xref: /linux/drivers/i3c/master/mipi-i3c-hci/dma.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: BSD-3-Clause
2 /*
3  * Copyright (c) 2020, MIPI Alliance, Inc.
4  *
5  * Author: Nicolas Pitre <npitre@baylibre.com>
6  *
7  * Note: The I3C HCI v2.0 spec is still in flux. The IBI support is based on
8  * v1.x of the spec and v2.0 will likely be split out.
9  */
10 
11 #include <linux/bitfield.h>
12 #include <linux/device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/errno.h>
15 #include <linux/i3c/master.h>
16 #include <linux/io.h>
17 
18 #include "hci.h"
19 #include "cmd.h"
20 #include "ibi.h"
21 
22 
23 /*
24  * Software Parameter Values (somewhat arb itrary for now).
25  * Some of them could be determined at run time eventually.
26  */
27 
28 #define XFER_RINGS			1	/* max: 8 */
29 #define XFER_RING_ENTRIES		16	/* max: 255 */
30 
31 #define IBI_RINGS			1	/* max: 8 */
32 #define IBI_STATUS_RING_ENTRIES		32	/* max: 255 */
33 #define IBI_CHUNK_CACHELINES		1	/* max: 256 bytes equivalent */
34 #define IBI_CHUNK_POOL_SIZE		128	/* max: 1023 */
35 
36 /*
37  * Ring Header Preamble
38  */
39 
40 #define rhs_reg_read(r)		readl(hci->RHS_regs + (RHS_##r))
41 #define rhs_reg_write(r, v)	writel(v, hci->RHS_regs + (RHS_##r))
42 
43 #define RHS_CONTROL			0x00
44 #define PREAMBLE_SIZE			GENMASK(31, 24)	/* Preamble Section Size */
45 #define HEADER_SIZE			GENMASK(23, 16)	/* Ring Header Size */
46 #define MAX_HEADER_COUNT_CAP		GENMASK(7, 4) /* HC Max Header Count */
47 #define MAX_HEADER_COUNT		GENMASK(3, 0) /* Driver Max Header Count */
48 
49 #define RHS_RHn_OFFSET(n)		(0x04 + (n)*4)
50 
51 /*
52  * Ring Header (Per-Ring Bundle)
53  */
54 
55 #define rh_reg_read(r)		readl(rh->regs + (RH_##r))
56 #define rh_reg_write(r, v)	writel(v, rh->regs + (RH_##r))
57 
58 #define RH_CR_SETUP			0x00	/* Command/Response Ring */
59 #define CR_XFER_STRUCT_SIZE		GENMASK(31, 24)
60 #define CR_RESP_STRUCT_SIZE		GENMASK(23, 16)
61 #define CR_RING_SIZE			GENMASK(8, 0)
62 
63 #define RH_IBI_SETUP			0x04
64 #define IBI_STATUS_STRUCT_SIZE		GENMASK(31, 24)
65 #define IBI_STATUS_RING_SIZE		GENMASK(23, 16)
66 #define IBI_DATA_CHUNK_SIZE		GENMASK(12, 10)
67 #define IBI_DATA_CHUNK_COUNT		GENMASK(9, 0)
68 
69 #define RH_CHUNK_CONTROL			0x08
70 
71 #define RH_INTR_STATUS			0x10
72 #define RH_INTR_STATUS_ENABLE		0x14
73 #define RH_INTR_SIGNAL_ENABLE		0x18
74 #define RH_INTR_FORCE			0x1c
75 #define INTR_IBI_READY			BIT(12)
76 #define INTR_TRANSFER_COMPLETION	BIT(11)
77 #define INTR_RING_OP			BIT(10)
78 #define INTR_TRANSFER_ERR		BIT(9)
79 #define INTR_WARN_INS_STOP_MODE		BIT(7)
80 #define INTR_IBI_RING_FULL		BIT(6)
81 #define INTR_TRANSFER_ABORT		BIT(5)
82 
83 #define RH_RING_STATUS			0x20
84 #define RING_STATUS_LOCKED		BIT(3)
85 #define RING_STATUS_ABORTED		BIT(2)
86 #define RING_STATUS_RUNNING		BIT(1)
87 #define RING_STATUS_ENABLED		BIT(0)
88 
89 #define RH_RING_CONTROL			0x24
90 #define RING_CTRL_ABORT			BIT(2)
91 #define RING_CTRL_RUN_STOP		BIT(1)
92 #define RING_CTRL_ENABLE		BIT(0)
93 
94 #define RH_RING_OPERATION1		0x28
95 #define RING_OP1_IBI_DEQ_PTR		GENMASK(23, 16)
96 #define RING_OP1_CR_SW_DEQ_PTR		GENMASK(15, 8)
97 #define RING_OP1_CR_ENQ_PTR		GENMASK(7, 0)
