xref: /linux/drivers/i2c/i2c-core-base.c (revision 90e0d94d369d342e735a75174439482119b6c393)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux I2C core
4  *
5  * Copyright (C) 1995-99 Simon G. Vogl
6  *   With some changes from Kyösti Mälkki <kmalkki@cc.hut.fi>
7  *   Mux support by Rodolfo Giometti <giometti@enneenne.com> and
8  *   Michael Lawnick <michael.lawnick.ext@nsn.com>
9  *
10  * Copyright (C) 2013-2017 Wolfram Sang <wsa@kernel.org>
11  */
12 
13 #define pr_fmt(fmt) "i2c-core: " fmt
14 
15 #include <dt-bindings/i2c/i2c.h>
16 #include <linux/acpi.h>
17 #include <linux/clk/clk-conf.h>
18 #include <linux/completion.h>
19 #include <linux/delay.h>
20 #include <linux/err.h>
21 #include <linux/errno.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/i2c.h>
24 #include <linux/i2c-smbus.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/irqflags.h>
29 #include <linux/jump_label.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/mutex.h>
33 #include <linux/of_device.h>
34 #include <linux/of.h>
35 #include <linux/of_irq.h>
36 #include <linux/pinctrl/consumer.h>
37 #include <linux/pm_domain.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/pm_wakeirq.h>
40 #include <linux/property.h>
41 #include <linux/rwsem.h>
42 #include <linux/slab.h>
43 
44 #include "i2c-core.h"
45 
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/i2c.h>
48 
49 #define I2C_ADDR_OFFSET_TEN_BIT	0xa000
50 #define I2C_ADDR_OFFSET_SLAVE	0x1000
51 
52 #define I2C_ADDR_7BITS_MAX	0x77
53 #define I2C_ADDR_7BITS_COUNT	(I2C_ADDR_7BITS_MAX + 1)
54 
55 #define I2C_ADDR_DEVICE_ID	0x7c
56 
57 /*
58  * core_lock protects i2c_adapter_idr, and guarantees that device detection,
59  * deletion of detected devices are serialized
60  */
61 static DEFINE_MUTEX(core_lock);
62 static DEFINE_IDR(i2c_adapter_idr);
63 
64 static int i2c_detect(struct i2c_adapter *adapter, struct i2c_driver *driver);
65 
66 static DEFINE_STATIC_KEY_FALSE(i2c_trace_msg_key);
67 static bool is_registered;
68 
69 int i2c_transfer_trace_reg(void)
70 {
71 	static_branch_inc(&i2c_trace_msg_key);
72 	return 0;
73 }
74 
75 void i2c_transfer_trace_unreg(void)
76 {
77 	static_branch_dec(&i2c_trace_msg_key);
78 }
79 
80 const char *i2c_freq_mode_string(u32 bus_freq_hz)
81 {
82 	switch (bus_freq_hz) {
83 	case I2C_MAX_STANDARD_MODE_FREQ:
84 		return "Standard Mode (100 kHz)";
85 	case I2C_MAX_FAST_MODE_FREQ:
86 		return "Fast Mode (400 kHz)";
87 	case I2C_MAX_FAST_MODE_PLUS_FREQ:
88 		return "Fast Mode Plus (1.0 MHz)";
89 	case I2C_MAX_TURBO_MODE_FREQ:
90 		return "Turbo Mode (1.4 MHz)";
91 	case I2C_MAX_HIGH_SPEED_MODE_FREQ:
92 		return "High Speed Mode (3.4 MHz)";
93 	case I2C_MAX_ULTRA_FAST_MODE_FREQ:
94 		return "Ultra Fast Mode (5.0 MHz)";
95 	default:
96 		return "Unknown Mode";
97 	}
98 }
99 EXPORT_SYMBOL_GPL(i2c_freq_mode_string);
100 
101 const struct i2c_device_id *i2c_match_id(const struct i2c_device_id *id,
102 						const struct i2c_client *client)
103 {
104 	if (!(id && client))
105 		return NULL;
106 
107 	while (id->name[0]) {
108 		if (strcmp(client->name, id->name) == 0)
109 			return id;
110 		id++;
111 	}
112 	return NULL;
113 }
114 EXPORT_SYMBOL_GPL(i2c_match_id);
115 
116 static int i2c_device_match(struct device *dev, struct device_driver *drv)
117 {
118 	struct i2c_client	*client = i2c_verify_client(dev);
119 	struct i2c_driver	*driver;
120 
121 
122 	/* Attempt an OF style match */
123 	if (i2c_of_match_device(drv->of_match_table, client))
124 		return 1;
125 
126 	/* Then ACPI style match */
127 	if (acpi_driver_match_device(dev, drv))
128 		return 1;
129 
130 	driver = to_i2c_driver(drv);
131 
132 	/* Finally an I2C match */
133 	if (i2c_match_id(driver->id_table, client))
134 		return 1;
135 
136 	return 0;
137 }
138 
139 static int i2c_device_uevent(struct device *dev, struct kobj_uevent_env *env)
140 {
141 	struct i2c_client *client = to_i2c_client(dev);
142 	int rc;
143 
144 	rc = of_device_uevent_modalias(dev, env);
145 	if (rc != -ENODEV)
146 		return rc;
147 
148 	rc = acpi_device_uevent_modalias(dev, env);
149 	if (rc != -ENODEV)
150 		return rc;
151 
152 	return add_uevent_var(env, "MODALIAS=%s%s", I2C_MODULE_PREFIX, client->name);
153 }
154 
155 /* i2c bus recovery routines */
156 static int get_scl_gpio_value(struct i2c_adapter *adap)
157 {
158 	return gpiod_get_value_cansleep(adap->bus_recovery_info->scl_gpiod);
159 }
160 
161 static void set_scl_gpio_value(struct i2c_adapter *adap, int val)
162 {
163 	gpiod_set_value_cansleep(adap->bus_recovery_info->scl_gpiod, val);
164 }
165 
166 static int get_sda_gpio_value(struct i2c_adapter *adap)
167 {
168 	return gpiod_get_value_cansleep(adap->bus_recovery_info->sda_gpiod);
169 }
170 
171 static void set_sda_gpio_value(struct i2c_adapter *adap, int val)
172 {
173 	gpiod_set_value_cansleep(adap->bus_recovery_info->sda_gpiod, val);
174 }
175 
176 static int i2c_generic_bus_free(struct i2c_adapter *adap)
177 {
178 	struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
179 	int ret = -EOPNOTSUPP;
180 
181 	if (bri->get_bus_free)
182 		ret = bri->get_bus_free(adap);
183 	else if (bri->get_sda)
184 		ret = bri->get_sda(adap);
185 
186 	if (ret < 0)
187 		return ret;
188 
189 	return ret ? 0 : -EBUSY;
190 }
191 
192 /*
193  * We are generating clock pulses. ndelay() determines durating of clk pulses.
194  * We will generate clock with rate 100 KHz and so duration of both clock levels
195  * is: delay in ns = (10^6 / 100) / 2
196  */
197 #define RECOVERY_NDELAY		5000
198 #define RECOVERY_CLK_CNT	9
199 
200 int i2c_generic_scl_recovery(struct i2c_adapter *adap)
201 {
202 	struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
203 	int i = 0, scl = 1, ret = 0;
204 
205 	if (bri->prepare_recovery)
206 		bri->prepare_recovery(adap);
207 	if (bri->pinctrl)
208 		pinctrl_select_state(bri->pinctrl, bri->pins_gpio);
209 
210 	/*
211 	 * If we can set SDA, we will always create a STOP to ensure additional
212 	 * pulses will do no harm. This is achieved by letting SDA follow SCL
213 	 * half a cycle later. Check the 'incomplete_write_byte' fault injector
214 	 * for details. Note that we must honour tsu:sto, 4us, but lets use 5us
215 	 * here for simplicity.
216 	 */
217 	bri->set_scl(adap, scl);
218 	ndelay(RECOVERY_NDELAY);
219 	if (bri->set_sda)
220 		bri->set_sda(adap, scl);
221 	ndelay(RECOVERY_NDELAY / 2);
222 
223 	/*
224 	 * By this time SCL is high, as we need to give 9 falling-rising edges
225 	 */
226 	while (i++ < RECOVERY_CLK_CNT * 2) {
227 		if (scl) {
228 			/* SCL shouldn't be low here */
229 			if (!bri->get_scl(adap)) {
230 				dev_err(&adap->dev,
231 					"SCL is stuck low, exit recovery\n");
232 				ret = -EBUSY;
233 				break;
234 			}
235 		}
236 
237 		scl = !scl;
238 		bri->set_scl(adap, scl);
239 		/* Creating STOP again, see above */
240 		if (scl)  {
241 			/* Honour minimum tsu:sto */
242 			ndelay(RECOVERY_NDELAY);
243 		} else {
244 			/* Honour minimum tf and thd:dat */
245 			ndelay(RECOVERY_NDELAY / 2);
246 		}
247 		if (bri->set_sda)
248 			bri->set_sda(adap, scl);
249 		ndelay(RECOVERY_NDELAY / 2);
250 
251 		if (scl) {
252 			ret = i2c_generic_bus_free(adap);
253 			if (ret == 0)
254 				break;
255 		}
256 	}
257 
258 	/* If we can't check bus status, assume recovery worked */
259 	if (ret == -EOPNOTSUPP)
260 		ret = 0;
261 
262 	if (bri->unprepare_recovery)
263 		bri->unprepare_recovery(adap);
264 	if (bri->pinctrl)
265 		pinctrl_select_state(bri->pinctrl, bri->pins_default);
266 
267 	return ret;
268 }
269 EXPORT_SYMBOL_GPL(i2c_generic_scl_recovery);
270 
271 int i2c_recover_bus(struct i2c_adapter *adap)
272 {
273 	if (!adap->bus_recovery_info)
274 		return -EBUSY;
275 
276 	dev_dbg(&adap->dev, "Trying i2c bus recovery\n");
277 	return adap->bus_recovery_info->recover_bus(adap);
278 }
279 EXPORT_SYMBOL_GPL(i2c_recover_bus);
280 
281 static void i2c_gpio_init_pinctrl_recovery(struct i2c_adapter *adap)
282 {
283 	struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
284 	struct device *dev = &adap->dev;
285 	struct pinctrl *p = bri->pinctrl;
286 
287 	/*
288 	 * we can't change states without pinctrl, so remove the states if
289 	 * populated
290 	 */
291 	if (!p) {
292 		bri->pins_default = NULL;
293 		bri->pins_gpio = NULL;
294 		return;
295 	}
296 
297 	if (!bri->pins_default) {
298 		bri->pins_default = pinctrl_lookup_state(p,
299 							 PINCTRL_STATE_DEFAULT);
300 		if (IS_ERR(bri->pins_default)) {
301 			dev_dbg(dev, PINCTRL_STATE_DEFAULT " state not found for GPIO recovery\n");
302 			bri->pins_default = NULL;
303 		}
304 	}
305 	if (!bri->pins_gpio) {
306 		bri->pins_gpio = pinctrl_lookup_state(p, "gpio");
307 		if (IS_ERR(bri->pins_gpio))
308 			bri->pins_gpio = pinctrl_lookup_state(p, "recovery");
309 
310 		if (IS_ERR(bri->pins_gpio)) {
311 			dev_dbg(dev, "no gpio or recovery state found for GPIO recovery\n");
312 			bri->pins_gpio = NULL;
313 		}
314 	}
315 
316 	/* for pinctrl state changes, we need all the information */
317 	if (bri->pins_default && bri->pins_gpio) {
318 		dev_info(dev, "using pinctrl states for GPIO recovery");
319 	} else {
320 		bri->pinctrl = NULL;
321 		bri->pins_default = NULL;
322 		bri->pins_gpio = NULL;
323 	}
324 }
325 
326 static int i2c_gpio_init_generic_recovery(struct i2c_adapter *adap)
327 {
328 	struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
329 	struct device *dev = &adap->dev;
330 	struct gpio_desc *gpiod;
331 	int ret = 0;
332 
333 	/*
334 	 * don't touch the recovery information if the driver is not using
335 	 * generic SCL recovery
336 	 */
337 	if (bri->recover_bus && bri->recover_bus != i2c_generic_scl_recovery)
338 		return 0;
339 
340 	/*
341 	 * pins might be taken as GPIO, so we should inform pinctrl about
342 	 * this and move the state to GPIO
343 	 */
344 	if (bri->pinctrl)
345 		pinctrl_select_state(bri->pinctrl, bri->pins_gpio);
346 
347 	/*
348 	 * if there is incomplete or no recovery information, see if generic
349 	 * GPIO recovery is available
350 	 */
351 	if (!bri->scl_gpiod) {
352 		gpiod = devm_gpiod_get(dev, "scl", GPIOD_OUT_HIGH_OPEN_DRAIN);
353 		if (PTR_ERR(gpiod) == -EPROBE_DEFER) {
354 			ret  = -EPROBE_DEFER;
355 			goto cleanup_pinctrl_state;
356 		}
357 		if (!IS_ERR(gpiod)) {
358 			bri->scl_gpiod = gpiod;
359 			bri->recover_bus = i2c_generic_scl_recovery;
360 			dev_info(dev, "using generic GPIOs for recovery\n");
361 		}
362 	}
363 
364 	/* SDA GPIOD line is optional, so we care about DEFER only */
365 	if (!bri->sda_gpiod) {
366 		/*
367 		 * We have SCL. Pull SCL low and wait a bit so that SDA glitches
368 		 * have no effect.
