	 * timedout. In this case we just drop everything, emit a stop and wait
518 	 * for the slave to interrupt again.
519 	 */
520 	if (svc_i3c_master_error(master)) {
521 		if (master->ibi.tbq_slot) {
522 			data = i3c_dev_get_master_data(dev);
523 			i3c_generic_ibi_recycle_slot(data->ibi_pool,
524 						     master->ibi.tbq_slot);
525 			master->ibi.tbq_slot = NULL;
526 		}
527 
528 		svc_i3c_master_emit_stop(master);
529 
530 		goto reenable_ibis;
531 	}
532 
533 	/* Handle the non critical tasks */
534 	switch (ibitype) {
535 	case SVC_I3C_MSTATUS_IBITYPE_IBI:
536 		if (dev) {
537 			i3c_master_queue_ibi(dev, master->ibi.tbq_slot);
538 			master->ibi.tbq_slot = NULL;
539 		}
540 		svc_i3c_master_emit_stop(master);
541 		break;
542 	case SVC_I3C_MSTATUS_IBITYPE_HOT_JOIN:
543 		svc_i3c_master_emit_stop(master);
544 		if (is_events_enabled(master, SVC_I3C_EVENT_HOTJOIN))
545 			queue_work(master->base.wq, &master->hj_work);
546 		break;
547 	case SVC_I3C_MSTATUS_IBITYPE_MASTER_REQUEST:
548 	default:
549 		break;
550 	}
551 
552 reenable_ibis:
553 	svc_i3c_master_enable_interrupts(master, SVC_I3C_MINT_SLVSTART);
554 }
555 
556 static irqreturn_t svc_i3c_master_irq_handler(int irq, void *dev_id)
557 {
558 	struct svc_i3c_master *master = (struct svc_i3c_master *)dev_id;
559 	u32 active = readl(master->regs + SVC_I3C_MSTATUS);
560 
561 	if (!SVC_I3C_MSTATUS_SLVSTART(active))
562 		return IRQ_NONE;
563 
564 	/* Clear the interrupt status */
565 	writel(SVC_I3C_MINT_SLVSTART, master->regs + SVC_I3C_MSTATUS);
566 
567 	svc_i3c_master_disable_interrupts(master);
568 
569 	/* Handle the interrupt in a non atomic context */
570 	queue_work(master->base.wq, &master->ibi_work);
571 
572 	return IRQ_HANDLED;
573 }
574 
575 static int svc_i3c_master_set_speed(struct i3c_master_controller *m,
576 				     enum i3c_open_drain_speed speed)
577 {
578 	struct svc_i3c_master *master = to_svc_i3c_master(m);
579 	struct i3c_bus *bus = i3c_master_get_bus(&master->base);
580 	u32 ppbaud, odbaud, odhpp, mconfig;
581 	unsigned long fclk_rate;
582 	int ret;
583 
584 	ret = pm_runtime_resume_and_get(master->dev);
585 	if (ret < 0) {
586 		dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__);
587 		return ret;
588 	}
589 
590 	switch (speed) {
591 	case I3C_OPEN_DRAIN_SLOW_SPEED:
592 		fclk_rate = clk_get_rate(master->fclk);
593 		if (!fclk_rate) {
594 			ret = -EINVAL;
595 			goto rpm_out;
596 		}
597 		/*
598 		 * Set 50% duty-cycle I2C speed to I3C OPEN-DRAIN mode, so the first
599 		 * broadcast address is visible to all I2C/I3C devices on the I3C bus.
600 		 * I3C device working as a I2C device will turn off its 50ns Spike
601 		 * Filter to change to I3C mode.
602 		 */
603 		mconfig = master->mctrl_config;
604 		ppbaud = FIELD_GET(GENMASK(11, 8), mconfig);
605 		odhpp = 0;
606 		odbaud = DIV_ROUND_UP(fclk_rate, bus->scl_rate.i2c * (2 + 2 * ppbaud)) - 1;
607 		mconfig &= ~GENMASK(24, 16);
608 		mconfig |= SVC_I3C_MCONFIG_ODBAUD(odbaud) | SVC_I3C_MCONFIG_ODHPP(odhpp);
609 		writel(mconfig, master->regs + SVC_I3C_MCONFIG);
610 		break;
611 	case I3C_OPEN_DRAIN_NORMAL_SPEED:
612 		writel(master->mctrl_config, master->regs + SVC_I3C_MCONFIG);
613 		break;
614 	}
615 
616 rpm_out:
617 	pm_runtime_mark_last_busy(master->dev);
618 	pm_runtime_put_autosuspend(master->dev);
619 
620 	return ret;
621 }
622 
623 static int svc_i3c_master_bus_init(struct i3c_master_controller *m)
624 {
625 	struct svc_i3c_master *master = to_svc_i3c_master(m);
626 	struct i3c_bus *bus = i3c_master_get_bus(m);
627 	struct i3c_device_info info = {};
628 	unsigned long fclk_rate, fclk_period_ns;
629 	unsigned long i2c_period_ns, i2c_scl_rate, i3c_scl_rate;
630 	unsigned int high_period_ns, od_low_period_ns;
631 	u32 ppbaud, pplow, odhpp, odbaud, odstop, i2cbaud, reg;
632 	int ret;
633 
634 	ret = pm_runtime_resume_and_get(master->dev);
635 	if (ret < 0) {
636 		dev_err(master->dev,
637 			"<%s> cannot resume i3c bus master, err: %d\n",
638 			__func__, ret);
639 		return ret;
640 	}
641 
642 	/* Timings derivation */
643 	fclk_rate = clk_get_rate(master->fclk);
644 	if (!fclk_rate) {
645 		ret = -EINVAL;
646 		goto rpm_out;
647 	}
648 
649 	fclk_period_ns = DIV_ROUND_UP(1000000000, fclk_rate);
650 	i2c_period_ns = DIV_ROUND_UP(1000000000, bus->scl_rate.i2c);
651 	i2c_scl_rate = bus->scl_rate.i2c;
652 	i3c_scl_rate = bus->scl_rate.i3c;
653 
654 	/*
655 	 * Using I3C Push-Pull mode, target is 12.5MHz/80ns period.
656 	 * Simplest configuration is using a 50% duty-cycle of 40ns.
657 	 */
658 	ppbaud = DIV_ROUND_UP(fclk_rate / 2, i3c_scl_rate) - 1;
659 	pplow = 0;
660 
661 	/*
662 	 * Using I3C Open-Drain mode, target is 4.17MHz/240ns with a
663 	 * duty-cycle tuned so that high levels are filetered out by
664 	 * the 50ns filter (target being 40ns).
665 	 */
666 	odhpp = 1;
667 	high_period_ns = (ppbaud + 1) * fclk_period_ns;
668 	odbaud = DIV_ROUND_UP(fclk_rate, SVC_I3C_QUICK_I2C_CLK * (1 + ppbaud)) - 2;
669 	od_low_period_ns = (odbaud + 1) * high_period_ns;
670 
671 	switch (bus->mode) {
672 	case I3C_BUS_MODE_PURE:
673 		i2cbaud = 0;
674 		odstop = 0;
675 		break;
676 	case I3C_BUS_MODE_MIXED_FAST:
677 		/*
678 		 * Using I2C Fm+ mode, target is 1MHz/1000ns, the difference
679 		 * between the high and low period does not really matter.