98 
99 #define RH_RING_OPERATION2		0x2c
100 #define RING_OP2_IBI_ENQ_PTR		GENMASK(23, 16)
101 #define RING_OP2_CR_DEQ_PTR		GENMASK(7, 0)
102 
103 #define RH_CMD_RING_BASE_LO		0x30
104 #define RH_CMD_RING_BASE_HI		0x34
105 #define RH_RESP_RING_BASE_LO		0x38
106 #define RH_RESP_RING_BASE_HI		0x3c
107 #define RH_IBI_STATUS_RING_BASE_LO	0x40
108 #define RH_IBI_STATUS_RING_BASE_HI	0x44
109 #define RH_IBI_DATA_RING_BASE_LO	0x48
110 #define RH_IBI_DATA_RING_BASE_HI	0x4c
111 
112 #define RH_CMD_RING_SG			0x50	/* Ring Scatter Gather Support */
113 #define RH_RESP_RING_SG			0x54
114 #define RH_IBI_STATUS_RING_SG		0x58
115 #define RH_IBI_DATA_RING_SG		0x5c
116 #define RING_SG_BLP			BIT(31)	/* Buffer Vs. List Pointer */
117 #define RING_SG_LIST_SIZE		GENMASK(15, 0)
118 
119 /*
120  * Data Buffer Descriptor (in memory)
121  */
122 
123 #define DATA_BUF_BLP			BIT(31)	/* Buffer Vs. List Pointer */
124 #define DATA_BUF_IOC			BIT(30)	/* Interrupt on Completion */
125 #define DATA_BUF_BLOCK_SIZE		GENMASK(15, 0)
126 
127 
128 struct hci_rh_data {
129 	void __iomem *regs;
130 	void *xfer, *resp, *ibi_status, *ibi_data;
131 	dma_addr_t xfer_dma, resp_dma, ibi_status_dma, ibi_data_dma;
132 	unsigned int xfer_entries, ibi_status_entries, ibi_chunks_total;
133 	unsigned int xfer_struct_sz, resp_struct_sz, ibi_status_sz, ibi_chunk_sz;
134 	unsigned int done_ptr, ibi_chunk_ptr;
135 	struct hci_xfer **src_xfers;
136 	spinlock_t lock;
137 	struct completion op_done;
138 };
139 
140 struct hci_rings_data {
141 	unsigned int total;
142 	struct hci_rh_data headers[] __counted_by(total);
143 };
144 
145 struct hci_dma_dev_ibi_data {
146 	struct i3c_generic_ibi_pool *pool;
147 	unsigned int max_len;
148 };
149 
150 static void hci_dma_cleanup(struct i3c_hci *hci)
151 {
152 	struct hci_rings_data *rings = hci->io_data;
153 	struct hci_rh_data *rh;
154 	unsigned int i;
155 
156 	if (!rings)
157 		return;
158 
159 	for (i = 0; i < rings->total; i++) {
160 		rh = &rings->headers[i];
161 
162 		rh_reg_write(INTR_SIGNAL_ENABLE, 0);
163 		rh_reg_write(RING_CONTROL, 0);
164 		rh_reg_write(CR_SETUP, 0);
165 		rh_reg_write(IBI_SETUP, 0);
166 
167 		if (rh->xfer)
168 			dma_free_coherent(&hci->master.dev,
169 					  rh->xfer_struct_sz * rh->xfer_entries,
170 					  rh->xfer, rh->xfer_dma);
171 		if (rh->resp)
172 			dma_free_coherent(&hci->master.dev,
173 					  rh->resp_struct_sz * rh->xfer_entries,
174 					  rh->resp, rh->resp_dma);
175 		kfree(rh->src_xfers);
176 		if (rh->ibi_status)
177 			dma_free_coherent(&hci->master.dev,
178 					  rh->ibi_status_sz * rh->ibi_status_entries,
179 					  rh->ibi_status, rh->ibi_status_dma);
180 		if (rh->ibi_data_dma)
181 			dma_unmap_single(&hci->master.dev, rh->ibi_data_dma,
182 					 rh->ibi_chunk_sz * rh->ibi_chunks_total,
183 					 DMA_FROM_DEVICE);
184 		kfree(rh->ibi_data);
185 	}
186 
187 	rhs_reg_write(CONTROL, 0);
188 
189 	kfree(rings);
190 	hci->io_data = NULL;
191 }
192 
193 static int hci_dma_init(struct i3c_hci *hci)
194 {
195 	struct hci_rings_data *rings;
196 	struct hci_rh_data *rh;
197 	u32 regval;
198 	unsigned int i, nr_rings, xfers_sz, resps_sz;
199 	unsigned int ibi_status_ring_sz, ibi_data_ring_sz;
