1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Linux I2C core 4 * 5 * Copyright (C) 1995-99 Simon G. Vogl 6 * With some changes from Kyösti Mälkki <kmalkki@cc.hut.fi> 7 * Mux support by Rodolfo Giometti <giometti@enneenne.com> and 8 * Michael Lawnick <michael.lawnick.ext@nsn.com> 9 * 10 * Copyright (C) 2013-2017 Wolfram Sang <wsa@kernel.org> 11 */ 12 13 #define pr_fmt(fmt) "i2c-core: " fmt 14 15 #include <dt-bindings/i2c/i2c.h> 16 #include <linux/acpi.h> 17 #include <linux/clk/clk-conf.h> 18 #include <linux/completion.h> 19 #include <linux/delay.h> 20 #include <linux/err.h> 21 #include <linux/errno.h> 22 #include <linux/gpio/consumer.h> 23 #include <linux/i2c.h> 24 #include <linux/i2c-smbus.h> 25 #include <linux/idr.h> 26 #include <linux/init.h> 27 #include <linux/interrupt.h> 28 #include <linux/irqflags.h> 29 #include <linux/jump_label.h> 30 #include <linux/kernel.h> 31 #include <linux/module.h> 32 #include <linux/mutex.h> 33 #include <linux/of_device.h> 34 #include <linux/of.h> 35 #include <linux/of_irq.h> 36 #include <linux/pinctrl/consumer.h> 37 #include <linux/pm_domain.h> 38 #include <linux/pm_runtime.h> 39 #include <linux/pm_wakeirq.h> 40 #include <linux/property.h> 41 #include <linux/rwsem.h> 42 #include <linux/slab.h> 43 44 #include "i2c-core.h" 45 46 #define CREATE_TRACE_POINTS 47 #include <trace/events/i2c.h> 48 49 #define I2C_ADDR_OFFSET_TEN_BIT 0xa000 50 #define I2C_ADDR_OFFSET_SLAVE 0x1000 51 52 #define I2C_ADDR_7BITS_MAX 0x77 53 #define I2C_ADDR_7BITS_COUNT (I2C_ADDR_7BITS_MAX + 1) 54 55 #define I2C_ADDR_DEVICE_ID 0x7c 56 57 /* 58 * core_lock protects i2c_adapter_idr, and guarantees that device detection, 59 * deletion of detected devices are serialized 60 */ 61 static DEFINE_MUTEX(core_lock); 62 static DEFINE_IDR(i2c_adapter_idr); 63 64 static int i2c_detect(struct i2c_adapter *adapter, struct i2c_driver *driver); 65 66 static DEFINE_STATIC_KEY_FALSE(i2c_trace_msg_key); 67 static bool is_registered; 68 69 int i2c_transfer_trace_reg(void) 70 { 71 static_branch_inc(&i2c_trace_msg_key); 72 return 0; 73 } 74 75 void i2c_transfer_trace_unreg(void) 76 { 77 static_branch_dec(&i2c_trace_msg_key); 78 } 79 80 const char *i2c_freq_mode_string(u32 bus_freq_hz) 81 { 82 switch (bus_freq_hz) { 83 case I2C_MAX_STANDARD_MODE_FREQ: 84 return "Standard Mode (100 kHz)"; 85 case I2C_MAX_FAST_MODE_FREQ: 86 return "Fast Mode (400 kHz)"; 87 case I2C_MAX_FAST_MODE_PLUS_FREQ: 88 return "Fast Mode Plus (1.0 MHz)"; 89 case I2C_MAX_TURBO_MODE_FREQ: 90 return "Turbo Mode (1.4 MHz)"; 91 case I2C_MAX_HIGH_SPEED_MODE_FREQ: 92 return "High Speed Mode (3.4 MHz)"; 93 case I2C_MAX_ULTRA_FAST_MODE_FREQ: 94 return "Ultra Fast Mode (5.0 MHz)"; 95 default: 96 return "Unknown Mode"; 97 } 98 } 99 EXPORT_SYMBOL_GPL(i2c_freq_mode_string); 100 101 const struct i2c_device_id *i2c_match_id(const struct i2c_device_id *id, 102 const struct i2c_client *client) 103 { 104 if (!(id && client)) 105 return NULL; 106 107 while (id->name[0]) { 108 if (strcmp(client->name, id->name) == 0) 109 return id; 110 id++; 111 } 112 return NULL; 113 } 114 EXPORT_SYMBOL_GPL(i2c_match_id); 115 116 static int i2c_device_match(struct device *dev, struct device_driver *drv) 117 { 118 struct i2c_client *client = i2c_verify_client(dev); 119 struct i2c_driver *driver; 120 121 122 /* Attempt an OF style match */ 123 if (i2c_of_match_device(drv->of_match_table, client)) 124 return 1; 125 126 /* Then ACPI style match */ 127 if (acpi_driver_match_device(dev, drv)) 128 return 1; 129 130 driver = to_i2c_driver(drv); 131 132 /* Finally an I2C match */ 133 if (i2c_match_id(driver->id_table, client)) 134 return 1; 135 136 return 0; 137 } 138 139 static int i2c_device_uevent(struct device *dev, struct kobj_uevent_env *env) 140 { 141 struct i2c_client *client = to_i2c_client(dev); 142 int rc; 143 144 rc = of_device_uevent_modalias(dev, env); 145 if (rc != -ENODEV) 146 return rc; 147 148 rc = acpi_device_uevent_modalias(dev, env); 149 if (rc != -ENODEV) 150 return rc; 151 152 return add_uevent_var(env, "MODALIAS=%s%s", I2C_MODULE_PREFIX, client->name); 153 } 154 155 /* i2c bus recovery routines */ 156 static int get_scl_gpio_value(struct i2c_adapter *adap) 157 { 158 return gpiod_get_value_cansleep(adap->bus_recovery_info->scl_gpiod); 159 } 160 161 static void set_scl_gpio_value(struct i2c_adapter *adap, int val) 162 { 163 gpiod_set_value_cansleep(adap->bus_recovery_info->scl_gpiod, val); 164 } 165 166 static int get_sda_gpio_value(struct i2c_adapter *adap) 167 { 168 return gpiod_get_value_cansleep(adap->bus_recovery_info->sda_gpiod); 169 } 170 171 static void set_sda_gpio_value(struct i2c_adapter *adap, int val) 172 { 173 gpiod_set_value_cansleep(adap->bus_recovery_info->sda_gpiod, val); 174 } 175 176 static int i2c_generic_bus_free(struct i2c_adapter *adap) 177 { 178 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info; 179 int ret = -EOPNOTSUPP; 180 181 if (bri->get_bus_free) 182 ret = bri->get_bus_free(adap); 183 else if (bri->get_sda) 184 ret = bri->get_sda(adap); 185 186 if (ret < 0) 187 return ret; 188 189 return ret ? 0 : -EBUSY; 190 } 191 192 /* 193 * We are generating clock pulses. ndelay() determines durating of clk pulses. 194 * We will generate clock with rate 100 KHz and so duration of both clock levels 195 * is: delay in ns = (10^6 / 100) / 2 196 */ 197 #define RECOVERY_NDELAY 5000 198 #define RECOVERY_CLK_CNT 9 199 200 int i2c_generic_scl_recovery(struct i2c_adapter *adap) 201 { 202 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info; 203 int i = 0, scl = 1, ret = 0; 204 205 if (bri->prepare_recovery) 206 bri->prepare_recovery(adap); 207 if (bri->pinctrl) 208 pinctrl_select_state(bri->pinctrl, bri->pins_gpio); 209 210 /* 211 * If we can set SDA, we will always create a STOP to ensure additional 212 * pulses will do no harm. This is achieved by letting SDA follow SCL 213 * half a cycle later. Check the 'incomplete_write_byte' fault injector 214 * for details. Note that we must honour tsu:sto, 4us, but lets use 5us 215 * here for simplicity. 216 */ 217 bri->set_scl(adap, scl); 218 ndelay(RECOVERY_NDELAY); 219 if (bri->set_sda) 220 bri->set_sda(adap, scl); 221 ndelay(RECOVERY_NDELAY / 2); 222 223 /* 224 * By this time SCL is high, as we need to give 9 falling-rising edges 225 */ 226 while (i++ < RECOVERY_CLK_CNT * 2) { 227 if (scl) { 228 /* SCL shouldn't be low here */ 229 if (!bri->get_scl(adap)) { 230 dev_err(&adap->dev, 231 "SCL is stuck low, exit recovery\n"); 232 ret = -EBUSY; 233 break; 234 } 235 } 236 237 scl = !scl; 238 bri->set_scl(adap, scl); 239 /* Creating STOP again, see above */ 240 if (scl) { 241 /* Honour minimum tsu:sto */ 242 ndelay(RECOVERY_NDELAY); 243 } else { 244 /* Honour minimum tf and thd:dat */ 245 ndelay(RECOVERY_NDELAY / 2); 246 } 247 if (bri->set_sda) 248 bri->set_sda(adap, scl); 249 ndelay(RECOVERY_NDELAY / 2); 250 251 if (scl) { 252 ret = i2c_generic_bus_free(adap); 253 if (ret == 0) 254 break; 255 } 256 } 257 258 /* If we can't check bus status, assume recovery worked */ 259 if (ret == -EOPNOTSUPP) 260 ret = 0; 261 262 if (bri->unprepare_recovery) 263 bri->unprepare_recovery(adap); 264 if (bri->pinctrl) 265 pinctrl_select_state(bri->pinctrl, bri->pins_default); 266 267 return ret; 268 } 269 EXPORT_SYMBOL_GPL(i2c_generic_scl_recovery); 270 271 int i2c_recover_bus(struct i2c_adapter *adap) 272 { 273 if (!adap->bus_recovery_info) 274 return -EBUSY; 275 276 dev_dbg(&adap->dev, "Trying i2c bus recovery\n"); 277 return adap->bus_recovery_info->recover_bus(adap); 278 } 279 EXPORT_SYMBOL_GPL(i2c_recover_bus); 280 281 static void i2c_gpio_init_pinctrl_recovery(struct i2c_adapter *adap) 282 { 283 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info; 284 struct device *dev = &adap->dev; 285 struct pinctrl *p = bri->pinctrl; 286 287 /* 288 * we can't change states without pinctrl, so remove the states if 289 * populated 290 */ 291 if (!p) { 292 bri->pins_default = NULL; 293 bri->pins_gpio = NULL; 294 return; 295 } 296 297 if (!bri->pins_default) { 298 bri->pins_default = pinctrl_lookup_state(p, 299 PINCTRL_STATE_DEFAULT); 300 if (IS_ERR(bri->pins_default)) { 301 dev_dbg(dev, PINCTRL_STATE_DEFAULT " state not found for GPIO recovery\n"); 302 bri->pins_default = NULL; 303 } 304 } 305 if (!bri->pins_gpio) { 306 bri->pins_gpio = pinctrl_lookup_state(p, "gpio"); 307 if (IS_ERR(bri->pins_gpio)) 308 bri->pins_gpio = pinctrl_lookup_state(p, "recovery"); 309 310 if (IS_ERR(bri->pins_gpio)) { 311 dev_dbg(dev, "no gpio or recovery state found for GPIO recovery\n"); 312 bri->pins_gpio = NULL; 313 } 314 } 315 316 /* for pinctrl state changes, we need all the information */ 317 if (bri->pins_default && bri->pins_gpio) { 318 dev_info(dev, "using pinctrl states for GPIO recovery"); 319 } else { 320 bri->pinctrl = NULL; 321 bri->pins_default = NULL; 322 bri->pins_gpio = NULL; 323 } 324 } 325 326 static int i2c_gpio_init_generic_recovery(struct i2c_adapter *adap) 327 { 328 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info; 329 struct device *dev = &adap->dev; 330 struct gpio_desc *gpiod; 331 int ret = 0; 332 333 /* 334 * don't touch the recovery information if the driver is not using 335 * generic SCL recovery 336 */ 337 if (bri->recover_bus && bri->recover_bus != i2c_generic_scl_recovery) 338 return 0; 339 340 /* 341 * pins might be taken as GPIO, so we should inform pinctrl about 342 * this and move the state to GPIO 343 */ 344 if (bri->pinctrl) 345 pinctrl_select_state(bri->pinctrl, bri->pins_gpio); 346 347 /* 348 * if there is incomplete or no recovery information, see if generic 349 * GPIO recovery is available 350 */ 351 if (!bri->scl_gpiod) { 352 gpiod = devm_gpiod_get(dev, "scl", GPIOD_OUT_HIGH_OPEN_DRAIN); 353 if (PTR_ERR(gpiod) == -EPROBE_DEFER) { 354 ret = -EPROBE_DEFER; 355 goto cleanup_pinctrl_state; 356 } 357 if (!IS_ERR(gpiod)) { 358 bri->scl_gpiod = gpiod; 359 bri->recover_bus = i2c_generic_scl_recovery; 360 dev_info(dev, "using generic GPIOs for recovery\n"); 361 } 362 } 363 364 /* SDA GPIOD line is optional, so we care about DEFER only */ 365 if (!bri->sda_gpiod) { 366 /* 367 * We have SCL. Pull SCL low and wait a bit so that SDA glitches 368 * have no effect. 