369 		 */
370 		gpiod_direction_output(bri->scl_gpiod, 0);
371 		udelay(10);
372 		gpiod = devm_gpiod_get(dev, "sda", GPIOD_IN);
373 
374 		/* Wait a bit in case of a SDA glitch, and then release SCL. */
375 		udelay(10);
376 		gpiod_direction_output(bri->scl_gpiod, 1);
377 
378 		if (PTR_ERR(gpiod) == -EPROBE_DEFER) {
379 			ret = -EPROBE_DEFER;
380 			goto cleanup_pinctrl_state;
381 		}
382 		if (!IS_ERR(gpiod))
383 			bri->sda_gpiod = gpiod;
384 	}
385 
386 cleanup_pinctrl_state:
387 	/* change the state of the pins back to their default state */
388 	if (bri->pinctrl)
389 		pinctrl_select_state(bri->pinctrl, bri->pins_default);
390 
391 	return ret;
392 }
393 
394 static int i2c_gpio_init_recovery(struct i2c_adapter *adap)
395 {
396 	i2c_gpio_init_pinctrl_recovery(adap);
397 	return i2c_gpio_init_generic_recovery(adap);
398 }
399 
400 static int i2c_init_recovery(struct i2c_adapter *adap)
401 {
402 	struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
403 	bool is_error_level = true;
404 	char *err_str;
405 
406 	if (!bri)
407 		return 0;
408 
409 	if (i2c_gpio_init_recovery(adap) == -EPROBE_DEFER)
410 		return -EPROBE_DEFER;
411 
412 	if (!bri->recover_bus) {
413 		err_str = "no suitable method provided";
414 		is_error_level = false;
415 		goto err;
416 	}
417 
418 	if (bri->scl_gpiod && bri->recover_bus == i2c_generic_scl_recovery) {
419 		bri->get_scl = get_scl_gpio_value;
420 		bri->set_scl = set_scl_gpio_value;
421 		if (bri->sda_gpiod) {
422 			bri->get_sda = get_sda_gpio_value;
423 			/* FIXME: add proper flag instead of '0' once available */
424 			if (gpiod_get_direction(bri->sda_gpiod) == 0)
425 				bri->set_sda = set_sda_gpio_value;
426 		}
427 	} else if (bri->recover_bus == i2c_generic_scl_recovery) {
428 		/* Generic SCL recovery */
429 		if (!bri->set_scl || !bri->get_scl) {
430 			err_str = "no {get|set}_scl() found";
431 			goto err;
432 		}
433 		if (!bri->set_sda && !bri->get_sda) {
434 			err_str = "either get_sda() or set_sda() needed";
435 			goto err;
436 		}
437 	}
438 
439 	return 0;
440  err:
441 	if (is_error_level)
442 		dev_err(&adap->dev, "Not using recovery: %s\n", err_str);
443 	else
444 		dev_dbg(&adap->dev, "Not using recovery: %s\n", err_str);
445 	adap->bus_recovery_info = NULL;
446 
447 	return -EINVAL;
448 }
449 
450 static int i2c_smbus_host_notify_to_irq(const struct i2c_client *client)
451 {
452 	struct i2c_adapter *adap = client->adapter;
453 	unsigned int irq;
454 
455 	if (!adap->host_notify_domain)
456 		return -ENXIO;
457 
458 	if (client->flags & I2C_CLIENT_TEN)
459 		return -EINVAL;
460 
461 	irq = irq_create_mapping(adap->host_notify_domain, client->addr);
462 
463 	return irq > 0 ? irq : -ENXIO;
464 }
465 
466 static int i2c_device_probe(struct device *dev)
467 {
468 	struct i2c_client	*client = i2c_verify_client(dev);
469 	struct i2c_driver	*driver;
470 	int status;
471 
472 	if (!client)
473 		return 0;
474 
475 	client->irq = client->init_irq;
476 
477 	if (!client->irq) {
478 		int irq = -ENOENT;
479 
480 		if (client->flags & I2C_CLIENT_HOST_NOTIFY) {
481 			dev_dbg(dev, "Using Host Notify IRQ\n");
482 			/* Keep adapter active when Host Notify is required */
483 			pm_runtime_get_sync(&client->adapter->dev);
484 			irq = i2c_smbus_host_notify_to_irq(client);
485 		} else if (dev->of_node) {
486 			irq = of_irq_get_byname(dev->of_node, "irq");
487 			if (irq == -EINVAL || irq == -ENODATA)
488 				irq = of_irq_get(dev->of_node, 0);
489 		} else if (ACPI_COMPANION(dev)) {
490 			irq = i2c_acpi_get_irq(client);
491 		}
492 		if (irq == -EPROBE_DEFER) {
493 			status = irq;
494 			goto put_sync_adapter;
495 		}
496 
497 		if (irq < 0)
498 			irq = 0;
499 
500 		client->irq = irq;
501 	}
502 
503 	driver = to_i2c_driver(dev->driver);
504 
505 	/*
506 	 * An I2C ID table is not mandatory, if and only if, a suitable OF
507 	 * or ACPI ID table is supplied for the probing device.
508 	 */
509 	if (!driver->id_table &&
510 	    !acpi_driver_match_device(dev, dev->driver) &&
511 	    !i2c_of_match_device(dev->driver->of_match_table, client)) {
512 		status = -ENODEV;
513 		goto put_sync_adapter;
514 	}
515 
516 	if (client->flags & I2C_CLIENT_WAKE) {
517 		int wakeirq;
518 
519 		wakeirq = of_irq_get_byname(dev->of_node, "wakeup");
520 		if (wakeirq == -EPROBE_DEFER) {
521 			status = wakeirq;
522 			goto put_sync_adapter;
523 		}
524 
525 		device_init_wakeup(&client->dev, true);
526 
527 		if (wakeirq > 0 && wakeirq != client->irq)
528 			status = dev_pm_set_dedicated_wake_irq(dev, wakeirq);
529 		else if (client->irq > 0)
530 			status = dev_pm_set_wake_irq(dev, client->irq);
531 		else
532 			status = 0;
533 
534 		if (status)
535 			dev_warn(&client->dev, "failed to set up wakeup irq\n");
536 	}
537 
538 	dev_dbg(dev, "probe\n");
539 
540 	status = of_clk_set_defaults(dev->of_node, false);
541 	if (status < 0)
542 		goto err_clear_wakeup_irq;
543 
544 	status = dev_pm_domain_attach(&client->dev,
545 				      !i2c_acpi_waive_d0_probe(dev));
546 	if (status)
547 		goto err_clear_wakeup_irq;
548 
549 	client->devres_group_id = devres_open_group(&client->dev, NULL,
550 						    GFP_KERNEL);
551 	if (!client->devres_group_id) {
552 		status = -ENOMEM;
553 		goto err_detach_pm_domain;
554 	}
555 
556 	/*
557 	 * When there are no more users of probe(),
558 	 * rename probe_new to probe.
559 	 */
560 	if (driver->probe_new)
561 		status = driver->probe_new(client);
562 	else if (driver->probe)
563 		status = driver->probe(client,
564 				       i2c_match_id(driver->id_table, client));
565 	else
566 		status = -EINVAL;
567 
568 	/*
569 	 * Note that we are not closing the devres group opened above so
570 	 * even resources that were attached to the device after probe is
571 	 * run are released when i2c_device_remove() is executed. This is
572 	 * needed as some drivers would allocate additional resources,
573 	 * for example when updating firmware.
574 	 */
575 
576 	if (status)
577 		goto err_release_driver_resources;
578 
579 	return 0;
580 
581 err_release_driver_resources:
582 	devres_release_group(&client->dev, client->devres_group_id);
583 err_detach_pm_domain:
584 	dev_pm_domain_detach(&client->dev, !i2c_acpi_waive_d0_probe(dev));
585 err_clear_wakeup_irq:
586 	dev_pm_clear_wake_irq(&client->dev);
587 	device_init_wakeup(&client->dev, false);
588 put_sync_adapter:
589 	if (client->flags & I2C_CLIENT_HOST_NOTIFY)
590 		pm_runtime_put_sync(&client->adapter->dev);
591 
592 	return status;
593 }
594 
595 static void i2c_device_remove(struct device *dev)
596 {
597 	struct i2c_client	*client = to_i2c_client(dev);
598 	struct i2c_driver	*driver;
599 
600 	driver = to_i2c_driver(dev->driver);
601 	if (driver->remove) {
602 		dev_dbg(dev, "remove\n");
603 
604 		driver->remove(client);
605 	}
606 
607 	devres_release_group(&client->dev, client->devres_group_id);
608 
609 	dev_pm_domain_detach(&client->dev, !i2c_acpi_waive_d0_probe(dev));
610 
611 	dev_pm_clear_wake_irq(&client->dev);
612 	device_init_wakeup(&client->dev, false);
613 
614 	client->irq = 0;
615 	if (client->flags & I2C_CLIENT_HOST_NOTIFY)
616 		pm_runtime_put(&client->adapter->dev);
617 }
618 
619 static void i2c_device_shutdown(struct device *dev)
620 {
621 	struct i2c_client *client = i2c_verify_client(dev);
622 	struct i2c_driver *driver;
623 
624 	if (!client || !dev->driver)
625 		return;
626 	driver = to_i2c_driver(dev->driver);
627 	if (driver->shutdown)
628 		driver->shutdown(client);
629 	else if (client->irq > 0)
630 		disable_irq(client->irq);
631 }
632 
633 static void i2c_client_dev_release(struct device *dev)
634 {
635 	kfree(to_i2c_client(dev));
636 }
637 
638 static ssize_t
639 name_show(struct device *dev, struct device_attribute *attr, char *buf)
640 {
641 	return sprintf(buf, "%s\n", dev->type == &i2c_client_type ?
642 		       to_i2c_client(dev)->name : to_i2c_adapter(dev)->name);
643 }
644 static DEVICE_ATTR_RO(name);
645 
646 static ssize_t
647 modalias_show(struct device *dev, struct device_attribute *attr, char *buf)
648 {
649 	struct i2c_client *client = to_i2c_client(dev);
650 	int len;
651 
652 	len = of_device_modalias(dev, buf, PAGE_SIZE);
653 	if (len != -ENODEV)
654 		return len;
655 
656 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
657 	if (len != -ENODEV)
658 		return len;
659 
660 	return sprintf(buf, "%s%s\n", I2C_MODULE_PREFIX, client->name);
661 }
662 static DEVICE_ATTR_RO(modalias);
663 
664 static struct attribute *i2c_dev_attrs[] = {
665 	&dev_attr_name.attr,
666 	/* modalias helps coldplug:  modprobe $(cat .../modalias) */
667 	&dev_attr_modalias.attr,
668 	NULL
669 };
670 ATTRIBUTE_GROUPS(i2c_dev);
671 
672 struct bus_type i2c_bus_type = {
673 	.name		= "i2c",
674 	.match		= i2c_device_match,
675 	.probe		= i2c_device_probe,
676 	.remove		= i2c_device_remove,
677 	.shutdown	= i2c_device_shutdown,
678 };
679 EXPORT_SYMBOL_GPL(i2c_bus_type);
680 
681 struct device_type i2c_client_type = {
682 	.groups		= i2c_dev_groups,
683 	.uevent		= i2c_device_uevent,
684 	.release	= i2c_client_dev_release,
685 };
686 EXPORT_SYMBOL_GPL(i2c_client_type);
687 
688 
689 /**
690  * i2c_verify_client - return parameter as i2c_client, or NULL
691  * @dev: device, probably from some driver model iterator
692  *
693  * When traversing the driver model tree, perhaps using driver model
694  * iterators like @device_for_each_child(), you can't assume very much
695  * about the nodes you find.  Use this function to avoid oopses caused
696  * by wrongly treating some non-I2C device as an i2c_client.