200 	int ret;
201 
202 	regval = rhs_reg_read(CONTROL);
203 	nr_rings = FIELD_GET(MAX_HEADER_COUNT_CAP, regval);
204 	dev_info(&hci->master.dev, "%d DMA rings available\n", nr_rings);
205 	if (unlikely(nr_rings > 8)) {
206 		dev_err(&hci->master.dev, "number of rings should be <= 8\n");
207 		nr_rings = 8;
208 	}
209 	if (nr_rings > XFER_RINGS)
210 		nr_rings = XFER_RINGS;
211 	rings = kzalloc(struct_size(rings, headers, nr_rings), GFP_KERNEL);
212 	if (!rings)
213 		return -ENOMEM;
214 	hci->io_data = rings;
215 	rings->total = nr_rings;
216 
217 	regval = FIELD_PREP(MAX_HEADER_COUNT, rings->total);
218 	rhs_reg_write(CONTROL, regval);
219 
220 	for (i = 0; i < rings->total; i++) {
221 		u32 offset = rhs_reg_read(RHn_OFFSET(i));
222 
223 		dev_info(&hci->master.dev, "Ring %d at offset %#x\n", i, offset);
224 		ret = -EINVAL;
225 		if (!offset)
226 			goto err_out;
227 		rh = &rings->headers[i];
228 		rh->regs = hci->base_regs + offset;
229 		spin_lock_init(&rh->lock);
230 		init_completion(&rh->op_done);
231 
232 		rh->xfer_entries = XFER_RING_ENTRIES;
233 
234 		regval = rh_reg_read(CR_SETUP);
235 		rh->xfer_struct_sz = FIELD_GET(CR_XFER_STRUCT_SIZE, regval);
236 		rh->resp_struct_sz = FIELD_GET(CR_RESP_STRUCT_SIZE, regval);
237 		DBG("xfer_struct_sz = %d, resp_struct_sz = %d",
238 		    rh->xfer_struct_sz, rh->resp_struct_sz);
239 		xfers_sz = rh->xfer_struct_sz * rh->xfer_entries;
240 		resps_sz = rh->resp_struct_sz * rh->xfer_entries;
241 
242 		rh->xfer = dma_alloc_coherent(&hci->master.dev, xfers_sz,
243 					      &rh->xfer_dma, GFP_KERNEL);
244 		rh->resp = dma_alloc_coherent(&hci->master.dev, resps_sz,
245 					      &rh->resp_dma, GFP_KERNEL);
246 		rh->src_xfers =
247 			kmalloc_array(rh->xfer_entries, sizeof(*rh->src_xfers),
248 				      GFP_KERNEL);
249 		ret = -ENOMEM;
250 		if (!rh->xfer || !rh->resp || !rh->src_xfers)
251 			goto err_out;
252 
253 		rh_reg_write(CMD_RING_BASE_LO, lower_32_bits(rh->xfer_dma));
254 		rh_reg_write(CMD_RING_BASE_HI, upper_32_bits(rh->xfer_dma));
255 		rh_reg_write(RESP_RING_BASE_LO, lower_32_bits(rh->resp_dma));
256 		rh_reg_write(RESP_RING_BASE_HI, upper_32_bits(rh->resp_dma));
257 
258 		regval = FIELD_PREP(CR_RING_SIZE, rh->xfer_entries);
259 		rh_reg_write(CR_SETUP, regval);
260 
261 		rh_reg_write(INTR_STATUS_ENABLE, 0xffffffff);
262 		rh_reg_write(INTR_SIGNAL_ENABLE, INTR_IBI_READY |
263 						 INTR_TRANSFER_COMPLETION |
264 						 INTR_RING_OP |
265 						 INTR_TRANSFER_ERR |
266 						 INTR_WARN_INS_STOP_MODE |
267 						 INTR_IBI_RING_FULL |
268 						 INTR_TRANSFER_ABORT);
269 
270 		/* IBIs */
271 
272 		if (i >= IBI_RINGS)
273 			goto ring_ready;
274 
275 		regval = rh_reg_read(IBI_SETUP);
276 		rh->ibi_status_sz = FIELD_GET(IBI_STATUS_STRUCT_SIZE, regval);
277 		rh->ibi_status_entries = IBI_STATUS_RING_ENTRIES;
278 		rh->ibi_chunks_total = IBI_CHUNK_POOL_SIZE;
279 
280 		rh->ibi_chunk_sz = dma_get_cache_alignment();
281 		rh->ibi_chunk_sz *= IBI_CHUNK_CACHELINES;
282 		/*
283 		 * Round IBI data chunk size to number of bytes supported by
284 		 * the HW. Chunk size can be 2^n number of DWORDs which is the
285 		 * same as 2^(n+2) bytes, where n is 0..6.