680 		 */
681 		i2cbaud = DIV_ROUND_UP(i2c_period_ns, od_low_period_ns) - 2;
682 		odstop = 1;
683 		break;
684 	case I3C_BUS_MODE_MIXED_LIMITED:
685 	case I3C_BUS_MODE_MIXED_SLOW:
686 		/* I3C PP + I3C OP + I2C OP both use i2c clk rate */
687 		if (ppbaud > SVC_I3C_PPBAUD_MAX) {
688 			ppbaud = SVC_I3C_PPBAUD_MAX;
689 			pplow =  DIV_ROUND_UP(fclk_rate, i3c_scl_rate) - (2 + 2 * ppbaud);
690 		}
691 
692 		high_period_ns = (ppbaud + 1) * fclk_period_ns;
693 		odhpp = 0;
694 		odbaud = DIV_ROUND_UP(fclk_rate, i2c_scl_rate * (2 + 2 * ppbaud)) - 1;
695 
696 		od_low_period_ns = (odbaud + 1) * high_period_ns;
697 		i2cbaud = DIV_ROUND_UP(i2c_period_ns, od_low_period_ns) - 2;
698 		odstop = 1;
699 		break;
700 	default:
701 		goto rpm_out;
702 	}
703 
704 	reg = SVC_I3C_MCONFIG_MASTER_EN |
705 	      SVC_I3C_MCONFIG_DISTO(0) |
706 	      SVC_I3C_MCONFIG_HKEEP(0) |
707 	      SVC_I3C_MCONFIG_ODSTOP(odstop) |
708 	      SVC_I3C_MCONFIG_PPBAUD(ppbaud) |
709 	      SVC_I3C_MCONFIG_PPLOW(pplow) |
710 	      SVC_I3C_MCONFIG_ODBAUD(odbaud) |
711 	      SVC_I3C_MCONFIG_ODHPP(odhpp) |
712 	      SVC_I3C_MCONFIG_SKEW(0) |
713 	      SVC_I3C_MCONFIG_I2CBAUD(i2cbaud);
714 	writel(reg, master->regs + SVC_I3C_MCONFIG);
715 
716 	master->mctrl_config = reg;
717 	/* Master core's registration */
718 	ret = i3c_master_get_free_addr(m, 0);
719 	if (ret < 0)
720 		goto rpm_out;
721 
722 	info.dyn_addr = ret;
723 
724 	writel(SVC_MDYNADDR_VALID | SVC_MDYNADDR_ADDR(info.dyn_addr),
725 	       master->regs + SVC_I3C_MDYNADDR);
726 
727 	ret = i3c_master_set_info(&master->base, &info);
728 	if (ret)
729 		goto rpm_out;
730 
731 rpm_out:
732 	pm_runtime_mark_last_busy(master->dev);
733 	pm_runtime_put_autosuspend(master->dev);
734 
735 	return ret;
736 }
737 
738 static void svc_i3c_master_bus_cleanup(struct i3c_master_controller *m)
739 {
740 	struct svc_i3c_master *master = to_svc_i3c_master(m);
741 	int ret;
742 
743 	ret = pm_runtime_resume_and_get(master->dev);
744 	if (ret < 0) {
745 		dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__);
746 		return;
747 	}
748 
749 	svc_i3c_master_disable_interrupts(master);
750 
751 	/* Disable master */
752 	writel(0, master->regs + SVC_I3C_MCONFIG);
753 
754 	pm_runtime_mark_last_busy(master->dev);
755 	pm_runtime_put_autosuspend(master->dev);
756 }
757 
758 static int svc_i3c_master_reserve_slot(struct svc_i3c_master *master)
759 {
760 	unsigned int slot;
761 
762 	if (!(master->free_slots & GENMASK(SVC_I3C_MAX_DEVS - 1, 0)))
763 		return -ENOSPC;
764 
765 	slot = ffs(master->free_slots) - 1;
766 
767 	master->free_slots &= ~BIT(slot);
768 
769 	return slot;
770 }
771 
772 static void svc_i3c_master_release_slot(struct svc_i3c_master *master,
773 					unsigned int slot)
774 {
775 	master->free_slots |= BIT(slot);
776 }
777 
778 static int svc_i3c_master_attach_i3c_dev(struct i3c_dev_desc *dev)
779 {
780 	struct i3c_master_controller *m = i3c_dev_get_master(dev);
781 	struct svc_i3c_master *master = to_svc_i3c_master(m);
782 	struct svc_i3c_i2c_dev_data *data;
783 	int slot;
784 
785 	slot = svc_i3c_master_reserve_slot(master);
786 	if (slot < 0)
787 		return slot;
788 
789 	data = kzalloc(sizeof(*data), GFP_KERNEL);
790 	if (!data) {
791 		svc_i3c_master_release_slot(master, slot);
792 		return -ENOMEM;
793 	}
794 
795 	data->ibi = -1;
796 	data->index = slot;
797 	master->addrs[slot] = dev->info.dyn_addr ? dev->info.dyn_addr :
798 						   dev->info.static_addr;
799 	master->descs[slot] = dev;
800 
801 	i3c_dev_set_master_data(dev, data);
802 
803 	return 0;
804 }
805 
806 static int svc_i3c_master_reattach_i3c_dev(struct i3c_dev_desc *dev,
807 					   u8 old_dyn_addr)
808 {
809 	struct i3c_master_controller *m = i3c_dev_get_master(dev);
810 	struct svc_i3c_master *master = to_svc_i3c_master(m);
811 	struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
812 
813 	master->addrs[data->index] = dev->info.dyn_addr ? dev->info.dyn_addr :
814 							  dev->info.static_addr;
815 
816 	return 0;
817 }
818 
819 static void svc_i3c_master_detach_i3c_dev(struct i3c_dev_desc *dev)
820 {
821 	struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
822 	struct i3c_master_controller *m = i3c_dev_get_master(dev);
823 	struct svc_i3c_master *master = to_svc_i3c_master(m);
824 
825 	master->addrs[data->index] = 0;
826 	svc_i3c_master_release_slot(master, data->index);
827 
828 	kfree(data);
829 }
830 
831 static int svc_i3c_master_attach_i2c_dev(struct i2c_dev_desc *dev)
832 {
833 	struct i3c_master_controller *m = i2c_dev_get_master(dev);
834 	struct svc_i3c_master *master = to_svc_i3c_master(m);
835 	struct svc_i3c_i2c_dev_data *data;
836 	int slot;
837 
838 	slot = svc_i3c_master_reserve_slot(master);
839 	if (slot < 0)
840 		return slot;
841 
842 	data = kzalloc(sizeof(*data), GFP_KERNEL);
843 	if (!data) {
844 		svc_i3c_master_release_slot(master, slot);
845 		return -ENOMEM;
846 	}
847 
848 	data->index = slot;
849 	master->addrs[slot] = dev->addr;
850 
851 	i2c_dev_set_master_data(dev, data);
852 
853 	return 0;
854 }
855 
856 static void svc_i3c_master_detach_i2c_dev(struct i2c_dev_desc *dev)
857 {
858 	struct svc_i3c_i2c_dev_data *data = i2c_dev_get_master_data(dev);
859 	struct i3c_master_controller *m = i2c_dev_get_master(dev);
860 	struct svc_i3c_master *master = to_svc_i3c_master(m);
861 
862 	svc_i3c_master_release_slot(master, data->index);
863 
864 	kfree(data);
865 }
866 
867 static int svc_i3c_master_readb(struct svc_i3c_master *master, u8 *dst,
868 				unsigned int len)
869 {
870 	int ret, i;
871 	u32 reg;
872 
873 	for (i = 0; i < len; i++) {
874 		ret = readl_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS,
875 						reg,
876 						SVC_I3C_MSTATUS_RXPEND(reg),
877 						0, 1000);
878 		if (ret)
879 			return ret;
880 
881 		dst[i] = readl(master->regs + SVC_I3C_MRDATAB);
882 	}
883 
884 	return 0;
885 }
886 
887 static int svc_i3c_master_do_daa_locked(struct svc_i3c_master *master,
888 					u8 *addrs, unsigned int *count)
889 {
890 	u64 prov_id[SVC_I3C_MAX_DEVS] = {}, nacking_prov_id = 0;
891 	unsigned int dev_nb = 0, last_addr = 0;
892 	u32 reg;
893 	int ret, i;
894 
895 	while (true) {
896 		/* clean SVC_I3C_MINT_IBIWON w1c bits */
897 		writel(SVC_I3C_MINT_IBIWON, master->regs + SVC_I3C_MSTATUS);
898 
899 		/* SVC_I3C_MCTRL_REQUEST_PROC_DAA have two mode, ENTER DAA or PROCESS DAA.
