1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Linux I2C core 4 * 5 * Copyright (C) 1995-99 Simon G. Vogl 6 * With some changes from Kyösti Mälkki <kmalkki@cc.hut.fi> 7 * Mux support by Rodolfo Giometti <giometti@enneenne.com> and 8 * Michael Lawnick <michael.lawnick.ext@nsn.com> 9 * 10 * Copyright (C) 2013-2017 Wolfram Sang <wsa@kernel.org> 11 */ 12 13 #define pr_fmt(fmt) "i2c-core: " fmt 14 15 #include <dt-bindings/i2c/i2c.h> 16 #include <linux/acpi.h> 17 #include <linux/clk/clk-conf.h> 18 #include <linux/completion.h> 19 #include <linux/debugfs.h> 20 #include <linux/delay.h> 21 #include <linux/err.h> 22 #include <linux/errno.h> 23 #include <linux/gpio/consumer.h> 24 #include <linux/i2c.h> 25 #include <linux/i2c-smbus.h> 26 #include <linux/idr.h> 27 #include <linux/init.h> 28 #include <linux/interrupt.h> 29 #include <linux/irqflags.h> 30 #include <linux/jump_label.h> 31 #include <linux/kernel.h> 32 #include <linux/module.h> 33 #include <linux/mutex.h> 34 #include <linux/of_device.h> 35 #include <linux/of.h> 36 #include <linux/of_irq.h> 37 #include <linux/pinctrl/consumer.h> 38 #include <linux/pinctrl/devinfo.h> 39 #include <linux/pm_domain.h> 40 #include <linux/pm_runtime.h> 41 #include <linux/pm_wakeirq.h> 42 #include <linux/property.h> 43 #include <linux/rwsem.h> 44 #include <linux/slab.h> 45 46 #include "i2c-core.h" 47 48 #define CREATE_TRACE_POINTS 49 #include <trace/events/i2c.h> 50 51 #define I2C_ADDR_OFFSET_TEN_BIT 0xa000 52 #define I2C_ADDR_OFFSET_SLAVE 0x1000 53 54 #define I2C_ADDR_7BITS_MAX 0x77 55 #define I2C_ADDR_7BITS_COUNT (I2C_ADDR_7BITS_MAX + 1) 56 57 #define I2C_ADDR_DEVICE_ID 0x7c 58 59 /* 60 * core_lock protects i2c_adapter_idr, and guarantees that device detection, 61 * deletion of detected devices are serialized 62 */ 63 static DEFINE_MUTEX(core_lock); 64 static DEFINE_IDR(i2c_adapter_idr); 65 66 static int i2c_detect(struct i2c_adapter *adapter, struct i2c_driver *driver); 67 68 static DEFINE_STATIC_KEY_FALSE(i2c_trace_msg_key); 69 static bool is_registered; 70 71 static struct dentry *i2c_debugfs_root; 72 73 int i2c_transfer_trace_reg(void) 74 { 75 static_branch_inc(&i2c_trace_msg_key); 76 return 0; 77 } 78 79 void i2c_transfer_trace_unreg(void) 80 { 81 static_branch_dec(&i2c_trace_msg_key); 82 } 83 84 const char *i2c_freq_mode_string(u32 bus_freq_hz) 85 { 86 switch (bus_freq_hz) { 87 case I2C_MAX_STANDARD_MODE_FREQ: 88 return "Standard Mode (100 kHz)"; 89 case I2C_MAX_FAST_MODE_FREQ: 90 return "Fast Mode (400 kHz)"; 91 case I2C_MAX_FAST_MODE_PLUS_FREQ: 92 return "Fast Mode Plus (1.0 MHz)"; 93 case I2C_MAX_TURBO_MODE_FREQ: 94 return "Turbo Mode (1.4 MHz)"; 95 case I2C_MAX_HIGH_SPEED_MODE_FREQ: 96 return "High Speed Mode (3.4 MHz)"; 97 case I2C_MAX_ULTRA_FAST_MODE_FREQ: 98 return "Ultra Fast Mode (5.0 MHz)"; 99 default: 100 return "Unknown Mode"; 101 } 102 } 103 EXPORT_SYMBOL_GPL(i2c_freq_mode_string); 104 105 const struct i2c_device_id *i2c_match_id(const struct i2c_device_id *id, 106 const struct i2c_client *client) 107 { 108 if (!