286 		 */
287 		rh->ibi_chunk_sz = umax(4, rh->ibi_chunk_sz);
288 		rh->ibi_chunk_sz = roundup_pow_of_two(rh->ibi_chunk_sz);
289 		if (rh->ibi_chunk_sz > 256) {
290 			ret = -EINVAL;
291 			goto err_out;
292 		}
293 
294 		ibi_status_ring_sz = rh->ibi_status_sz * rh->ibi_status_entries;
295 		ibi_data_ring_sz = rh->ibi_chunk_sz * rh->ibi_chunks_total;
296 
297 		rh->ibi_status =
298 			dma_alloc_coherent(&hci->master.dev, ibi_status_ring_sz,
299 					   &rh->ibi_status_dma, GFP_KERNEL);
300 		rh->ibi_data = kmalloc(ibi_data_ring_sz, GFP_KERNEL);
301 		ret = -ENOMEM;
302 		if (!rh->ibi_status || !rh->ibi_data)
303 			goto err_out;
304 		rh->ibi_data_dma =
305 			dma_map_single(&hci->master.dev, rh->ibi_data,
306 				       ibi_data_ring_sz, DMA_FROM_DEVICE);
307 		if (dma_mapping_error(&hci->master.dev, rh->ibi_data_dma)) {
308 			rh->ibi_data_dma = 0;
309 			ret = -ENOMEM;
310 			goto err_out;
311 		}
312 
313 		rh_reg_write(IBI_STATUS_RING_BASE_LO, lower_32_bits(rh->ibi_status_dma));
314 		rh_reg_write(IBI_STATUS_RING_BASE_HI, upper_32_bits(rh->ibi_status_dma));
315 		rh_reg_write(IBI_DATA_RING_BASE_LO, lower_32_bits(rh->ibi_data_dma));
316 		rh_reg_write(IBI_DATA_RING_BASE_HI, upper_32_bits(rh->ibi_data_dma));
317 
318 		regval = FIELD_PREP(IBI_STATUS_RING_SIZE,
319 				    rh->ibi_status_entries) |
320 			 FIELD_PREP(IBI_DATA_CHUNK_SIZE,
321 				    ilog2(rh->ibi_chunk_sz) - 2) |
322 			 FIELD_PREP(IBI_DATA_CHUNK_COUNT,
323 				    rh->ibi_chunks_total);
324 		rh_reg_write(IBI_SETUP, regval);
325 
326 		regval = rh_reg_read(INTR_SIGNAL_ENABLE);
327 		regval |= INTR_IBI_READY;
328 		rh_reg_write(INTR_SIGNAL_ENABLE, regval);
329 
330 ring_ready:
331 		rh_reg_write(RING_CONTROL, RING_CTRL_ENABLE |
332 					   RING_CTRL_RUN_STOP);
333 	}
334 
335 	return 0;
336 
337 err_out:
338 	hci_dma_cleanup(hci);
339 	return ret;
340 }
341 
342 static void hci_dma_unmap_xfer(struct i3c_hci *hci,
343 			       struct hci_xfer *xfer_list, unsigned int n)
344 {
345 	struct hci_xfer *xfer;
346 	unsigned int i;
347 
348 	for (i = 0; i < n; i++) {
349 		xfer = xfer_list + i;
350 		if (!xfer->data)
351 			continue;
352 		dma_unmap_single(&hci->master.dev,
353 				 xfer->data_dma, xfer->data_len,
354 				 xfer->rnw ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
355 	}
356 }
357 
358 static int hci_dma_queue_xfer(struct i3c_hci *hci,
359 			      struct hci_xfer *xfer_list, int n)
360 {
361 	struct hci_rings_data *rings = hci->io_data;
362 	struct hci_rh_data *rh;
363 	unsigned int i, ring, enqueue_ptr;
364 	u32 op1_val, op2_val;
365 	void *buf;
366 
367 	/* For now we only use ring 0 */
368 	ring = 0;
369 	rh = &rings->headers[ring];
370 
371 	op1_val = rh_reg_read(RING_OPERATION1);
372 	enqueue_ptr = FIELD_GET(RING_OP1_CR_ENQ_PTR, op1_val);
373 	for (i = 0; i < n; i++) {
374 		struct hci_xfer *xfer = xfer_list + i;
375 		u32 *ring_data = rh->xfer + rh->xfer_struct_sz * enqueue_ptr;
376 
377 		/* store cmd descriptor */
378 		*ring_data++ = xfer->cmd_desc[0];
379 		*ring_data++ = xfer->cmd_desc[1];
380 		if (hci->cmd == &mipi_i3c_hci_cmd_v2) {
381 			*ring_data++ = xfer->cmd_desc[2];
382 			*ring_data++ = xfer->cmd_desc[3];
383 		}
384 
385 		/* first word of Data Buffer Descriptor Structure */
386 		if (!xfer->data)
387 			xfer->data_len = 0;
388 		*ring_data++ =
389 			FIELD_PREP(DATA_BUF_BLOCK_SIZE, xfer->data_len) |
390 			((i == n - 1) ? DATA_BUF_IOC : 0);
391 
392 		/* 2nd and 3rd words of Data Buffer Descriptor Structure */
393 		if (xfer->data) {
394 			buf = xfer->bounce_buf ? xfer->bounce_buf : xfer->data;
395 			xfer->data_dma =
396 				dma_map_single(&hci->master.dev,
397 					       buf,
398 					       xfer->data_len,
399 					       xfer->rnw ?