900 		 *
901 		 * ENTER DAA:
902 		 *   1 will issue START, 7E, ENTDAA, and then emits 7E/R to process first target.
903 		 *   2 Stops just before the new Dynamic Address (DA) is to be emitted.
904 		 *
905 		 * PROCESS DAA:
906 		 *   1 The DA is written using MWDATAB or ADDR bits 6:0.
907 		 *   2 ProcessDAA is requested again to write the new address, and then starts the
908 		 *     next (START, 7E, ENTDAA)  unless marked to STOP; an MSTATUS indicating NACK
909 		 *     means DA was not accepted (e.g. parity error). If PROCESSDAA is NACKed on the
910 		 *     7E/R, which means no more Slaves need a DA, then a COMPLETE will be signaled
911 		 *     (along with DONE), and a STOP issued automatically.
912 		 */
913 		writel(SVC_I3C_MCTRL_REQUEST_PROC_DAA |
914 		       SVC_I3C_MCTRL_TYPE_I3C |
915 		       SVC_I3C_MCTRL_IBIRESP_NACK |
916 		       SVC_I3C_MCTRL_DIR(SVC_I3C_MCTRL_DIR_WRITE),
917 		       master->regs + SVC_I3C_MCTRL);
918 
919 		/*
920 		 * Either one slave will send its ID, or the assignment process
921 		 * is done.
922 		 */
923 		ret = readl_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS,
924 						reg,
925 						SVC_I3C_MSTATUS_RXPEND(reg) |
926 						SVC_I3C_MSTATUS_MCTRLDONE(reg),
927 						1, 1000);
928 		if (ret)
929 			break;
930 
931 		if (SVC_I3C_MSTATUS_RXPEND(reg)) {
932 			u8 data[6];
933 
934 			/*
935 			 * We only care about the 48-bit provisioned ID yet to
936 			 * be sure a device does not nack an address twice.
937 			 * Otherwise, we would just need to flush the RX FIFO.
938 			 */
939 			ret = svc_i3c_master_readb(master, data, 6);
940 			if (ret)
941 				break;
942 
943 			for (i = 0; i < 6; i++)
944 				prov_id[dev_nb] |= (u64)(data[i]) << (8 * (5 - i));
945 
946 			/* We do not care about the BCR and DCR yet */
947 			ret = svc_i3c_master_readb(master, data, 2);
948 			if (ret)
949 				break;
950 		} else if (SVC_I3C_MSTATUS_IBIWON(reg)) {
951 			ret = svc_i3c_master_handle_ibi_won(master, reg);
952 			if (ret)
953 				break;
954 			continue;
955 		} else if (SVC_I3C_MSTATUS_MCTRLDONE(reg)) {
956 			if (SVC_I3C_MSTATUS_STATE_IDLE(reg) &&
957 			    SVC_I3C_MSTATUS_COMPLETE(reg)) {
958 				/*
959 				 * All devices received and acked they dynamic
960 				 * address, this is the natural end of the DAA
961 				 * procedure.
962 				 *
963 				 * Hardware will auto emit STOP at this case.
964 				 */
965 				*count = dev_nb;
966 				return 0;
967 
968 			} else if (SVC_I3C_MSTATUS_NACKED(reg)) {
969 				/* No I3C devices attached */
970 				if (dev_nb == 0) {
971 					/*
972 					 * Hardware can't treat first NACK for ENTAA as normal
973 					 * COMPLETE. So need manual emit STOP.
974 					 */
975 					ret = 0;
976 					*count = 0;
977 					break;
978 				}
979 
980 				/*
981 				 * A slave device nacked the address, this is
982 				 * allowed only once, DAA will be stopped and
983 				 * then resumed. The same device is supposed to
984 				 * answer again immediately and shall ack the
985 				 * address this time.
986 				 */
987 				if (prov_id[dev_nb] == nacking_prov_id) {
988 					ret = -EIO;
989 					break;
990 				}
991 
992 				dev_nb--;
993 				nacking_prov_id = prov_id[dev_nb];
994 				svc_i3c_master_emit_stop(master);
995 
996 				continue;
997 			} else {
998 				break;
999 			}
1000 		}
1001 
1002 		/* Wait for the slave to be ready to receive its address */
1003 		ret = readl_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS,
1004 						reg,
1005 						SVC_I3C_MSTATUS_MCTRLDONE(reg) &&
1006 						SVC_I3C_MSTATUS_STATE_DAA(reg) &&
1007 						SVC_I3C_MSTATUS_BETWEEN(reg),
1008 						0, 1000);
1009 		if (ret)
1010 			break;
1011 
1012 		/* Give the slave device a suitable dynamic address */
1013 		ret = i3c_master_get_free_addr(&master->base, last_addr + 1);
1014 		if (ret < 0)
1015 			break;
1016 
1017 		addrs[dev_nb] = ret;
1018 		dev_dbg(master->dev, "DAA: device %d assigned to 0x%02x\n",
1019 			dev_nb, addrs[dev_nb]);
1020 
1021 		writel(addrs[dev_nb], master->regs + SVC_I3C_MWDATAB);
1022 		last_addr = addrs[dev_nb++];
1023 	}
1024 
1025 	/* Need manual issue STOP except for Complete condition */
1026 	svc_i3c_master_emit_stop(master);
1027 	return ret;
1028 }
1029 
1030 static int svc_i3c_update_ibirules(struct svc_i3c_master *master)
1031 {
1032 	struct i3c_dev_desc *dev;
1033 	u32 reg_mbyte = 0, reg_nobyte = SVC_I3C_IBIRULES_NOBYTE;
1034 	unsigned int mbyte_addr_ok = 0, mbyte_addr_ko = 0, nobyte_addr_ok = 0,
1035 		nobyte_addr_ko = 0;
1036 	bool list_mbyte = false, list_nobyte = false;
1037 
1038 	/* Create the IBIRULES register for both cases */
1039 	i3c_bus_for_each_i3cdev(&master->base.bus, dev) {
1040 		if (I3C_BCR_DEVICE_ROLE(dev->info.bcr) == I3C_BCR_I3C_MASTER)
1041 			continue;
1042 
1043 		if (dev->info.bcr & I3C_BCR_IBI_PAYLOAD) {
1044 			reg_mbyte |= SVC_I3C_IBIRULES_ADDR(mbyte_addr_ok,
1045 							   dev->info.dyn_addr);
1046 
1047 			/* IBI rules cannot be applied to devices with MSb=1 */
1048 			if (dev->info.dyn_addr & BIT(7))
1049 				mbyte_addr_ko++;
1050 			else
1051 				mbyte_addr_ok++;
1052 		} else {
1053 			reg_nobyte |= SVC_I3C_IBIRULES_ADDR(nobyte_addr_ok,
1054 							    dev->info.dyn_addr);
1055 
1056 			/* IBI rules cannot be applied to devices with MSb=1 */
1057 			if (dev->info.dyn_addr & BIT(7))
1058 				nobyte_addr_ko++;
1059 			else
1060 				nobyte_addr_ok++;
1061 		}
1062 	}
1063 
1064 	/* Device list cannot be handled by hardware */
1065 	if (!mbyte_addr_ko && mbyte_addr_ok <= SVC_I3C_IBIRULES_ADDRS)
1066 		list_mbyte = true;
1067 
1068 	if (!nobyte_addr_ko && nobyte_addr_ok <= SVC_I3C_IBIRULES_ADDRS)
1069 		list_nobyte = true;
1070 
1071 	/* No list can be properly handled, return an error */
1072 	if (!list_mbyte && !list_nobyte)
1073 		return -ERANGE;
1074 
1075 	/* Pick the first list that can be handled by hardware, randomly */
1076 	if (list_mbyte)
1077 		writel(reg_mbyte, master->regs + SVC_I3C_IBIRULES);
1078 	else
1079 		writel(reg_nobyte, master->regs + SVC_I3C_IBIRULES);
1080 
1081 	return 0;
1082 }
1083 
1084 static int svc_i3c_master_do_daa(struct i3c_master_controller *m)
1085 {
1086 	struct svc_i3c_master *master = to_svc_i3c_master(m);
1087 	u8 addrs[SVC_I3C_MAX_DEVS];
1088 	unsigned long flags;
1089 	unsigned int dev_nb;
1090 	int ret, i;
1091 
1092 	ret = pm_runtime_resume_and_get(master->dev);
1093 	if (ret < 0) {
1094 		dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__);
1095 		return ret;
1096 	}
1097 
1098 	spin_lock_irqsave(&master->xferqueue.lock, flags);
1099 	ret = svc_i3c_master_do_daa_locked(master, addrs, &dev_nb);
1100 	spin_unlock_irqrestore(&master->xferqueue.lock, flags);
1101 
1102 	svc_i3c_master_clear_merrwarn(master);
1103 	if (ret)
1104 		goto rpm_out;
1105 
1106 	/*
1107 	 * Register all devices who participated to the core
1108 	 *
1109 	 * If two devices (A and B) are detected in DAA and address 0xa is assigned to
1110 	 * device A and 0xb to device B, a failure in i3c_master_add_i3c_dev_locked()
1111 	 * for device A (addr: 0xa) could prevent device B (addr: 0xb) from being
1112 	 * registered on the bus. The I3C stack might still consider 0xb a free
1113 	 * address. If a subsequent Hotjoin occurs, 0xb might be assigned to Device A,
1114 	 * causing both devices A and B to use the same address 0xb, violating the I3C
1115 	 * specification.