(id && client)) 109 return NULL; 110 111 while (id->name[0]) { 112 if (strcmp(client->name, id->name) == 0) 113 return id; 114 id++; 115 } 116 return NULL; 117 } 118 EXPORT_SYMBOL_GPL(i2c_match_id); 119 120 const void *i2c_get_match_data(const struct i2c_client *client) 121 { 122 struct i2c_driver *driver = to_i2c_driver(client->dev.driver); 123 const struct i2c_device_id *match; 124 const void *data; 125 126 data = device_get_match_data(&client->dev); 127 if (!data) { 128 match = i2c_match_id(driver->id_table, client); 129 if (!match) 130 return NULL; 131 132 data = (const void *)match->driver_data; 133 } 134 135 return data; 136 } 137 EXPORT_SYMBOL(i2c_get_match_data); 138 139 static int i2c_device_match(struct device *dev, const struct device_driver *drv) 140 { 141 struct i2c_client *client = i2c_verify_client(dev); 142 const struct i2c_driver *driver; 143 144 145 /* Attempt an OF style match */ 146 if (i2c_of_match_device(drv->of_match_table, client)) 147 return 1; 148 149 /* Then ACPI style match */ 150 if (acpi_driver_match_device(dev, drv)) 151 return 1; 152 153 driver = to_i2c_driver(drv); 154 155 /* Finally an I2C match */ 156 if (i2c_match_id(driver->id_table, client)) 157 return 1; 158 159 return 0; 160 } 161 162 static int i2c_device_uevent(const struct device *dev, struct kobj_uevent_env *env) 163 { 164 const struct i2c_client *client = to_i2c_client(dev); 165 int rc; 166 167 rc = of_device_uevent_modalias(dev, env); 168 if (rc != -ENODEV) 169 return rc; 170 171 rc = acpi_device_uevent_modalias(dev, env); 172 if (rc != -ENODEV) 173 return rc; 174 175 return add_uevent_var(env, "MODALIAS=%s%s", I2C_MODULE_PREFIX, client->name); 176 } 177 178 /* i2c bus recovery routines */ 179 static int get_scl_gpio_value(struct i2c_adapter *adap) 180 { 181 return gpiod_get_value_cansleep(adap->bus_recovery_info->scl_gpiod); 182 } 183 184 static void set_scl_gpio_value(struct i2c_adapter *adap, int val) 185 { 186 gpiod_set_value_cansleep(adap->bus_recovery_info->scl_gpiod, val); 187 } 188 189 static int get_sda_gpio_value(struct i2c_adapter *adap) 190 { 191 return gpiod_get_value_cansleep(adap->bus_recovery_info->sda_gpiod); 192 } 193 194 static void set_sda_gpio_value(struct i2c_adapter *adap, int val) 195 { 196 gpiod_set_value_cansleep(adap->bus_recovery_info->sda_gpiod, val); 197 } 198 199 static int i2c_generic_bus_free(struct i2c_adapter *adap) 200 { 201 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info; 202 int ret = -EOPNOTSUPP; 203 204 if (bri->get_bus_free) 205 ret = bri->get_bus_free(adap); 206 else if (bri->get_sda) 207 ret = bri->get_sda(adap); 208 209 if (ret < 0) 210 return ret; 211 212 return ret ? 0 : -EBUSY; 213 } 214 215 /* 216 * We are generating clock pulses. ndelay() determines durating of clk pulses. 217 * We will generate clock with rate 100 KHz and so duration of both clock levels 218 * is: delay in ns = (10^6 / 100) / 2 219 */ 220 #define RECOVERY_NDELAY 5000 221 #define RECOVERY_CLK_CNT 9 222 223 int i2c_generic_scl_recovery(struct i2c_adapter *adap) 224 { 225 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info; 226 int i = 0, scl = 1, ret = 0; 227 228 if (bri->prepare_recovery) 229 bri->prepare_recovery(adap); 230 if (bri->pinctrl) 231 pinctrl_select_state(bri->pinctrl, bri->pins_gpio); 232 233 /* 234 * If we can set SDA, we will always create a STOP to ensure additional 235 * pulses will do no harm. This is achieved by letting SDA follow SCL 236 * half a cycle later. Check the 'incomplete_write_byte' fault injector 237 * for details. Note that we must honour tsu:sto, 4us, but lets use 5us 238 * here for simplicity. 