400 						  DMA_FROM_DEVICE :
401 						  DMA_TO_DEVICE);
402 			if (dma_mapping_error(&hci->master.dev,
403 					      xfer->data_dma)) {
404 				hci_dma_unmap_xfer(hci, xfer_list, i);
405 				return -ENOMEM;
406 			}
407 			*ring_data++ = lower_32_bits(xfer->data_dma);
408 			*ring_data++ = upper_32_bits(xfer->data_dma);
409 		} else {
410 			*ring_data++ = 0;
411 			*ring_data++ = 0;
412 		}
413 
414 		/* remember corresponding xfer struct */
415 		rh->src_xfers[enqueue_ptr] = xfer;
416 		/* remember corresponding ring/entry for this xfer structure */
417 		xfer->ring_number = ring;
418 		xfer->ring_entry = enqueue_ptr;
419 
420 		enqueue_ptr = (enqueue_ptr + 1) % rh->xfer_entries;
421 
422 		/*
423 		 * We may update the hardware view of the enqueue pointer
424 		 * only if we didn't reach its dequeue pointer.
425 		 */
426 		op2_val = rh_reg_read(RING_OPERATION2);
427 		if (enqueue_ptr == FIELD_GET(RING_OP2_CR_DEQ_PTR, op2_val)) {
428 			/* the ring is full */
429 			hci_dma_unmap_xfer(hci, xfer_list, i + 1);
430 			return -EBUSY;
431 		}
432 	}
433 
434 	/* take care to update the hardware enqueue pointer atomically */
435 	spin_lock_irq(&rh->lock);
436 	op1_val = rh_reg_read(RING_OPERATION1);
437 	op1_val &= ~RING_OP1_CR_ENQ_PTR;
438 	op1_val |= FIELD_PREP(RING_OP1_CR_ENQ_PTR, enqueue_ptr);
439 	rh_reg_write(RING_OPERATION1, op1_val);
440 	spin_unlock_irq(&rh->lock);
441 
442 	return 0;
443 }
444 
445 static bool hci_dma_dequeue_xfer(struct i3c_hci *hci,
446 				 struct hci_xfer *xfer_list, int n)
447 {
448 	struct hci_rings_data *rings = hci->io_data;
449 	struct hci_rh_data *rh = &rings->headers[xfer_list[0].ring_number];
450 	unsigned int i;
451 	bool did_unqueue = false;
452 
453 	/* stop the ring */
454 	rh_reg_write(RING_CONTROL, RING_CTRL_ABORT);
455 	if (wait_for_completion_timeout(&rh->op_done, HZ) == 0) {
456 		/*
457 		 * We're deep in it if ever this condition is ever met.
458 		 * Hardware might still be writing to memory, etc.
459 		 */
460 		dev_crit(&hci->master.dev, "unable to abort the ring\n");
461 		WARN_ON(1);
462 	}
463 
464 	for (i = 0; i < n; i++) {
465 		struct hci_xfer *xfer = xfer_list + i;
466 		int idx = xfer->ring_entry;
467 
468 		/*
469 		 * At the time the abort happened, the xfer might have
470 		 * completed already. If not then replace corresponding
471 		 * descriptor entries with a no-op.