1116 	 *
1117 	 * The return value for i3c_master_add_i3c_dev_locked() should not be checked
1118 	 * because subsequent steps will scan the entire I3C bus, independent of
1119 	 * whether i3c_master_add_i3c_dev_locked() returns success.
1120 	 *
1121 	 * If device A registration fails, there is still a chance to register device
1122 	 * B. i3c_master_add_i3c_dev_locked() can reset DAA if a failure occurs while
1123 	 * retrieving device information.
1124 	 */
1125 	for (i = 0; i < dev_nb; i++)
1126 		i3c_master_add_i3c_dev_locked(m, addrs[i]);
1127 
1128 	/* Configure IBI auto-rules */
1129 	ret = svc_i3c_update_ibirules(master);
1130 	if (ret)
1131 		dev_err(master->dev, "Cannot handle such a list of devices");
1132 
1133 rpm_out:
1134 	pm_runtime_mark_last_busy(master->dev);
1135 	pm_runtime_put_autosuspend(master->dev);
1136 
1137 	return ret;
1138 }
1139 
1140 static int svc_i3c_master_read(struct svc_i3c_master *master,
1141 			       u8 *in, unsigned int len)
1142 {
1143 	int offset = 0, i;
1144 	u32 mdctrl, mstatus;
1145 	bool completed = false;
1146 	unsigned int count;
1147 	unsigned long start = jiffies;
1148 
1149 	while (!completed) {
1150 		mstatus = readl(master->regs + SVC_I3C_MSTATUS);
1151 		if (SVC_I3C_MSTATUS_COMPLETE(mstatus) != 0)
1152 			completed = true;
1153 
1154 		if (time_after(jiffies, start + msecs_to_jiffies(1000))) {
1155 			dev_dbg(master->dev, "I3C read timeout\n");
1156 			return -ETIMEDOUT;
1157 		}
1158 
1159 		mdctrl = readl(master->regs + SVC_I3C_MDATACTRL);
1160 		count = SVC_I3C_MDATACTRL_RXCOUNT(mdctrl);
1161 		if (offset + count > len) {
1162 			dev_err(master->dev, "I3C receive length too long!\n");
1163 			return -EINVAL;
1164 		}
1165 		for (i = 0; i < count; i++)
1166 			in[offset + i] = readl(master->regs + SVC_I3C_MRDATAB);
1167 
1168 		offset += count;
1169 	}
1170 
1171 	return offset;
1172 }
1173 
1174 static int svc_i3c_master_write(struct svc_i3c_master *master,
1175 				const u8 *out, unsigned int len)
1176 {
1177 	int offset = 0, ret;
1178 	u32 mdctrl;
1179 
1180 	while (offset < len) {
1181 		ret = readl_poll_timeout(master->regs + SVC_I3C_MDATACTRL,
1182 					 mdctrl,
1183 					 !(mdctrl & SVC_I3C_MDATACTRL_TXFULL),
1184 					 0, 1000);
1185 		if (ret)
1186 			return ret;
1187 
1188 		/*
1189 		 * The last byte to be sent over the bus must either have the
1190 		 * "end" bit set or be written in MWDATABE.
1191 		 */
1192 		if (likely(offset < (len - 1)))
1193 			writel(out[offset++], master->regs + SVC_I3C_MWDATAB);
1194 		else
1195 			writel(out[offset++], master->regs + SVC_I3C_MWDATABE);
1196 	}
1197 
1198 	return 0;
1199 }
1200 
1201 static int svc_i3c_master_xfer(struct svc_i3c_master *master,
1202 			       bool rnw, unsigned int xfer_type, u8 addr,
1203 			       u8 *in, const u8 *out, unsigned int xfer_len,
1204 			       unsigned int *actual_len, bool continued)
1205 {
1206 	int retry = 2;
1207 	u32 reg;
1208 	int ret;
1209 
1210 	/* clean SVC_I3C_MINT_IBIWON w1c bits */
1211 	writel(SVC_I3C_MINT_IBIWON, master->regs + SVC_I3C_MSTATUS);
1212 
1213 
1214 	while (retry--) {
1215 		writel(SVC_I3C_MCTRL_REQUEST_START_ADDR |
1216 		       xfer_type |
1217 		       SVC_I3C_MCTRL_IBIRESP_NACK |
1218 		       SVC_I3C_MCTRL_DIR(rnw) |
1219 		       SVC_I3C_MCTRL_ADDR(addr) |
1220 		       SVC_I3C_MCTRL_RDTERM(*actual_len),
1221 		       master->regs + SVC_I3C_MCTRL);
1222 
1223 		ret = readl_poll_timeout(master->regs + SVC_I3C_MSTATUS, reg,
1224 				 SVC_I3C_MSTATUS_MCTRLDONE(reg), 0, 1000);
1225 		if (ret)
1226 			goto emit_stop;
1227 
1228 		/*
1229 		 * According to I3C spec ver 1.1.1, 5.1.2.2.3 Consequence of Controller Starting a
1230 		 * Frame with I3C Target Address.
1231 		 *
1232 		 * The I3C Controller normally should start a Frame, the Address may be arbitrated,
1233 		 * and so the Controller shall monitor to see whether an In-Band Interrupt request,
1234 		 * a Controller Role Request (i.e., Secondary Controller requests to become the
1235 		 * Active Controller), or a Hot-Join Request has been made.
1236 		 *
1237 		 * If missed IBIWON check, the wrong data will be return. When IBIWON happen, issue
1238 		 * repeat start. Address arbitrate only happen at START, never happen at REPEAT
1239 		 * start.
1240 		 */
1241 		if (SVC_I3C_MSTATUS_IBIWON(reg)) {
1242 			ret = svc_i3c_master_handle_ibi_won(master, reg);
1243 			if (ret)
1244 				goto emit_stop;
1245 			continue;
1246 		}
1247 
1248 		if (readl(master->regs + SVC_I3C_MERRWARN) & SVC_I3C_MERRWARN_NACK) {
1249 			/*
1250 			 * According to I3C Spec 1.1.1, 11-Jun-2021, section: 5.1.2.2.3.