239 */ 240 bri->set_scl(adap, scl); 241 ndelay(RECOVERY_NDELAY); 242 if (bri->set_sda) 243 bri->set_sda(adap, scl); 244 ndelay(RECOVERY_NDELAY / 2); 245 246 /* 247 * By this time SCL is high, as we need to give 9 falling-rising edges 248 */ 249 while (i++ < RECOVERY_CLK_CNT * 2) { 250 if (scl) { 251 /* SCL shouldn't be low here */ 252 if (!bri->get_scl(adap)) { 253 dev_err(&adap->dev, 254 "SCL is stuck low, exit recovery\n"); 255 ret = -EBUSY; 256 break; 257 } 258 } 259 260 scl = !scl; 261 bri->set_scl(adap, scl); 262 /* Creating STOP again, see above */ 263 if (scl) { 264 /* Honour minimum tsu:sto */ 265 ndelay(RECOVERY_NDELAY); 266 } else { 267 /* Honour minimum tf and thd:dat */ 268 ndelay(RECOVERY_NDELAY / 2); 269 } 270 if (bri->set_sda) 271 bri->set_sda(adap, scl); 272 ndelay(RECOVERY_NDELAY / 2); 273 274 if (scl) { 275 ret = i2c_generic_bus_free(adap); 276 if (ret == 0) 277 break; 278 } 279 } 280 281 /* If we can't check bus status, assume recovery worked */ 282 if (ret == -EOPNOTSUPP) 283 ret = 0; 284 285 if (bri->unprepare_recovery) 286 bri->unprepare_recovery(adap); 287 if (bri->pinctrl) 288 pinctrl_select_state(bri->pinctrl, bri->pins_default); 289 290 return ret; 291 } 292 EXPORT_SYMBOL_GPL(i2c_generic_scl_recovery); 293 294 int i2c_recover_bus(struct i2c_adapter *adap) 295 { 296 if (!adap->bus_recovery_info) 297 return -EBUSY; 298 299 dev_dbg(&adap->dev, "Trying i2c bus recovery\n"); 300 return adap->bus_recovery_info->recover_bus(adap); 301 } 302 EXPORT_SYMBOL_GPL(i2c_recover_bus); 303 304 static void i2c_gpio_init_pinctrl_recovery(struct i2c_adapter *adap) 305 { 306 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info; 307 struct device *dev = &adap->dev; 308 struct pinctrl *p = bri->pinctrl ?: dev_pinctrl(dev->parent); 309 310 bri->pinctrl = p; 311 312 /* 313 * we can't change states without pinctrl, so remove the states if 314 * populated 315 */ 316 if (!p) { 317 bri->pins_default = NULL; 318 bri->pins_gpio = NULL; 319 return; 320 } 321 322 if (!bri->pins_default) { 323 bri->pins_default = pinctrl_lookup_state(p, 324 PINCTRL_STATE_DEFAULT); 325 if (IS_ERR(bri->pins_default)) { 326 dev_dbg(dev, PINCTRL_STATE_DEFAULT " state not found for GPIO recovery\n"); 327 bri->pins_default = NULL; 328 } 329 } 330 if (!bri->pins_gpio) { 331 bri->pins_gpio = pinctrl_lookup_state(p, "gpio"); 332 if (IS_ERR(bri->pins_gpio)) 333 bri->pins_gpio = pinctrl_lookup_state(p, "recovery"); 334 335 if (IS_ERR(bri->pins_gpio)) { 336 dev_dbg(dev, "no gpio or recovery state found for GPIO recovery\n"); 337 bri->pins_gpio = NULL; 338 } 339 } 340 341 /* for pinctrl state changes, we need all the information */ 342 if (bri->pins_default && bri->pins_gpio) { 343 dev_info(dev, "using pinctrl states for GPIO recovery"); 344 } else { 345 bri->pinctrl = NULL; 346 bri->pins_default = NULL; 347 bri->pins_gpio = NULL; 348 } 349 } 350 351 static int i2c_gpio_init_generic_recovery(struct i2c_adapter *adap) 352 { 353 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info; 354 struct device *dev = &adap->dev; 355 struct gpio_desc *gpiod; 356 int ret = 0; 357 358 /* 359 * don't touch the recovery information if the driver is not using 360 * generic SCL recovery 361 */ 362 if (bri->recover_bus && bri->recover_bus != i2c_generic_scl_recovery) 363 return 0; 364 365 /* 366 * pins might be