1 // SPDX-License-Identifier: BSD-3-Clause 2 /* 3 * Copyright (c) 2020, MIPI Alliance, Inc. 4 * 5 * Author: Nicolas Pitre <npitre@baylibre.com> 6 * 7 * Core driver code with main interface to the I3C subsystem. 8 */ 9 10 #include <linux/bitfield.h> 11 #include <linux/device.h> 12 #include <linux/errno.h> 13 #include <linux/i3c/master.h> 14 #include <linux/interrupt.h> 15 #include <linux/io.h> 16 #include <linux/iopoll.h> 17 #include <linux/module.h> 18 #include <linux/platform_device.h> 19 20 #include "hci.h" 21 #include "ext_caps.h" 22 #include "cmd.h" 23 #include "dat.h" 24 25 26 /* 27 * Host Controller Capabilities and Operation Registers 28 */ 29 30 #define reg_read(r) readl(hci->base_regs + (r)) 31 #define reg_write(r, v) writel(v, hci->base_regs + (r)) 32 #define reg_set(r, v) reg_write(r, reg_read(r) | (v)) 33 #define reg_clear(r, v) reg_write(r, reg_read(r) & ~(v)) 34 35 #define HCI_VERSION 0x00 /* HCI Version (in BCD) */ 36 37 #define HC_CONTROL 0x04 38 #define HC_CONTROL_BUS_ENABLE BIT(31) 39 #define HC_CONTROL_RESUME BIT(30) 40 #define HC_CONTROL_ABORT BIT(29) 41 #define HC_CONTROL_HALT_ON_CMD_TIMEOUT BIT(12) 42 #define HC_CONTROL_HOT_JOIN_CTRL BIT(8) /* Hot-Join ACK/NACK Control */ 43 #define HC_CONTROL_I2C_TARGET_PRESENT BIT(7) 44 #define HC_CONTROL_PIO_MODE BIT(6) /* DMA/PIO Mode Selector */ 45 #define HC_CONTROL_DATA_BIG_ENDIAN BIT(4) 46 #define HC_CONTROL_IBA_INCLUDE BIT(0) /* Include I3C Broadcast Address */ 47 48 #define MASTER_DEVICE_ADDR 0x08 /* Master Device Address */ 49 #define MASTER_DYNAMIC_ADDR_VALID BIT(31) /* Dynamic Address is Valid */ 50 #define MASTER_DYNAMIC_ADDR(v) FIELD_PREP(GENMASK(22, 16), v) 51 52 #define HC_CAPABILITIES 0x0c 53 #define HC_CAP_SG_DC_EN BIT(30) 54 #define HC_CAP_SG_IBI_EN BIT(29) 55 #define HC_CAP_SG_CR_EN BIT(28) 56 #define HC_CAP_MAX_DATA_LENGTH GENMASK(24, 22) 57 #define HC_CAP_CMD_SIZE GENMASK(21, 20) 58 #define HC_CAP_DIRECT_COMMANDS_EN BIT(18) 59 #define HC_CAP_MULTI_LANE_EN BIT(15) 60 #define HC_CAP_CMD_CCC_DEFBYTE BIT(10) 61 #define HC_CAP_HDR_BT_EN BIT(8) 62 #define HC_CAP_HDR_TS_EN BIT(7) 63 #define HC_CAP_HDR_DDR_EN BIT(6) 64 #define HC_CAP_NON_CURRENT_MASTER_CAP BIT(5) /* master handoff capable */ 65 #define HC_CAP_DATA_BYTE_CFG_EN BIT(4) /* endian selection possible */ 66 #define HC_CAP_AUTO_COMMAND BIT(3) 67 #define HC_CAP_COMBO_COMMAND BIT(2) 68 69 #define RESET_CONTROL 0x10 70 #define BUS_RESET BIT(31) 71 #define BUS_RESET_TYPE GENMASK(30, 29) 72 #define IBI_QUEUE_RST BIT(5) 73 #define RX_FIFO_RST BIT(4) 74 #define TX_FIFO_RST BIT(3) 75 #define RESP_QUEUE_RST BIT(2) 76 #define CMD_QUEUE_RST BIT(1) 77 #define SOFT_RST BIT(0) /* Core Reset */ 78 79 #define PRESENT_STATE 0x14 80 #define STATE_CURRENT_MASTER BIT(2) 81 82 #define INTR_STATUS 0x20 83 #define INTR_STATUS_ENABLE 0x24 84 #define INTR_SIGNAL_ENABLE 0x28 85 #define INTR_FORCE 0x2c 86 #define INTR_HC_CMD_SEQ_UFLOW_STAT BIT(12) /* Cmd Sequence Underflow */ 87 #define INTR_HC_RESET_CANCEL BIT(11) /* HC Cancelled Reset */ 88 #define INTR_HC_INTERNAL_ERR BIT(10) /* HC Internal Error */ 89 #define INTR_HC_PIO BIT(8) /* cascaded PIO interrupt */ 90 #define INTR_HC_RINGS GENMASK(7, 0) 91 92 #define DAT_SECTION 