1251 			 * If the Controller chooses to start an I3C Message with an I3C Dynamic
1252 			 * Address, then special provisions shall be made because that same I3C
1253 			 * Target may be initiating an IBI or a Controller Role Request. So, one of
1254 			 * three things may happen: (skip 1, 2)
1255 			 *
1256 			 * 3. The Addresses match and the RnW bits also match, and so neither
1257 			 * Controller nor Target will ACK since both are expecting the other side to
1258 			 * provide ACK. As a result, each side might think it had "won" arbitration,
1259 			 * but neither side would continue, as each would subsequently see that the
1260 			 * other did not provide ACK.
1261 			 * ...
1262 			 * For either value of RnW: Due to the NACK, the Controller shall defer the
1263 			 * Private Write or Private Read, and should typically transmit the Target
1264 			 * Address again after a Repeated START (i.e., the next one or any one prior
1265 			 * to a STOP in the Frame). Since the Address Header following a Repeated
1266 			 * START is not arbitrated, the Controller will always win (see Section
1267 			 * 5.1.2.2.4).
1268 			 */
1269 			if (retry && addr != 0x7e) {
1270 				writel(SVC_I3C_MERRWARN_NACK, master->regs + SVC_I3C_MERRWARN);
1271 			} else {
1272 				ret = -ENXIO;
1273 				*actual_len = 0;
1274 				goto emit_stop;
1275 			}
1276 		} else {
1277 			break;
1278 		}
1279 	}
1280 
1281 	if (rnw)
1282 		ret = svc_i3c_master_read(master, in, xfer_len);
1283 	else
1284 		ret = svc_i3c_master_write(master, out, xfer_len);
1285 	if (ret < 0)
1286 		goto emit_stop;
1287 
1288 	if (rnw)
1289 		*actual_len = ret;
1290 
1291 	ret = readl_poll_timeout(master->regs + SVC_I3C_MSTATUS, reg,
1292 				 SVC_I3C_MSTATUS_COMPLETE(reg), 0, 1000);
1293 	if (ret)
1294 		goto emit_stop;
1295 
1296 	writel(SVC_I3C_MINT_COMPLETE, master->regs + SVC_I3C_MSTATUS);
1297 
1298 	if (!continued) {
1299 		svc_i3c_master_emit_stop(master);
1300 
1301 		/* Wait idle if stop is sent. */
1302 		readl_poll_timeout(master->regs + SVC_I3C_MSTATUS, reg,
1303 				   SVC_I3C_MSTATUS_STATE_IDLE(reg), 0, 1000);
1304 	}
1305 
1306 	return 0;
1307 
1308 emit_stop:
1309 	svc_i3c_master_emit_stop(master);
1310 	svc_i3c_master_clear_merrwarn(master);
1311 
1312 	return ret;
1313 }
1314 
1315 static struct svc_i3c_xfer *
1316 svc_i3c_master_alloc_xfer(struct svc_i3c_master *master, unsigned int ncmds)
1317 {
1318 	struct svc_i3c_xfer *xfer;
1319 
1320 	xfer = kzalloc(struct_size(xfer, cmds, ncmds), GFP_KERNEL);
1321 	if (!xfer)
1322 		return NULL;
1323 
1324 	INIT_LIST_HEAD(&xfer->node);
1325 	xfer->ncmds = ncmds;
1326 	xfer->ret = -ETIMEDOUT;
1327 
1328 	return xfer;
1329 }
1330 
1331 static void svc_i3c_master_free_xfer(struct svc_i3c_xfer *xfer)
1332 {
1333 	kfree(xfer);
1334 }
1335 
1336 static void svc_i3c_master_dequeue_xfer_locked(struct svc_i3c_master *master,
1337 					       struct svc_i3c_xfer *xfer)
1338 {
1339 	if (master->xferqueue.cur == xfer)
1340 		master->xferqueue.cur = NULL;
1341 	else
1342 		list_del_init(&xfer->node);
1343 }
1344 
1345 static void svc_i3c_master_dequeue_xfer(struct svc_i3c_master *master,
1346 					struct svc_i3c_xfer *xfer)
1347 {
1348 	unsigned long flags;
1349 
1350 	spin_lock_irqsave(&master->xferqueue.lock, flags);
1351 	svc_i3c_master_dequeue_xfer_locked(master, xfer);
1352 	spin_unlock_irqrestore(&master->xferqueue.lock, flags);
1353 }
1354 
1355 static void svc_i3c_master_start_xfer_locked(struct svc_i3c_master *master)
1356 {
1357 	struct svc_i3c_xfer *xfer = master->xferqueue.cur;
1358 	int ret, i;
1359 
1360 	if (!xfer)
1361 		return;
1362 
1363 	svc_i3c_master_clear_merrwarn(master);
1364 	svc_i3c_master_flush_fifo(master);
1365 
1366 	for (i = 0; i < xfer->ncmds; i++) {
1367 		struct svc_i3c_cmd *cmd = &xfer->cmds[i];
1368 
1369 		ret = svc_i3c_master_xfer(master, cmd->rnw, xfer->type,
1370 					  cmd->addr, cmd->in, cmd->out,
1371 					  cmd->len, &cmd->actual_len,
1372 					  cmd->continued);
1373 		/* cmd->xfer is NULL if I2C or CCC transfer */
1374 		if (cmd->xfer)
1375 			cmd->xfer->actual_len = cmd->actual_len;
1376 
1377 		if (ret)
1378 			break;
1379 	}
1380 
1381 	xfer->ret = ret;
1382 	complete(&xfer->comp);
1383 
1384 	if (ret < 0)
1385 		svc_i3c_master_dequeue_xfer_locked(master, xfer);
1386 
1387 	xfer = list_first_entry_or_null(&master->xferqueue.list,
1388 					struct svc_i3c_xfer,
1389 					node);
1390 	if (xfer)
1391 		list_del_init(&xfer->node);
1392 
1393 	master->xferqueue.cur = xfer;
1394 	svc_i3c_master_start_xfer_locked(master);
1395 }
1396 
1397 static void svc_i3c_master_enqueue_xfer(struct svc_i3c_master *master,
1398 					struct svc_i3c_xfer *xfer)
1399 {
1400 	unsigned long flags;
1401 	int ret;
1402 
1403 	ret = pm_runtime_resume_and_get(master->dev);
1404 	if (ret < 0) {
1405 		dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__);
1406 		return;
1407 	}
1408 
1409 	init_completion(&xfer->comp);
1410 	spin_lock_irqsave(&master->xferqueue.lock, flags);
1411 	if (master->xferqueue.cur) {
1412 		list_add_tail(&xfer->node, &master->xferqueue.list);
1413 	} else {
1414 		master->xferqueue.cur = xfer;
1415 		svc_i3c_master_start_xfer_locked(master);
1416 	}
1417 	spin_unlock_irqrestore(&master->xferqueue.lock, flags);
1418 
1419 	pm_runtime_mark_last_busy(master->dev);
1420 	pm_runtime_put_autosuspend(master->dev);
1421 }
1422 
1423 static bool
1424 svc_i3c_master_supports_ccc_cmd(struct i3c_master_controller *master,
1425 				const struct i3c_ccc_cmd *cmd)
1426 {
1427 	/* No software support for CCC commands targeting more than one slave */
1428 	return (cmd->ndests == 1);
1429 }
1430 
1431 static int svc_i3c_master_send_bdcast_ccc_cmd(struct svc_i3c_master *master,
1432 					      struct i3c_ccc_cmd *ccc)