697  */
698 struct i2c_client *i2c_verify_client(struct device *dev)
699 {
700 	return (dev->type == &i2c_client_type)
701 			? to_i2c_client(dev)
702 			: NULL;
703 }
704 EXPORT_SYMBOL(i2c_verify_client);
705 
706 
707 /* Return a unique address which takes the flags of the client into account */
708 static unsigned short i2c_encode_flags_to_addr(struct i2c_client *client)
709 {
710 	unsigned short addr = client->addr;
711 
712 	/* For some client flags, add an arbitrary offset to avoid collisions */
713 	if (client->flags & I2C_CLIENT_TEN)
714 		addr |= I2C_ADDR_OFFSET_TEN_BIT;
715 
716 	if (client->flags & I2C_CLIENT_SLAVE)
717 		addr |= I2C_ADDR_OFFSET_SLAVE;
718 
719 	return addr;
720 }
721 
722 /* This is a permissive address validity check, I2C address map constraints
723  * are purposely not enforced, except for the general call address. */
724 static int i2c_check_addr_validity(unsigned int addr, unsigned short flags)
725 {
726 	if (flags & I2C_CLIENT_TEN) {
727 		/* 10-bit address, all values are valid */
728 		if (addr > 0x3ff)
729 			return -EINVAL;
730 	} else {
731 		/* 7-bit address, reject the general call address */
732 		if (addr == 0x00 || addr > 0x7f)
733 			return -EINVAL;
734 	}
735 	return 0;
736 }
737 
738 /* And this is a strict address validity check, used when probing. If a
739  * device uses a reserved address, then it shouldn't be probed. 7-bit
740  * addressing is assumed, 10-bit address devices are rare and should be
741  * explicitly enumerated. */
742 int i2c_check_7bit_addr_validity_strict(unsigned short addr)
743 {
744 	/*
745 	 * Reserved addresses per I2C specification:
746 	 *  0x00       General call address / START byte
747 	 *  0x01       CBUS address
748 	 *  0x02       Reserved for different bus format
749 	 *  0x03       Reserved for future purposes
750 	 *  0x04-0x07  Hs-mode master code
751 	 *  0x78-0x7b  10-bit slave addressing
752 	 *  0x7c-0x7f  Reserved for future purposes
753 	 */
754 	if (addr < 0x08 || addr > 0x77)
755 		return -EINVAL;
756 	return 0;
757 }
758 
759 static int __i2c_check_addr_busy(struct device *dev, void *addrp)
760 {
761 	struct i2c_client	*client = i2c_verify_client(dev);
762 	int			addr = *(int *)addrp;
763 
764 	if (client && i2c_encode_flags_to_addr(client) == addr)
765 		return -EBUSY;
766 	return 0;
767 }
768 
769 /* walk up mux tree */
770 static int i2c_check_mux_parents(struct i2c_adapter *adapter, int addr)
771 {
772 	struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
773 	int result;
774 
775 	result = device_for_each_child(&adapter->dev, &addr,
776 					__i2c_check_addr_busy);
777 
778 	if (!result && parent)
779 		result = i2c_check_mux_parents(parent, addr);
780 
781 	return result;
782 }
783 
784 /* recurse down mux tree */
785 static int i2c_check_mux_children(struct device *dev, void *addrp)
786 {
787 	int result;
788 
789 	if (dev->type == &i2c_adapter_type)
790 		result = device_for_each_child(dev, addrp,
791 						i2c_check_mux_children);
792 	else
793 		result = __i2c_check_addr_busy(dev, addrp);
794 
795 	return result;
796 }
797 
798 static int i2c_check_addr_busy(struct i2c_adapter *adapter, int addr)
799 {
800 	struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
801 	int result = 0;
802 
803 	if (parent)
804 		result = i2c_check_mux_parents(parent, addr);
805 
806 	if (!result)
807 		result = device_for_each_child(&adapter->dev, &addr,
808 						i2c_check_mux_children);
809 
810 	return result;
811 }
812 
813 /**
814  * i2c_adapter_lock_bus - Get exclusive access to an I2C bus segment
815  * @adapter: Target I2C bus segment
816  * @flags: I2C_LOCK_ROOT_ADAPTER locks the root i2c adapter, I2C_LOCK_SEGMENT
817  *	locks only this branch in the adapter tree
818  */
819 static void i2c_adapter_lock_bus(struct i2c_adapter *adapter,
820 				 unsigned int flags)
821 {
822 	rt_mutex_lock_nested(&adapter->bus_lock, i2c_adapter_depth(adapter));
823 }
824 
825 /**
826  * i2c_adapter_trylock_bus - Try to get exclusive access to an I2C bus segment
827  * @adapter: Target I2C bus segment
828  * @flags: I2C_LOCK_ROOT_ADAPTER trylocks the root i2c adapter, I2C_LOCK_SEGMENT
829  *	trylocks only this branch in the adapter tree
830  */
831 static int i2c_adapter_trylock_bus(struct i2c_adapter *adapter,
832 				   unsigned int flags)
833 {
834 	return rt_mutex_trylock(&adapter->bus_lock);
835 }
836 
837 /**
838  * i2c_adapter_unlock_bus - Release exclusive access to an I2C bus segment
839  * @adapter: Target I2C bus segment
840  * @flags: I2C_LOCK_ROOT_ADAPTER unlocks the root i2c adapter, I2C_LOCK_SEGMENT
841  *	unlocks only this branch in the adapter tree
842  */
843 static void i2c_adapter_unlock_bus(struct i2c_adapter *adapter,
844 				   unsigned int flags)
845 {
846 	rt_mutex_unlock(&adapter->bus_lock);
847 }
848 
849 static void i2c_dev_set_name(struct i2c_adapter *adap,
850 			     struct i2c_client *client,
851 			     struct i2c_board_info const *info)
852 {
853 	struct acpi_device *adev = ACPI_COMPANION(&client->dev);
854 
855 	if (info && info->dev_name) {
856 		dev_set_name(&client->dev, "i2c-%s", info->dev_name);
857 		return;
858 	}
859 
860 	if (adev) {
861 		dev_set_name(&client->dev, "i2c-%s", acpi_dev_name(adev));
862 		return;
863 	}
864 
865 	dev_set_name(&client->dev, "%d-%04x", i2c_adapter_id(adap),
866 		     i2c_encode_flags_to_addr(client));
867 }
868 
869 int i2c_dev_irq_from_resources(const struct resource *resources,
870 			       unsigned int num_resources)
871 {
872 	struct irq_data *irqd;
873 	int i;
874 
875 	for (i = 0; i < num_resources; i++) {
876 		const struct resource *r = &resources[i];
877 
878 		if (resource_type(r) != IORESOURCE_IRQ)
879 			continue;
880 
881 		if (r->flags & IORESOURCE_BITS) {
882 			irqd = irq_get_irq_data(r->start);
883 			if (!irqd)
884 				break;
885 
886 			irqd_set_trigger_type(irqd, r->flags & IORESOURCE_BITS);
887 		}
888 
889 		return r->start;
890 	}
891 
892 	return 0;
893 }
894 
895 /**
896  * i2c_new_client_device - instantiate an i2c device
897  * @adap: the adapter managing the device
898  * @info: describes one I2C device; bus_num is ignored
899  * Context: can sleep
900  *
901  * Create an i2c device. Binding is handled through driver model
902  * probe()/remove() methods.  A driver may be bound to this device when we
903  * return from this function, or any later moment (e.g. maybe hotplugging will
904  * load the driver module).  This call is not appropriate for use by mainboard
905  * initialization logic, which usually runs during an arch_initcall() long
906  * before any i2c_adapter could exist.
907  *
908  * This returns the new i2c client, which may be saved for later use with
909  * i2c_unregister_device(); or an ERR_PTR to describe the error.
910  */
911 struct i2c_client *
912 i2c_new_client_device(struct i2c_adapter *adap, struct i2c_board_info const *info)
913 {
914 	struct i2c_client	*client;
915 	int			status;
916 
917 	client = kzalloc(sizeof *client, GFP_KERNEL);
918 	if (!client)
919 		return ERR_PTR(-ENOMEM);
920 
921 	client->adapter = adap;
922 
923 	client->dev.platform_data = info->platform_data;
924 	client->flags = info->flags;
925 	client->addr = info->addr;
926 
927 	client->init_irq = info->irq;
928 	if (!client->init_irq)
929 		client->init_irq = i2c_dev_irq_from_resources(info->resources,
930 							 info->num_resources);
931 
932 	strscpy(client->name, info->type, sizeof(client->name));
933 
934 	status = i2c_check_addr_validity(client->addr, client->flags);
935 	if (status) {
936 		dev_err(&adap->dev, "Invalid %d-bit I2C address 0x%02hx\n",
937 			client->flags & I2C_CLIENT_TEN ? 10 : 7, client->addr);
938 		goto out_err_silent;
939 	}
940 
941 	/* Check for address business */
942 	status = i2c_check_addr_busy(adap, i2c_encode_flags_to_addr(client));
943 	if (status)
944 		goto out_err;
945 
946 	client->dev.parent = &client->adapter->dev;
947 	client->dev.bus = &i2c_bus_type;
948 	client->dev.type = &i2c_client_type;
949 	client->dev.of_node = of_node_get(info->of_node);
950 	client->dev.fwnode = info->fwnode;
951 
952 	device_enable_async_suspend(&client->dev);
953 	i2c_dev_set_name(adap, client, info);
954 
955 	if (info->swnode) {
956 		status = device_add_software_node(&client->dev, info->swnode);
957 		if (status) {
958 			dev_err(&adap->dev,
959 				"Failed to add software node to client %s: %d\n",
960 				client->name, status);
961 			goto out_err_put_of_node;
962 		}
963 	}
964 
965 	status = device_register(&client->dev);
966 	if (status)
967 		goto out_remove_swnode;
968 
969 	dev_dbg(&adap->dev, "client [%s] registered with bus id %s\n",
970 		client->name, dev_name(&client->dev));
971 
972 	return client;
973 
974 out_remove_swnode:
975 	device_remove_software_node(&client->dev);
976 out_err_put_of_node:
977 	of_node_put(info->of_node);
978 out_err:
979 	dev_err(&adap->dev,
980 		"Failed to register i2c client %s at 0x%02x (%d)\n",
981 		client->name, client->addr, status);
982 out_err_silent:
983 	kfree(client);
984 	return ERR_PTR(status);
985 }
986 EXPORT_SYMBOL_GPL(i2c_new_client_device);
987 
988 /**
989  * i2c_unregister_device - reverse effect of i2c_new_*_device()
990  * @client: value returned from i2c_new_*_device()
991  * Context: can sleep
992  */
993 void i2c_unregister_device(struct i2c_client *client)
994 {
995 	if (IS_ERR_OR_NULL(client))
996 		return;
997 
998 	if (client->dev.of_node) {
999 		of_node_clear_flag(client->dev.of_node, OF_POPULATED);
1000 		of_node_put(client->dev.of_node);
1001 	}
1002 
1003 	if (ACPI_COMPANION(&client->dev))
1004 		acpi_device_clear_enumerated(ACPI_COMPANION(&client->dev));
1005 	device_remove_software_node(&client->dev);
1006 	device_unregister(&client->dev);
1007 }
1008 EXPORT_SYMBOL_GPL(i2c_unregister_device);
1009 
1010 
1011 static const struct i2c_device_id dummy_id[] = {
1012 	{ "dummy", 0 },
1013 	{ },
1014 };
1015 
1016 static int dummy_probe(struct i2c_client *client,
1017 		       const struct i2c_device_id *id)
1018 {
1019 	return 0;
1020 }
1021 
1022 static struct i2c_driver dummy_driver = {
1023 	.driver.name	= "dummy",
1024 	.probe		= dummy_probe,
1025 	.id_table	= dummy_id,
1026 };
1027 
1028 /**
1029  * i2c_new_dummy_device - return a new i2c device bound to a dummy driver
1030  * @adapter: the adapter managing the device
1031  * @address: seven bit address to be used
1032  * Context: can sleep
1033  *
1034  * This returns an I2C client bound to the "dummy" driver, intended for use
1035  * with devices that consume multiple addresses.  Examples of such chips
1036  * include various EEPROMS (like 24c04 and 24c08 models).