369 */ 370 gpiod_direction_output(bri->scl_gpiod, 0); 371 udelay(10); 372 gpiod = devm_gpiod_get(dev, "sda", GPIOD_IN); 373 374 /* Wait a bit in case of a SDA glitch, and then release SCL. */ 375 udelay(10); 376 gpiod_direction_output(bri->scl_gpiod, 1); 377 378 if (PTR_ERR(gpiod) == -EPROBE_DEFER) { 379 ret = -EPROBE_DEFER; 380 goto cleanup_pinctrl_state; 381 } 382 if (!IS_ERR(gpiod)) 383 bri->sda_gpiod = gpiod; 384 } 385 386 cleanup_pinctrl_state: 387 /* change the state of the pins back to their default state */ 388 if (bri->pinctrl) 389 pinctrl_select_state(bri->pinctrl, bri->pins_default); 390 391 return ret; 392 } 393 394 static int i2c_gpio_init_recovery(struct i2c_adapter *adap) 395 { 396 i2c_gpio_init_pinctrl_recovery(adap); 397 return i2c_gpio_init_generic_recovery(adap); 398 } 399 400 static int i2c_init_recovery(struct i2c_adapter *adap) 401 { 402 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info; 403 bool is_error_level = true; 404 char *err_str; 405 406 if (!bri) 407 return 0; 408 409 if (i2c_gpio_init_recovery(adap) == -EPROBE_DEFER) 410 return -EPROBE_DEFER; 411 412 if (!bri->recover_bus) { 413 err_str = "no suitable method provided"; 414 is_error_level = false; 415 goto err; 416 } 417 418 if (bri->scl_gpiod && bri->recover_bus == i2c_generic_scl_recovery) { 419 bri->get_scl = get_scl_gpio_value; 420 bri->set_scl = set_scl_gpio_value; 421 if (bri->sda_gpiod) { 422 bri->get_sda = get_sda_gpio_value; 423 /* FIXME: add proper flag instead of '0' once available */ 424 if (gpiod_get_direction(bri->sda_gpiod) == 0) 425 bri->set_sda = set_sda_gpio_value; 426 } 427 } else if (bri->recover_bus == i2c_generic_scl_recovery) { 428 /* Generic SCL recovery */ 429 if (!bri->set_scl || !bri->get_scl) { 430 err_str = "no {get|set}_scl() found"; 431 goto err; 432 } 433 if (!bri->set_sda && !bri->get_sda) { 434 err_str = "either get_sda() or set_sda() needed"; 435 goto err; 436 } 437 } 438 439 return 0; 440 err: 441 if (is_error_level) 442 dev_err(&adap->dev, "Not using recovery: %s\n", err_str); 443 else 444 dev_dbg(&adap->dev, "Not using recovery: %s\n", err_str); 445 adap->bus_recovery_info = NULL; 446 447 return -EINVAL; 448 } 449 450 static int i2c_smbus_host_notify_to_irq(const struct i2c_client *client) 451 { 452 struct i2c_adapter *adap = client->adapter; 453 unsigned int irq; 454 455 if (!adap->host_notify_domain) 456 return -ENXIO; 457 458 if (client->flags & I2C_CLIENT_TEN) 459 return -EINVAL; 460 461 irq = irq_create_mapping(adap->host_notify_domain, client->addr); 462 463 return irq > 0 ? irq : -ENXIO; 464 } 465 466 static int i2c_device_probe(struct device *dev) 467 { 468 struct i2c_client *client = i2c_verify_client(dev); 469 struct i2c_driver *driver; 470 int status; 471 472 if (!client) 473 return 0; 474 475 client->irq = client->init_irq; 476 477 if (!client->irq) { 478 int irq = -ENOENT; 479 480 if (client->flags & I2C_CLIENT_HOST_NOTIFY) { 481 dev_dbg(dev, "Using Host Notify IRQ\n"); 482 /* Keep adapter active when Host Notify is required */ 483 pm_runtime_get_sync(&client->adapter->dev); 484 irq = i2c_smbus_host_notify_to_irq(client); 485 } else if (dev->of_node) { 486 irq = of_irq_get_byname(dev->of_node, "irq"); 487 if (irq == -EINVAL || irq == -ENODATA) 488 irq = of_irq_get(dev->of_node, 0); 489 } else if (ACPI_COMPANION(dev)) { 490 irq = i2c_acpi_get_irq(client); 491 } 492 if (irq == -EPROBE_DEFER) { 493 status = irq; 494 goto put_sync_adapter; 495 } 496 497 if (irq < 0) 498 irq = 0; 499 500 client->irq = irq; 501 } 502 503 driver = to_i2c_driver(dev->driver); 504 505 /* 506 * An I2C ID table is not mandatory, if and only if, a suitable OF 507 * or ACPI ID table is supplied for the probing device. 508 */ 509 if (!driver->id_table && 510 !acpi_driver_match_device(dev, dev->driver) && 511 !i2c_of_match_device(dev->driver->of_match_table, client)) { 512 status = -ENODEV; 513 goto put_sync_adapter; 514 } 515 516 if (client->flags & I2C_CLIENT_WAKE) { 517 int wakeirq; 518 519 wakeirq = of_irq_get_byname(dev->of_node, "wakeup"); 520 if (wakeirq == -EPROBE_DEFER) { 521 status = wakeirq; 522 goto put_sync_adapter; 523 } 524 525 device_init_wakeup(&client->dev, true); 526 527 if (wakeirq > 0 && wakeirq != client->irq) 528 status = dev_pm_set_dedicated_wake_irq(dev, wakeirq); 529 else if (client->irq > 0) 530 status = dev_pm_set_wake_irq(dev, client->irq); 531 else 532 status = 0; 533 534 if (status) 535 dev_warn(&client->dev, "failed to set up wakeup irq\n"); 536 } 537 538 dev_dbg(dev, "probe\n"); 539 540 status = of_clk_set_defaults(dev->of_node, false); 541 if (status < 0) 542 goto err_clear_wakeup_irq; 543 544 status = dev_pm_domain_attach(&client->dev, 545 !i2c_acpi_waive_d0_probe(dev)); 546 if (status) 547 goto err_clear_wakeup_irq; 548 549 client->devres_group_id = devres_open_group(&client->dev, NULL, 550 GFP_KERNEL); 551 if (!client->devres_group_id) { 552 status = -ENOMEM; 553 goto err_detach_pm_domain; 554 } 555 556 /* 557 * When there are no more users of probe(), 558 * rename probe_new to probe. 559 */ 560 if (driver->probe_new) 561 status = driver->probe_new(client); 562 else if (driver->probe) 563 status = driver->probe(client, 564 i2c_match_id(driver->id_table, client)); 565 else 566 status = -EINVAL; 567 568 /* 569 * Note that we are not closing the devres group opened above so 570 * even resources that were attached to the device after probe is 571 * run are released when i2c_device_remove() is executed. This is 572 * needed as some drivers would allocate additional resources, 573 * for example when updating firmware. 574 */ 575 576 if (status) 577 goto err_release_driver_resources; 578 579 return 0; 580 581 err_release_driver_resources: 582 devres_release_group(&client->dev, client->devres_group_id); 583 err_detach_pm_domain: 584 dev_pm_domain_detach(&client->dev, !i2c_acpi_waive_d0_probe(dev)); 585 err_clear_wakeup_irq: 586 dev_pm_clear_wake_irq(&client->dev); 587 device_init_wakeup(&client->dev, false); 588 put_sync_adapter: 589 if (client->flags & I2C_CLIENT_HOST_NOTIFY) 590 pm_runtime_put_sync(&client->adapter->dev); 591 592 return status; 593 } 594 595 static void i2c_device_remove(struct device *dev) 596 { 597 struct i2c_client *client = to_i2c_client(dev); 598 struct i2c_driver *driver; 599 600 driver = to_i2c_driver(dev->driver); 601 if (driver->remove) { 602 dev_dbg(dev, "remove\n"); 603 604 driver->remove(client); 605 } 606 607 devres_release_group(&client->dev, client->devres_group_id); 608 609 dev_pm_domain_detach(&client->dev, !i2c_acpi_waive_d0_probe(dev)); 610 611 dev_pm_clear_wake_irq(&client->dev); 612 device_init_wakeup(&client->dev, false); 613 614 client->irq = 0; 615 if (client->flags & I2C_CLIENT_HOST_NOTIFY) 616 pm_runtime_put(&client->adapter->dev); 617 } 618 619 static void i2c_device_shutdown(struct device *dev) 620 { 621 struct i2c_client *client = i2c_verify_client(dev); 622 struct i2c_driver *driver; 623 624 if (!client || !dev->driver) 625 return; 626 driver = to_i2c_driver(dev->driver); 627 if (driver->shutdown) 628 driver->shutdown(client); 629 else if (client->irq > 0) 630 disable_irq(client->irq); 631 } 632 633 static void i2c_client_dev_release(struct device *dev) 634 { 635 kfree(to_i2c_client(dev)); 636 } 637 638 static ssize_t 639 name_show(struct device *dev, struct device_attribute *attr, char *buf) 640 { 641 return sprintf(buf, "%s\n", dev->type == &i2c_client_type ? 642 to_i2c_client(dev)->name : to_i2c_adapter(dev)->name); 643 } 644 static DEVICE_ATTR_RO(name); 645 646 static ssize_t 647 modalias_show(struct device *dev, struct device_attribute *attr, char *buf) 648 { 649 struct i2c_client *client = to_i2c_client(dev); 650 int len; 651 652 len = of_device_modalias(dev, buf, PAGE_SIZE); 653 if (len != -ENODEV) 654 return len; 655 656 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 657 if (len != -ENODEV) 658 return len; 659 660 return sprintf(buf, "%s%s\n", I2C_MODULE_PREFIX, client->name); 661 } 662 static DEVICE_ATTR_RO(modalias); 663 664 static struct attribute *i2c_dev_attrs[] = { 665 &dev_attr_name.attr, 666 /* modalias helps coldplug: modprobe $(cat .../modalias) */ 667 &dev_attr_modalias.attr, 668 NULL 669 }; 670 ATTRIBUTE_GROUPS(i2c_dev); 671 672 struct bus_type i2c_bus_type = { 673 .name = "i2c", 674 .match = i2c_device_match, 675 .probe = i2c_device_probe, 676 .remove = i2c_device_remove, 677 .shutdown = i2c_device_shutdown, 678 }; 679 EXPORT_SYMBOL_GPL(i2c_bus_type); 680 681 struct device_type i2c_client_type = { 682 .groups = i2c_dev_groups, 683 .uevent = i2c_device_uevent, 684 .release = i2c_client_dev_release, 685 }; 686 EXPORT_SYMBOL_GPL(i2c_client_type); 687 688 689 /** 690 * i2c_verify_client - return parameter as i2c_client, or NULL 691 * @dev: device, probably from some driver model iterator 692 * 693 * When traversing the driver model tree, perhaps using driver model 694 * iterators like @device_for_each_child(), you can't assume very much 695 * about the nodes you find. Use this function to avoid oopses caused 696 * by wrongly treating some non-I2C device as an i2c_client. 