1433 {
1434 	unsigned int xfer_len = ccc->dests[0].payload.len + 1;
1435 	struct svc_i3c_xfer *xfer;
1436 	struct svc_i3c_cmd *cmd;
1437 	u8 *buf;
1438 	int ret;
1439 
1440 	xfer = svc_i3c_master_alloc_xfer(master, 1);
1441 	if (!xfer)
1442 		return -ENOMEM;
1443 
1444 	buf = kmalloc(xfer_len, GFP_KERNEL);
1445 	if (!buf) {
1446 		svc_i3c_master_free_xfer(xfer);
1447 		return -ENOMEM;
1448 	}
1449 
1450 	buf[0] = ccc->id;
1451 	memcpy(&buf[1], ccc->dests[0].payload.data, ccc->dests[0].payload.len);
1452 
1453 	xfer->type = SVC_I3C_MCTRL_TYPE_I3C;
1454 
1455 	cmd = &xfer->cmds[0];
1456 	cmd->addr = ccc->dests[0].addr;
1457 	cmd->rnw = ccc->rnw;
1458 	cmd->in = NULL;
1459 	cmd->out = buf;
1460 	cmd->len = xfer_len;
1461 	cmd->actual_len = 0;
1462 	cmd->continued = false;
1463 
1464 	mutex_lock(&master->lock);
1465 	svc_i3c_master_enqueue_xfer(master, xfer);
1466 	if (!wait_for_completion_timeout(&xfer->comp, msecs_to_jiffies(1000)))
1467 		svc_i3c_master_dequeue_xfer(master, xfer);
1468 	mutex_unlock(&master->lock);
1469 
1470 	ret = xfer->ret;
1471 	kfree(buf);
1472 	svc_i3c_master_free_xfer(xfer);
1473 
1474 	return ret;
1475 }
1476 
1477 static int svc_i3c_master_send_direct_ccc_cmd(struct svc_i3c_master *master,
1478 					      struct i3c_ccc_cmd *ccc)
1479 {
1480 	unsigned int xfer_len = ccc->dests[0].payload.len;
1481 	unsigned int actual_len = ccc->rnw ? xfer_len : 0;
1482 	struct svc_i3c_xfer *xfer;
1483 	struct svc_i3c_cmd *cmd;
1484 	int ret;
1485 
1486 	xfer = svc_i3c_master_alloc_xfer(master, 2);
1487 	if (!xfer)
1488 		return -ENOMEM;
1489 
1490 	xfer->type = SVC_I3C_MCTRL_TYPE_I3C;
1491 
1492 	/* Broadcasted message */
1493 	cmd = &xfer->cmds[0];
1494 	cmd->addr = I3C_BROADCAST_ADDR;
1495 	cmd->rnw = 0;
1496 	cmd->in = NULL;
1497 	cmd->out = &ccc->id;
1498 	cmd->len = 1;
1499 	cmd->actual_len = 0;
1500 	cmd->continued = true;
1501 
1502 	/* Directed message */
1503 	cmd = &xfer->cmds[1];
1504 	cmd->addr = ccc->dests[0].addr;
1505 	cmd->rnw = ccc->rnw;
1506 	cmd->in = ccc->rnw ? ccc->dests[0].payload.data : NULL;
1507 	cmd->out = ccc->rnw ? NULL : ccc->dests[0].payload.data;
1508 	cmd->len = xfer_len;
1509 	cmd->actual_len = actual_len;
1510 	cmd->continued = false;
1511 
1512 	mutex_lock(&master->lock);
1513 	svc_i3c_master_enqueue_xfer(master, xfer);
1514 	if (!wait_for_completion_timeout(&xfer->comp, msecs_to_jiffies(1000)))
1515 		svc_i3c_master_dequeue_xfer(master, xfer);
1516 	mutex_unlock(&master->lock);
1517 
1518 	if (cmd->actual_len != xfer_len)
1519 		ccc->dests[0].payload.len = cmd->actual_len;
1520 
1521 	ret = xfer->ret;
1522 	svc_i3c_master_free_xfer(xfer);
1523 
1524 	return ret;
1525 }
1526 
1527 static int svc_i3c_master_send_ccc_cmd(struct i3c_master_controller *m,
1528 				       struct i3c_ccc_cmd *cmd)
1529 {
1530 	struct svc_i3c_master *master = to_svc_i3c_master(m);
1531 	bool broadcast = cmd->id < 0x80;
1532 	int ret;
1533 
1534 	if (broadcast)
1535 		ret = svc_i3c_master_send_bdcast_ccc_cmd(master, cmd);
1536 	else
1537 		ret = svc_i3c_master_send_direct_ccc_cmd(master, cmd);
1538 
1539 	if (ret)
1540 		cmd->err = I3C_ERROR_M2;
1541 
1542 	return ret;
1543 }
1544 
1545 static int svc_i3c_master_priv_xfers(struct i3c_dev_desc *dev,
1546 				     struct i3c_priv_xfer *xfers,
1547 				     int nxfers)
1548 {
1549 	struct i3c_master_controller *m = i3c_dev_get_master(dev);
1550 	struct svc_i3c_master *master = to_svc_i3c_master(m);
1551 	struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
1552 	struct svc_i3c_xfer *xfer;
1553 	int ret, i;
1554 
1555 	xfer = svc_i3c_master_alloc_xfer(master, nxfers);
1556 	if (!xfer)
1557 		return -ENOMEM;
1558 
1559 	xfer->type = SVC_I3C_MCTRL_TYPE_I3C;
1560 
1561 	for (i = 0; i < nxfers; i++) {
1562 		struct svc_i3c_cmd *cmd = &xfer->cmds[i];
1563 
1564 		cmd->xfer = &xfers[i];
1565 		cmd->addr = master->addrs[data->index];
1566 		cmd->rnw = xfers[i].rnw;
1567 		cmd->in = xfers[i].rnw ? xfers[i].data.in : NULL;
1568 		cmd->out = xfers[i].rnw ? NULL : xfers[i].data.out;
1569 		cmd->len = xfers[i].len;
1570 		cmd->actual_len = xfers[i].rnw ? xfers[i].len : 0;
1571 		cmd->continued = (i + 1) < nxfers;
1572 	}
1573 
1574 	mutex_lock(&master->lock);
1575 	svc_i3c_master_enqueue_xfer(master, xfer);
1576 	if (!wait_for_completion_timeout(&xfer->comp, msecs_to_jiffies(1000)))
1577 		svc_i3c_master_dequeue_xfer(master, xfer);
1578 	mutex_unlock(&master->lock);
1579 
1580 	ret = xfer->ret;
1581 	svc_i3c_master_free_xfer(xfer);
1582 
1583 	return ret;
1584 }
1585 
1586 static int svc_i3c_master_i2c_xfers(struct i2c_dev_desc *dev,
1587 				    const struct i2c_msg *xfers,
1588 				    int nxfers)
1589 {
1590 	struct i3c_master_controller *m = i2c_dev_get_master(dev);
1591 	struct svc_i3c_master *master = to_svc_i3c_master(m);
1592 	struct svc_i3c_i2c_dev_data *data = i2c_dev_get_master_data(dev);
1593 	struct svc_i3c_xfer *xfer;
1594 	int ret, i;
1595 
1596 	xfer = svc_i3c_master_alloc_xfer(master, nxfers);
1597 	if (!xfer)
1598 		return -ENOMEM;
1599 
1600 	xfer->type = SVC_I3C_MCTRL_TYPE_I2C;
1601 
1602 	for (i = 0; i < nxfers; i++) {
1603 		struct svc_i3c_cmd *cmd = &xfer->cmds[i];
1604 
1605 		cmd->addr = master->addrs[data->index];
1606 		cmd->rnw = xfers[i].flags & I2C_M_RD;
1607 		cmd->in = cmd->rnw ? xfers[i].buf : NULL;
1608 		cmd->out = cmd->rnw ? NULL : xfers[i].buf;
1609 		cmd->len = xfers[i].len;
1610 		cmd->actual_len = cmd->rnw ? xfers[i].len : 0;
1611 		cmd->continued = (i + 1 < nxfers);
1612 	}
1613 
1614 	mutex_lock(&master->lock);
1615 	svc_i3c_master_enqueue_xfer(master, xfer);
1616 	if (!wait_for_completion_timeout(&xfer->comp, msecs_to_jiffies(1000)))
1617 		svc_i3c_master_dequeue_xfer(master, xfer);
1618 	mutex_unlock(&master->lock);