0x30 /* Device Address Table */ 93 #define DAT_ENTRY_SIZE GENMASK(31, 28) 94 #define DAT_TABLE_SIZE GENMASK(18, 12) 95 #define DAT_TABLE_OFFSET GENMASK(11, 0) 96 97 #define DCT_SECTION 0x34 /* Device Characteristics Table */ 98 #define DCT_ENTRY_SIZE GENMASK(31, 28) 99 #define DCT_TABLE_INDEX GENMASK(23, 19) 100 #define DCT_TABLE_SIZE GENMASK(18, 12) 101 #define DCT_TABLE_OFFSET GENMASK(11, 0) 102 103 #define RING_HEADERS_SECTION 0x38 104 #define RING_HEADERS_OFFSET GENMASK(15, 0) 105 106 #define PIO_SECTION 0x3c 107 #define PIO_REGS_OFFSET GENMASK(15, 0) /* PIO Offset */ 108 109 #define EXT_CAPS_SECTION 0x40 110 #define EXT_CAPS_OFFSET GENMASK(15, 0) 111 112 #define IBI_NOTIFY_CTRL 0x58 /* IBI Notify Control */ 113 #define IBI_NOTIFY_SIR_REJECTED BIT(3) /* Rejected Target Interrupt Request */ 114 #define IBI_NOTIFY_MR_REJECTED BIT(1) /* Rejected Master Request Control */ 115 #define IBI_NOTIFY_HJ_REJECTED BIT(0) /* Rejected Hot-Join Control */ 116 117 #define DEV_CTX_BASE_LO 0x60 118 #define DEV_CTX_BASE_HI 0x64 119 120 121 static inline struct i3c_hci *to_i3c_hci(struct i3c_master_controller *m) 122 { 123 return container_of(m, struct i3c_hci, master); 124 } 125 126 static int i3c_hci_bus_init(struct i3c_master_controller *m) 127 { 128 struct i3c_hci *hci = to_i3c_hci(m); 129 struct i3c_device_info info; 130 int ret; 131 132 DBG(""); 133 134 if (hci->cmd == &mipi_i3c_hci_cmd_v1) { 135 ret = mipi_i3c_hci_dat_v1.init(hci); 136 if (ret) 137 return ret; 138 } 139 140 ret = i3c_master_get_free_addr(m, 0); 141 if (ret < 0) 142 return ret; 143 reg_write(MASTER_DEVICE_ADDR, 144 MASTER_DYNAMIC_ADDR(ret) | MASTER_DYNAMIC_ADDR_VALID); 145 memset(&info, 0, sizeof(info)); 146 info.dyn_addr = ret; 147 ret = i3c_master_set_info(m, &info); 148 if (ret) 149 return ret; 150 151 ret = hci->io->init(hci); 152 if (ret) 153 return ret; 154 155 reg_set(HC_CONTROL, HC_CONTROL_BUS_ENABLE); 156 DBG("HC_CONTROL = %#x", reg_read(HC_CONTROL)); 157 158 return 0; 159 } 160 161 static void i3c_hci_bus_cleanup(struct i3c_master_controller *m) 162 { 163 struct i3c_hci *hci = to_i3c_hci(m); 164 struct platform_device *pdev = to_platform_device(m->dev.parent); 165 166 DBG(""); 167 168 reg_clear(HC_CONTROL, HC_CONTROL_BUS_ENABLE); 169 synchronize_irq(platform_get_irq(pdev, 0)); 170 hci->io->cleanup(hci); 171 if (hci->cmd == &mipi_i3c_hci_cmd_v1) 172 mipi_i3c_hci_dat_v1.cleanup(hci); 173 } 174 175 void mipi_i3c_hci_resume(struct i3c_hci *hci) 176 { 177 reg_set(HC_CONTROL, HC_CONTROL_RESUME); 178 } 179 180 /* located here rather than pio.c because needed bits are in core reg space */ 181 void mipi_i3c_hci_pio_reset(struct i3c_hci *hci) 182 { 183 reg_write(RESET_CONTROL, RX_FIFO_RST | TX_FIFO_RST | RESP_QUEUE_RST); 184 } 185 186 /* located here rather than dct.c because needed bits are in core reg space */ 187 void mipi_i3c_hci_dct_index_reset(struct i3c_hci *hci) 188 { 189 reg_write(DCT_SECTION, FIELD_PREP(DCT_TABLE_INDEX, 0)); 190 } 191 192 static int i3c_hci_send_ccc_cmd(struct i3c_master_controller *m, 193 struct i3c_ccc_cmd *ccc) 194 { 195 struct i3c_hci *hci = to_i3c_hci(m); 196 struct hci_xfer *xfer; 197 bool raw = !!(hci->quirks & HCI_QUIRK_RAW_CCC); 198 bool prefixed = raw && !!