697 */ 698 struct i2c_client *i2c_verify_client(struct device *dev) 699 { 700 return (dev->type == &i2c_client_type) 701 ? to_i2c_client(dev) 702 : NULL; 703 } 704 EXPORT_SYMBOL(i2c_verify_client); 705 706 707 /* Return a unique address which takes the flags of the client into account */ 708 static unsigned short i2c_encode_flags_to_addr(struct i2c_client *client) 709 { 710 unsigned short addr = client->addr; 711 712 /* For some client flags, add an arbitrary offset to avoid collisions */ 713 if (client->flags & I2C_CLIENT_TEN) 714 addr |= I2C_ADDR_OFFSET_TEN_BIT; 715 716 if (client->flags & I2C_CLIENT_SLAVE) 717 addr |= I2C_ADDR_OFFSET_SLAVE; 718 719 return addr; 720 } 721 722 /* This is a permissive address validity check, I2C address map constraints 723 * are purposely not enforced, except for the general call address. */ 724 static int i2c_check_addr_validity(unsigned int addr, unsigned short flags) 725 { 726 if (flags & I2C_CLIENT_TEN) { 727 /* 10-bit address, all values are valid */ 728 if (addr > 0x3ff) 729 return -EINVAL; 730 } else { 731 /* 7-bit address, reject the general call address */ 732 if (addr == 0x00 || addr > 0x7f) 733 return -EINVAL; 734 } 735 return 0; 736 } 737 738 /* And this is a strict address validity check, used when probing. If a 739 * device uses a reserved address, then it shouldn't be probed. 7-bit 740 * addressing is assumed, 10-bit address devices are rare and should be 741 * explicitly enumerated. */ 742 int i2c_check_7bit_addr_validity_strict(unsigned short addr) 743 { 744 /* 745 * Reserved addresses per I2C specification: 746 * 0x00 General call address / START byte 747 * 0x01 CBUS address 748 * 0x02 Reserved for different bus format 749 * 0x03 Reserved for future purposes 750 * 0x04-0x07 Hs-mode master code 751 * 0x78-0x7b 10-bit slave addressing 752 * 0x7c-0x7f Reserved for future purposes 753 */ 754 if (addr < 0x08 || addr > 0x77) 755 return -EINVAL; 756 return 0; 757 } 758 759 static int __i2c_check_addr_busy(struct device *dev, void *addrp) 760 { 761 struct i2c_client *client = i2c_verify_client(dev); 762 int addr = *(int *)addrp; 763 764 if (client && i2c_encode_flags_to_addr(client) == addr) 765 return -EBUSY; 766 return 0; 767 } 768 769 /* walk up mux tree */ 770 static int i2c_check_mux_parents(struct i2c_adapter *adapter, int addr) 771 { 772 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter); 773 int result; 774 775 result = device_for_each_child(&adapter->dev, &addr, 776 __i2c_check_addr_busy); 777 778 if (!result && parent) 779 result = i2c_check_mux_parents(parent, addr); 780 781 return result; 782 } 783 784 /* recurse down mux tree */ 785 static int i2c_check_mux_children(struct device *dev, void *addrp) 786 { 787 int result; 788 789 if (dev->type == &i2c_adapter_type) 790 result = device_for_each_child(dev, addrp, 791 i2c_check_mux_children); 792 else 793 result = __i2c_check_addr_busy(dev, addrp); 794 795 return result; 796 } 797 798 static int i2c_check_addr_busy(struct i2c_adapter *adapter, int addr) 799 { 800 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter); 801 int result = 0; 802 803 if (parent) 804 result = i2c_check_mux_parents(parent, addr); 805 806 if (!result) 807 result = device_for_each_child(&adapter->dev, &addr, 808 i2c_check_mux_children); 809 810 return result; 811 } 812 813 /** 814 * i2c_adapter_lock_bus - Get exclusive access to an I2C bus segment 815 * @adapter: Target I2C bus segment 816 * @flags: I2C_LOCK_ROOT_ADAPTER locks the root i2c adapter, I2C_LOCK_SEGMENT 817 * locks only this branch in the adapter tree 818 */ 819 static void i2c_adapter_lock_bus(struct i2c_adapter *adapter, 820 unsigned int flags) 821 { 822 rt_mutex_lock_nested(&adapter->bus_lock, i2c_adapter_depth(adapter)); 823 } 824 825 /** 826 * i2c_adapter_trylock_bus - Try to get exclusive access to an I2C bus segment 827 * @adapter: Target I2C bus segment 828 * @flags: I2C_LOCK_ROOT_ADAPTER trylocks the root i2c adapter, I2C_LOCK_SEGMENT 829 * trylocks only this branch in the adapter tree 830 */ 831 static int i2c_adapter_trylock_bus(struct i2c_adapter *adapter, 832 unsigned int flags) 833 { 834 return rt_mutex_trylock(&adapter->bus_lock); 835 } 836 837 /** 838 * i2c_adapter_unlock_bus - Release exclusive access to an I2C bus segment 839 * @adapter: Target I2C bus segment 840 * @flags: I2C_LOCK_ROOT_ADAPTER unlocks the root i2c adapter, I2C_LOCK_SEGMENT 841 * unlocks only this branch in the adapter tree 842 */ 843 static void i2c_adapter_unlock_bus(struct i2c_adapter *adapter, 844 unsigned int flags) 845 { 846 rt_mutex_unlock(&adapter->bus_lock); 847 } 848 849 static void i2c_dev_set_name(struct i2c_adapter *adap, 850 struct i2c_client *client, 851 struct i2c_board_info const *info) 852 { 853 struct acpi_device *adev = ACPI_COMPANION(&client->dev); 854 855 if (info && info->dev_name) { 856 dev_set_name(&client->dev, "i2c-%s", info->dev_name); 857 return; 858 } 859 860 if (adev) { 861 dev_set_name(&client->dev, "i2c-%s", acpi_dev_name(adev)); 862 return; 863 } 864 865 dev_set_name(&client->dev, "%d-%04x", i2c_adapter_id(adap), 866 i2c_encode_flags_to_addr(client)); 867 } 868 869 int i2c_dev_irq_from_resources(const struct resource *resources, 870 unsigned int num_resources) 871 { 872 struct irq_data *irqd; 873 int i; 874 875 for (i = 0; i < num_resources; i++) { 876 const struct resource *r = &resources[i]; 877 878 if (resource_type(r) != IORESOURCE_IRQ) 879 continue; 880 881 if (r->flags & IORESOURCE_BITS) { 882 irqd = irq_get_irq_data(r->start); 883 if (!irqd) 884 break; 885 886 irqd_set_trigger_type(irqd, r->flags & IORESOURCE_BITS); 887 } 888 889 return r->start; 890 } 891 892 return 0; 893 } 894 895 /** 896 * i2c_new_client_device - instantiate an i2c device 897 * @adap: the adapter managing the device 898 * @info: describes one I2C device; bus_num is ignored 899 * Context: can sleep 900 * 901 * Create an i2c device. Binding is handled through driver model 902 * probe()/remove() methods. A driver may be bound to this device when we 903 * return from this function, or any later moment (e.g. maybe hotplugging will 904 * load the driver module). This call is not appropriate for use by mainboard 905 * initialization logic, which usually runs during an arch_initcall() long 906 * before any i2c_adapter could exist. 907 * 908 * This returns the new i2c client, which may be saved for later use with 909 * i2c_unregister_device(); or an ERR_PTR to describe the error. 910 */ 911 struct i2c_client * 912 i2c_new_client_device(struct i2c_adapter *adap, struct i2c_board_info const *info) 913 { 914 struct i2c_client *client; 915 int status; 916 917 client = kzalloc(sizeof *client, GFP_KERNEL); 918 if (!client) 919 return ERR_PTR(-ENOMEM); 920 921 client->adapter = adap; 922 923 client->dev.platform_data = info->platform_data; 924 client->flags = info->flags; 925 client->addr = info->addr; 926 927 client->init_irq = info->irq; 928 if (!client->init_irq) 929 client->init_irq = i2c_dev_irq_from_resources(info->resources, 930 info->num_resources); 931 932 strscpy(client->name, info->type, sizeof(client->name)); 933 934 status = i2c_check_addr_validity(client->addr, client->flags); 935 if (status) { 936 dev_err(&adap->dev, "Invalid %d-bit I2C address 0x%02hx\n", 937 client->flags & I2C_CLIENT_TEN ? 10 : 7, client->addr); 938 goto out_err_silent; 939 } 940 941 /* Check for address business */ 942 status = i2c_check_addr_busy(adap, i2c_encode_flags_to_addr(client)); 943 if (status) 944 goto out_err; 945 946 client->dev.parent = &client->adapter->dev; 947 client->dev.bus = &i2c_bus_type; 948 client->dev.type = &i2c_client_type; 949 client->dev.of_node = of_node_get(info->of_node); 950 client->dev.fwnode = info->fwnode; 951 952 device_enable_async_suspend(&client->dev); 953 i2c_dev_set_name(adap, client, info); 954 955 if (info->swnode) { 956 status = device_add_software_node(&client->dev, info->swnode); 957 if (status) { 958 dev_err(&adap->dev, 959 "Failed to add software node to client %s: %d\n", 960 client->name, status); 961 goto out_err_put_of_node; 962 } 963 } 964 965 status = device_register(&client->dev); 966 if (status) 967 goto out_remove_swnode; 968 969 dev_dbg(&adap->dev, "client [%s] registered with bus id %s\n", 970 client->name, dev_name(&client->dev)); 971 972 return client; 973 974 out_remove_swnode: 975 device_remove_software_node(&client->dev); 976 out_err_put_of_node: 977 of_node_put(info->of_node); 978 out_err: 979 dev_err(&adap->dev, 980 "Failed to register i2c client %s at 0x%02x (%d)\n", 981 client->name, client->addr, status); 982 out_err_silent: 983 kfree(client); 984 return ERR_PTR(status); 985 } 986 EXPORT_SYMBOL_GPL(i2c_new_client_device); 987 988 /** 989 * i2c_unregister_device - reverse effect of i2c_new_*_device() 990 * @client: value returned from i2c_new_*_device() 991 * Context: can sleep 992 */ 993 void i2c_unregister_device(struct i2c_client *client) 994 { 995 if (IS_ERR_OR_NULL(client)) 996 return; 997 998 if (client->dev.of_node) { 999 of_node_clear_flag(client->dev.of_node, OF_POPULATED); 1000 of_node_put(client->dev.of_node); 1001 } 1002 1003 if (ACPI_COMPANION(&client->dev)) 1004 acpi_device_clear_enumerated(ACPI_COMPANION(&client->dev)); 1005 device_remove_software_node(&client->dev); 1006 device_unregister(&client->dev); 1007 } 1008 EXPORT_SYMBOL_GPL(i2c_unregister_device); 1009 1010 1011 static const struct i2c_device_id dummy_id[] = { 1012 { "dummy", 0 }, 1013 { }, 1014 }; 1015 1016 static int dummy_probe(struct i2c_client *client, 1017 const struct i2c_device_id *id) 1018 { 1019 return 0; 1020 } 1021 1022 static struct i2c_driver dummy_driver = { 1023 .driver.name = "dummy", 1024 .probe = dummy_probe, 1025 .id_table = dummy_id, 1026 }; 1027 1028 /** 1029 * i2c_new_dummy_device - return a new i2c device bound to a dummy driver 1030 * @adapter: the adapter managing the device 1031 * @address: seven bit address to be used 1032 * Context: can sleep 1033 * 1034 * This returns an I2C client bound to the "dummy" driver, intended for use 1035 * with devices that consume multiple addresses. Examples of such chips 1036 * include various EEPROMS (like 24c04 and 24c08 models). 