taken as GPIO, so we should inform pinctrl about 367 * this and move the state to GPIO 368 */ 369 if (bri->pinctrl) 370 pinctrl_select_state(bri->pinctrl, bri->pins_gpio); 371 372 /* 373 * if there is incomplete or no recovery information, see if generic 374 * GPIO recovery is available 375 */ 376 if (!bri->scl_gpiod) { 377 gpiod = devm_gpiod_get(dev, "scl", GPIOD_OUT_HIGH_OPEN_DRAIN); 378 if (PTR_ERR(gpiod) == -EPROBE_DEFER) { 379 ret = -EPROBE_DEFER; 380 goto cleanup_pinctrl_state; 381 } 382 if (!IS_ERR(gpiod)) { 383 bri->scl_gpiod = gpiod; 384 bri->recover_bus = i2c_generic_scl_recovery; 385 dev_info(dev, "using generic GPIOs for recovery\n"); 386 } 387 } 388 389 /* SDA GPIOD line is optional, so we care about DEFER only */ 390 if (!bri->sda_gpiod) { 391 /* 392 * We have SCL. Pull SCL low and wait a bit so that SDA glitches 393 * have no effect. 394 */ 395 gpiod_direction_output(bri->scl_gpiod, 0); 396 udelay(10); 397 gpiod = devm_gpiod_get(dev, "sda", GPIOD_IN); 398 399 /* Wait a bit in case of a SDA glitch, and then release SCL. */ 400 udelay(10); 401 gpiod_direction_output(bri->scl_gpiod, 1); 402 403 if (PTR_ERR(gpiod) == -EPROBE_DEFER) { 404 ret = -EPROBE_DEFER; 405 goto cleanup_pinctrl_state; 406 } 407 if (!IS_ERR(gpiod)) 408 bri->sda_gpiod = gpiod; 409 } 410 411 cleanup_pinctrl_state: 412 /* change the state of the pins back to their default state */ 413 if (bri->pinctrl) 414 pinctrl_select_state(bri->pinctrl, bri->pins_default); 415 416 return ret; 417 } 418 419 static int i2c_gpio_init_recovery(struct i2c_adapter *adap) 420 { 421 i2c_gpio_init_pinctrl_recovery(adap); 422 return i2c_gpio_init_generic_recovery(adap); 423 } 424 425 static int i2c_init_recovery(struct i2c_adapter *adap) 426 { 427 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info; 428 bool is_error_level = true; 429 char *err_str; 430 431 if (!bri) 432 return 0; 433 434 if (i2c_gpio_init_recovery(adap) == -EPROBE_DEFER) 435 return -EPROBE_DEFER; 436 437 if (!bri->recover_bus) { 438 err_str = "no suitable method provided"; 439 is_error_level = false; 440 goto err; 441 } 442 443 if (bri->scl_gpiod && bri->recover_bus == i2c_generic_scl_recovery) { 444 bri->get_scl = get_scl_gpio_value; 445 bri->set_scl = set_scl_gpio_value; 446 if (bri->sda_gpiod) { 447 bri->get_sda = get_sda_gpio_value; 448 /* FIXME: add proper flag instead of '0' once available */ 449 if (gpiod_get_direction(bri->sda_gpiod) == 0) 450 bri->set_sda = set_sda_gpio_value; 451 } 452 } else if (bri->recover_bus == i2c_generic_scl_recovery) { 453 /* Generic SCL recovery */ 454 if (!bri->set_scl || !bri->get_scl) { 455 err_str = "no {get|set}_scl() found"; 456 goto err; 457 } 458 if (!bri->set_sda && !bri->get_sda) { 459 err_str = "either get_sda() or set_sda() needed"; 460 goto err; 461 } 462 } 463 464 return 0; 465 err: 466 if (is_error_level) 467 dev_err(&adap->dev, "Not using recovery: %s\n", err_str); 468 else 469 dev_dbg(&adap->dev, "Not using recovery: %s\n", err_str); 470 adap->bus_recovery_info = NULL; 471 472 return -EINVAL; 473 } 474 475 static int i2c_smbus_host_notify_to_irq(const struct i2c_client *client) 476 { 477 struct i2c_adapter *adap = client->adapter; 478 unsigned int irq; 479 480 if (!adap->host_notify_domain) 481 return -ENXIO; 482 483 if (client->flags & I2C_CLIENT_TEN) 484 return -EINVAL; 485 486 