(ccc->id & I3C_CCC_DIRECT); 199 unsigned int nxfers = ccc->ndests + prefixed; 200 DECLARE_COMPLETION_ONSTACK(done); 201 int i, last, ret = 0; 202 203 DBG("cmd=%#x rnw=%d ndests=%d data[0].len=%d", 204 ccc->id, ccc->rnw, ccc->ndests, ccc->dests[0].payload.len); 205 206 xfer = hci_alloc_xfer(nxfers); 207 if (!xfer) 208 return -ENOMEM; 209 210 if (prefixed) { 211 xfer->data = NULL; 212 xfer->data_len = 0; 213 xfer->rnw = false; 214 hci->cmd->prep_ccc(hci, xfer, I3C_BROADCAST_ADDR, 215 ccc->id, true); 216 xfer++; 217 } 218 219 for (i = 0; i < nxfers - prefixed; i++) { 220 xfer[i].data = ccc->dests[i].payload.data; 221 xfer[i].data_len = ccc->dests[i].payload.len; 222 xfer[i].rnw = ccc->rnw; 223 ret = hci->cmd->prep_ccc(hci, &xfer[i], ccc->dests[i].addr, 224 ccc->id, raw); 225 if (ret) 226 goto out; 227 xfer[i].cmd_desc[0] |= CMD_0_ROC; 228 } 229 last = i - 1; 230 xfer[last].cmd_desc[0] |= CMD_0_TOC; 231 xfer[last].completion = &done; 232 233 if (prefixed) 234 xfer--; 235 236 ret = hci->io->queue_xfer(hci, xfer, nxfers); 237 if (ret) 238 goto out; 239 if (!wait_for_completion_timeout(&done, HZ) && 240 hci->io->dequeue_xfer(hci, xfer, nxfers)) { 241 ret = -ETIME; 242 goto out; 243 } 244 for (i = prefixed; i < nxfers; i++) { 245 if (ccc->rnw) 246 ccc->dests[i - prefixed].payload.len = 247 RESP_DATA_LENGTH(xfer[i].response); 248 switch (RESP_STATUS(xfer[i].response)) { 249 case RESP_SUCCESS: 250 continue; 251 case RESP_ERR_ADDR_HEADER: 252 case RESP_ERR_NACK: 253 ccc->err = I3C_ERROR_M2; 254 fallthrough; 255 default: 256 ret = -EIO; 257 goto out; 258 } 259 } 260 261 if (ccc->rnw) 262 DBG("got: %*ph", 263 ccc->dests[0].payload.len, ccc->dests[0].payload.data); 264 265 out: 266 hci_free_xfer(xfer, nxfers); 267 return ret; 268 } 269 270 static int i3c_hci_daa(struct i3c_master_controller *m) 271 { 272 struct i3c_hci *hci = to_i3c_hci(m); 273 274 DBG(""); 275 276 return hci->cmd->perform_daa(hci); 277 } 278 279 static int i3c_hci_alloc_safe_xfer_buf(struct i3c_hci *hci, 280 struct hci_xfer *xfer) 281 { 282 if (hci->io != &mipi_i3c_hci_dma || 283 xfer->data == NULL || !is_vmalloc_addr(xfer->data)) 284 return 0; 285 286 if (xfer->rnw) 287 xfer->bounce_buf = kzalloc(xfer->data_len, GFP_KERNEL); 288 else 289 xfer->bounce_buf = kmemdup(xfer->data, 290 xfer->data_len, GFP_KERNEL); 291 292 return xfer->bounce_buf == NULL ? -ENOMEM : 0; 293 } 294 295 static void i3c_hci_free_safe_xfer_buf(struct i3c_hci *hci, 296 struct hci_xfer *xfer) 297 { 298 if (hci->io != &mipi_i3c_hci_dma || xfer->bounce_buf == NULL) 299 return; 300 301 if (xfer->rnw) 302 memcpy(xfer->data, xfer->bounce_buf, xfer->data_len); 303 304 kfree(xfer->bounce_buf); 305 } 306 307 static int i3c_hci_priv_xfers(struct i3c_dev_desc *dev, 308 struct i3c_priv_xfer *i3c_xfers, 309 int nxfers) 310 { 311 struct i3c_master_controller *m = i3c_dev_get_master(dev); 312 struct i3c_hci *hci = to_i3c_hci(m); 313 struct hci_xfer *xfer; 314 DECLARE_COMPLETION_ONSTACK(done); 315 unsigned int size_limit; 316 int i, last, ret = 0; 317 318 DBG("nxfers = %d", nxfers); 319 320 xfer = hci_alloc_xfer(nxfers); 321 if (!xfer) 322 return -ENOMEM; 323 324 size_limit = 1U << (16 + FIELD_GET(HC_CAP_MAX_DATA_LENGTH, hci->caps)); 325 326 for (i = 0; i < nxfers; i++) { 327 xfer[i].data_len = i3c_xfers[i].len; 328 ret = -EFBIG; 329 if (xfer[i].data_len >= size_limit) 330 goto out; 331 xfer[i].rnw = i3c_xfers[i].rnw; 332 if (i3c_xfers[i].rnw) { 333 xfer[i].data = i3c_xfers[i].data.in; 334 } else { 335 /* silence the const qualifier warning with a cast */ 336 xfer[i].data = (void *) i3c_xfers[i].data.out; 337 } 338 hci->cmd->prep_i3c_xfer(hci, dev, &xfer[i]); 339 xfer[i].cmd_desc[0] |= CMD_0_ROC; 340 ret = i3c_hci_alloc_safe_xfer_buf(hci, &xfer[i]); 341 if (ret) 342 goto out; 343 } 344 last = i - 1; 345 xfer[last].cmd_desc[0] |= CMD_0_TOC; 346 xfer[last].completion = &done; 347 348 ret = hci->io->queue_xfer(hci, xfer, nxfers); 349 if (ret) 350 goto out; 351 if (!wait_for_completion_timeout(&done, HZ) && 352 hci->io->dequeue_xfer(hci, xfer, nxfers)) { 353 ret = -ETIME; 354 goto out; 355 } 356 for (i = 0; i < nxfers; i++) { 357 if (i3c_xfers[i].rnw) 358 i3c_xfers[i].len = RESP_DATA_LENGTH(xfer[i].response); 359 if (RESP_STATUS(xfer[i].response) != RESP_SUCCESS) { 360 ret = -EIO; 361 goto out; 362 } 363 } 364 365 out: 366 for (i = 0; i < nxfers; i++) 367 i3c_hci_free_safe_xfer_buf(hci, &xfer[i]); 368 369 hci_free_xfer(xfer, nxfers); 370 return ret; 371 } 372 373 static int i3c_hci_i2c_xfers(struct i2c_dev_desc *dev, 374 const struct i2c_msg *i2c_xfers, int nxfers) 375 { 376 struct i3c_master_controller *m = i2c_dev_get_master(dev); 377 struct i3c_hci *hci = to_i3c_hci(m); 378 struct hci_xfer *xfer; 379 DECLARE_COMPLETION_ONSTACK(done); 380 int i, last, ret = 0; 381 382 DBG("nxfers = %d", nxfers); 383 384 xfer = hci_alloc_xfer(nxfers); 385 if (!xfer) 386 return -ENOMEM; 387 388 for (i = 0; i < nxfers; i++) { 389 xfer[i].data = i2c_xfers[i].buf; 390 xfer[i].data_len = i2c_xfers[i].len; 391 xfer[i].rnw = i2c_xfers[i].flags & I2C_M_RD; 392 hci->cmd->prep_i2c_xfer(hci, dev, &xfer[i]); 393 xfer[i].cmd_desc[0] |= CMD_0_ROC; 394 ret = i3c_hci_alloc_safe_xfer_buf(hci, &xfer[i]); 395 if (ret) 396 goto out; 397 } 398 last = i - 1; 399 xfer[last].cmd_desc[0] |= CMD_0_TOC; 400 xfer[last].completion = &done; 401 402 ret = hci->io->queue_xfer(hci, xfer, nxfers); 403 if (ret) 404 goto out; 405 if (!wait_for_completion_timeout(&done, HZ) && 406 hci->io->dequeue_xfer(hci, xfer, nxfers)) { 407 ret = -ETIME; 408 goto out; 409 } 410 for (i = 0; i < nxfers; i++) { 411 if (RESP_STATUS(xfer[i].response) != RESP_SUCCESS) { 412 ret = -EIO; 413 goto out; 414 } 415 } 416 417 out: 418 for (i = 0; i < nxfers; i++) 419 i3c_hci_free_safe_xfer_buf(hci, &xfer[i]); 420 421 hci_free_xfer(xfer, nxfers); 422 return ret; 423 } 424 425 static int i3c_hci_attach_i3c_dev(struct i3c_dev_desc *dev) 426 { 427 struct i3c_master_controller *m = i3c_dev_get_master(dev); 428 struct i3c_hci *hci = to_i3c_hci(m); 429 struct i3c_hci_dev_data *dev_data; 430 int ret; 431 432 DBG(""); 433 434 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL); 435 if (!dev_data) 436 return -ENOMEM; 437 if (hci->cmd == &mipi_i3c_hci_cmd_v1) { 438 ret = mipi_i3c_hci_dat_v1.alloc_entry(hci); 439 if (ret < 0) { 440 kfree(dev_data); 441 return ret; 442 } 443 mipi_i3c_hci_dat_v1.set_dynamic_addr(hci, ret, dev->info.dyn_addr); 