1037 * 1038 * These dummy devices have two main uses. First, most I2C and SMBus calls 1039 * except i2c_transfer() need a client handle; the dummy will be that handle. 1040 * And second, this prevents the specified address from being bound to a 1041 * different driver. 1042 * 1043 * This returns the new i2c client, which should be saved for later use with 1044 * i2c_unregister_device(); or an ERR_PTR to describe the error. 1045 */ 1046 struct i2c_client *i2c_new_dummy_device(struct i2c_adapter *adapter, u16 address) 1047 { 1048 struct i2c_board_info info = { 1049 I2C_BOARD_INFO("dummy", address), 1050 }; 1051 1052 return i2c_new_client_device(adapter, &info); 1053 } 1054 EXPORT_SYMBOL_GPL(i2c_new_dummy_device); 1055 1056 static void devm_i2c_release_dummy(void *client) 1057 { 1058 i2c_unregister_device(client); 1059 } 1060 1061 /** 1062 * devm_i2c_new_dummy_device - return a new i2c device bound to a dummy driver 1063 * @dev: device the managed resource is bound to 1064 * @adapter: the adapter managing the device 1065 * @address: seven bit address to be used 1066 * Context: can sleep 1067 * 1068 * This is the device-managed version of @i2c_new_dummy_device. It returns the 1069 * new i2c client or an ERR_PTR in case of an error. 1070 */ 1071 struct i2c_client *devm_i2c_new_dummy_device(struct device *dev, 1072 struct i2c_adapter *adapter, 1073 u16 address) 1074 { 1075 struct i2c_client *client; 1076 int ret; 1077 1078 client = i2c_new_dummy_device(adapter, address); 1079 if (IS_ERR(client)) 1080 return client; 1081 1082 ret = devm_add_action_or_reset(dev, devm_i2c_release_dummy, client); 1083 if (ret) 1084 return ERR_PTR(ret); 1085 1086 return client; 1087 } 1088 EXPORT_SYMBOL_GPL(devm_i2c_new_dummy_device); 1089 1090 /** 1091 * i2c_new_ancillary_device - Helper to get the instantiated secondary address 1092 * and create the associated device 1093 * @client: Handle to the primary client 1094 * @name: Handle to specify which secondary address to get 1095 * @default_addr: Used as a fallback if no secondary address was specified 1096 * Context: can sleep 1097 * 1098 * I2C clients can be composed of multiple I2C slaves bound together in a single 1099 * component. The I2C client driver then binds to the master I2C slave and needs 1100 * to create I2C dummy clients to communicate with all the other slaves. 1101 * 1102 * This function creates and returns an I2C dummy client whose I2C address is 1103 * retrieved from the platform firmware based on the given slave name. If no 1104 * address is specified by the firmware default_addr is used. 1105 * 1106 * On DT-based platforms the address is retrieved from the "reg" property entry 1107 * cell whose "reg-names" value matches the slave name. 1108 * 1109 * This returns the new i2c client, which should be saved for later use with 1110 * i2c_unregister_device(); or an ERR_PTR to describe the error. 1111 */ 1112 struct i2c_client *i2c_new_ancillary_device(struct i2c_client *client, 1113 const char *name, 1114 u16 default_addr) 1115 { 1116 struct device_node *np = client->dev.of_node; 1117 u32 addr = default_addr; 1118 int i; 1119 1120 if (np) { 1121 i = of_property_match_string(np, "reg-names", name); 1122 if (i >= 0) 1123 of_property_read_u32_index(np, "reg", i, &addr); 1124 } 1125 1126 dev_dbg(&client->adapter->dev, "Address for %s : 0x%x\n", name, addr); 1127 return i2c_new_dummy_device(client->adapter, addr); 1128 } 1129 EXPORT_SYMBOL_GPL(i2c_new_ancillary_device); 1130 1131 /* ------------------------------------------------------------------------- */ 1132 1133 /* I2C bus adapters -- one roots each I2C or SMBUS segment */ 1134 1135 static void i2c_adapter_dev_release(struct device *dev) 1136 { 1137 struct i2c_adapter *adap = to_i2c_adapter(dev); 1138 complete(&adap->dev_released); 1139 } 1140 1141 unsigned int i2c_adapter_depth(struct i2c_adapter *adapter) 1142 { 1143 unsigned int depth = 0; 1144 1145 while ((adapter = i2c_parent_is_i2c_adapter(adapter))) 1146 depth++; 1147 1148 WARN_ONCE(depth >= MAX_LOCKDEP_SUBCLASSES, 1149 "adapter depth exceeds lockdep subclass limit\n"); 1150 1151 return depth; 1152 } 1153 EXPORT_SYMBOL_GPL(i2c_adapter_depth); 1154 1155 /* 1156 * Let users instantiate I2C devices through sysfs. This can be used when 1157 * platform initialization code doesn't contain the proper data for 1158 * whatever reason. Also useful for drivers that do device detection and 1159 * detection fails, either because the device uses an unexpected address, 1160 * or this is a compatible device with different ID register values. 1161 * 1162 * Parameter checking may look overzealous, but we really don't want 1163 * the user to provide incorrect parameters. 1164 */ 1165 static ssize_t 1166 new_device_store(struct device *dev, struct device_attribute *attr, 1167 const char *buf, size_t count) 1168 { 1169 struct i2c_adapter *adap = to_i2c_adapter(dev); 1170 struct i2c_board_info info; 1171 struct i2c_client *client; 1172 char *blank, end; 1173 int res; 1174 1175 memset(&info, 0, sizeof(struct i2c_board_info)); 1176 1177 blank = strchr(buf, ' '); 1178 if (!blank) { 1179 dev_err(dev, "%s: Missing parameters\n", "new_device"); 1180 return -EINVAL; 1181 } 1182 if (blank - buf > I2C_NAME_SIZE - 1) { 1183 dev_err(dev, "%s: Invalid device name\n", "new_device"); 1184 return -EINVAL; 1185 } 1186 memcpy(info.type, buf, blank - buf); 1187 1188 /* Parse remaining parameters, reject extra parameters */ 1189 res = sscanf(++blank, "%hi%c", &info.addr, &end); 1190 if (res < 1) { 1191 dev_err(dev, "%s: Can't parse I2C address\n", "new_device"); 1192 return -EINVAL; 1193 } 1194 if (res > 1 && end != '\n') { 1195 dev_err(dev, "%s: Extra parameters\n", "new_device"); 1196 return -EINVAL; 1197 } 1198 1199 if ((info.addr & I2C_ADDR_OFFSET_TEN_BIT) == I2C_ADDR_OFFSET_TEN_BIT) { 1200 info.addr &= ~I2C_ADDR_OFFSET_TEN_BIT; 1201 info.flags |= I2C_CLIENT_TEN; 1202 } 1203 1204 if (info.addr & I2C_ADDR_OFFSET_SLAVE) { 1205 info.addr &= ~I2C_ADDR_OFFSET_SLAVE; 1206 info.flags |= I2C_CLIENT_SLAVE; 1207 } 1208 1209 client = i2c_new_client_device(adap, &info); 1210 if (IS_ERR(client)) 1211 return PTR_ERR(client); 1212 1213 /* Keep track of the added device */ 1214 mutex_lock(&adap->userspace_clients_lock); 1215 list_add_tail(&client->detected, &adap->userspace_clients); 1216 mutex_unlock(&adap->userspace_clients_lock); 1217 dev_info(dev, "%s: Instantiated device %s at 0x%02hx\n", "new_device", 1218 info.type, info.addr); 1219 1220 return count; 1221 } 1222 static DEVICE_ATTR_WO(new_device); 1223 1224 /* 1225 * And of course let the users delete the devices they instantiated, if 1226 * they got it wrong. This interface can only be used to delete devices 1227 * instantiated by i2c_sysfs_new_device above. This guarantees that we 1228 * don't delete devices to which some kernel code still has references. 1229 * 1230 * Parameter checking may look overzealous, but we really don't want 1231 * the user to delete the wrong device. 1232 */ 1233 static ssize_t 1234 delete_device_store(struct device *dev, struct device_attribute *attr, 1235 const char *buf, size_t count) 1236 { 1237 struct i2c_adapter *adap = to_i2c_adapter(dev); 1238 struct i2c_client *client, *next; 1239 unsigned short addr; 1240 char end; 1241 int res; 1242 1243 /* Parse parameters, reject extra parameters */ 1244 res = sscanf(buf, "%hi%c", &addr, &end); 1245 if (res < 1) { 1246 dev_err(dev, "%s: Can't parse I2C address\n", "delete_device"); 1247 return -EINVAL; 1248 } 1249 if (res > 1 && end != '\n') { 1250 dev_err(dev, "%s: Extra parameters\n", "delete_device"); 1251 return -EINVAL; 1252 } 1253 1254 /* Make sure the device was added through sysfs */ 1255 res = -ENOENT; 1256 mutex_lock_nested(&adap->userspace_clients_lock, 1257 i2c_adapter_depth(adap)); 1258 list_for_each_entry_safe(client, next, &adap->userspace_clients, 1259 detected) { 1260 if (i2c_encode_flags_to_addr(client) == addr) { 1261 dev_info(dev, "%s: Deleting device %s at 0x%02hx\n", 1262 "delete_device", client->name, client->addr); 1263 1264 list_del(&client->detected); 1265 i2c_unregister_device(client); 1266 res = count; 1267 break; 1268 } 1269 } 1270 mutex_unlock(&adap->userspace_clients_lock); 1271 1272 if (res < 0) 1273 dev_err(dev, "%s: Can't find device in list\n", 1274 "delete_device"); 1275 return res; 1276 } 1277 static DEVICE_ATTR_IGNORE_LOCKDEP(delete_device, S_IWUSR, NULL, 1278 delete_device_store); 1279 1280 static struct attribute *i2c_adapter_attrs[] = { 1281 &dev_attr_name.attr, 1282 &dev_attr_new_device.attr, 1283 &dev_attr_delete_device.attr, 1284 NULL 1285 }; 1286 ATTRIBUTE_GROUPS(i2c_adapter); 1287 1288 struct device_type i2c_adapter_type = { 1289 .groups = i2c_adapter_groups, 1290 .release = i2c_adapter_dev_release, 1291 }; 1292 EXPORT_SYMBOL_GPL(i2c_adapter_type); 1293 1294 /** 1295 * i2c_verify_adapter - return parameter as i2c_adapter or NULL 1296 * @dev: device, probably from some driver model iterator 1297 * 1298 * When traversing the driver model tree, perhaps using driver model 1299 * iterators like @device_for_each_child(), you can't assume very much 1300 * about the nodes you find. Use this function to avoid oopses caused 1301 * by wrongly treating some non-I2C device as an i2c_adapter. 