472 		 */
473 		if (idx >= 0) {
474 			u32 *ring_data = rh->xfer + rh->xfer_struct_sz * idx;
475 
476 			/* store no-op cmd descriptor */
477 			*ring_data++ = FIELD_PREP(CMD_0_ATTR, 0x7);
478 			*ring_data++ = 0;
479 			if (hci->cmd == &mipi_i3c_hci_cmd_v2) {
480 				*ring_data++ = 0;
481 				*ring_data++ = 0;
482 			}
483 
484 			/* disassociate this xfer struct */
485 			rh->src_xfers[idx] = NULL;
486 
487 			/* and unmap it */
488 			hci_dma_unmap_xfer(hci, xfer, 1);
489 
490 			did_unqueue = true;
491 		}
492 	}
493 
494 	/* restart the ring */
495 	rh_reg_write(RING_CONTROL, RING_CTRL_ENABLE);
496 
497 	return did_unqueue;
498 }
499 
500 static void hci_dma_xfer_done(struct i3c_hci *hci, struct hci_rh_data *rh)
501 {
502 	u32 op1_val, op2_val, resp, *ring_resp;
503 	unsigned int tid, done_ptr = rh->done_ptr;
504 	struct hci_xfer *xfer;
505 
506 	for (;;) {
507 		op2_val = rh_reg_read(RING_OPERATION2);
508 		if (done_ptr == FIELD_GET(RING_OP2_CR_DEQ_PTR, op2_val))
509 			break;
510 
511 		ring_resp = rh->resp + rh->resp_struct_sz * done_ptr;
512 		resp = *ring_resp;
513 		tid = RESP_TID(resp);
514 		DBG("resp = 0x%08x", resp);
515 
516 		xfer = rh->src_xfers[done_ptr];
517 		if (!xfer) {
518 			DBG("orphaned ring entry");
519 		} else {
520 			hci_dma_unmap_xfer(hci, xfer, 1);
521 			xfer->ring_entry = -1;
522 			xfer->response = resp;
523 			if (tid != xfer->cmd_tid) {
524 				dev_err(&hci->master.dev,
525 					"response tid=%d when expecting %d\n",
526 					tid, xfer->cmd_tid);
527 				/* TODO: do something about it? */
528 			}
529 			if (xfer->completion)
530 				complete(xfer->completion);
531 		}
532 
533 		done_ptr = (done_ptr + 1) % rh->xfer_entries;
534 		rh->done_ptr = done_ptr;
535 	}
536 
537 	/* take care to update the software dequeue pointer atomically */
538 	spin_lock(&rh->lock);
539 	op1_val = rh_reg_read(RING_OPERATION1);
540 	op1_val &= ~RING_OP1_CR_SW_DEQ_PTR;
541 	op1_val |= FIELD_PREP(RING_OP1_CR_SW_DEQ_PTR, done_ptr);
542 	rh_reg_write(RING_OPERATION1, op1_val);
543 	spin_unlock(&rh->lock);
544 }
545 
546 static int hci_dma_request_ibi(struct i3c_hci *hci, struct i3c_dev_desc *dev,
547 			       const struct i3c_ibi_setup *req)
548 {
549 	struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
550 	struct i3c_generic_ibi_pool *pool;
551 	struct hci_dma_dev_ibi_data *dev_ibi;
552 
553 	dev_ibi = kmalloc(sizeof(*dev_ibi), GFP_KERNEL);
554 	if (!dev_ibi)
555 		return -ENOMEM;
556 	pool = i3c_generic_ibi_alloc_pool(dev, req);
557 	if (IS_ERR(pool)) {
558 		kfree(dev_ibi);
559 		return PTR_ERR(pool);
560 	}
561 	dev_ibi->pool = pool;
562 	dev_ibi->max_len = req->max_payload_len;
563 	dev_data->ibi_data = dev_ibi;
564 	return 0;
565 }
566 
567 static void hci_dma_free_ibi(struct i3c_hci *hci, struct i3c_dev_desc *dev)
568 {
569 	struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
570 	struct hci_dma_dev_ibi_data *dev_ibi = dev_data->ibi_data;
571 
572 	dev_data->ibi_data = NULL;
573 	i3c_generic_ibi_free_pool(dev_ibi->pool);
574 	kfree(dev_ibi);
575 }
576 
577 static void hci_dma_recycle_ibi_slot(struct i3c_hci *hci,
578 				     struct i3c_dev_desc *dev,
579 				     struct i3c_ibi_slot *slot)
580 {
581 	struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
582 	struct hci_dma_dev_ibi_data *dev_ibi = dev_data->ibi_data;
583 