1037  *
1038  * These dummy devices have two main uses.  First, most I2C and SMBus calls
1039  * except i2c_transfer() need a client handle; the dummy will be that handle.
1040  * And second, this prevents the specified address from being bound to a
1041  * different driver.
1042  *
1043  * This returns the new i2c client, which should be saved for later use with
1044  * i2c_unregister_device(); or an ERR_PTR to describe the error.
1045  */
1046 struct i2c_client *i2c_new_dummy_device(struct i2c_adapter *adapter, u16 address)
1047 {
1048 	struct i2c_board_info info = {
1049 		I2C_BOARD_INFO("dummy", address),
1050 	};
1051 
1052 	return i2c_new_client_device(adapter, &info);
1053 }
1054 EXPORT_SYMBOL_GPL(i2c_new_dummy_device);
1055 
1056 static void devm_i2c_release_dummy(void *client)
1057 {
1058 	i2c_unregister_device(client);
1059 }
1060 
1061 /**
1062  * devm_i2c_new_dummy_device - return a new i2c device bound to a dummy driver
1063  * @dev: device the managed resource is bound to
1064  * @adapter: the adapter managing the device
1065  * @address: seven bit address to be used
1066  * Context: can sleep
1067  *
1068  * This is the device-managed version of @i2c_new_dummy_device. It returns the
1069  * new i2c client or an ERR_PTR in case of an error.
1070  */
1071 struct i2c_client *devm_i2c_new_dummy_device(struct device *dev,
1072 					     struct i2c_adapter *adapter,
1073 					     u16 address)
1074 {
1075 	struct i2c_client *client;
1076 	int ret;
1077 
1078 	client = i2c_new_dummy_device(adapter, address);
1079 	if (IS_ERR(client))
1080 		return client;
1081 
1082 	ret = devm_add_action_or_reset(dev, devm_i2c_release_dummy, client);
1083 	if (ret)
1084 		return ERR_PTR(ret);
1085 
1086 	return client;
1087 }
1088 EXPORT_SYMBOL_GPL(devm_i2c_new_dummy_device);
1089 
1090 /**
1091  * i2c_new_ancillary_device - Helper to get the instantiated secondary address
1092  * and create the associated device
1093  * @client: Handle to the primary client
1094  * @name: Handle to specify which secondary address to get
1095  * @default_addr: Used as a fallback if no secondary address was specified
1096  * Context: can sleep
1097  *
1098  * I2C clients can be composed of multiple I2C slaves bound together in a single
1099  * component. The I2C client driver then binds to the master I2C slave and needs
1100  * to create I2C dummy clients to communicate with all the other slaves.
1101  *
1102  * This function creates and returns an I2C dummy client whose I2C address is
1103  * retrieved from the platform firmware based on the given slave name. If no
1104  * address is specified by the firmware default_addr is used.
1105  *
1106  * On DT-based platforms the address is retrieved from the "reg" property entry
1107  * cell whose "reg-names" value matches the slave name.
1108  *
1109  * This returns the new i2c client, which should be saved for later use with
1110  * i2c_unregister_device(); or an ERR_PTR to describe the error.
1111  */
1112 struct i2c_client *i2c_new_ancillary_device(struct i2c_client *client,
1113 						const char *name,
1114 						u16 default_addr)
1115 {
1116 	struct device_node *np = client->dev.of_node;
1117 	u32 addr = default_addr;
1118 	int i;
1119 
1120 	if (np) {
1121 		i = of_property_match_string(np, "reg-names", name);
1122 		if (i >= 0)
1123 			of_property_read_u32_index(np, "reg", i, &addr);
1124 	}
1125 
1126 	dev_dbg(&client->adapter->dev, "Address for %s : 0x%x\n", name, addr);
1127 	return i2c_new_dummy_device(client->adapter, addr);
1128 }
1129 EXPORT_SYMBOL_GPL(i2c_new_ancillary_device);
1130 
1131 /* ------------------------------------------------------------------------- */
1132 
1133 /* I2C bus adapters -- one roots each I2C or SMBUS segment */
1134 
1135 static void i2c_adapter_dev_release(struct device *dev)
1136 {
1137 	struct i2c_adapter *adap = to_i2c_adapter(dev);
1138 	complete(&adap->dev_released);
1139 }
1140 
1141 unsigned int i2c_adapter_depth(struct i2c_adapter *adapter)
1142 {
1143 	unsigned int depth = 0;
1144 
1145 	while ((adapter = i2c_parent_is_i2c_adapter(adapter)))
1146 		depth++;
1147 
1148 	WARN_ONCE(depth >= MAX_LOCKDEP_SUBCLASSES,
1149 		  "adapter depth exceeds lockdep subclass limit\n");
1150 
1151 	return depth;
1152 }
1153 EXPORT_SYMBOL_GPL(i2c_adapter_depth);
1154 
1155 /*
1156  * Let users instantiate I2C devices through sysfs. This can be used when
1157  * platform initialization code doesn't contain the proper data for
1158  * whatever reason. Also useful for drivers that do device detection and
1159  * detection fails, either because the device uses an unexpected address,
1160  * or this is a compatible device with different ID register values.
1161  *
1162  * Parameter checking may look overzealous, but we really don't want
1163  * the user to provide incorrect parameters.
1164  */
1165 static ssize_t
1166 new_device_store(struct device *dev, struct device_attribute *attr,
1167 		 const char *buf, size_t count)
1168 {
1169 	struct i2c_adapter *adap = to_i2c_adapter(dev);
1170 	struct i2c_board_info info;
1171 	struct i2c_client *client;
1172 	char *blank, end;
1173 	int res;
1174 
1175 	memset(&info, 0, sizeof(struct i2c_board_info));
1176 
1177 	blank = strchr(buf, ' ');
1178 	if (!blank) {
1179 		dev_err(dev, "%s: Missing parameters\n", "new_device");
1180 		return -EINVAL;
1181 	}
1182 	if (blank - buf > I2C_NAME_SIZE - 1) {
1183 		dev_err(dev, "%s: Invalid device name\n", "new_device");
1184 		return -EINVAL;
1185 	}
1186 	memcpy(info.type, buf, blank - buf);
1187 
1188 	/* Parse remaining parameters, reject extra parameters */
1189 	res = sscanf(++blank, "%hi%c", &info.addr, &end);
1190 	if (res < 1) {
1191 		dev_err(dev, "%s: Can't parse I2C address\n", "new_device");
1192 		return -EINVAL;
1193 	}
1194 	if (res > 1  && end != '\n') {
1195 		dev_err(dev, "%s: Extra parameters\n", "new_device");
1196 		return -EINVAL;
1197 	}
1198 
1199 	if ((info.addr & I2C_ADDR_OFFSET_TEN_BIT) == I2C_ADDR_OFFSET_TEN_BIT) {
1200 		info.addr &= ~I2C_ADDR_OFFSET_TEN_BIT;
1201 		info.flags |= I2C_CLIENT_TEN;
1202 	}
1203 
1204 	if (info.addr & I2C_ADDR_OFFSET_SLAVE) {
1205 		info.addr &= ~I2C_ADDR_OFFSET_SLAVE;
1206 		info.flags |= I2C_CLIENT_SLAVE;
1207 	}
1208 
1209 	client = i2c_new_client_device(adap, &info);
1210 	if (IS_ERR(client))
1211 		return PTR_ERR(client);
1212 
1213 	/* Keep track of the added device */
1214 	mutex_lock(&adap->userspace_clients_lock);
1215 	list_add_tail(&client->detected, &adap->userspace_clients);
1216 	mutex_unlock(&adap->userspace_clients_lock);
1217 	dev_info(dev, "%s: Instantiated device %s at 0x%02hx\n", "new_device",
1218 		 info.type, info.addr);
1219 
1220 	return count;
1221 }
1222 static DEVICE_ATTR_WO(new_device);
1223 
1224 /*
1225  * And of course let the users delete the devices they instantiated, if
1226  * they got it wrong. This interface can only be used to delete devices
1227  * instantiated by i2c_sysfs_new_device above. This guarantees that we
1228  * don't delete devices to which some kernel code still has references.
1229  *
1230  * Parameter checking may look overzealous, but we really don't want
1231  * the user to delete the wrong device.
1232  */
1233 static ssize_t
1234 delete_device_store(struct device *dev, struct device_attribute *attr,
1235 		    const char *buf, size_t count)
1236 {
1237 	struct i2c_adapter *adap = to_i2c_adapter(dev);
1238 	struct i2c_client *client, *next;
1239 	unsigned short addr;
1240 	char end;
1241 	int res;
1242 
1243 	/* Parse parameters, reject extra parameters */
1244 	res = sscanf(buf, "%hi%c", &addr, &end);
1245 	if (res < 1) {
1246 		dev_err(dev, "%s: Can't parse I2C address\n", "delete_device");
1247 		return -EINVAL;
1248 	}
1249 	if (res > 1  && end != '\n') {
1250 		dev_err(dev, "%s: Extra parameters\n", "delete_device");
1251 		return -EINVAL;
1252 	}
1253 
1254 	/* Make sure the device was added through sysfs */
1255 	res = -ENOENT;
1256 	mutex_lock_nested(&adap->userspace_clients_lock,
1257 			  i2c_adapter_depth(adap));
1258 	list_for_each_entry_safe(client, next, &adap->userspace_clients,
1259 				 detected) {
1260 		if (i2c_encode_flags_to_addr(client) == addr) {
1261 			dev_info(dev, "%s: Deleting device %s at 0x%02hx\n",
1262 				 "delete_device", client->name, client->addr);
1263 
1264 			list_del(&client->detected);
1265 			i2c_unregister_device(client);
1266 			res = count;
1267 			break;
1268 		}
1269 	}
1270 	mutex_unlock(&adap->userspace_clients_lock);
1271 
1272 	if (res < 0)
1273 		dev_err(dev, "%s: Can't find device in list\n",
1274 			"delete_device");
1275 	return res;
1276 }
1277 static DEVICE_ATTR_IGNORE_LOCKDEP(delete_device, S_IWUSR, NULL,
1278 				  delete_device_store);
1279 
1280 static struct attribute *i2c_adapter_attrs[] = {
1281 	&dev_attr_name.attr,
1282 	&dev_attr_new_device.attr,
1283 	&dev_attr_delete_device.attr,
1284 	NULL
1285 };
1286 ATTRIBUTE_GROUPS(i2c_adapter);
1287 
1288 struct device_type i2c_adapter_type = {
1289 	.groups		= i2c_adapter_groups,
1290 	.release	= i2c_adapter_dev_release,
1291 };
1292 EXPORT_SYMBOL_GPL(i2c_adapter_type);
1293 
1294 /**
1295  * i2c_verify_adapter - return parameter as i2c_adapter or NULL
1296  * @dev: device, probably from some driver model iterator
1297  *
1298  * When traversing the driver model tree, perhaps using driver model
1299  * iterators like @device_for_each_child(), you can't assume very much
1300  * about the nodes you find.  Use this function to avoid oopses caused
1301  * by wrongly treating some non-I2C device as an i2c_adapter.