1302 */ 1303 struct i2c_adapter *i2c_verify_adapter(struct device *dev) 1304 { 1305 return (dev->type == &i2c_adapter_type) 1306 ? to_i2c_adapter(dev) 1307 : NULL; 1308 } 1309 EXPORT_SYMBOL(i2c_verify_adapter); 1310 1311 #ifdef CONFIG_I2C_COMPAT 1312 static struct class_compat *i2c_adapter_compat_class; 1313 #endif 1314 1315 static void i2c_scan_static_board_info(struct i2c_adapter *adapter) 1316 { 1317 struct i2c_devinfo *devinfo; 1318 1319 down_read(&__i2c_board_lock); 1320 list_for_each_entry(devinfo, &__i2c_board_list, list) { 1321 if (devinfo->busnum == adapter->nr && 1322 IS_ERR(i2c_new_client_device(adapter, &devinfo->board_info))) 1323 dev_err(&adapter->dev, 1324 "Can't create device at 0x%02x\n", 1325 devinfo->board_info.addr); 1326 } 1327 up_read(&__i2c_board_lock); 1328 } 1329 1330 static int i2c_do_add_adapter(struct i2c_driver *driver, 1331 struct i2c_adapter *adap) 1332 { 1333 /* Detect supported devices on that bus, and instantiate them */ 1334 i2c_detect(adap, driver); 1335 1336 return 0; 1337 } 1338 1339 static int __process_new_adapter(struct device_driver *d, void *data) 1340 { 1341 return i2c_do_add_adapter(to_i2c_driver(d), data); 1342 } 1343 1344 static const struct i2c_lock_operations i2c_adapter_lock_ops = { 1345 .lock_bus = i2c_adapter_lock_bus, 1346 .trylock_bus = i2c_adapter_trylock_bus, 1347 .unlock_bus = i2c_adapter_unlock_bus, 1348 }; 1349 1350 static void i2c_host_notify_irq_teardown(struct i2c_adapter *adap) 1351 { 1352 struct irq_domain *domain = adap->host_notify_domain; 1353 irq_hw_number_t hwirq; 1354 1355 if (!domain) 1356 return; 1357 1358 for (hwirq = 0 ; hwirq < I2C_ADDR_7BITS_COUNT ; hwirq++) 1359 irq_dispose_mapping(irq_find_mapping(domain, hwirq)); 1360 1361 irq_domain_remove(domain); 1362 adap->host_notify_domain = NULL; 1363 } 1364 1365 static int i2c_host_notify_irq_map(struct irq_domain *h, 1366 unsigned int virq, 1367 irq_hw_number_t hw_irq_num) 1368 { 1369 irq_set_chip_and_handler(virq, &dummy_irq_chip, handle_simple_irq); 1370 1371 return 0; 1372 } 1373 1374 static const struct irq_domain_ops i2c_host_notify_irq_ops = { 1375 .map = i2c_host_notify_irq_map, 1376 }; 1377 1378 static int i2c_setup_host_notify_irq_domain(struct i2c_adapter *adap) 1379 { 1380 struct irq_domain *domain; 1381 1382 if (!i2c_check_functionality(adap, I2C_FUNC_SMBUS_HOST_NOTIFY)) 1383 return 0; 1384 1385 domain = irq_domain_create_linear(adap->dev.parent->fwnode, 1386 I2C_ADDR_7BITS_COUNT, 1387 &i2c_host_notify_irq_ops, adap); 1388 if (!domain) 1389 return -ENOMEM; 1390 1391 adap->host_notify_domain = domain; 1392 1393 return 0; 1394 } 1395 1396 /** 1397 * i2c_handle_smbus_host_notify - Forward a Host Notify event to the correct 1398 * I2C client. 1399 * @adap: the adapter 1400 * @addr: the I2C address of the notifying device 1401 * Context: can't sleep 1402 * 1403 * Helper function to be called from an I2C bus driver's interrupt 1404 * handler. It will schedule the Host Notify IRQ. 1405 */ 1406 int i2c_handle_smbus_host_notify(struct i2c_adapter *adap, unsigned short addr) 1407 { 1408 int irq; 1409 1410 if (!adap) 1411 return -EINVAL; 1412 1413 irq = irq_find_mapping(adap->host_notify_domain, addr); 1414 if (irq <= 0) 1415 return -ENXIO; 1416 1417 generic_handle_irq_safe(irq); 1418 1419 return 0; 1420 } 1421 EXPORT_SYMBOL_GPL(i2c_handle_smbus_host_notify); 1422 1423 static int i2c_register_adapter(struct i2c_adapter *adap) 1424 { 1425 int res = -EINVAL; 1426 1427 /* Can't register until after driver model init */ 1428 if (WARN_ON(!is_registered)) { 1429 res = -EAGAIN; 1430 goto out_list; 1431 } 1432 1433 /* Sanity checks */ 1434 if (WARN(!adap->name[0], "i2c adapter has no name")) 1435 goto out_list; 1436 1437 if (!adap->algo) { 1438 pr_err("adapter '%s': no algo supplied!\n", adap->name); 1439 goto out_list; 1440 } 1441 1442 if (!adap->lock_ops) 1443 adap->lock_ops = &i2c_adapter_lock_ops; 1444 1445 adap->locked_flags = 0; 1446 rt_mutex_init(&adap->bus_lock); 1447 rt_mutex_init(&adap->mux_lock); 1448 mutex_init(&adap->userspace_clients_lock); 1449 INIT_LIST_HEAD(&adap->userspace_clients); 1450 1451 /* Set default timeout to 1 second if not already set */ 1452 if (adap->timeout == 0) 1453 adap->timeout = HZ; 1454 1455 /* register soft irqs for Host Notify */ 1456 res = i2c_setup_host_notify_irq_domain(adap); 1457 if (res) { 1458 pr_err("adapter '%s': can't create Host Notify IRQs (%d)\n", 1459 adap->name, res); 1460 goto out_list; 1461 } 1462 1463 dev_set_name(&adap->dev, "i2c-%d", adap->nr); 1464 adap->dev.bus = &i2c_bus_type; 1465 adap->dev.type = &i2c_adapter_type; 1466 res = device_register(&adap->dev); 1467 if (res) { 1468 pr_err("adapter '%s': can't register device (%d)\n", adap->name, res); 1469 goto out_list; 1470 } 1471 1472 res = i2c_setup_smbus_alert(adap); 1473 if (res) 1474 goto out_reg; 1475 1476 device_enable_async_suspend(&adap->dev); 1477 pm_runtime_no_callbacks(&adap->dev); 1478 pm_suspend_ignore_children(&adap->dev, true); 1479 pm_runtime_enable(&adap->dev); 1480 1481 res = i2c_init_recovery(adap); 1482 if (res == -EPROBE_DEFER) 1483 goto out_reg; 1484 1485 dev_dbg(&adap->dev, "adapter [%s] registered\n", adap->name); 1486 1487 #ifdef CONFIG_I2C_COMPAT 1488 res = class_compat_create_link(i2c_adapter_compat_class, &adap->dev, 1489 adap->dev.parent); 1490 if (res) 1491 dev_warn(&adap->dev, 1492 "Failed to create compatibility class link\n"); 1493 #endif 1494 1495 /* create pre-declared device nodes */ 1496 of_i2c_register_devices(adap); 1497 i2c_acpi_install_space_handler(adap); 1498 i2c_acpi_register_devices(adap); 1499 1500 if (adap->nr < __i2c_first_dynamic_bus_num) 1501 i2c_scan_static_board_info(adap); 1502 1503 /* Notify drivers */ 1504 mutex_lock(&core_lock); 1505 bus_for_each_drv(&i2c_bus_type, NULL, adap, __process_new_adapter); 1506 mutex_unlock(&core_lock); 1507 1508 return 0; 1509 1510 out_reg: 1511 init_completion(&adap->dev_released); 1512 device_unregister(&adap->dev); 1513 wait_for_completion(&adap->dev_released); 1514 out_list: 1515 mutex_lock(&core_lock); 1516 idr_remove(&i2c_adapter_idr, adap->nr); 1517 mutex_unlock(&core_lock); 1518 return res; 1519 } 1520 1521 /** 1522 * __i2c_add_numbered_adapter - i2c_add_numbered_adapter where nr is never -1 1523 * @adap: the adapter to register (with adap->nr initialized) 1524 * Context: can sleep 1525 * 1526 * See i2c_add_numbered_adapter() for details. 1527 */ 1528 static int __i2c_add_numbered_adapter(struct i2c_adapter *adap) 1529 { 1530 int id; 1531 1532 mutex_lock(&core_lock); 1533 id = idr_alloc(&i2c_adapter_idr, adap, adap->nr, adap->nr + 1, GFP_KERNEL); 1534 mutex_unlock(&core_lock); 1535 if (WARN(id < 0, "couldn't get idr")) 1536 return id == -ENOSPC ? -EBUSY : id; 1537 1538 return i2c_register_adapter(adap); 1539 } 1540 1541 /** 1542 * i2c_add_adapter - declare i2c adapter, use dynamic bus number 1543 * @adapter: the adapter to add 1544 * Context: can sleep 1545 * 1546 * This routine is used to declare an I2C adapter when its bus number 1547 * doesn't matter or when its bus number is specified by an dt alias. 1548 * Examples of bases when the bus number doesn't matter: I2C adapters 1549 * dynamically added by USB links or PCI plugin cards. 1550 * 1551 * When this returns zero, a new bus number was allocated and stored 1552 * in adap->nr, and the specified adapter became available for clients. 1553 * Otherwise, a negative errno value is returned. 1554 */ 1555 int i2c_add_adapter(struct i2c_adapter *adapter) 1556 { 1557 struct device *dev = &adapter->dev; 1558 int id; 1559 1560 if (dev->of_node) { 1561 id = of_alias_get_id(dev->of_node, "i2c"); 1562 if (id >= 0) { 1563 adapter->nr = id; 1564 return __i2c_add_numbered_adapter(adapter); 1565 } 1566 } 1567 1568 mutex_lock(&core_lock); 1569 id = idr_alloc(&i2c_adapter_idr, adapter, 1570 __i2c_first_dynamic_bus_num, 0, GFP_KERNEL); 1571 mutex_unlock(&core_lock); 1572 if (WARN(id < 0, "couldn't get idr")) 1573 return id; 1574 1575 adapter->nr = id; 1576 1577 return i2c_register_adapter(adapter); 1578 } 1579 EXPORT_SYMBOL(i2c_add_adapter); 1580 1581 /** 1582 * i2c_add_numbered_adapter - declare i2c adapter, use static bus number 1583 * @adap: the adapter to register (with adap->nr initialized) 1584 * Context: can sleep 1585 * 1586 * This routine is used to declare an I2C adapter when its bus number 1587 * matters. For example, use it for I2C adapters from system-on-chip CPUs, 1588 * or otherwise built in to the system's mainboard, and where i2c_board_info 1589 * is used to properly configure I2C devices. 1590 * 1591 * If the requested bus number is set to -1, then this function will behave 1592 * identically to i2c_add_adapter, and will dynamically assign a bus number. 1593 * 1594 * If no devices have pre-been declared for this bus, then be sure to 1595 * register the adapter before any dynamically allocated ones. Otherwise 1596 * the required bus ID may not be available. 1597 * 1598 * When this returns zero, the specified adapter became available for 1599 * clients using the bus number provided in adap->nr. Also, the table 1600 * of I2C devices pre-declared using i2c_register_board_info() is scanned, 1601 * and the appropriate driver model device nodes are created. Otherwise, a 1602 * negative errno value is returned. 1603 */ 1604 int i2c_add_numbered_adapter(struct i2c_adapter *adap) 1605 { 1606 if (adap->nr == -1) /* -1 means dynamically assign bus id */ 1607 return i2c_add_adapter(adap); 1608 1609 return __i2c_add_numbered_adapter(adap); 1610 } 1611 EXPORT_SYMBOL_GPL(i2c_add_numbered_adapter); 1612 1613 static void i2c_do_del_adapter(struct i2c_driver *driver, 1614 struct i2c_adapter *adapter) 1615 { 1616 struct i2c_client *client, *_n; 1617 1618 /* Remove the devices we created ourselves as the result of hardware 1619 * probing (using a driver's detect method) */ 1620 list_for_each_entry_safe(client, _n, &driver->clients, detected) { 1621 if (client->adapter == adapter) { 1622 dev_dbg(&adapter->dev, "Removing %s at 0x%x\n", 1623 client->name, client->addr); 1624 list_del(&client->detected); 1625 i2c_unregister_device(client); 1626 } 1627 } 1628 } 1629 1630 static int __unregister_client(struct device *dev, void *dummy) 1631 { 1632 struct i2c_client *client = i2c_verify_client(dev); 1633 if (client && strcmp(client->name, "dummy")) 1634 i2c_unregister_device(client); 1635 return 0; 1636 } 1637 1638 static int __unregister_dummy(struct device *dev, void *dummy) 1639 { 1640 struct i2c_client *client = i2c_verify_client(dev); 1641 i2c_unregister_device(client); 1642 return 0; 1643 } 1644 1645 static int __process_removed_adapter(struct device_driver *d, void *data) 1646 { 1647 i2c_do_del_adapter(to_i2c_driver(d), data); 1648 return 0; 1649 } 1650 1651 /** 1652 * i2c_del_adapter - unregister I2C adapter 1653 * @adap: the adapter being unregistered 1654 * Context: can sleep 1655 * 1656 * This unregisters an I2C adapter which was previously registered 1657 * by @i2c_add_adapter or @i2c_add_numbered_adapter. 