irq = irq_create_mapping(adap->host_notify_domain, client->addr); 487 488 return irq > 0 ? irq : -ENXIO; 489 } 490 491 static int i2c_device_probe(struct device *dev) 492 { 493 struct i2c_client *client = i2c_verify_client(dev); 494 struct i2c_driver *driver; 495 bool do_power_on; 496 int status; 497 498 if (!client) 499 return 0; 500 501 client->irq = client->init_irq; 502 503 if (!client->irq) { 504 int irq = -ENOENT; 505 506 if (client->flags & I2C_CLIENT_HOST_NOTIFY) { 507 dev_dbg(dev, "Using Host Notify IRQ\n"); 508 /* Keep adapter active when Host Notify is required */ 509 pm_runtime_get_sync(&client->adapter->dev); 510 irq = i2c_smbus_host_notify_to_irq(client); 511 } else if (dev->of_node) { 512 irq = of_irq_get_byname(dev->of_node, "irq"); 513 if (irq == -EINVAL || irq == -ENODATA) 514 irq = of_irq_get(dev->of_node, 0); 515 } else if (ACPI_COMPANION(dev)) { 516 bool wake_capable; 517 518 irq = i2c_acpi_get_irq(client, &wake_capable); 519 if (irq > 0 && wake_capable) 520 client->flags |= I2C_CLIENT_WAKE; 521 } 522 if (irq == -EPROBE_DEFER) { 523 status = irq; 524 goto put_sync_adapter; 525 } 526 527 if (irq < 0) 528 irq = 0; 529 530 client->irq = irq; 531 } 532 533 driver = to_i2c_driver(dev->driver); 534 535 /* 536 * An I2C ID table is not mandatory, if and only if, a suitable OF 537 * or ACPI ID table is supplied for the probing device. 538 */ 539 if (!driver->id_table && 540 !acpi_driver_match_device(dev, dev->driver) && 541 !i2c_of_match_device(dev->driver->of_match_table, client)) { 542 status = -ENODEV; 543 goto put_sync_adapter; 544 } 545 546 if (client->flags & I2C_CLIENT_WAKE) { 547 int wakeirq; 548 549 wakeirq = of_irq_get_byname(dev->of_node, "wakeup"); 550 if (wakeirq == -EPROBE_DEFER) { 551 status = wakeirq; 552 goto put_sync_adapter; 553 } 554 555 device_init_wakeup(&client->dev, true); 556 557 if (wakeirq > 0 && wakeirq != client->irq) 558 status = dev_pm_set_dedicated_wake_irq(dev, wakeirq); 559 else if (client->irq > 0) 560 status = dev_pm_set_wake_irq(dev, client->irq); 561 else 562 status = 0; 563 564 if (status) 565 dev_warn(&client->dev, "failed to set up wakeup irq\n"); 566 } 567 568 dev_dbg(dev, "probe\n"); 569 570 status = of_clk_set_defaults(dev->of_node, false); 571 if (status < 0) 572 goto err_clear_wakeup_irq; 573 574 do_power_on = !i2c_acpi_waive_d0_probe(dev); 575 status = dev_pm_domain_attach(&client->dev, do_power_on); 576 if (status) 577 goto err_clear_wakeup_irq; 578 579 client->devres_group_id = devres_open_group(&client->dev, NULL, 580 GFP_KERNEL); 581 if (!client->devres_group_id) { 582 status = -ENOMEM; 583 goto err_detach_pm_domain; 584 } 585 586 client->debugfs = debugfs_create_dir(dev_name(&client->dev), 587 client->adapter->debugfs); 588 589 if (driver->probe) 590 status = driver->probe(client); 591 else 592 status = -EINVAL; 593 594 /* 595 * Note that we are not closing the devres group opened above so 596 * even resources that were attached to the device after probe is 597 * run are released when i2c_device_remove() is executed. This is 598 * needed as some drivers would allocate additional resources, 599 * for example when updating firmware. 