1302  */
1303 struct i2c_adapter *i2c_verify_adapter(struct device *dev)
1304 {
1305 	return (dev->type == &i2c_adapter_type)
1306 			? to_i2c_adapter(dev)
1307 			: NULL;
1308 }
1309 EXPORT_SYMBOL(i2c_verify_adapter);
1310 
1311 #ifdef CONFIG_I2C_COMPAT
1312 static struct class_compat *i2c_adapter_compat_class;
1313 #endif
1314 
1315 static void i2c_scan_static_board_info(struct i2c_adapter *adapter)
1316 {
1317 	struct i2c_devinfo	*devinfo;
1318 
1319 	down_read(&__i2c_board_lock);
1320 	list_for_each_entry(devinfo, &__i2c_board_list, list) {
1321 		if (devinfo->busnum == adapter->nr &&
1322 		    IS_ERR(i2c_new_client_device(adapter, &devinfo->board_info)))
1323 			dev_err(&adapter->dev,
1324 				"Can't create device at 0x%02x\n",
1325 				devinfo->board_info.addr);
1326 	}
1327 	up_read(&__i2c_board_lock);
1328 }
1329 
1330 static int i2c_do_add_adapter(struct i2c_driver *driver,
1331 			      struct i2c_adapter *adap)
1332 {
1333 	/* Detect supported devices on that bus, and instantiate them */
1334 	i2c_detect(adap, driver);
1335 
1336 	return 0;
1337 }
1338 
1339 static int __process_new_adapter(struct device_driver *d, void *data)
1340 {
1341 	return i2c_do_add_adapter(to_i2c_driver(d), data);
1342 }
1343 
1344 static const struct i2c_lock_operations i2c_adapter_lock_ops = {
1345 	.lock_bus =    i2c_adapter_lock_bus,
1346 	.trylock_bus = i2c_adapter_trylock_bus,
1347 	.unlock_bus =  i2c_adapter_unlock_bus,
1348 };
1349 
1350 static void i2c_host_notify_irq_teardown(struct i2c_adapter *adap)
1351 {
1352 	struct irq_domain *domain = adap->host_notify_domain;
1353 	irq_hw_number_t hwirq;
1354 
1355 	if (!domain)
1356 		return;
1357 
1358 	for (hwirq = 0 ; hwirq < I2C_ADDR_7BITS_COUNT ; hwirq++)
1359 		irq_dispose_mapping(irq_find_mapping(domain, hwirq));
1360 
1361 	irq_domain_remove(domain);
1362 	adap->host_notify_domain = NULL;
1363 }
1364 
1365 static int i2c_host_notify_irq_map(struct irq_domain *h,
1366 					  unsigned int virq,
1367 					  irq_hw_number_t hw_irq_num)
1368 {
1369 	irq_set_chip_and_handler(virq, &dummy_irq_chip, handle_simple_irq);
1370 
1371 	return 0;
1372 }
1373 
1374 static const struct irq_domain_ops i2c_host_notify_irq_ops = {
1375 	.map = i2c_host_notify_irq_map,
1376 };
1377 
1378 static int i2c_setup_host_notify_irq_domain(struct i2c_adapter *adap)
1379 {
1380 	struct irq_domain *domain;
1381 
1382 	if (!i2c_check_functionality(adap, I2C_FUNC_SMBUS_HOST_NOTIFY))
1383 		return 0;
1384 
1385 	domain = irq_domain_create_linear(adap->dev.parent->fwnode,
1386 					  I2C_ADDR_7BITS_COUNT,
1387 					  &i2c_host_notify_irq_ops, adap);
1388 	if (!domain)
1389 		return -ENOMEM;
1390 
1391 	adap->host_notify_domain = domain;
1392 
1393 	return 0;
1394 }
1395 
1396 /**
1397  * i2c_handle_smbus_host_notify - Forward a Host Notify event to the correct
1398  * I2C client.
1399  * @adap: the adapter
1400  * @addr: the I2C address of the notifying device
1401  * Context: can't sleep
1402  *
1403  * Helper function to be called from an I2C bus driver's interrupt
1404  * handler. It will schedule the Host Notify IRQ.
1405  */
1406 int i2c_handle_smbus_host_notify(struct i2c_adapter *adap, unsigned short addr)
1407 {
1408 	int irq;
1409 
1410 	if (!adap)
1411 		return -EINVAL;
1412 
1413 	irq = irq_find_mapping(adap->host_notify_domain, addr);
1414 	if (irq <= 0)
1415 		return -ENXIO;
1416 
1417 	generic_handle_irq_safe(irq);
1418 
1419 	return 0;
1420 }
1421 EXPORT_SYMBOL_GPL(i2c_handle_smbus_host_notify);
1422 
1423 static int i2c_register_adapter(struct i2c_adapter *adap)
1424 {
1425 	int res = -EINVAL;
1426 
1427 	/* Can't register until after driver model init */
1428 	if (WARN_ON(!is_registered)) {
1429 		res = -EAGAIN;
1430 		goto out_list;
1431 	}
1432 
1433 	/* Sanity checks */
1434 	if (WARN(!adap->name[0], "i2c adapter has no name"))
1435 		goto out_list;
1436 
1437 	if (!adap->algo) {
1438 		pr_err("adapter '%s': no algo supplied!\n", adap->name);
1439 		goto out_list;
1440 	}
1441 
1442 	if (!adap->lock_ops)
1443 		adap->lock_ops = &i2c_adapter_lock_ops;
1444 
1445 	adap->locked_flags = 0;
1446 	rt_mutex_init(&adap->bus_lock);
1447 	rt_mutex_init(&adap->mux_lock);
1448 	mutex_init(&adap->userspace_clients_lock);
1449 	INIT_LIST_HEAD(&adap->userspace_clients);
1450 
1451 	/* Set default timeout to 1 second if not already set */
1452 	if (adap->timeout == 0)
1453 		adap->timeout = HZ;
1454 
1455 	/* register soft irqs for Host Notify */
1456 	res = i2c_setup_host_notify_irq_domain(adap);
1457 	if (res) {
1458 		pr_err("adapter '%s': can't create Host Notify IRQs (%d)\n",
1459 		       adap->name, res);
1460 		goto out_list;
1461 	}
1462 
1463 	dev_set_name(&adap->dev, "i2c-%d", adap->nr);
1464 	adap->dev.bus = &i2c_bus_type;
1465 	adap->dev.type = &i2c_adapter_type;
1466 	res = device_register(&adap->dev);
1467 	if (res) {
1468 		pr_err("adapter '%s': can't register device (%d)\n", adap->name, res);
1469 		goto out_list;
1470 	}
1471 
1472 	res = i2c_setup_smbus_alert(adap);
1473 	if (res)
1474 		goto out_reg;
1475 
1476 	device_enable_async_suspend(&adap->dev);
1477 	pm_runtime_no_callbacks(&adap->dev);
1478 	pm_suspend_ignore_children(&adap->dev, true);
1479 	pm_runtime_enable(&adap->dev);
1480 
1481 	res = i2c_init_recovery(adap);
1482 	if (res == -EPROBE_DEFER)
1483 		goto out_reg;
1484 
1485 	dev_dbg(&adap->dev, "adapter [%s] registered\n", adap->name);
1486 
1487 #ifdef CONFIG_I2C_COMPAT
1488 	res = class_compat_create_link(i2c_adapter_compat_class, &adap->dev,
1489 				       adap->dev.parent);
1490 	if (res)
1491 		dev_warn(&adap->dev,
1492 			 "Failed to create compatibility class link\n");
1493 #endif
1494 
1495 	/* create pre-declared device nodes */
1496 	of_i2c_register_devices(adap);
1497 	i2c_acpi_install_space_handler(adap);
1498 	i2c_acpi_register_devices(adap);
1499 
1500 	if (adap->nr < __i2c_first_dynamic_bus_num)
1501 		i2c_scan_static_board_info(adap);
1502 
1503 	/* Notify drivers */
1504 	mutex_lock(&core_lock);
1505 	bus_for_each_drv(&i2c_bus_type, NULL, adap, __process_new_adapter);
1506 	mutex_unlock(&core_lock);
1507 
1508 	return 0;
1509 
1510 out_reg:
1511 	init_completion(&adap->dev_released);
1512 	device_unregister(&adap->dev);
1513 	wait_for_completion(&adap->dev_released);
1514 out_list:
1515 	mutex_lock(&core_lock);
1516 	idr_remove(&i2c_adapter_idr, adap->nr);
1517 	mutex_unlock(&core_lock);
1518 	return res;
1519 }
1520 
1521 /**
1522  * __i2c_add_numbered_adapter - i2c_add_numbered_adapter where nr is never -1
1523  * @adap: the adapter to register (with adap->nr initialized)
1524  * Context: can sleep
1525  *
1526  * See i2c_add_numbered_adapter() for details.
1527  */
1528 static int __i2c_add_numbered_adapter(struct i2c_adapter *adap)
1529 {
1530 	int id;
1531 
1532 	mutex_lock(&core_lock);
1533 	id = idr_alloc(&i2c_adapter_idr, adap, adap->nr, adap->nr + 1, GFP_KERNEL);
1534 	mutex_unlock(&core_lock);
1535 	if (WARN(id < 0, "couldn't get idr"))
1536 		return id == -ENOSPC ? -EBUSY : id;
1537 
1538 	return i2c_register_adapter(adap);
1539 }
1540 
1541 /**
1542  * i2c_add_adapter - declare i2c adapter, use dynamic bus number
1543  * @adapter: the adapter to add
1544  * Context: can sleep
1545  *
1546  * This routine is used to declare an I2C adapter when its bus number
1547  * doesn't matter or when its bus number is specified by an dt alias.
1548  * Examples of bases when the bus number doesn't matter: I2C adapters
1549  * dynamically added by USB links or PCI plugin cards.
1550  *
1551  * When this returns zero, a new bus number was allocated and stored
1552  * in adap->nr, and the specified adapter became available for clients.
1553  * Otherwise, a negative errno value is returned.
1554  */
1555 int i2c_add_adapter(struct i2c_adapter *adapter)
1556 {
1557 	struct device *dev = &adapter->dev;
1558 	int id;
1559 
1560 	if (dev->of_node) {
1561 		id = of_alias_get_id(dev->of_node, "i2c");
1562 		if (id >= 0) {
1563 			adapter->nr = id;
1564 			return __i2c_add_numbered_adapter(adapter);
1565 		}
1566 	}
1567 
1568 	mutex_lock(&core_lock);
1569 	id = idr_alloc(&i2c_adapter_idr, adapter,
1570 		       __i2c_first_dynamic_bus_num, 0, GFP_KERNEL);
1571 	mutex_unlock(&core_lock);
1572 	if (WARN(id < 0, "couldn't get idr"))
1573 		return id;
1574 
1575 	adapter->nr = id;
1576 
1577 	return i2c_register_adapter(adapter);
1578 }
1579 EXPORT_SYMBOL(i2c_add_adapter);
1580 
1581 /**
1582  * i2c_add_numbered_adapter - declare i2c adapter, use static bus number
1583  * @adap: the adapter to register (with adap->nr initialized)
1584  * Context: can sleep
1585  *
1586  * This routine is used to declare an I2C adapter when its bus number
1587  * matters.  For example, use it for I2C adapters from system-on-chip CPUs,
1588  * or otherwise built in to the system's mainboard, and where i2c_board_info
1589  * is used to properly configure I2C devices.
1590  *
1591  * If the requested bus number is set to -1, then this function will behave
1592  * identically to i2c_add_adapter, and will dynamically assign a bus number.
1593  *
1594  * If no devices have pre-been declared for this bus, then be sure to
1595  * register the adapter before any dynamically allocated ones.  Otherwise
1596  * the required bus ID may not be available.
1597  *
1598  * When this returns zero, the specified adapter became available for
1599  * clients using the bus number provided in adap->nr.  Also, the table
1600  * of I2C devices pre-declared using i2c_register_board_info() is scanned,
1601  * and the appropriate driver model device nodes are created.  Otherwise, a
1602  * negative errno value is returned.
1603  */
1604 int i2c_add_numbered_adapter(struct i2c_adapter *adap)
1605 {
1606 	if (adap->nr == -1) /* -1 means dynamically assign bus id */
1607 		return i2c_add_adapter(adap);
1608 
1609 	return __i2c_add_numbered_adapter(adap);
1610 }
1611 EXPORT_SYMBOL_GPL(i2c_add_numbered_adapter);
1612 
1613 static void i2c_do_del_adapter(struct i2c_driver *driver,
1614 			      struct i2c_adapter *adapter)
1615 {
1616 	struct i2c_client *client, *_n;
1617 
1618 	/* Remove the devices we created ourselves as the result of hardware
1619 	 * probing (using a driver's detect method) */
1620 	list_for_each_entry_safe(client, _n, &driver->clients, detected) {
1621 		if (client->adapter == adapter) {
1622 			dev_dbg(&adapter->dev, "Removing %s at 0x%x\n",
1623 				client->name, client->addr);
1624 			list_del(&client->detected);
1625 			i2c_unregister_device(client);
1626 		}
1627 	}
1628 }
1629 
1630 static int __unregister_client(struct device *dev, void *dummy)
1631 {
1632 	struct i2c_client *client = i2c_verify_client(dev);
1633 	if (client && strcmp(client->name, "dummy"))
1634 		i2c_unregister_device(client);
1635 	return 0;
1636 }
1637 
1638 static int __unregister_dummy(struct device *dev, void *dummy)
1639 {
1640 	struct i2c_client *client = i2c_verify_client(dev);
1641 	i2c_unregister_device(client);
1642 	return 0;
1643 }
1644 
1645 static int __process_removed_adapter(struct device_driver *d, void *data)
1646 {
1647 	i2c_do_del_adapter(to_i2c_driver(d), data);
1648 	return 0;
1649 }
1650 
1651 /**
1652  * i2c_del_adapter - unregister I2C adapter
1653  * @adap: the adapter being unregistered
1654  * Context: can sleep
1655  *
1656  * This unregisters an I2C adapter which was previously registered
1657  * by @i2c_add_adapter or @i2c_add_numbered_adapter.