1658 */ 1659 void i2c_del_adapter(struct i2c_adapter *adap) 1660 { 1661 struct i2c_adapter *found; 1662 struct i2c_client *client, *next; 1663 1664 /* First make sure that this adapter was ever added */ 1665 mutex_lock(&core_lock); 1666 found = idr_find(&i2c_adapter_idr, adap->nr); 1667 mutex_unlock(&core_lock); 1668 if (found != adap) { 1669 pr_debug("attempting to delete unregistered adapter [%s]\n", adap->name); 1670 return; 1671 } 1672 1673 i2c_acpi_remove_space_handler(adap); 1674 /* Tell drivers about this removal */ 1675 mutex_lock(&core_lock); 1676 bus_for_each_drv(&i2c_bus_type, NULL, adap, 1677 __process_removed_adapter); 1678 mutex_unlock(&core_lock); 1679 1680 /* Remove devices instantiated from sysfs */ 1681 mutex_lock_nested(&adap->userspace_clients_lock, 1682 i2c_adapter_depth(adap)); 1683 list_for_each_entry_safe(client, next, &adap->userspace_clients, 1684 detected) { 1685 dev_dbg(&adap->dev, "Removing %s at 0x%x\n", client->name, 1686 client->addr); 1687 list_del(&client->detected); 1688 i2c_unregister_device(client); 1689 } 1690 mutex_unlock(&adap->userspace_clients_lock); 1691 1692 /* Detach any active clients. This can't fail, thus we do not 1693 * check the returned value. This is a two-pass process, because 1694 * we can't remove the dummy devices during the first pass: they 1695 * could have been instantiated by real devices wishing to clean 1696 * them up properly, so we give them a chance to do that first. */ 1697 device_for_each_child(&adap->dev, NULL, __unregister_client); 1698 device_for_each_child(&adap->dev, NULL, __unregister_dummy); 1699 1700 #ifdef CONFIG_I2C_COMPAT 1701 class_compat_remove_link(i2c_adapter_compat_class, &adap->dev, 1702 adap->dev.parent); 1703 #endif 1704 1705 /* device name is gone after device_unregister */ 1706 dev_dbg(&adap->dev, "adapter [%s] unregistered\n", adap->name); 1707 1708 pm_runtime_disable(&adap->dev); 1709 1710 i2c_host_notify_irq_teardown(adap); 1711 1712 /* wait until all references to the device are gone 1713 * 1714 * FIXME: This is old code and should ideally be replaced by an 1715 * alternative which results in decoupling the lifetime of the struct 1716 * device from the i2c_adapter, like spi or netdev do. Any solution 1717 * should be thoroughly tested with DEBUG_KOBJECT_RELEASE enabled! 1718 */ 1719 init_completion(&adap->dev_released); 1720 device_unregister(&adap->dev); 1721 wait_for_completion(&adap->dev_released); 1722 1723 /* free bus id */ 1724 mutex_lock(&core_lock); 1725 idr_remove(&i2c_adapter_idr, adap->nr); 1726 mutex_unlock(&core_lock); 1727 1728 /* Clear the device structure in case this adapter is ever going to be 1729 added again */ 1730 memset(&adap->dev, 0, sizeof(adap->dev)); 1731 } 1732 EXPORT_SYMBOL(i2c_del_adapter); 1733 1734 static void devm_i2c_del_adapter(void *adapter) 1735 { 1736 i2c_del_adapter(adapter); 1737 } 1738 1739 /** 1740 * devm_i2c_add_adapter - device-managed variant of i2c_add_adapter() 1741 * @dev: managing device for adding this I2C adapter 1742 * @adapter: the adapter to add 1743 * Context: can sleep 1744 * 1745 * Add adapter with dynamic bus number, same with i2c_add_adapter() 1746 * but the adapter will be auto deleted on driver detach. 1747 */ 1748 int devm_i2c_add_adapter(struct device *dev, struct i2c_adapter *adapter) 1749 { 1750 int ret; 1751 1752 ret = i2c_add_adapter(adapter); 1753 if (ret) 1754 return ret; 1755 1756 return devm_add_action_or_reset(dev, devm_i2c_del_adapter, adapter); 1757 } 1758 EXPORT_SYMBOL_GPL(devm_i2c_add_adapter); 1759 1760 static void i2c_parse_timing(struct device *dev, char *prop_name, u32 *cur_val_p, 1761 u32 def_val, bool use_def) 1762 { 1763 int ret; 1764 1765 ret = device_property_read_u32(dev, prop_name, cur_val_p); 1766 if (ret && use_def) 1767 *cur_val_p = def_val; 1768 1769 dev_dbg(dev, "%s: %u\n", prop_name, *cur_val_p); 1770 } 1771 1772 /** 1773 * i2c_parse_fw_timings - get I2C related timing parameters from firmware 1774 * @dev: The device to scan for I2C timing properties 1775 * @t: the i2c_timings struct to be filled with values 1776 * @use_defaults: bool to use sane defaults derived from the I2C specification 1777 * when properties are not found, otherwise don't update 1778 * 1779 * Scan the device for the generic I2C properties describing timing parameters 1780 * for the signal and fill the given struct with the results. If a property was 1781 * not found and use_defaults was true, then maximum timings are assumed which 1782 * are derived from the I2C specification. If use_defaults is not used, the 1783 * results will be as before, so drivers can apply their own defaults before 1784 * calling this helper. The latter is mainly intended for avoiding regressions 1785 * of existing drivers which want to switch to this function. New drivers 1786 * almost always should use the defaults. 1787 */ 1788 void i2c_parse_fw_timings(struct device *dev, struct i2c_timings *t, bool use_defaults) 1789 { 1790 bool u = use_defaults; 1791 u32 d; 1792 1793 i2c_parse_timing(dev, "clock-frequency", &t->bus_freq_hz, 1794 I2C_MAX_STANDARD_MODE_FREQ, u); 1795 1796 d = t->bus_freq_hz <= I2C_MAX_STANDARD_MODE_FREQ ? 1000 : 1797 t->bus_freq_hz <= I2C_MAX_FAST_MODE_FREQ ? 300 : 120; 1798 i2c_parse_timing(dev, "i2c-scl-rising-time-ns", &t->scl_rise_ns, d, u); 1799 1800 d = t->bus_freq_hz <= I2C_MAX_FAST_MODE_FREQ ? 300 : 120; 1801 i2c_parse_timing(dev, "i2c-scl-falling-time-ns", &t->scl_fall_ns, d, u); 1802 1803 i2c_parse_timing(dev, "i2c-scl-internal-delay-ns", 1804 &t->scl_int_delay_ns, 0, u); 1805 i2c_parse_timing(dev, "i2c-sda-falling-time-ns", &t->sda_fall_ns, 1806 t->scl_fall_ns, u); 1807 i2c_parse_timing(dev, "i2c-sda-hold-time-ns", &t->sda_hold_ns, 0, u); 1808 i2c_parse_timing(dev, "i2c-digital-filter-width-ns", 1809 &t->digital_filter_width_ns, 0, u); 1810 i2c_parse_timing(dev, "i2c-analog-filter-cutoff-frequency", 1811 &t->analog_filter_cutoff_freq_hz, 0, u); 1812 } 1813 EXPORT_SYMBOL_GPL(i2c_parse_fw_timings); 1814 1815 /* ------------------------------------------------------------------------- */ 1816 1817 int i2c_for_each_dev(void *data, int (*fn)(struct device *dev, void *data)) 1818 { 1819 int res; 1820 1821 mutex_lock(&core_lock); 1822 res = bus_for_each_dev(&i2c_bus_type, NULL, data, fn); 1823 mutex_unlock(&core_lock); 1824 1825 return res; 1826 } 1827 EXPORT_SYMBOL_GPL(i2c_for_each_dev); 1828 1829 static int __process_new_driver(struct device *dev, void *data) 1830 { 1831 if (dev->type != &i2c_adapter_type) 1832 return 0; 1833 return i2c_do_add_adapter(data, to_i2c_adapter(dev)); 1834 } 1835 1836 /* 1837 * An i2c_driver is used with one or more i2c_client (device) nodes to access 1838 * i2c slave chips, on a bus instance associated with some i2c_adapter. 1839 */ 1840 1841 int i2c_register_driver(struct module *owner, struct i2c_driver *driver) 1842 { 1843 int res; 1844 1845 /* Can't register until after driver model init */ 1846 if (WARN_ON(!is_registered)) 1847 return -EAGAIN; 1848 1849 /* add the driver to the list of i2c drivers in the driver core */ 1850 driver->driver.owner = owner; 1851 driver->driver.bus = &i2c_bus_type; 1852 INIT_LIST_HEAD(&driver->clients); 1853 1854 /* When registration returns, the driver core 1855 * will have called probe() for all matching-but-unbound devices. 1856 */ 1857 res = driver_register(&driver->driver); 1858 if (res) 1859 return res; 1860 1861 pr_debug("driver [%s] registered\n", driver->driver.name); 1862 1863 /* Walk the adapters that are already present */ 1864 i2c_for_each_dev(driver, __process_new_driver); 1865 1866 return 0; 1867 } 1868 EXPORT_SYMBOL(i2c_register_driver); 1869 1870 static int __process_removed_driver(struct device *dev, void *data) 1871 { 1872 if (dev->type == &i2c_adapter_type) 1873 i2c_do_del_adapter(data, to_i2c_adapter(dev)); 1874 return 0; 1875 } 1876 1877 /** 1878 * i2c_del_driver - unregister I2C driver 1879 * @driver: the driver being unregistered 1880 * Context: can sleep 1881 */ 1882 void i2c_del_driver(struct i2c_driver *driver) 1883 { 1884 i2c_for_each_dev(driver, __process_removed_driver); 1885 1886 driver_unregister(&driver->driver); 1887 pr_debug("driver [%s] unregistered\n", driver->driver.name); 1888 } 1889 EXPORT_SYMBOL(i2c_del_driver); 1890 1891 /* ------------------------------------------------------------------------- */ 1892 1893 struct i2c_cmd_arg { 1894 unsigned cmd; 1895 void *arg; 1896 }; 1897 1898 static int i2c_cmd(struct device *dev, void *_arg) 1899 { 1900 struct i2c_client *client = i2c_verify_client(dev); 1901 struct i2c_cmd_arg *arg = _arg; 1902 struct i2c_driver *driver; 1903 1904 if (!client || !client->dev.driver) 1905 return 0; 1906 1907 driver = to_i2c_driver(client->dev.driver); 1908 if (driver->command) 1909 driver->command(client, arg->cmd, arg->arg); 1910 return 0; 1911 } 1912 1913 void i2c_clients_command(struct i2c_adapter *adap, unsigned int cmd, void *arg) 1914 { 1915 struct i2c_cmd_arg cmd_arg; 1916 1917 cmd_arg.cmd = cmd; 1918 cmd_arg.arg = arg; 1919 device_for_each_child(&adap->dev, &cmd_arg, i2c_cmd); 1920 } 1921 EXPORT_SYMBOL(i2c_clients_command); 1922 1923 static int __init i2c_init(void) 1924 { 1925 int retval; 1926 1927 retval = of_alias_get_highest_id("i2c"); 1928 