444 dev_data->dat_idx = ret; 445 } 446 i3c_dev_set_master_data(dev, dev_data); 447 return 0; 448 } 449 450 static int i3c_hci_reattach_i3c_dev(struct i3c_dev_desc *dev, u8 old_dyn_addr) 451 { 452 struct i3c_master_controller *m = i3c_dev_get_master(dev); 453 struct i3c_hci *hci = to_i3c_hci(m); 454 struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev); 455 456 DBG(""); 457 458 if (hci->cmd == &mipi_i3c_hci_cmd_v1) 459 mipi_i3c_hci_dat_v1.set_dynamic_addr(hci, dev_data->dat_idx, 460 dev->info.dyn_addr); 461 return 0; 462 } 463 464 static void i3c_hci_detach_i3c_dev(struct i3c_dev_desc *dev) 465 { 466 struct i3c_master_controller *m = i3c_dev_get_master(dev); 467 struct i3c_hci *hci = to_i3c_hci(m); 468 struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev); 469 470 DBG(""); 471 472 i3c_dev_set_master_data(dev, NULL); 473 if (hci->cmd == &mipi_i3c_hci_cmd_v1) 474 mipi_i3c_hci_dat_v1.free_entry(hci, dev_data->dat_idx); 475 kfree(dev_data); 476 } 477 478 static int i3c_hci_attach_i2c_dev(struct i2c_dev_desc *dev) 479 { 480 struct i3c_master_controller *m = i2c_dev_get_master(dev); 481 struct i3c_hci *hci = to_i3c_hci(m); 482 struct i3c_hci_dev_data *dev_data; 483 int ret; 484 485 DBG(""); 486 487 if (hci->cmd != &mipi_i3c_hci_cmd_v1) 488 return 0; 489 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL); 490 if (!dev_data) 491 return -ENOMEM; 492 ret = mipi_i3c_hci_dat_v1.alloc_entry(hci); 493 if (ret < 0) { 494 kfree(dev_data); 495 return ret; 496 } 497 mipi_i3c_hci_dat_v1.set_static_addr(hci, ret, dev->addr); 498 mipi_i3c_hci_dat_v1.set_flags(hci, ret, DAT_0_I2C_DEVICE, 0); 499 dev_data->dat_idx = ret; 500 i2c_dev_set_master_data(dev, dev_data); 501 return 0; 502 } 503 504 static void i3c_hci_detach_i2c_dev(struct i2c_dev_desc *dev) 505 { 506 struct i3c_master_controller *m = i2c_dev_get_master(dev); 507 struct i3c_hci *hci = to_i3c_hci(m); 508 struct i3c_hci_dev_data *dev_data = i2c_dev_get_master_data(dev); 509 510 DBG(""); 511 512 if (dev_data) { 513 i2c_dev_set_master_data(dev, NULL); 514 if (hci->cmd == &mipi_i3c_hci_cmd_v1) 515 mipi_i3c_hci_dat_v1.free_entry(hci, dev_data->dat_idx); 516 kfree(dev_data); 517 } 518 } 519 520 static int i3c_hci_request_ibi(struct i3c_dev_desc *dev, 521 const struct i3c_ibi_setup *req) 522 { 523 struct i3c_master_controller *m = i3c_dev_get_master(dev); 524 struct i3c_hci *hci = to_i3c_hci(m); 525 struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev); 526 unsigned int dat_idx = dev_data->dat_idx; 527 528 if (req->max_payload_len != 0) 529 mipi_i3c_hci_dat_v1.set_flags(hci, dat_idx, DAT_0_IBI_PAYLOAD, 0); 530 else 531 mipi_i3c_hci_dat_v1.clear_flags(hci, dat_idx, DAT_0_IBI_PAYLOAD, 0); 532 return hci->io->request_ibi(hci, dev, req); 533 } 534 535 static void i3c_hci_free_ibi(struct i3c_dev_desc *dev) 536 { 537 struct i3c_master_controller *m = i3c_dev_get_master(dev); 538 struct i3c_hci *hci = to_i3c_hci(m); 539 540 hci->io->free_ibi(hci, dev); 541 } 542 543 static int i3c_hci_enable_ibi(struct i3c_dev_desc *dev) 544 { 545 struct i3c_master_controller *m = i3c_dev_get_master(dev); 546 struct i3c_hci *hci = to_i3c_hci(m); 547 struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev); 548 549 mipi_i3c_hci_dat_v1.clear_flags(hci, dev_data->dat_idx, DAT_0_SIR_REJECT, 0); 550 return i3c_master_enec_locked(m, dev->info.dyn_addr, I3C_CCC_EVENT_SIR); 551 } 552 553 static int i3c_hci_disable_ibi(struct i3c_dev_desc *dev) 554 { 555 struct i3c_master_controller *m = i3c_dev_get_master(dev); 556 struct i3c_hci *hci = to_i3c_hci(m); 557 struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev); 558 559 mipi_i3c_hci_dat_v1.set_flags(hci, dev_data->dat_idx, DAT_0_SIR_REJECT, 0); 560 return i3c_master_disec_locked(m, dev->info.dyn_addr, I3C_CCC_EVENT_SIR); 561 } 562 563 static void i3c_hci_recycle_ibi_slot(struct i3c_dev_desc *dev, 564 struct i3c_ibi_slot *slot) 565 { 566 struct i3c_master_controller *m = i3c_dev_get_master(dev); 567 struct i3c_hci *hci = to_i3c_hci(m); 568 569 hci->io->recycle_ibi_slot(hci, dev, slot); 570 } 571 572 static const struct i3c_master_controller_ops i3c_hci_ops = { 573 .bus_init = i3c_hci_bus_init, 574 .bus_cleanup = i3c_hci_bus_cleanup, 575 .do_daa = i3c_hci_daa, 576 .send_ccc_cmd = i3c_hci_send_ccc_cmd, 577 .priv_xfers = i3c_hci_priv_xfers, 578 .i2c_xfers = i3c_hci_i2c_xfers, 579 .attach_i3c_dev = i3c_hci_attach_i3c_dev, 580 .reattach_i3c_dev = i3c_hci_reattach_i3c_dev, 581 .detach_i3c_dev = i3c_hci_detach_i3c_dev, 582 .attach_i2c_dev = i3c_hci_attach_i2c_dev, 583 .detach_i2c_dev = i3c_hci_detach_i2c_dev, 584 .request_ibi = i3c_hci_request_ibi, 585 .free_ibi = i3c_hci_free_ibi, 586 .enable_ibi = i3c_hci_enable_ibi, 587 .disable_ibi = i3c_hci_disable_ibi, 588 .recycle_ibi_slot = i3c_hci_recycle_ibi_slot, 589 }; 590 591 static irqreturn_t i3c_hci_irq_handler(int irq, void *dev_id) 592 { 593 struct i3c_hci *hci = dev_id; 594 irqreturn_t result = IRQ_NONE; 595 u32 val; 596 597 val = reg_read(INTR_STATUS); 598 DBG("INTR_STATUS = %#x", val); 599 600 if (val) { 601 reg_write(INTR_STATUS, val); 602 } else { 603 /* v1.0 does not have PIO cascaded notification bits */ 604 val |= INTR_HC_PIO; 605 } 606 607 if (val & INTR_HC_RESET_CANCEL) { 608 DBG("cancelled reset"); 609 val &= ~INTR_HC_RESET_CANCEL; 610 } 611 if (val & INTR_HC_INTERNAL_ERR) { 612 dev_err(&hci->master.dev, "Host Controller Internal Error\n"); 613 val &= ~INTR_HC_INTERNAL_ERR; 614 } 615 if (val & INTR_HC_PIO) { 616 hci->io->irq_handler(hci, 0); 617 val &= ~INTR_HC_PIO; 618 } 619 if (val & INTR_HC_RINGS) { 620 hci->io->irq_handler(hci, val & INTR_HC_RINGS); 621 val &= ~INTR_HC_RINGS; 622 } 623 if (val) 624 dev_err(&hci->master.dev, "unexpected INTR_STATUS %#x\n", val); 625 else 626 result = IRQ_HANDLED; 627 628 return result; 629 } 630 631 static int i3c_hci_init(struct i3c_hci *hci) 632 { 633 u32 regval, offset; 634 bool size_in_dwords; 635 int ret; 636 637 /* Validate HCI hardware version */ 638 regval = reg_read(HCI_VERSION); 639 hci->version_major = (regval >> 8) & 0xf; 640 hci->version_minor = (regval >> 4) & 0xf; 641 hci->revision = regval & 0xf; 642 dev_notice(&hci->master.dev, "MIPI I3C HCI v%u.