600 */ 601 602 if (status) 603 goto err_release_driver_resources; 604 605 return 0; 606 607 err_release_driver_resources: 608 debugfs_remove_recursive(client->debugfs); 609 devres_release_group(&client->dev, client->devres_group_id); 610 err_detach_pm_domain: 611 dev_pm_domain_detach(&client->dev, do_power_on); 612 err_clear_wakeup_irq: 613 dev_pm_clear_wake_irq(&client->dev); 614 device_init_wakeup(&client->dev, false); 615 put_sync_adapter: 616 if (client->flags & I2C_CLIENT_HOST_NOTIFY) 617 pm_runtime_put_sync(&client->adapter->dev); 618 619 return status; 620 } 621 622 static void i2c_device_remove(struct device *dev) 623 { 624 struct i2c_client *client = to_i2c_client(dev); 625 struct i2c_driver *driver; 626 627 driver = to_i2c_driver(dev->driver); 628 if (driver->remove) { 629 dev_dbg(dev, "remove\n"); 630 631 driver->remove(client); 632 } 633 634 debugfs_remove_recursive(client->debugfs); 635 636 devres_release_group(&client->dev, client->devres_group_id); 637 638 dev_pm_domain_detach(&client->dev, true); 639 640 dev_pm_clear_wake_irq(&client->dev); 641 device_init_wakeup(&client->dev, false); 642 643 client->irq = 0; 644 if (client->flags & I2C_CLIENT_HOST_NOTIFY) 645 pm_runtime_put(&client->adapter->dev); 646 } 647 648 static void i2c_device_shutdown(struct device *dev) 649 { 650 struct i2c_client *client = i2c_verify_client(dev); 651 struct i2c_driver *driver; 652 653 if (!client || !dev->driver) 654 return; 655 driver = to_i2c_driver(dev->driver); 656 if (driver->shutdown) 657 driver->shutdown(client); 658 else if (client->irq > 0) 659 disable_irq(client->irq); 660 } 661 662 static void i2c_client_dev_release(struct device *dev) 663 { 664 kfree(to_i2c_client(dev)); 665 } 666 667 static ssize_t 668 name_show(struct device *dev, struct device_attribute *attr, char *buf) 669 { 670 return sprintf(buf, "%s\n", dev->type == &i2c_client_type ? 671 to_i2c_client(dev)->name : to_i2c_adapter(dev)->name); 672 } 673 static DEVICE_ATTR_RO(name); 674 675 static ssize_t 676 modalias_show(struct device *dev, struct device_attribute *attr, char *buf) 677 { 678 struct i2c_client *client = to_i2c_client(dev); 679 int len; 680 681 len = of_device_modalias(dev, buf, PAGE_SIZE); 682 if (len != -ENODEV) 683 return len; 684 685 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 686 if (len != -ENODEV) 687 return len; 688 689 return sprintf(buf, "%s%s\n", I2C_MODULE_PREFIX, client->name); 690 } 691 static DEVICE_ATTR_RO(modalias); 692 693 static struct attribute *i2c_dev_attrs[] = { 694 &dev_attr_name.attr, 695 /* modalias helps coldplug: modprobe $(cat .../modalias) */ 696 &dev_attr_modalias.attr, 697 NULL 698 }; 699 ATTRIBUTE_GROUPS(i2c_dev); 700 701 const struct bus_type i2c_bus_type = { 702 .name = "i2c", 703 .match = i2c_device_match, 704 .probe = i2c_device_probe, 705 .remove = i2c_device_remove, 706 .shutdown = i2c_device_shutdown, 707 }; 708 EXPORT_SYMBOL_GPL(i2c_bus_type); 709 710 const struct device_type i2c_client_type = { 711 .groups = i2c_dev_groups, 712 .uevent = i2c_device_uevent, 713 .release = i2c_client_dev_release, 714 }; 715 EXPORT_SYMBOL_GPL(i2c_client_type); 716 717 718 /** 719 * i2c_verify_client - return parameter as i2c_client, or NULL 720 * @dev: device, probably from some driver model iterator 721 * 722 * When traversing the driver model tree, perhaps using driver model 723 * iterators like @device_for_each_child(), you can't assume very much 724 * about the nodes you find. Use this function to avoid oopses caused 725 * by wrongly treating some non-I2C device as an i2c_client. 