1929 down_write(&__i2c_board_lock); 1930 if (retval >= __i2c_first_dynamic_bus_num) 1931 __i2c_first_dynamic_bus_num = retval + 1; 1932 up_write(&__i2c_board_lock); 1933 1934 retval = bus_register(&i2c_bus_type); 1935 if (retval) 1936 return retval; 1937 1938 is_registered = true; 1939 1940 #ifdef CONFIG_I2C_COMPAT 1941 i2c_adapter_compat_class = class_compat_register("i2c-adapter"); 1942 if (!i2c_adapter_compat_class) { 1943 retval = -ENOMEM; 1944 goto bus_err; 1945 } 1946 #endif 1947 retval = i2c_add_driver(&dummy_driver); 1948 if (retval) 1949 goto class_err; 1950 1951 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 1952 WARN_ON(of_reconfig_notifier_register(&i2c_of_notifier)); 1953 if (IS_ENABLED(CONFIG_ACPI)) 1954 WARN_ON(acpi_reconfig_notifier_register(&i2c_acpi_notifier)); 1955 1956 return 0; 1957 1958 class_err: 1959 #ifdef CONFIG_I2C_COMPAT 1960 class_compat_unregister(i2c_adapter_compat_class); 1961 bus_err: 1962 #endif 1963 is_registered = false; 1964 bus_unregister(&i2c_bus_type); 1965 return retval; 1966 } 1967 1968 static void __exit i2c_exit(void) 1969 { 1970 if (IS_ENABLED(CONFIG_ACPI)) 1971 WARN_ON(acpi_reconfig_notifier_unregister(&i2c_acpi_notifier)); 1972 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 1973 WARN_ON(of_reconfig_notifier_unregister(&i2c_of_notifier)); 1974 i2c_del_driver(&dummy_driver); 1975 #ifdef CONFIG_I2C_COMPAT 1976 class_compat_unregister(i2c_adapter_compat_class); 1977 #endif 1978 bus_unregister(&i2c_bus_type); 1979 tracepoint_synchronize_unregister(); 1980 } 1981 1982 /* We must initialize early, because some subsystems register i2c drivers 1983 * in subsys_initcall() code, but are linked (and initialized) before i2c. 1984 */ 1985 postcore_initcall(i2c_init); 1986 module_exit(i2c_exit); 1987 1988 /* ---------------------------------------------------- 1989 * the functional interface to the i2c busses. 1990 * ---------------------------------------------------- 1991 */ 1992 1993 /* Check if val is exceeding the quirk IFF quirk is non 0 */ 1994 #define i2c_quirk_exceeded(val, quirk) ((quirk) && ((val) > (quirk))) 1995 1996 static int i2c_quirk_error(struct i2c_adapter *adap, struct i2c_msg *msg, char *err_msg) 1997 { 1998 dev_err_ratelimited(&adap->dev, "adapter quirk: %s (addr 0x%04x, size %u, %s)\n", 1999 err_msg, msg->addr, msg->len, 2000 msg->flags & I2C_M_RD ? "read" : "write"); 2001 return -EOPNOTSUPP; 2002 } 2003 2004 static int i2c_check_for_quirks(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) 2005 { 2006 const struct i2c_adapter_quirks *q = adap->quirks; 2007 int max_num = q->max_num_msgs, i; 2008 bool do_len_check = true; 2009 2010 if (q->flags & I2C_AQ_COMB) { 2011 max_num = 2; 2012 2013 /* special checks for combined messages */ 2014 if (num == 2) { 2015 if (q->flags & I2C_AQ_COMB_WRITE_FIRST && msgs[0].flags & I2C_M_RD) 2016 return i2c_quirk_error(adap, &msgs[0], "1st comb msg must be write"); 2017 2018 if (q->flags & I2C_AQ_COMB_READ_SECOND && !(msgs[1].flags & I2C_M_RD)) 2019 return i2c_quirk_error(adap, &msgs[1], "2nd comb msg must be read"); 2020 2021 if (q->flags & I2C_AQ_COMB_SAME_ADDR && msgs[0].addr != msgs[1].addr) 2022 return i2c_quirk_error(adap, &msgs[0], "comb msg only to same addr"); 2023 2024 if (i2c_quirk_exceeded(msgs[0].len, q->max_comb_1st_msg_len)) 2025 return i2c_quirk_error(adap, &msgs[0], "msg too long"); 2026 2027 if (i2c_quirk_exceeded(msgs[1].len, q->max_comb_2nd_msg_len)) 2028 return i2c_quirk_error(adap, &msgs[1], "msg too long"); 2029 2030 do_len_check = false; 2031 } 2032 } 2033 2034 if (i2c_quirk_exceeded(num, max_num)) 2035 return i2c_quirk_error(adap, &msgs[0], "too many messages"); 2036 2037 for (i = 0; i < num; i++) { 2038 u16 len = msgs[i].len; 2039 2040 if (msgs[i].flags & I2C_M_RD) { 2041 if (do_len_check && i2c_quirk_exceeded(len, q->max_read_len)) 2042 return i2c_quirk_error(adap, &msgs[i], "msg too long"); 2043 2044 if (q->flags & I2C_AQ_NO_ZERO_LEN_READ && len == 0) 2045 return i2c_quirk_error(adap, &msgs[i], "no zero length"); 2046 } else { 2047 if (do_len_check && i2c_quirk_exceeded(len, q->max_write_len)) 2048 return i2c_quirk_error(adap, &msgs[i], "msg too long"); 2049 2050 if (q->flags & I2C_AQ_NO_ZERO_LEN_WRITE && len == 0) 2051 return i2c_quirk_error(adap, &msgs[i], "no zero length"); 2052 } 2053 } 2054 2055 return 0; 2056 } 2057 2058 /** 2059 * __i2c_transfer - unlocked flavor of i2c_transfer 2060 * @adap: Handle to I2C bus 2061 * @msgs: One or more messages to execute before STOP is issued to 2062 * terminate the operation; each message begins with a START. 2063 * @num: Number of messages to be executed. 2064 * 2065 * Returns negative errno, else the number of messages executed. 2066 * 2067 * Adapter lock must be held when calling this function. No debug logging 2068 * takes place. adap->algo->master_xfer existence isn't checked. 2069 */ 2070 int __i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) 2071 { 2072 unsigned long orig_jiffies; 2073 int ret, try; 2074 2075 if (WARN_ON(!msgs || num < 1)) 2076 return -EINVAL; 2077 2078 ret = __i2c_check_suspended(adap); 2079 if (ret) 2080 return ret; 2081 2082 if (adap->quirks && i2c_check_for_quirks(adap, msgs, num)) 2083 return -EOPNOTSUPP; 2084 2085 /* 2086 * i2c_trace_msg_key gets enabled when tracepoint i2c_transfer gets 2087 * enabled. This is an efficient way of keeping the for-loop from 2088 * being executed when not needed. 2089 */ 2090 if (static_branch_unlikely(&i2c_trace_msg_key)) { 2091 int i; 2092 for (i = 0; i < num; i++) 2093 if (msgs[i].flags & I2C_M_RD) 2094 trace_i2c_read(adap, &msgs[i], i); 2095 else 2096 trace_i2c_write(adap, &msgs[i], i); 2097 } 2098 2099 /* Retry automatically on arbitration loss */ 2100 orig_jiffies = jiffies; 2101 for (ret = 0, try = 0; try <= adap->retries; try++) { 2102 if (i2c_in_atomic_xfer_mode() && adap->algo->master_xfer_atomic) 2103 ret = adap->algo->master_xfer_atomic(adap, msgs, num); 2104 else 2105 ret = adap->algo->master_xfer(adap, msgs, num); 2106 2107 if (ret != -EAGAIN) 2108 break; 2109 if (time_after(jiffies, orig_jiffies + adap->timeout)) 2110 break; 2111 } 2112 2113 if (static_branch_unlikely(&i2c_trace_msg_key)) { 2114 int i; 2115 for (i = 0; i < ret; i++) 2116 if (msgs[i].flags & I2C_M_RD) 2117 trace_i2c_reply(adap, &msgs[i], i); 2118 trace_i2c_result(adap, num, ret); 2119 } 2120 2121 return ret; 2122 } 2123 EXPORT_SYMBOL(__i2c_transfer); 2124 2125 /** 2126 * i2c_transfer - execute a single or combined I2C message 2127 * @adap: Handle to I2C bus 2128 * @msgs: One or more messages to execute before STOP is issued to 2129 * terminate the operation; each message begins with a START. 2130 * @num: Number of messages to be executed. 2131 * 2132 * Returns negative errno, else the number of messages executed. 2133 * 2134 * Note that there is no requirement that each message be sent to 2135 * the same slave address, although that is the most common model. 2136 */ 2137 int i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) 2138 { 2139 int ret; 2140 2141 if (!adap->algo->master_xfer) { 2142 dev_dbg(&adap->dev, "I2C level transfers not supported\n"); 2143 return -EOPNOTSUPP; 2144 } 2145 2146 /* REVISIT the fault reporting model here is weak: 2147 * 2148 * - When we get an error after receiving N bytes from a slave, 2149 * there is no way to report "N". 2150 * 2151 * - When we get a NAK after transmitting N bytes to a slave, 2152 * there is no way to report "N" ... or to let the master 2153 * continue executing the rest of this combined message, if 2154 * that's the appropriate response. 2155 * 2156 * - When for example "num" is two and we successfully complete 2157 * the first message but get an error part way through the 2158 * second, it's unclear whether that should be reported as 2159 * one (discarding status on the second message) or errno 2160 * (discarding status on the first one). 2161 */ 2162 ret = __i2c_lock_bus_helper(adap); 2163 if (ret) 2164 return ret; 2165 2166 ret = __i2c_transfer(adap, msgs, num); 2167 i2c_unlock_bus(adap, I2C_LOCK_SEGMENT); 2168 2169 return ret; 2170 } 2171 EXPORT_SYMBOL(i2c_transfer); 2172 2173 /** 2174 * i2c_transfer_buffer_flags - issue a single I2C message transferring data 2175 * to/from a buffer 2176 * @client: Handle to slave device 2177 * @buf: Where the data is stored 2178 * @count: How many bytes to transfer, must be less than 64k since msg.len is u16 2179 * @flags: The flags to be used for the message, e.g. I2C_M_RD for reads 2180 * 2181 * Returns negative errno, or else the number of bytes transferred. 2182 */ 2183 int i2c_transfer_buffer_flags(const struct i2c_client *client, char *buf, 2184 int count, u16 flags) 2185 { 2186 int ret; 2187 struct i2c_msg msg = { 2188 .addr = client->addr, 2189 .flags = flags | (client->flags & I2C_M_TEN), 2190 .len = count, 2191 .buf = buf, 2192 }; 2193 2194 ret = i2c_transfer(client->adapter, &msg, 1); 2195 2196 /* 2197 * If everything went ok (i.e. 1 msg transferred), return #bytes 2198 * transferred, else error code. 2199 */ 2200 return (ret == 1) ? count : ret; 2201 } 2202 EXPORT_SYMBOL(i2c_transfer_buffer_flags); 2203 2204 /** 2205 * i2c_get_device_id - get manufacturer, part id and die revision of a device 2206 * @client: The device to query 2207 * @id: The queried information 2208 * 2209 * Returns negative errno on error, zero on success. 