1658  */
1659 void i2c_del_adapter(struct i2c_adapter *adap)
1660 {
1661 	struct i2c_adapter *found;
1662 	struct i2c_client *client, *next;
1663 
1664 	/* First make sure that this adapter was ever added */
1665 	mutex_lock(&core_lock);
1666 	found = idr_find(&i2c_adapter_idr, adap->nr);
1667 	mutex_unlock(&core_lock);
1668 	if (found != adap) {
1669 		pr_debug("attempting to delete unregistered adapter [%s]\n", adap->name);
1670 		return;
1671 	}
1672 
1673 	i2c_acpi_remove_space_handler(adap);
1674 	/* Tell drivers about this removal */
1675 	mutex_lock(&core_lock);
1676 	bus_for_each_drv(&i2c_bus_type, NULL, adap,
1677 			       __process_removed_adapter);
1678 	mutex_unlock(&core_lock);
1679 
1680 	/* Remove devices instantiated from sysfs */
1681 	mutex_lock_nested(&adap->userspace_clients_lock,
1682 			  i2c_adapter_depth(adap));
1683 	list_for_each_entry_safe(client, next, &adap->userspace_clients,
1684 				 detected) {
1685 		dev_dbg(&adap->dev, "Removing %s at 0x%x\n", client->name,
1686 			client->addr);
1687 		list_del(&client->detected);
1688 		i2c_unregister_device(client);
1689 	}
1690 	mutex_unlock(&adap->userspace_clients_lock);
1691 
1692 	/* Detach any active clients. This can't fail, thus we do not
1693 	 * check the returned value. This is a two-pass process, because
1694 	 * we can't remove the dummy devices during the first pass: they
1695 	 * could have been instantiated by real devices wishing to clean
1696 	 * them up properly, so we give them a chance to do that first. */
1697 	device_for_each_child(&adap->dev, NULL, __unregister_client);
1698 	device_for_each_child(&adap->dev, NULL, __unregister_dummy);
1699 
1700 #ifdef CONFIG_I2C_COMPAT
1701 	class_compat_remove_link(i2c_adapter_compat_class, &adap->dev,
1702 				 adap->dev.parent);
1703 #endif
1704 
1705 	/* device name is gone after device_unregister */
1706 	dev_dbg(&adap->dev, "adapter [%s] unregistered\n", adap->name);
1707 
1708 	pm_runtime_disable(&adap->dev);
1709 
1710 	i2c_host_notify_irq_teardown(adap);
1711 
1712 	/* wait until all references to the device are gone
1713 	 *
1714 	 * FIXME: This is old code and should ideally be replaced by an
1715 	 * alternative which results in decoupling the lifetime of the struct
1716 	 * device from the i2c_adapter, like spi or netdev do. Any solution
1717 	 * should be thoroughly tested with DEBUG_KOBJECT_RELEASE enabled!
1718 	 */
1719 	init_completion(&adap->dev_released);
1720 	device_unregister(&adap->dev);
1721 	wait_for_completion(&adap->dev_released);
1722 
1723 	/* free bus id */
1724 	mutex_lock(&core_lock);
1725 	idr_remove(&i2c_adapter_idr, adap->nr);
1726 	mutex_unlock(&core_lock);
1727 
1728 	/* Clear the device structure in case this adapter is ever going to be
1729 	   added again */
1730 	memset(&adap->dev, 0, sizeof(adap->dev));
1731 }
1732 EXPORT_SYMBOL(i2c_del_adapter);
1733 
1734 static void devm_i2c_del_adapter(void *adapter)
1735 {
1736 	i2c_del_adapter(adapter);
1737 }
1738 
1739 /**
1740  * devm_i2c_add_adapter - device-managed variant of i2c_add_adapter()
1741  * @dev: managing device for adding this I2C adapter
1742  * @adapter: the adapter to add
1743  * Context: can sleep
1744  *
1745  * Add adapter with dynamic bus number, same with i2c_add_adapter()
1746  * but the adapter will be auto deleted on driver detach.
1747  */
1748 int devm_i2c_add_adapter(struct device *dev, struct i2c_adapter *adapter)
1749 {
1750 	int ret;
1751 
1752 	ret = i2c_add_adapter(adapter);
1753 	if (ret)
1754 		return ret;
1755 
1756 	return devm_add_action_or_reset(dev, devm_i2c_del_adapter, adapter);
1757 }
1758 EXPORT_SYMBOL_GPL(devm_i2c_add_adapter);
1759 
1760 static void i2c_parse_timing(struct device *dev, char *prop_name, u32 *cur_val_p,
1761 			    u32 def_val, bool use_def)
1762 {
1763 	int ret;
1764 
1765 	ret = device_property_read_u32(dev, prop_name, cur_val_p);
1766 	if (ret && use_def)
1767 		*cur_val_p = def_val;
1768 
1769 	dev_dbg(dev, "%s: %u\n", prop_name, *cur_val_p);
1770 }
1771 
1772 /**
1773  * i2c_parse_fw_timings - get I2C related timing parameters from firmware
1774  * @dev: The device to scan for I2C timing properties
1775  * @t: the i2c_timings struct to be filled with values
1776  * @use_defaults: bool to use sane defaults derived from the I2C specification
1777  *		  when properties are not found, otherwise don't update
1778  *
1779  * Scan the device for the generic I2C properties describing timing parameters
1780  * for the signal and fill the given struct with the results. If a property was
1781  * not found and use_defaults was true, then maximum timings are assumed which
1782  * are derived from the I2C specification. If use_defaults is not used, the
1783  * results will be as before, so drivers can apply their own defaults before
1784  * calling this helper. The latter is mainly intended for avoiding regressions
1785  * of existing drivers which want to switch to this function. New drivers
1786  * almost always should use the defaults.
1787  */
1788 void i2c_parse_fw_timings(struct device *dev, struct i2c_timings *t, bool use_defaults)
1789 {
1790 	bool u = use_defaults;
1791 	u32 d;
1792 
1793 	i2c_parse_timing(dev, "clock-frequency", &t->bus_freq_hz,
1794 			 I2C_MAX_STANDARD_MODE_FREQ, u);
1795 
1796 	d = t->bus_freq_hz <= I2C_MAX_STANDARD_MODE_FREQ ? 1000 :
1797 	    t->bus_freq_hz <= I2C_MAX_FAST_MODE_FREQ ? 300 : 120;
1798 	i2c_parse_timing(dev, "i2c-scl-rising-time-ns", &t->scl_rise_ns, d, u);
1799 
1800 	d = t->bus_freq_hz <= I2C_MAX_FAST_MODE_FREQ ? 300 : 120;
1801 	i2c_parse_timing(dev, "i2c-scl-falling-time-ns", &t->scl_fall_ns, d, u);
1802 
1803 	i2c_parse_timing(dev, "i2c-scl-internal-delay-ns",
1804 			 &t->scl_int_delay_ns, 0, u);
1805 	i2c_parse_timing(dev, "i2c-sda-falling-time-ns", &t->sda_fall_ns,
1806 			 t->scl_fall_ns, u);
1807 	i2c_parse_timing(dev, "i2c-sda-hold-time-ns", &t->sda_hold_ns, 0, u);
1808 	i2c_parse_timing(dev, "i2c-digital-filter-width-ns",
1809 			 &t->digital_filter_width_ns, 0, u);
1810 	i2c_parse_timing(dev, "i2c-analog-filter-cutoff-frequency",
1811 			 &t->analog_filter_cutoff_freq_hz, 0, u);
1812 }
1813 EXPORT_SYMBOL_GPL(i2c_parse_fw_timings);
1814 
1815 /* ------------------------------------------------------------------------- */
1816 
1817 int i2c_for_each_dev(void *data, int (*fn)(struct device *dev, void *data))
1818 {
1819 	int res;
1820 
1821 	mutex_lock(&core_lock);
1822 	res = bus_for_each_dev(&i2c_bus_type, NULL, data, fn);
1823 	mutex_unlock(&core_lock);
1824 
1825 	return res;
1826 }
1827 EXPORT_SYMBOL_GPL(i2c_for_each_dev);
1828 
1829 static int __process_new_driver(struct device *dev, void *data)
1830 {
1831 	if (dev->type != &i2c_adapter_type)
1832 		return 0;
1833 	return i2c_do_add_adapter(data, to_i2c_adapter(dev));
1834 }
1835 
1836 /*
1837  * An i2c_driver is used with one or more i2c_client (device) nodes to access
1838  * i2c slave chips, on a bus instance associated with some i2c_adapter.
1839  */
1840 
1841 int i2c_register_driver(struct module *owner, struct i2c_driver *driver)
1842 {
1843 	int res;
1844 
1845 	/* Can't register until after driver model init */
1846 	if (WARN_ON(!is_registered))
1847 		return -EAGAIN;
1848 
1849 	/* add the driver to the list of i2c drivers in the driver core */
1850 	driver->driver.owner = owner;
1851 	driver->driver.bus = &i2c_bus_type;
1852 	INIT_LIST_HEAD(&driver->clients);
1853 
1854 	/* When registration returns, the driver core
1855 	 * will have called probe() for all matching-but-unbound devices.
1856 	 */
1857 	res = driver_register(&driver->driver);
1858 	if (res)
1859 		return res;
1860 
1861 	pr_debug("driver [%s] registered\n", driver->driver.name);
1862 
1863 	/* Walk the adapters that are already present */
1864 	i2c_for_each_dev(driver, __process_new_driver);
1865 
1866 	return 0;
1867 }
1868 EXPORT_SYMBOL(i2c_register_driver);
1869 
1870 static int __process_removed_driver(struct device *dev, void *data)
1871 {
1872 	if (dev->type == &i2c_adapter_type)
1873 		i2c_do_del_adapter(data, to_i2c_adapter(dev));
1874 	return 0;
1875 }
1876 
1877 /**
1878  * i2c_del_driver - unregister I2C driver
1879  * @driver: the driver being unregistered
1880  * Context: can sleep
1881  */
1882 void i2c_del_driver(struct i2c_driver *driver)
1883 {
1884 	i2c_for_each_dev(driver, __process_removed_driver);
1885 
1886 	driver_unregister(&driver->driver);
1887 	pr_debug("driver [%s] unregistered\n", driver->driver.name);
1888 }
1889 EXPORT_SYMBOL(i2c_del_driver);
1890 
1891 /* ------------------------------------------------------------------------- */
1892 
1893 struct i2c_cmd_arg {
1894 	unsigned	cmd;
1895 	void		*arg;
1896 };
1897 
1898 static int i2c_cmd(struct device *dev, void *_arg)
1899 {
1900 	struct i2c_client	*client = i2c_verify_client(dev);
1901 	struct i2c_cmd_arg	*arg = _arg;
1902 	struct i2c_driver	*driver;
1903 
1904 	if (!client || !client->dev.driver)
1905 		return 0;
1906 
1907 	driver = to_i2c_driver(client->dev.driver);
1908 	if (driver->command)
1909 		driver->command(client, arg->cmd, arg->arg);
1910 	return 0;
1911 }
1912 
1913 void i2c_clients_command(struct i2c_adapter *adap, unsigned int cmd, void *arg)
1914 {
1915 	struct i2c_cmd_arg	cmd_arg;
1916 
1917 	cmd_arg.cmd = cmd;
1918 	cmd_arg.arg = arg;
1919 	device_for_each_child(&adap->dev, &cmd_arg, i2c_cmd);
1920 }
1921 EXPORT_SYMBOL(i2c_clients_command);
1922 
1923 static int __init i2c_init(void)
1924 {
1925 	int retval;
1926 
1927 	retval = of_alias_get_highest_id("i2c");
1928 
1929 	down_write(&__i2c_board_lock);
1930 	if (retval >= __i2c_first_dynamic_bus_num)
1931 		__i2c_first_dynamic_bus_num = retval + 1;
1932 	up_write(&__i2c_board_lock);
1933 
1934 	retval = bus_register(&i2c_bus_type);
1935 	if (retval)
1936 		return retval;
1937 
1938 	is_registered = true;
1939 
1940 #ifdef CONFIG_I2C_COMPAT
1941 	i2c_adapter_compat_class = class_compat_register("i2c-adapter");
1942 	if (!i2c_adapter_compat_class) {
1943 		retval = -ENOMEM;
1944 		goto bus_err;
1945 	}
1946 #endif
1947 	retval = i2c_add_driver(&dummy_driver);
1948 	if (retval)
1949 		goto class_err;
1950 
1951 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
1952 		WARN_ON(of_reconfig_notifier_register(&i2c_of_notifier));
1953 	if (IS_ENABLED(CONFIG_ACPI))
1954 		WARN_ON(acpi_reconfig_notifier_register(&i2c_acpi_notifier));
1955 
1956 	return 0;
1957 
1958 class_err:
1959 #ifdef CONFIG_I2C_COMPAT
1960 	class_compat_unregister(i2c_adapter_compat_class);
1961 bus_err:
1962 #endif
1963 	is_registered = false;
1964 	bus_unregister(&i2c_bus_type);
1965 	return retval;
1966 }
1967 
1968 static void __exit i2c_exit(void)
1969 {
1970 	if (IS_ENABLED(CONFIG_ACPI))
1971 		WARN_ON(acpi_reconfig_notifier_unregister(&i2c_acpi_notifier));
1972 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
1973 		WARN_ON(of_reconfig_notifier_unregister(&i2c_of_notifier));
1974 	i2c_del_driver(&dummy_driver);
1975 #ifdef CONFIG_I2C_COMPAT
1976 	class_compat_unregister(i2c_adapter_compat_class);
1977 #endif
1978 	bus_unregister(&i2c_bus_type);
1979 	tracepoint_synchronize_unregister();
1980 }
1981 
1982 /* We must initialize early, because some subsystems register i2c drivers
1983  * in subsys_initcall() code, but are linked (and initialized) before i2c.