1619 
1620 	ret = xfer->ret;
1621 	svc_i3c_master_free_xfer(xfer);
1622 
1623 	return ret;
1624 }
1625 
1626 static int svc_i3c_master_request_ibi(struct i3c_dev_desc *dev,
1627 				      const struct i3c_ibi_setup *req)
1628 {
1629 	struct i3c_master_controller *m = i3c_dev_get_master(dev);
1630 	struct svc_i3c_master *master = to_svc_i3c_master(m);
1631 	struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
1632 	unsigned long flags;
1633 	unsigned int i;
1634 
1635 	if (dev->ibi->max_payload_len > SVC_I3C_FIFO_SIZE) {
1636 		dev_err(master->dev, "IBI max payload %d should be < %d\n",
1637 			dev->ibi->max_payload_len, SVC_I3C_FIFO_SIZE);
1638 		return -ERANGE;
1639 	}
1640 
1641 	data->ibi_pool = i3c_generic_ibi_alloc_pool(dev, req);
1642 	if (IS_ERR(data->ibi_pool))
1643 		return PTR_ERR(data->ibi_pool);
1644 
1645 	spin_lock_irqsave(&master->ibi.lock, flags);
1646 	for (i = 0; i < master->ibi.num_slots; i++) {
1647 		if (!master->ibi.slots[i]) {
1648 			data->ibi = i;
1649 			master->ibi.slots[i] = dev;
1650 			break;
1651 		}
1652 	}
1653 	spin_unlock_irqrestore(&master->ibi.lock, flags);
1654 
1655 	if (i < master->ibi.num_slots)
1656 		return 0;
1657 
1658 	i3c_generic_ibi_free_pool(data->ibi_pool);
1659 	data->ibi_pool = NULL;
1660 
1661 	return -ENOSPC;
1662 }
1663 
1664 static void svc_i3c_master_free_ibi(struct i3c_dev_desc *dev)
1665 {
1666 	struct i3c_master_controller *m = i3c_dev_get_master(dev);
1667 	struct svc_i3c_master *master = to_svc_i3c_master(m);
1668 	struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
1669 	unsigned long flags;
1670 
1671 	spin_lock_irqsave(&master->ibi.lock, flags);
1672 	master->ibi.slots[data->ibi] = NULL;
1673 	data->ibi = -1;
1674 	spin_unlock_irqrestore(&master->ibi.lock, flags);
1675 
1676 	i3c_generic_ibi_free_pool(data->ibi_pool);
1677 }
1678 
1679 static int svc_i3c_master_enable_ibi(struct i3c_dev_desc *dev)
1680 {
1681 	struct i3c_master_controller *m = i3c_dev_get_master(dev);
1682 	struct svc_i3c_master *master = to_svc_i3c_master(m);
1683 	int ret;
1684 
1685 	ret = pm_runtime_resume_and_get(master->dev);
1686 	if (ret < 0) {
1687 		dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__);
1688 		return ret;
1689 	}
1690 
1691 	master->enabled_events++;
1692 	svc_i3c_master_enable_interrupts(master, SVC_I3C_MINT_SLVSTART);
1693 
1694 	return i3c_master_enec_locked(m, dev->info.dyn_addr, I3C_CCC_EVENT_SIR);
1695 }
1696 
1697 static int svc_i3c_master_disable_ibi(struct i3c_dev_desc *dev)
1698 {
1699 	struct i3c_master_controller *m = i3c_dev_get_master(dev);
1700 	struct svc_i3c_master *master = to_svc_i3c_master(m);
1701 	int ret;
1702 
1703 	master->enabled_events--;
1704 	if (!master->enabled_events)
1705 		svc_i3c_master_disable_interrupts(master);
1706 
1707 	ret = i3c_master_disec_locked(m, dev->info.dyn_addr, I3C_CCC_EVENT_SIR);
1708 
1709 	pm_runtime_mark_last_busy(master->dev);
1710 	pm_runtime_put_autosuspend(master->dev);
1711 
1712 	return ret;
1713 }
1714 
1715 static int svc_i3c_master_enable_hotjoin(struct i3c_master_controller *m)
1716 {
1717 	struct svc_i3c_master *master = to_svc_i3c_master(m);
1718 	int ret;
1719 
1720 	ret = pm_runtime_resume_and_get(master->dev);
1721 	if (ret < 0) {
1722 		dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__);
1723 		return ret;
1724 	}
1725 
1726 	master->enabled_events |= SVC_I3C_EVENT_HOTJOIN;
1727 
1728 	svc_i3c_master_enable_interrupts(master, SVC_I3C_MINT_SLVSTART);
1729 
1730 	return 0;
1731 }
1732 
1733 static int svc_i3c_master_disable_hotjoin(struct i3c_master_controller *m)
1734 {
1735 	struct svc_i3c_master *master = to_svc_i3c_master(m);
1736 
1737 	master->enabled_events &= ~SVC_I3C_EVENT_HOTJOIN;
1738 
1739 	if (!master->enabled_events)
1740 		svc_i3c_master_disable_interrupts(master);
1741 
1742 	pm_runtime_mark_last_busy(master->dev);
1743 	pm_runtime_put_autosuspend(master->dev);
1744 
1745 	return 0;
1746 }
1747 
1748 static void svc_i3c_master_recycle_ibi_slot(struct i3c_dev_desc *dev,
1749 					    struct i3c_ibi_slot *slot)
1750 {
1751 	struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
1752 
1753 	i3c_generic_ibi_recycle_slot(data->ibi_pool, slot);
1754 }
1755 
1756 static const struct i3c_master_controller_ops svc_i3c_master_ops = {
1757 	.bus_init = svc_i3c_master_bus_init,
1758 	.bus_cleanup = svc_i3c_master_bus_cleanup,
1759 	.attach_i3c_dev = svc_i3c_master_attach_i3c_dev,
1760 	.detach_i3c_dev = svc_i3c_master_detach_i3c_dev,
1761 	.reattach_i3c_dev = svc_i3c_master_reattach_i3c_dev,
1762 	.attach_i2c_dev = svc_i3c_master_attach_i2c_dev,
1763 	.detach_i2c_dev = svc_i3c_master_detach_i2c_dev,
1764 	.do_daa = svc_i3c_master_do_daa,
1765 	.supports_ccc_cmd = svc_i3c_master_supports_ccc_cmd,
1766 	.send_ccc_cmd = svc_i3c_master_send_ccc_cmd,
1767 	.priv_xfers = svc_i3c_master_priv_xfers,
1768 	.i2c_xfers = svc_i3c_master_i2c_xfers,
1769 	.request_ibi = svc_i3c_master_request_ibi,
1770 	.free_ibi = svc_i3c_master_free_ibi,
1771 	.recycle_ibi_slot = svc_i3c_master_recycle_ibi_slot,
1772 	.enable_ibi = svc_i3c_master_enable_ibi,
1773 	.disable_ibi = svc_i3c_master_disable_ibi,
1774 	.enable_hotjoin = svc_i3c_master_enable_hotjoin,
1775 	.disable_hotjoin = svc_i3c_master_disable_hotjoin,
1776 	.set_speed = svc_i3c_master_set_speed,
1777 };
1778 
1779 static int svc_i3c_master_prepare_clks(struct svc_i3c_master *master)
1780 {
1781 	int ret = 0;
1782 
1783 	ret = clk_prepare_enable(master->pclk);
1784 	if (ret)
1785 		return ret;
1786 
1787 	ret = clk_prepare_enable(master->fclk);
1788 	if (ret) {
1789 		clk_disable_unprepare(master->pclk);
1790 		return ret;
1791 	}
1792 
1793 	ret = clk_prepare_enable(master->sclk);
1794 	if (ret) {
1795 		clk_disable_unprepare(master->pclk);