584 	i3c_generic_ibi_recycle_slot(dev_ibi->pool, slot);
585 }
586 
587 static void hci_dma_process_ibi(struct i3c_hci *hci, struct hci_rh_data *rh)
588 {
589 	struct i3c_dev_desc *dev;
590 	struct i3c_hci_dev_data *dev_data;
591 	struct hci_dma_dev_ibi_data *dev_ibi;
592 	struct i3c_ibi_slot *slot;
593 	u32 op1_val, op2_val, ibi_status_error;
594 	unsigned int ptr, enq_ptr, deq_ptr;
595 	unsigned int ibi_size, ibi_chunks, ibi_data_offset, first_part;
596 	int ibi_addr, last_ptr;
597 	void *ring_ibi_data;
598 	dma_addr_t ring_ibi_data_dma;
599 
600 	op1_val = rh_reg_read(RING_OPERATION1);
601 	deq_ptr = FIELD_GET(RING_OP1_IBI_DEQ_PTR, op1_val);
602 
603 	op2_val = rh_reg_read(RING_OPERATION2);
604 	enq_ptr = FIELD_GET(RING_OP2_IBI_ENQ_PTR, op2_val);
605 
606 	ibi_status_error = 0;
607 	ibi_addr = -1;
608 	ibi_chunks = 0;
609 	ibi_size = 0;
610 	last_ptr = -1;
611 
612 	/* let's find all we can about this IBI */
613 	for (ptr = deq_ptr; ptr != enq_ptr;
614 	     ptr = (ptr + 1) % rh->ibi_status_entries) {
615 		u32 ibi_status, *ring_ibi_status;
616 		unsigned int chunks;
617 
618 		ring_ibi_status = rh->ibi_status + rh->ibi_status_sz * ptr;
619 		ibi_status = *ring_ibi_status;
620 		DBG("status = %#x", ibi_status);
621 
622 		if (ibi_status_error) {
623 			/* we no longer care */
624 		} else if (ibi_status & IBI_ERROR) {
625 			ibi_status_error = ibi_status;
626 		} else if (ibi_addr ==  -1) {
627 			ibi_addr = FIELD_GET(IBI_TARGET_ADDR, ibi_status);
628 		} else if (ibi_addr != FIELD_GET(IBI_TARGET_ADDR, ibi_status)) {
629 			/* the address changed unexpectedly */
630 			ibi_status_error = ibi_status;
631 		}
632 
633 		chunks = FIELD_GET(IBI_CHUNKS, ibi_status);
634 		ibi_chunks += chunks;
635 		if (!(ibi_status & IBI_LAST_STATUS)) {
636 			ibi_size += chunks * rh->ibi_chunk_sz;
637 		} else {
638 			ibi_size += FIELD_GET(IBI_DATA_LENGTH, ibi_status);
639 			last_ptr = ptr;
640 			break;
641 		}
642 	}
643 
644 	/* validate what we've got */
645 
646 	if (last_ptr == -1) {
647 		/* this IBI sequence is not yet complete */
648 		DBG("no LAST_STATUS available (e=%d d=%d)", enq_ptr, deq_ptr);
649 		return;
650 	}
651 	deq_ptr = last_ptr + 1;
652 	deq_ptr %= rh->ibi_status_entries;
653 
654 	if (ibi_status_error) {
655 		dev_err(&hci->master.dev, "IBI error from %#x\n", ibi_addr);
656 		goto done;
657 	}
658 
659 	/* determine who this is for */
660 	dev = i3c_hci_addr_to_dev(hci, ibi_addr);
661 	if (!dev) {
662 		dev_err(&hci->master.dev,
663 			"IBI for unknown device %#x\n", ibi_addr);
664 		goto done;
665 	}
666 
667 	dev_data = i3c_dev_get_master_data(dev);
668 	dev_ibi = dev_data->ibi_data;
669 	if (ibi_size > dev_ibi->max_len) {
670 		dev_err(&hci->master.dev, "IBI payload too big (%d > %d)\n",
671 			ibi_size, dev_ibi->max_len);
672 		goto done;
673 	}
674 
675 	/*
676 	 * This ring model is not suitable for zero-copy processing of IBIs.
677 	 * We have the data chunk ring wrap-around to deal with, meaning
678 	 * that the payload might span multiple chunks beginning at the
679 	 * end of the ring and wrap to the start of the ring. Furthermore
680 	 * there is no guarantee that those chunks will be released in order
681 	 * and in a timely manner by the upper driver. So let's just copy
682 	 * them to a discrete buffer. In practice they're supposed to be
683 	 * small anyway.