2210 */ 2211 int i2c_get_device_id(const struct i2c_client *client, 2212 struct i2c_device_identity *id) 2213 { 2214 struct i2c_adapter *adap = client->adapter; 2215 union i2c_smbus_data raw_id; 2216 int ret; 2217 2218 if (!i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_I2C_BLOCK)) 2219 return -EOPNOTSUPP; 2220 2221 raw_id.block[0] = 3; 2222 ret = i2c_smbus_xfer(adap, I2C_ADDR_DEVICE_ID, 0, 2223 I2C_SMBUS_READ, client->addr << 1, 2224 I2C_SMBUS_I2C_BLOCK_DATA, &raw_id); 2225 if (ret) 2226 return ret; 2227 2228 id->manufacturer_id = (raw_id.block[1] << 4) | (raw_id.block[2] >> 4); 2229 id->part_id = ((raw_id.block[2] & 0xf) << 5) | (raw_id.block[3] >> 3); 2230 id->die_revision = raw_id.block[3] & 0x7; 2231 return 0; 2232 } 2233 EXPORT_SYMBOL_GPL(i2c_get_device_id); 2234 2235 /* ---------------------------------------------------- 2236 * the i2c address scanning function 2237 * Will not work for 10-bit addresses! 2238 * ---------------------------------------------------- 2239 */ 2240 2241 /* 2242 * Legacy default probe function, mostly relevant for SMBus. The default 2243 * probe method is a quick write, but it is known to corrupt the 24RF08 2244 * EEPROMs due to a state machine bug, and could also irreversibly 2245 * write-protect some EEPROMs, so for address ranges 0x30-0x37 and 0x50-0x5f, 2246 * we use a short byte read instead. Also, some bus drivers don't implement 2247 * quick write, so we fallback to a byte read in that case too. 2248 * On x86, there is another special case for FSC hardware monitoring chips, 2249 * which want regular byte reads (address 0x73.) Fortunately, these are the 2250 * only known chips using this I2C address on PC hardware. 2251 * Returns 1 if probe succeeded, 0 if not. 2252 */ 2253 static int i2c_default_probe(struct i2c_adapter *adap, unsigned short addr) 2254 { 2255 int err; 2256 union i2c_smbus_data dummy; 2257 2258 #ifdef CONFIG_X86 2259 if (addr == 0x73 && (adap->class & I2C_CLASS_HWMON) 2260 && i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_BYTE_DATA)) 2261 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0, 2262 I2C_SMBUS_BYTE_DATA, &dummy); 2263 else 2264 #endif 2265 if (!((addr & ~0x07) == 0x30 || (addr & ~0x0f) == 0x50) 2266 && i2c_check_functionality(adap, I2C_FUNC_SMBUS_QUICK)) 2267 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_WRITE, 0, 2268 I2C_SMBUS_QUICK, NULL); 2269 else if (i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_BYTE)) 2270 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0, 2271 I2C_SMBUS_BYTE, &dummy); 2272 else { 2273 dev_warn(&adap->dev, "No suitable probing method supported for address 0x%02X\n", 2274 addr); 2275 err = -EOPNOTSUPP; 2276 } 2277 2278 return err >= 0; 2279 } 2280 2281 static int i2c_detect_address(struct i2c_client *temp_client, 2282 struct i2c_driver *driver) 2283 { 2284 struct i2c_board_info info; 2285 struct i2c_adapter *adapter = temp_client->adapter; 2286 int addr = temp_client->addr; 2287 int err; 2288 2289 /* Make sure the address is valid */ 2290 err = i2c_check_7bit_addr_validity_strict(addr); 2291 if (err) { 2292 dev_warn(&adapter->dev, "Invalid probe address 0x%02x\n", 2293 addr); 2294 return err; 2295 } 2296 2297 /* Skip if already in use (7 bit, no need to encode flags) */ 2298 if (i2c_check_addr_busy(adapter, addr)) 2299 return 0; 2300 2301 /* Make sure there is something at this address */ 2302 if (!i2c_default_probe(adapter, addr)) 2303 return 0; 2304 2305 /* Finally call the custom detection function */ 2306 memset(&info, 0, sizeof(struct i2c_board_info)); 2307 info.addr = addr; 2308 err = driver->detect(temp_client, &info); 2309 if (err) { 2310 /* -ENODEV is returned if the detection fails. We catch it 2311 here as this isn't an error. */ 2312 return err == -ENODEV ? 0 : err; 2313 } 2314 2315 /* Consistency check */ 2316 if (info.type[0] == '\0') { 2317 dev_err(&adapter->dev, 2318 "%s detection function provided no name for 0x%x\n", 2319 driver->driver.name, addr); 2320 } else { 2321 struct i2c_client *client; 2322 2323 /* Detection succeeded, instantiate the device */ 2324 if (adapter->class & I2C_CLASS_DEPRECATED) 2325 dev_warn(&adapter->dev, 2326 "This adapter will soon drop class based instantiation of devices. " 2327 "Please make sure client 0x%02x gets instantiated by other means. " 2328 "Check 'Documentation/i2c/instantiating-devices.rst' for details.\n", 2329 info.addr); 2330 2331 dev_dbg(&adapter->dev, "Creating %s at 0x%02x\n", 2332 info.type, info.addr); 2333 client = i2c_new_client_device(adapter, &info); 2334 if (!IS_ERR(client)) 2335 list_add_tail(&client->detected, &driver->clients); 2336 else 2337 dev_err(&adapter->dev, "Failed creating %s at 0x%02x\n", 2338 info.type, info.addr); 2339 } 2340 return 0; 2341 } 2342 2343 static int i2c_detect(struct i2c_adapter *adapter, struct i2c_driver *driver) 2344 { 2345 const unsigned short *address_list; 2346 struct i2c_client *temp_client; 2347 int i, err = 0; 2348 2349 address_list = driver->address_list; 2350 if (!driver->detect || !address_list) 2351 return 0; 2352 2353 /* Warn that the adapter lost class based instantiation */ 2354 if (adapter->class == I2C_CLASS_DEPRECATED) { 2355 dev_dbg(&adapter->dev, 2356 "This adapter dropped support for I2C classes and won't auto-detect %s devices anymore. " 2357 "If you need it, check 'Documentation/i2c/instantiating-devices.rst' for alternatives.\n", 2358 driver->driver.name); 2359 return 0; 2360 } 2361 2362 /* Stop here if the classes do not match */ 2363 if (!(adapter->class & driver->class)) 2364 return 0; 2365 2366 /* Set up a temporary client to help detect callback */ 2367 temp_client = kzalloc(sizeof(struct i2c_client), GFP_KERNEL); 2368 if (!temp_client) 2369 return -ENOMEM; 2370 temp_client->adapter = adapter; 2371 2372 for (i = 0; address_list[i] != I2C_CLIENT_END; i += 1) { 2373 dev_dbg(&adapter->dev, 2374 "found normal entry for adapter %d, addr 0x%02x\n", 2375 i2c_adapter_id(adapter), address_list[i]); 2376 temp_client->addr = address_list[i]; 2377 err = i2c_detect_address(temp_client, driver); 2378 if (unlikely(err)) 2379 break; 2380 } 2381 2382 kfree(temp_client); 2383 return err; 2384 } 2385 2386 int i2c_probe_func_quick_read(struct i2c_adapter *adap, unsigned short addr) 2387 { 2388 return i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0, 2389 I2C_SMBUS_QUICK, NULL) >= 0; 2390 } 2391 EXPORT_SYMBOL_GPL(i2c_probe_func_quick_read); 2392 2393 struct i2c_client * 2394 i2c_new_scanned_device(struct i2c_adapter *adap, 2395 struct i2c_board_info *info, 2396 unsigned short const *addr_list, 2397 int (*probe)(struct i2c_adapter *adap, unsigned short addr)) 2398 { 2399 int i; 2400 2401 if (!probe) 2402 probe = i2c_default_probe; 2403 2404 for (i = 0; addr_list[i] != I2C_CLIENT_END; i++) { 2405 /* Check address validity */ 2406 if (i2c_check_7bit_addr_validity_strict(addr_list[i]) < 0) { 2407 dev_warn(&adap->dev, "Invalid 7-bit address 0x%02x\n", 2408 addr_list[i]); 2409 continue; 2410 } 2411 2412 /* Check address availability (7 bit, no need to encode flags) */ 2413 if (i2c_check_addr_busy(adap, addr_list[i])) { 2414 dev_dbg(&adap->dev, 2415 "Address 0x%02x already in use, not probing\n", 2416 addr_list[i]); 2417 continue; 2418 } 2419 2420 /* Test address responsiveness */ 2421 if (probe(adap, addr_list[i])) 2422 break; 2423 } 2424 2425 if (addr_list[i] == I2C_CLIENT_END) { 2426 dev_dbg(&adap->dev, "Probing failed, no device found\n"); 2427 return ERR_PTR(-ENODEV); 2428 } 2429 2430 info->addr = addr_list[i]; 2431 return i2c_new_client_device(adap, info); 2432 } 2433 EXPORT_SYMBOL_GPL(i2c_new_scanned_device); 2434 2435 struct i2c_adapter *i2c_get_adapter(int nr) 2436 { 2437 struct i2c_adapter *adapter; 2438 2439 mutex_lock(&core_lock); 2440 adapter = idr_find(&i2c_adapter_idr, nr); 2441 if (!adapter) 2442 goto exit; 2443 2444 if (try_module_get(adapter->owner)) 2445 get_device(&adapter->dev); 2446 else 2447 adapter = NULL; 2448 2449 exit: 2450 mutex_unlock(&core_lock); 2451 return adapter; 2452 } 2453 EXPORT_SYMBOL(i2c_get_adapter); 2454 2455 void i2c_put_adapter(struct i2c_adapter *adap) 2456 { 2457 if (!adap) 2458 return; 2459 2460 module_put(adap->owner); 2461 /* Should be last, otherwise we risk use-after-free with 'adap' */ 2462 put_device(&adap->dev); 2463 } 2464 EXPORT_SYMBOL(i2c_put_adapter); 2465 2466 /** 2467 * i2c_get_dma_safe_msg_buf() - get a DMA safe buffer for the given i2c_msg 2468 * @msg: the message to be checked 2469 * @threshold: the minimum number of bytes for which using DMA makes sense. 2470 * Should at least be 1. 2471 * 2472 * Return: NULL if a DMA safe buffer was not obtained. Use msg->buf with PIO. 2473 * Or a valid pointer to be used with DMA. After use, release it by 2474 * calling i2c_put_dma_safe_msg_buf(). 2475 * 2476 * This function must only be called from process context! 2477 */ 2478 u8 *i2c_get_dma_safe_msg_buf(struct i2c_msg *msg, unsigned int threshold) 2479 { 2480 /* also skip 0-length msgs for bogus thresholds of 0 */ 2481 if (!threshold) 2482 pr_debug("DMA buffer for addr=0x%02x with length 0 is bogus\n", 2483 msg->addr); 2484 if (msg->len < threshold || msg->len == 0) 2485 return NULL; 2486 2487 if (msg->flags & I2C_M_DMA_SAFE) 2488 return msg->buf; 2489 2490 pr_debug("using bounce buffer for addr=0x%02x, len=%d\n", 2491 msg->addr, msg->len); 2492 2493 if (msg->flags & I2C_M_RD) 2494 return kzalloc(msg->len, GFP_KERNEL); 2495 else 2496 return kmemdup(msg->buf, msg->len, GFP_KERNEL); 2497 } 2498 EXPORT_SYMBOL_GPL(i2c_get_dma_safe_msg_buf); 2499 2500 /** 2501 * i2c_put_dma_safe_msg_buf - release DMA safe buffer and sync with i2c_msg 2502 * @buf: the buffer obtained from i2c_get_dma_safe_msg_buf(). May be NULL. 2503 * @msg: the message which the buffer corresponds to 2504 * @xferred: bool saying if the message was transferred 2505 */ 2506 void i2c_put_dma_safe_msg_buf(u8 *buf, struct i2c_msg *msg, bool xferred) 2507 { 2508 if (!buf || buf == msg->buf) 2509 return; 2510 2511 if (xferred && msg->flags & I2C_M_RD) 2512 memcpy(msg->buf, buf, msg->len); 2513 2514 kfree(buf); 2515 } 2516 EXPORT_SYMBOL_GPL(i2c_put_dma_safe_msg_buf); 2517 2518 MODULE_AUTHOR("Simon G. Vogl <simon@tk.uni-linz.ac.at>"); 2519 MODULE_DESCRIPTION("I2C-Bus main module"); 2520 MODULE_LICENSE("GPL"); 2521