1984  */
1985 postcore_initcall(i2c_init);
1986 module_exit(i2c_exit);
1987 
1988 /* ----------------------------------------------------
1989  * the functional interface to the i2c busses.
1990  * ----------------------------------------------------
1991  */
1992 
1993 /* Check if val is exceeding the quirk IFF quirk is non 0 */
1994 #define i2c_quirk_exceeded(val, quirk) ((quirk) && ((val) > (quirk)))
1995 
1996 static int i2c_quirk_error(struct i2c_adapter *adap, struct i2c_msg *msg, char *err_msg)
1997 {
1998 	dev_err_ratelimited(&adap->dev, "adapter quirk: %s (addr 0x%04x, size %u, %s)\n",
1999 			    err_msg, msg->addr, msg->len,
2000 			    msg->flags & I2C_M_RD ? "read" : "write");
2001 	return -EOPNOTSUPP;
2002 }
2003 
2004 static int i2c_check_for_quirks(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
2005 {
2006 	const struct i2c_adapter_quirks *q = adap->quirks;
2007 	int max_num = q->max_num_msgs, i;
2008 	bool do_len_check = true;
2009 
2010 	if (q->flags & I2C_AQ_COMB) {
2011 		max_num = 2;
2012 
2013 		/* special checks for combined messages */
2014 		if (num == 2) {
2015 			if (q->flags & I2C_AQ_COMB_WRITE_FIRST && msgs[0].flags & I2C_M_RD)
2016 				return i2c_quirk_error(adap, &msgs[0], "1st comb msg must be write");
2017 
2018 			if (q->flags & I2C_AQ_COMB_READ_SECOND && !(msgs[1].flags & I2C_M_RD))
2019 				return i2c_quirk_error(adap, &msgs[1], "2nd comb msg must be read");
2020 
2021 			if (q->flags & I2C_AQ_COMB_SAME_ADDR && msgs[0].addr != msgs[1].addr)
2022 				return i2c_quirk_error(adap, &msgs[0], "comb msg only to same addr");
2023 
2024 			if (i2c_quirk_exceeded(msgs[0].len, q->max_comb_1st_msg_len))
2025 				return i2c_quirk_error(adap, &msgs[0], "msg too long");
2026 
2027 			if (i2c_quirk_exceeded(msgs[1].len, q->max_comb_2nd_msg_len))
2028 				return i2c_quirk_error(adap, &msgs[1], "msg too long");
2029 
2030 			do_len_check = false;
2031 		}
2032 	}
2033 
2034 	if (i2c_quirk_exceeded(num, max_num))
2035 		return i2c_quirk_error(adap, &msgs[0], "too many messages");
2036 
2037 	for (i = 0; i < num; i++) {
2038 		u16 len = msgs[i].len;
2039 
2040 		if (msgs[i].flags & I2C_M_RD) {
2041 			if (do_len_check && i2c_quirk_exceeded(len, q->max_read_len))
2042 				return i2c_quirk_error(adap, &msgs[i], "msg too long");
2043 
2044 			if (q->flags & I2C_AQ_NO_ZERO_LEN_READ && len == 0)
2045 				return i2c_quirk_error(adap, &msgs[i], "no zero length");
2046 		} else {
2047 			if (do_len_check && i2c_quirk_exceeded(len, q->max_write_len))
2048 				return i2c_quirk_error(adap, &msgs[i], "msg too long");
2049 
2050 			if (q->flags & I2C_AQ_NO_ZERO_LEN_WRITE && len == 0)
2051 				return i2c_quirk_error(adap, &msgs[i], "no zero length");
2052 		}
2053 	}
2054 
2055 	return 0;
2056 }
2057 
2058 /**
2059  * __i2c_transfer - unlocked flavor of i2c_transfer
2060  * @adap: Handle to I2C bus
2061  * @msgs: One or more messages to execute before STOP is issued to
2062  *	terminate the operation; each message begins with a START.
2063  * @num: Number of messages to be executed.
2064  *
2065  * Returns negative errno, else the number of messages executed.
2066  *
2067  * Adapter lock must be held when calling this function. No debug logging
2068  * takes place. adap->algo->master_xfer existence isn't checked.
2069  */
2070 int __i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
2071 {
2072 	unsigned long orig_jiffies;
2073 	int ret, try;
2074 
2075 	if (WARN_ON(!msgs || num < 1))
2076 		return -EINVAL;
2077 
2078 	ret = __i2c_check_suspended(adap);
2079 	if (ret)
2080 		return ret;
2081 
2082 	if (adap->quirks && i2c_check_for_quirks(adap, msgs, num))
2083 		return -EOPNOTSUPP;
2084 
2085 	/*
2086 	 * i2c_trace_msg_key gets enabled when tracepoint i2c_transfer gets
2087 	 * enabled.  This is an efficient way of keeping the for-loop from
2088 	 * being executed when not needed.
2089 	 */
2090 	if (static_branch_unlikely(&i2c_trace_msg_key)) {
2091 		int i;
2092 		for (i = 0; i < num; i++)
2093 			if (msgs[i].flags & I2C_M_RD)
2094 				trace_i2c_read(adap, &msgs[i], i);
2095 			else
2096 				trace_i2c_write(adap, &msgs[i], i);
2097 	}
2098 
2099 	/* Retry automatically on arbitration loss */
2100 	orig_jiffies = jiffies;
2101 	for (ret = 0, try = 0; try <= adap->retries; try++) {
2102 		if (i2c_in_atomic_xfer_mode() && adap->algo->master_xfer_atomic)
2103 			ret = adap->algo->master_xfer_atomic(adap, msgs, num);
2104 		else
2105 			ret = adap->algo->master_xfer(adap, msgs, num);
2106 
2107 		if (ret != -EAGAIN)
2108 			break;
2109 		if (time_after(jiffies, orig_jiffies + adap->timeout))
2110 			break;
2111 	}
2112 
2113 	if (static_branch_unlikely(&i2c_trace_msg_key)) {
2114 		int i;
2115 		for (i = 0; i < ret; i++)
2116 			if (msgs[i].flags & I2C_M_RD)
2117 				trace_i2c_reply(adap, &msgs[i], i);
2118 		trace_i2c_result(adap, num, ret);
2119 	}
2120 
2121 	return ret;
2122 }
2123 EXPORT_SYMBOL(__i2c_transfer);
2124 
2125 /**
2126  * i2c_transfer - execute a single or combined I2C message
2127  * @adap: Handle to I2C bus
2128  * @msgs: One or more messages to execute before STOP is issued to
2129  *	terminate the operation; each message begins with a START.
2130  * @num: Number of messages to be executed.
2131  *
2132  * Returns negative errno, else the number of messages executed.
2133  *
2134  * Note that there is no requirement that each message be sent to
2135  * the same slave address, although that is the most common model.
2136  */
2137 int i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
2138 {
2139 	int ret;
2140 
2141 	if (!adap->algo->master_xfer) {
2142 		dev_dbg(&adap->dev, "I2C level transfers not supported\n");
2143 		return -EOPNOTSUPP;
2144 	}
2145 
2146 	/* REVISIT the fault reporting model here is weak:
2147 	 *
2148 	 *  - When we get an error after receiving N bytes from a slave,
2149 	 *    there is no way to report "N".
2150 	 *
2151 	 *  - When we get a NAK after transmitting N bytes to a slave,
2152 	 *    there is no way to report "N" ... or to let the master
2153 	 *    continue executing the rest of this combined message, if
2154 	 *    that's the appropriate response.
2155 	 *
2156 	 *  - When for example "num" is two and we successfully complete
2157 	 *    the first message but get an error part way through the
2158 	 *    second, it's unclear whether that should be reported as
2159 	 *    one (discarding status on the second message) or errno
2160 	 *    (discarding status on the first one).
2161 	 */
2162 	ret = __i2c_lock_bus_helper(adap);
2163 	if (ret)
2164 		return ret;
2165 
2166 	ret = __i2c_transfer(adap, msgs, num);
2167 	i2c_unlock_bus(adap, I2C_LOCK_SEGMENT);
2168 
2169 	return ret;
2170 }
2171 EXPORT_SYMBOL(i2c_transfer);
2172 
2173 /**
2174  * i2c_transfer_buffer_flags - issue a single I2C message transferring data
2175  *			       to/from a buffer
2176  * @client: Handle to slave device
2177  * @buf: Where the data is stored
2178  * @count: How many bytes to transfer, must be less than 64k since msg.len is u16
2179  * @flags: The flags to be used for the message, e.g. I2C_M_RD for reads
2180  *
2181  * Returns negative errno, or else the number of bytes transferred.
2182  */
2183 int i2c_transfer_buffer_flags(const struct i2c_client *client, char *buf,
2184 			      int count, u16 flags)
2185 {
2186 	int ret;
2187 	struct i2c_msg msg = {
2188 		.addr = client->addr,
2189 		.flags = flags | (client->flags & I2C_M_TEN),
2190 		.len = count,
2191 		.buf = buf,
2192 	};
2193 
2194 	ret = i2c_transfer(client->adapter, &msg, 1);
2195 
2196 	/*
2197 	 * If everything went ok (i.e. 1 msg transferred), return #bytes
2198 	 * transferred, else error code.
2199 	 */
2200 	return (ret == 1) ? count : ret;
2201 }
2202 EXPORT_SYMBOL(i2c_transfer_buffer_flags);
2203 
2204 /**
2205  * i2c_get_device_id - get manufacturer, part id and die revision of a device
2206  * @client: The device to query
2207  * @id: The queried information
2208  *
2209  * Returns negative errno on error, zero on success.
2210  */
2211 int i2c_get_device_id(const struct i2c_client *client,
2212 		      struct i2c_device_identity *id)
2213 {
2214 	struct i2c_adapter *adap = client->adapter;
2215 	union i2c_smbus_data raw_id;
2216 	int ret;
2217 
2218 	if (!i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_I2C_BLOCK))
2219 		return -EOPNOTSUPP;
2220 
2221 	raw_id.block[0] = 3;
2222 	ret = i2c_smbus_xfer(adap, I2C_ADDR_DEVICE_ID, 0,
2223 			     I2C_SMBUS_READ, client->addr << 1,
2224 			     I2C_SMBUS_I2C_BLOCK_DATA, &raw_id);
2225 	if (ret)
2226 		return ret;
2227 
2228 	id->manufacturer_id = (raw_id.block[1] << 4) | (raw_id.block[2] >> 4);
2229 	id->part_id = ((raw_id.block[2] & 0xf) << 5) | (raw_id.block[3] >> 3);
2230 	id->die_revision = raw_id.block[3] & 0x7;
2231 	return 0;
2232 }
2233 EXPORT_SYMBOL_GPL(i2c_get_device_id);
2234 
2235 /* ----------------------------------------------------
2236  * the i2c address scanning function
2237  * Will not work for 10-bit addresses!