%u r%02u\n", 643 hci->version_major, hci->version_minor, hci->revision); 644 /* known versions */ 645 switch (regval & ~0xf) { 646 case 0x100: /* version 1.0 */ 647 case 0x110: /* version 1.1 */ 648 case 0x200: /* version 2.0 */ 649 break; 650 default: 651 dev_err(&hci->master.dev, "unsupported HCI version\n"); 652 return -EPROTONOSUPPORT; 653 } 654 655 hci->caps = reg_read(HC_CAPABILITIES); 656 DBG("caps = %#x", hci->caps); 657 658 size_in_dwords = hci->version_major < 1 || 659 (hci->version_major == 1 && hci->version_minor < 1); 660 661 regval = reg_read(DAT_SECTION); 662 offset = FIELD_GET(DAT_TABLE_OFFSET, regval); 663 hci->DAT_regs = offset ? hci->base_regs + offset : NULL; 664 hci->DAT_entries = FIELD_GET(DAT_TABLE_SIZE, regval); 665 hci->DAT_entry_size = FIELD_GET(DAT_ENTRY_SIZE, regval) ? 0 : 8; 666 if (size_in_dwords) 667 hci->DAT_entries = 4 * hci->DAT_entries / hci->DAT_entry_size; 668 dev_info(&hci->master.dev, "DAT: %u %u-bytes entries at offset %#x\n", 669 hci->DAT_entries, hci->DAT_entry_size, offset); 670 671 regval = reg_read(DCT_SECTION); 672 offset = FIELD_GET(DCT_TABLE_OFFSET, regval); 673 hci->DCT_regs = offset ? hci->base_regs + offset : NULL; 674 hci->DCT_entries = FIELD_GET(DCT_TABLE_SIZE, regval); 675 hci->DCT_entry_size = FIELD_GET(DCT_ENTRY_SIZE, regval) ? 0 : 16; 676 if (size_in_dwords) 677 hci->DCT_entries = 4 * hci->DCT_entries / hci->DCT_entry_size; 678 dev_info(&hci->master.dev, "DCT: %u %u-bytes entries at offset %#x\n", 679 hci->DCT_entries, hci->DCT_entry_size, offset); 680 681 regval = reg_read(RING_HEADERS_SECTION); 682 offset = FIELD_GET(RING_HEADERS_OFFSET, regval); 683 hci->RHS_regs = offset ? hci->base_regs + offset : NULL; 684 dev_info(&hci->master.dev, "Ring Headers at offset %#x\n", offset); 685 686 regval = reg_read(PIO_SECTION); 687 offset = FIELD_GET(PIO_REGS_OFFSET, regval); 688 hci->PIO_regs = offset ? hci->base_regs + offset : NULL; 689 dev_info(&hci->master.dev, "PIO section at offset %#x\n", offset); 690 691 regval = reg_read(EXT_CAPS_SECTION); 692 offset = FIELD_GET(EXT_CAPS_OFFSET, regval); 693 hci->EXTCAPS_regs = offset ? hci->base_regs + offset : NULL; 694 dev_info(&hci->master.dev, "Extended Caps at offset %#x\n", offset); 695 696 ret = i3c_hci_parse_ext_caps(hci); 697 if (ret) 698 return ret; 699 700 /* 701 * Now let's reset the hardware. 702 * SOFT_RST must be clear before we write to it. 703 * Then we must wait until it clears again. 704 */ 705 ret = readx_poll_timeout(reg_read, RESET_CONTROL, regval, 706 !(regval & SOFT_RST), 1, 10000); 707 if (ret) 708 return -ENXIO; 709 reg_write(RESET_CONTROL, SOFT_RST); 710 ret = readx_poll_timeout(reg_read, RESET_CONTROL, regval, 711 !(regval & SOFT_RST), 1, 10000); 712 if (ret) 713 return -ENXIO; 714 715 /* Disable all interrupts and allow all signal updates */ 716 reg_write(INTR_SIGNAL_ENABLE, 0x0); 717 reg_write(INTR_STATUS_ENABLE, 0xffffffff); 718 719 /* Make sure our data ordering fits the host's */ 720 regval = reg_read(HC_CONTROL); 721 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN)) { 722 if (!(regval & HC_CONTROL_DATA_BIG_ENDIAN)) { 723 regval |= HC_CONTROL_DATA_BIG_ENDIAN; 724 reg_write(HC_CONTROL, regval); 725 regval = reg_read(HC_CONTROL); 726 if (!