1796 		clk_disable_unprepare(master->fclk);
1797 		return ret;
1798 	}
1799 
1800 	return 0;
1801 }
1802 
1803 static void svc_i3c_master_unprepare_clks(struct svc_i3c_master *master)
1804 {
1805 	clk_disable_unprepare(master->pclk);
1806 	clk_disable_unprepare(master->fclk);
1807 	clk_disable_unprepare(master->sclk);
1808 }
1809 
1810 static int svc_i3c_master_probe(struct platform_device *pdev)
1811 {
1812 	struct device *dev = &pdev->dev;
1813 	struct svc_i3c_master *master;
1814 	int ret;
1815 
1816 	master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
1817 	if (!master)
1818 		return -ENOMEM;
1819 
1820 	master->regs = devm_platform_ioremap_resource(pdev, 0);
1821 	if (IS_ERR(master->regs))
1822 		return PTR_ERR(master->regs);
1823 
1824 	master->pclk = devm_clk_get(dev, "pclk");
1825 	if (IS_ERR(master->pclk))
1826 		return PTR_ERR(master->pclk);
1827 
1828 	master->fclk = devm_clk_get(dev, "fast_clk");
1829 	if (IS_ERR(master->fclk))
1830 		return PTR_ERR(master->fclk);
1831 
1832 	master->sclk = devm_clk_get(dev, "slow_clk");
1833 	if (IS_ERR(master->sclk))
1834 		return PTR_ERR(master->sclk);
1835 
1836 	master->irq = platform_get_irq(pdev, 0);
1837 	if (master->irq < 0)
1838 		return master->irq;
1839 
1840 	master->dev = dev;
1841 
1842 	ret = svc_i3c_master_prepare_clks(master);
1843 	if (ret)
1844 		return ret;
1845 
1846 	INIT_WORK(&master->hj_work, svc_i3c_master_hj_work);
1847 	INIT_WORK(&master->ibi_work, svc_i3c_master_ibi_work);
1848 	mutex_init(&master->lock);
1849 
1850 	ret = devm_request_irq(dev, master->irq, svc_i3c_master_irq_handler,
1851 			       IRQF_NO_SUSPEND, "svc-i3c-irq", master);
1852 	if (ret)
1853 		goto err_disable_clks;
1854 
1855 	master->free_slots = GENMASK(SVC_I3C_MAX_DEVS - 1, 0);
1856 
1857 	spin_lock_init(&master->xferqueue.lock);
1858 	INIT_LIST_HEAD(&master->xferqueue.list);
1859 
1860 	spin_lock_init(&master->ibi.lock);
1861 	master->ibi.num_slots = SVC_I3C_MAX_DEVS;
1862 	master->ibi.slots = devm_kcalloc(&pdev->dev, master->ibi.num_slots,
1863 					 sizeof(*master->ibi.slots),
1864 					 GFP_KERNEL);
1865 	if (!master->ibi.slots) {
1866 		ret = -ENOMEM;
1867 		goto err_disable_clks;
1868 	}
1869 
1870 	platform_set_drvdata(pdev, master);
1871 
1872 	pm_runtime_set_autosuspend_delay(&pdev->dev, SVC_I3C_PM_TIMEOUT_MS);
1873 	pm_runtime_use_autosuspend(&pdev->dev);
1874 	pm_runtime_get_noresume(&pdev->dev);
1875 	pm_runtime_set_active(&pdev->dev);
1876 	pm_runtime_enable(&pdev->dev);
1877 
1878 	svc_i3c_master_reset(master);
1879 
1880 	/* Register the master */
1881 	ret = i3c_master_register(&master->base, &pdev->dev,
1882 				  &svc_i3c_master_ops, false);
1883 	if (ret)
1884 		goto rpm_disable;
1885 
1886 	pm_runtime_mark_last_busy(&pdev->dev);
1887 	pm_runtime_put_autosuspend(&pdev->dev);
1888 
1889 	return 0;
1890 
1891 rpm_disable:
1892 	pm_runtime_dont_use_autosuspend(&pdev->dev);
1893 	pm_runtime_put_noidle(&pdev->dev);
1894 	pm_runtime_disable(&pdev->dev);
1895 	pm_runtime_set_suspended(&pdev->dev);
1896 
1897 err_disable_clks:
1898 	svc_i3c_master_unprepare_clks(master);
1899 
1900 	return ret;
1901 }
1902 
1903 static void svc_i3c_master_remove(struct platform_device *pdev)
1904 {
1905 	struct svc_i3c_master *master = platform_get_drvdata(pdev);
1906 
1907 	cancel_work_sync(&master->hj_work);
1908 	i3c_master_unregister(&master->base);
1909 
1910 	pm_runtime_dont_use_autosuspend(&pdev->dev);
1911 	pm_runtime_disable(&pdev->dev);
1912 }
1913 
1914 static void svc_i3c_save_regs(struct svc_i3c_master *master)
1915 {
1916 	master->saved_regs.mconfig = readl(master->regs + SVC_I3C_MCONFIG);
1917 	master->saved_regs.mdynaddr = readl(master->regs + SVC_I3C_MDYNADDR);
1918 }
1919 
1920 static void svc_i3c_restore_regs(struct svc_i3c_master *master)
1921 {
1922 	if (readl(master->regs + SVC_I3C_MDYNADDR) !=
1923 	    master->saved_regs.mdynaddr) {
1924 		writel(master->saved_regs.mconfig,
1925 		       master->regs + SVC_I3C_MCONFIG);
1926 		writel(master->saved_regs.mdynaddr,
1927 		       master->regs + SVC_I3C_MDYNADDR);
1928 	}
1929 }
1930 
1931 static int __maybe_unused svc_i3c_runtime_suspend(struct device *dev)
1932 {
1933 	struct svc_i3c_master *master = dev_get_drvdata(dev);
1934 
1935 	svc_i3c_save_regs(master);
1936 	svc_i3c_master_unprepare_clks(master);
1937 	pinctrl_pm_select_sleep_state(dev);
1938 
1939 	return 0;
1940 }
1941 
1942 static int __maybe_unused svc_i3c_runtime_resume(struct device *dev)
1943 {
1944 	struct svc_i3c_master *master = dev_get_drvdata(dev);
1945 
1946 	pinctrl_pm_select_default_state(dev);
1947 	svc_i3c_master_prepare_clks(master);
1948 
1949 	svc_i3c_restore_regs(master);
1950 
1951 	return 0;
1952 }
1953 
1954 static const struct dev_pm_ops svc_i3c_pm_ops = {
1955 	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1956 				      pm_runtime_force_resume)
1957 	SET_RUNTIME_PM_OPS(svc_i3c_runtime_suspend,
1958 			   svc_i3c_runtime_resume, NULL)
1959 };
1960 
1961 static const struct of_device_id svc_i3c_master_of_match_tbl[] = {
1962 	{ .compatible = "silvaco,i3c-master-v1"},
1963 	{ /* sentinel */ },
1964 };
1965 MODULE_DEVICE_TABLE(of, svc_i3c_master_of_match_tbl);
1966 
1967 static struct platform_driver svc_i3c_master = {
1968 	.probe = svc_i3c_master_probe,
1969 	.remove = svc_i3c_master_remove,
1970 	.driver = {
1971 		.name = "silvaco-i3c-master",
1972 		.of_match_table = svc_i3c_master_of_match_tbl,
1973 		.pm = &svc_i3c_pm_ops,
1974 	},
1975 };
1976 module_platform_driver(svc_i3c_master);
1977 
1978 MODULE_AUTHOR("Conor Culhane <conor.culhane@silvaco.com>");
1979 MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>");
1980 MODULE_DESCRIPTION("Silvaco dual-role I3C master driver");
1981 MODULE_LICENSE("GPL v2");
1982