2238  * ----------------------------------------------------
2239  */
2240 
2241 /*
2242  * Legacy default probe function, mostly relevant for SMBus. The default
2243  * probe method is a quick write, but it is known to corrupt the 24RF08
2244  * EEPROMs due to a state machine bug, and could also irreversibly
2245  * write-protect some EEPROMs, so for address ranges 0x30-0x37 and 0x50-0x5f,
2246  * we use a short byte read instead. Also, some bus drivers don't implement
2247  * quick write, so we fallback to a byte read in that case too.
2248  * On x86, there is another special case for FSC hardware monitoring chips,
2249  * which want regular byte reads (address 0x73.) Fortunately, these are the
2250  * only known chips using this I2C address on PC hardware.
2251  * Returns 1 if probe succeeded, 0 if not.
2252  */
2253 static int i2c_default_probe(struct i2c_adapter *adap, unsigned short addr)
2254 {
2255 	int err;
2256 	union i2c_smbus_data dummy;
2257 
2258 #ifdef CONFIG_X86
2259 	if (addr == 0x73 && (adap->class & I2C_CLASS_HWMON)
2260 	 && i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_BYTE_DATA))
2261 		err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
2262 				     I2C_SMBUS_BYTE_DATA, &dummy);
2263 	else
2264 #endif
2265 	if (!((addr & ~0x07) == 0x30 || (addr & ~0x0f) == 0x50)
2266 	 && i2c_check_functionality(adap, I2C_FUNC_SMBUS_QUICK))
2267 		err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_WRITE, 0,
2268 				     I2C_SMBUS_QUICK, NULL);
2269 	else if (i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_BYTE))
2270 		err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
2271 				     I2C_SMBUS_BYTE, &dummy);
2272 	else {
2273 		dev_warn(&adap->dev, "No suitable probing method supported for address 0x%02X\n",
2274 			 addr);
2275 		err = -EOPNOTSUPP;
2276 	}
2277 
2278 	return err >= 0;
2279 }
2280 
2281 static int i2c_detect_address(struct i2c_client *temp_client,
2282 			      struct i2c_driver *driver)
2283 {
2284 	struct i2c_board_info info;
2285 	struct i2c_adapter *adapter = temp_client->adapter;
2286 	int addr = temp_client->addr;
2287 	int err;
2288 
2289 	/* Make sure the address is valid */
2290 	err = i2c_check_7bit_addr_validity_strict(addr);
2291 	if (err) {
2292 		dev_warn(&adapter->dev, "Invalid probe address 0x%02x\n",
2293 			 addr);
2294 		return err;
2295 	}
2296 
2297 	/* Skip if already in use (7 bit, no need to encode flags) */
2298 	if (i2c_check_addr_busy(adapter, addr))
2299 		return 0;
2300 
2301 	/* Make sure there is something at this address */
2302 	if (!i2c_default_probe(adapter, addr))
2303 		return 0;
2304 
2305 	/* Finally call the custom detection function */
2306 	memset(&info, 0, sizeof(struct i2c_board_info));
2307 	info.addr = addr;
2308 	err = driver->detect(temp_client, &info);
2309 	if (err) {
2310 		/* -ENODEV is returned if the detection fails. We catch it
2311 		   here as this isn't an error. */
2312 		return err == -ENODEV ? 0 : err;
2313 	}
2314 
2315 	/* Consistency check */
2316 	if (info.type[0] == '\0') {
2317 		dev_err(&adapter->dev,
2318 			"%s detection function provided no name for 0x%x\n",
2319 			driver->driver.name, addr);
2320 	} else {
2321 		struct i2c_client *client;
2322 
2323 		/* Detection succeeded, instantiate the device */
2324 		if (adapter->class & I2C_CLASS_DEPRECATED)
2325 			dev_warn(&adapter->dev,
2326 				"This adapter will soon drop class based instantiation of devices. "
2327 				"Please make sure client 0x%02x gets instantiated by other means. "
2328 				"Check 'Documentation/i2c/instantiating-devices.rst' for details.\n",
2329 				info.addr);
2330 
2331 		dev_dbg(&adapter->dev, "Creating %s at 0x%02x\n",
2332 			info.type, info.addr);
2333 		client = i2c_new_client_device(adapter, &info);
2334 		if (!IS_ERR(client))
2335 			list_add_tail(&client->detected, &driver->clients);
2336 		else
2337 			dev_err(&adapter->dev, "Failed creating %s at 0x%02x\n",
2338 				info.type, info.addr);
2339 	}
2340 	return 0;
2341 }
2342 
2343 static int i2c_detect(struct i2c_adapter *adapter, struct i2c_driver *driver)
2344 {
2345 	const unsigned short *address_list;
2346 	struct i2c_client *temp_client;
2347 	int i, err = 0;
2348 
2349 	address_list = driver->address_list;
2350 	if (!driver->detect || !address_list)
2351 		return 0;
2352 
2353 	/* Warn that the adapter lost class based instantiation */
2354 	if (adapter->class == I2C_CLASS_DEPRECATED) {
2355 		dev_dbg(&adapter->dev,
2356 			"This adapter dropped support for I2C classes and won't auto-detect %s devices anymore. "
2357 			"If you need it, check 'Documentation/i2c/instantiating-devices.rst' for alternatives.\n",
2358 			driver->driver.name);
2359 		return 0;
2360 	}
2361 
2362 	/* Stop here if the classes do not match */
2363 	if (!(adapter->class & driver->class))
2364 		return 0;
2365 
2366 	/* Set up a temporary client to help detect callback */
2367 	temp_client = kzalloc(sizeof(struct i2c_client), GFP_KERNEL);
2368 	if (!temp_client)
2369 		return -ENOMEM;
2370 	temp_client->adapter = adapter;
2371 
2372 	for (i = 0; address_list[i] != I2C_CLIENT_END; i += 1) {
2373 		dev_dbg(&adapter->dev,
2374 			"found normal entry for adapter %d, addr 0x%02x\n",
2375 			i2c_adapter_id(adapter), address_list[i]);
2376 		temp_client->addr = address_list[i];
2377 		err = i2c_detect_address(temp_client, driver);
2378 		if (unlikely(err))
2379 			break;
2380 	}
2381 
2382 	kfree(temp_client);
2383 	return err;
2384 }
2385 
2386 int i2c_probe_func_quick_read(struct i2c_adapter *adap, unsigned short addr)
2387 {
2388 	return i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
2389 			      I2C_SMBUS_QUICK, NULL) >= 0;
2390 }
2391 EXPORT_SYMBOL_GPL(i2c_probe_func_quick_read);
2392 
2393 struct i2c_client *
2394 i2c_new_scanned_device(struct i2c_adapter *adap,
2395 		       struct i2c_board_info *info,
2396 		       unsigned short const *addr_list,
2397 		       int (*probe)(struct i2c_adapter *adap, unsigned short addr))
2398 {
2399 	int i;
2400 
2401 	if (!probe)
2402 		probe = i2c_default_probe;
2403 
2404 	for (i = 0; addr_list[i] != I2C_CLIENT_END; i++) {
2405 		/* Check address validity */
2406 		if (i2c_check_7bit_addr_validity_strict(addr_list[i]) < 0) {
2407 			dev_warn(&adap->dev, "Invalid 7-bit address 0x%02x\n",
2408 				 addr_list[i]);
2409 			continue;
2410 		}
2411 
2412 		/* Check address availability (7 bit, no need to encode flags) */
2413 		if (i2c_check_addr_busy(adap, addr_list[i])) {
2414 			dev_dbg(&adap->dev,
2415 				"Address 0x%02x already in use, not probing\n",
2416 				addr_list[i]);
2417 			continue;
2418 		}
2419 
2420 		/* Test address responsiveness */
2421 		if (probe(adap, addr_list[i]))
2422 			break;
2423 	}
2424 
2425 	if (addr_list[i] == I2C_CLIENT_END) {
2426 		dev_dbg(&adap->dev, "Probing failed, no device found\n");
2427 		return ERR_PTR(-ENODEV);
2428 	}
2429 
2430 	info->addr = addr_list[i];
2431 	return i2c_new_client_device(adap, info);
2432 }
2433 EXPORT_SYMBOL_GPL(i2c_new_scanned_device);
2434 
2435 struct i2c_adapter *i2c_get_adapter(int nr)
2436 {
2437 	struct i2c_adapter *adapter;
2438 
2439 	mutex_lock(&core_lock);
2440 	adapter = idr_find(&i2c_adapter_idr, nr);
2441 	if (!adapter)
2442 		goto exit;
2443 
2444 	if (try_module_get(adapter->owner))
2445 		get_device(&adapter->dev);
2446 	else
2447 		adapter = NULL;
2448 
2449  exit:
2450 	mutex_unlock(&core_lock);
2451 	return adapter;
2452 }
2453 EXPORT_SYMBOL(i2c_get_adapter);
2454 
2455 void i2c_put_adapter(struct i2c_adapter *adap)
2456 {
2457 	if (!adap)
2458 		return;
2459 
2460 	module_put(adap->owner);
2461 	/* Should be last, otherwise we risk use-after-free with 'adap' */
2462 	put_device(&adap->dev);
2463 }
2464 EXPORT_SYMBOL(i2c_put_adapter);
2465 
2466 /**
2467  * i2c_get_dma_safe_msg_buf() - get a DMA safe buffer for the given i2c_msg
2468  * @msg: the message to be checked
2469  * @threshold: the minimum number of bytes for which using DMA makes sense.
2470  *	       Should at least be 1.
2471  *
2472  * Return: NULL if a DMA safe buffer was not obtained. Use msg->buf with PIO.
2473  *	   Or a valid pointer to be used with DMA. After use, release it by
2474  *	   calling i2c_put_dma_safe_msg_buf().
2475  *
2476  * This function must only be called from process context!
2477  */
2478 u8 *i2c_get_dma_safe_msg_buf(struct i2c_msg *msg, unsigned int threshold)
2479 {
2480 	/* also skip 0-length msgs for bogus thresholds of 0 */
2481 	if (!threshold)
2482 		pr_debug("DMA buffer for addr=0x%02x with length 0 is bogus\n",
2483 			 msg->addr);
2484 	if (msg->len < threshold || msg->len == 0)
2485 		return NULL;
2486 
2487 	if (msg->flags & I2C_M_DMA_SAFE)
2488 		return msg->buf;
2489 
2490 	pr_debug("using bounce buffer for addr=0x%02x, len=%d\n",
2491 		 msg->addr, msg->len);
2492 
2493 	if (msg->flags & I2C_M_RD)
2494 		return kzalloc(msg->len, GFP_KERNEL);
2495 	else
2496 		return kmemdup(msg->buf, msg->len, GFP_KERNEL);
2497 }
2498 EXPORT_SYMBOL_GPL(i2c_get_dma_safe_msg_buf);
2499 
2500 /**
2501  * i2c_put_dma_safe_msg_buf - release DMA safe buffer and sync with i2c_msg
2502  * @buf: the buffer obtained from i2c_get_dma_safe_msg_buf(). May be NULL.
2503  * @msg: the message which the buffer corresponds to
2504  * @xferred: bool saying if the message was transferred
2505  */
2506 void i2c_put_dma_safe_msg_buf(u8 *buf, struct i2c_msg *msg, bool xferred)
2507 {
2508 	if (!buf || buf == msg->buf)
2509 		return;
2510 
2511 	if (xferred && msg->flags & I2C_M_RD)
2512 		memcpy(msg->buf, buf, msg->len);
2513 
2514 	kfree(buf);
2515 }
2516 EXPORT_SYMBOL_GPL(i2c_put_dma_safe_msg_buf);
2517 
2518 MODULE_AUTHOR("Simon G. Vogl <simon@tk.uni-linz.ac.at>");
2519 MODULE_DESCRIPTION("I2C-Bus main module");
2520 MODULE_LICENSE("GPL");
2521