684 	 */
685 	slot = i3c_generic_ibi_get_free_slot(dev_ibi->pool);
686 	if (!slot) {
687 		dev_err(&hci->master.dev, "no free slot for IBI\n");
688 		goto done;
689 	}
690 
691 	/* copy first part of the payload */
692 	ibi_data_offset = rh->ibi_chunk_sz * rh->ibi_chunk_ptr;
693 	ring_ibi_data = rh->ibi_data + ibi_data_offset;
694 	ring_ibi_data_dma = rh->ibi_data_dma + ibi_data_offset;
695 	first_part = (rh->ibi_chunks_total - rh->ibi_chunk_ptr)
696 			* rh->ibi_chunk_sz;
697 	if (first_part > ibi_size)
698 		first_part = ibi_size;
699 	dma_sync_single_for_cpu(&hci->master.dev, ring_ibi_data_dma,
700 				first_part, DMA_FROM_DEVICE);
701 	memcpy(slot->data, ring_ibi_data, first_part);
702 
703 	/* copy second part if any */
704 	if (ibi_size > first_part) {
705 		/* we wrap back to the start and copy remaining data */
706 		ring_ibi_data = rh->ibi_data;
707 		ring_ibi_data_dma = rh->ibi_data_dma;
708 		dma_sync_single_for_cpu(&hci->master.dev, ring_ibi_data_dma,
709 					ibi_size - first_part, DMA_FROM_DEVICE);
710 		memcpy(slot->data + first_part, ring_ibi_data,
711 		       ibi_size - first_part);
712 	}
713 
714 	/* submit it */
715 	slot->dev = dev;
716 	slot->len = ibi_size;
717 	i3c_master_queue_ibi(dev, slot);
718 
719 done:
720 	/* take care to update the ibi dequeue pointer atomically */
721 	spin_lock(&rh->lock);
722 	op1_val = rh_reg_read(RING_OPERATION1);
723 	op1_val &= ~RING_OP1_IBI_DEQ_PTR;
724 	op1_val |= FIELD_PREP(RING_OP1_IBI_DEQ_PTR, deq_ptr);
725 	rh_reg_write(RING_OPERATION1, op1_val);
726 	spin_unlock(&rh->lock);
727 
728 	/* update the chunk pointer */
729 	rh->ibi_chunk_ptr += ibi_chunks;
730 	rh->ibi_chunk_ptr %= rh->ibi_chunks_total;
731 
732 	/* and tell the hardware about freed chunks */
733 	rh_reg_write(CHUNK_CONTROL, rh_reg_read(CHUNK_CONTROL) + ibi_chunks);
734 }
735 
736 static bool hci_dma_irq_handler(struct i3c_hci *hci)
737 {
738 	struct hci_rings_data *rings = hci->io_data;
739 	unsigned int i;
740 	bool handled = false;
741 
742 	for (i = 0; i < rings->total; i++) {
743 		struct hci_rh_data *rh;
744 		u32 status;
745 
746 		rh = &rings->headers[i];
747 		status = rh_reg_read(INTR_STATUS);
748 		DBG("rh%d status: %#x", i, status);
749 		if (!status)
750 			continue;
751 		rh_reg_write(INTR_STATUS, status);
752 
753 		if (status & INTR_IBI_READY)
754 			hci_dma_process_ibi(hci, rh);
755 		if (status & (INTR_TRANSFER_COMPLETION | INTR_TRANSFER_ERR))
756 			hci_dma_xfer_done(hci, rh);
757 		if (status & INTR_RING_OP)
758 			complete(&rh->op_done);
759 
760 		if (status & INTR_TRANSFER_ABORT) {
761 			dev_notice_ratelimited(&hci->master.dev,
762 				"ring %d: Transfer Aborted\n", i);
763 			mipi_i3c_hci_resume(hci);
764 		}
765 		if (status & INTR_WARN_INS_STOP_MODE)
766 			dev_warn_ratelimited(&hci->master.dev,
767 				"ring %d: Inserted Stop on Mode Change\n", i);
768 		if (status & INTR_IBI_RING_FULL)
769 			dev_err_ratelimited(&hci->master.dev,
770 				"ring %d: IBI Ring Full Condition\n", i);
771 
772 		handled = true;
773 	}
774 
775 	return handled;
776 }
777 
778 const struct hci_io_ops mipi_i3c_hci_dma = {
779 	.init			= hci_dma_init,
780 	.cleanup		= hci_dma_cleanup,
781 	.queue_xfer		= hci_dma_queue_xfer,
782 	.dequeue_xfer		= hci_dma_dequeue_xfer,
783 	.irq_handler		= hci_dma_irq_handler,
784 	.request_ibi		= hci_dma_request_ibi,
785 	.free_ibi		= hci_dma_free_ibi,
786 	.recycle_ibi_slot	= hci_dma_recycle_ibi_slot,
787 };
788