(regval & HC_CONTROL_DATA_BIG_ENDIAN)) { 727 dev_err(&hci->master.dev, "cannot set BE mode\n"); 728 return -EOPNOTSUPP; 729 } 730 } 731 } else { 732 if (regval & HC_CONTROL_DATA_BIG_ENDIAN) { 733 regval &= ~HC_CONTROL_DATA_BIG_ENDIAN; 734 reg_write(HC_CONTROL, regval); 735 regval = reg_read(HC_CONTROL); 736 if (regval & HC_CONTROL_DATA_BIG_ENDIAN) { 737 dev_err(&hci->master.dev, "cannot clear BE mode\n"); 738 return -EOPNOTSUPP; 739 } 740 } 741 } 742 743 /* Select our command descriptor model */ 744 switch (FIELD_GET(HC_CAP_CMD_SIZE, hci->caps)) { 745 case 0: 746 hci->cmd = &mipi_i3c_hci_cmd_v1; 747 break; 748 case 1: 749 hci->cmd = &mipi_i3c_hci_cmd_v2; 750 break; 751 default: 752 dev_err(&hci->master.dev, "wrong CMD_SIZE capability value\n"); 753 return -EINVAL; 754 } 755 756 /* Try activating DMA operations first */ 757 if (hci->RHS_regs) { 758 reg_clear(HC_CONTROL, HC_CONTROL_PIO_MODE); 759 if (reg_read(HC_CONTROL) & HC_CONTROL_PIO_MODE) { 760 dev_err(&hci->master.dev, "PIO mode is stuck\n"); 761 ret = -EIO; 762 } else { 763 hci->io = &mipi_i3c_hci_dma; 764 dev_info(&hci->master.dev, "Using DMA\n"); 765 } 766 } 767 768 /* If no DMA, try PIO */ 769 if (!hci->io && hci->PIO_regs) { 770 reg_set(HC_CONTROL, HC_CONTROL_PIO_MODE); 771 if (!(reg_read(HC_CONTROL) & HC_CONTROL_PIO_MODE)) { 772 dev_err(&hci->master.dev, "DMA mode is stuck\n"); 773 ret = -EIO; 774 } else { 775 hci->io = &mipi_i3c_hci_pio; 776 dev_info(&hci->master.dev, "Using PIO\n"); 777 } 778 } 779 780 if (!hci->io) { 781 dev_err(&hci->master.dev, "neither DMA nor PIO can be used\n"); 782 if (!ret) 783 ret = -EINVAL; 784 return ret; 785 } 786 787 return 0; 788 } 789 790 static int i3c_hci_probe(struct platform_device *pdev) 791 { 792 struct i3c_hci *hci; 793 int irq, ret; 794 795 hci = devm_kzalloc(&pdev->dev, sizeof(*hci), GFP_KERNEL); 796 if (!hci) 797 return -ENOMEM; 798 hci->base_regs = devm_platform_ioremap_resource(pdev, 0); 799 if (IS_ERR(hci->base_regs)) 800 return PTR_ERR(hci->base_regs); 801 802 platform_set_drvdata(pdev, hci); 803 /* temporary for dev_printk's, to be replaced in i3c_master_register */ 804 hci->master.dev.init_name = dev_name(&pdev->dev); 805 806 ret = i3c_hci_init(hci); 807 if (ret) 808 return ret; 809 810 irq = platform_get_irq(pdev, 0); 811 ret = devm_request_irq(&pdev->dev, irq, i3c_hci_irq_handler, 812 0, NULL, hci); 813 if (ret) 814 return ret; 815 816 ret = i3c_master_register(&hci->master, &pdev->dev, 817 &i3c_hci_ops, false); 818 if (ret) 819 return ret; 820 821 return 0; 822 } 823 824 static void i3c_hci_remove(struct platform_device *pdev) 825 { 826 struct i3c_hci *hci = platform_get_drvdata(pdev); 827 828 i3c_master_unregister(&hci->master); 829 } 830 831 static const __maybe_unused struct of_device_id i3c_hci_of_match[] = { 832 { .compatible = "mipi-i3c-hci", }, 833 {}, 834 }; 835 MODULE_DEVICE_TABLE(of, i3c_hci_of_match); 836 837 static struct platform_driver i3c_hci_driver = { 838 .probe = i3c_hci_probe, 839 .remove_new = i3c_hci_remove, 840 .driver = { 841 .name = "mipi-i3c-hci", 842 .of_match_table = of_match_ptr(i3c_hci_of_match), 843 }, 844 }; 845 module_platform_driver(i3c_hci_driver); 846 MODULE_ALIAS("platform:mipi-i3c-hci"); 847 848 MODULE_AUTHOR("Nicolas Pitre <npitre@baylibre.com>"); 849 MODULE_DESCRIPTION("MIPI I3C HCI driver"); 850 MODULE_LICENSE("Dual BSD/GPL"); 851