726 */ 727 struct i2c_client *i2c_verify_client(struct device *dev) 728 { 729 return (dev->type == &i2c_client_type) 730 ? to_i2c_client(dev) 731 : NULL; 732 } 733 EXPORT_SYMBOL(i2c_verify_client); 734 735 736 /* Return a unique address which takes the flags of the client into account */ 737 static unsigned short i2c_encode_flags_to_addr(struct i2c_client *client) 738 { 739 unsigned short addr = client->addr; 740 741 /* For some client flags, add an arbitrary offset to avoid collisions */ 742 if (client->flags & I2C_CLIENT_TEN) 743 addr |= I2C_ADDR_OFFSET_TEN_BIT; 744 745 if (client->flags & I2C_CLIENT_SLAVE) 746 addr |= I2C_ADDR_OFFSET_SLAVE; 747 748 return addr; 749 } 750 751 /* This is a permissive address validity check, I2C address map constraints 752 * are purposely not enforced, except for the general call address. */ 753 static int i2c_check_addr_validity(unsigned int addr, unsigned short flags) 754 { 755 if (flags & I2C_CLIENT_TEN) { 756 /* 10-bit address, all values are valid */ 757 if (addr > 0x3ff) 758 return -EINVAL; 759 } else { 760 /* 7-bit address, reject the general call address */ 761 if (addr == 0x00 || addr > 0x7f) 762 return -EINVAL; 763 } 764 return 0; 765 } 766 767 /* And this is a strict address validity check, used when probing. If a 768 * device uses a reserved address, then it shouldn't be probed. 7-bit 769 * addressing is assumed, 10-bit address devices are rare and should be 770 * explicitly enumerated. */ 771 int i2c_check_7bit_addr_validity_strict(unsigned short addr) 772 { 773 /* 774 * Reserved addresses per I2C specification: 775 * 0x00 General call address / START byte 776 * 0x01 CBUS address 777 * 0x02 Reserved for different bus format 778 * 0x03 Reserved for future purposes 779 * 0x04-0x07 Hs-mode master code 780 * 0x78-0x7b 10-bit slave addressing 781 * 0x7c-0x7f Reserved for future purposes 782 */ 783 if (addr < 0x08 || addr > 0x77) 784 return -EINVAL; 785 return 0; 786 } 787 788 static int __i2c_check_addr_busy(struct device *dev, void *addrp) 789 { 790 struct i2c_client *client = i2c_verify_client(dev); 791 int addr = *(int *)addrp; 792 793 if (client && i2c_encode_flags_to_addr(client) == addr) 794 return -EBUSY; 795 return 0; 796 } 797 798 /* walk up mux tree */ 799 static int i2c_check_mux_parents(struct i2c_adapter *adapter, int addr) 800 { 801 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter); 802 int result; 803 804 result = device_for_each_child(&adapter->dev, &addr, 805 __i2c_check_addr_busy); 806 807 if (!result && parent) 808 result = i2c_check_mux_parents(parent, addr); 809 810 return result; 811 } 812 813 /* recurse down mux tree */ 814 static int i2c_check_mux_children(struct device *dev, void *addrp) 815 { 816 int result; 817 818 if (dev->type == &i2c_adapter_type) 819 result = device_for_each_child(dev, addrp, 820 i2c_check_mux_children); 821 else 822 result = __i2c_check_addr_busy(dev, addrp); 823 824 return result; 825 } 826 827 static int i2c_check_addr_busy(struct i2c_adapter *adapter, int addr) 828 { 829 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter); 830 int result = 0; 831 832 if (parent) 833 result = i2c_check_mux_parents(parent, addr); 834 835 if (!result) 836 result = device_for_each_child(&adapter->dev, &addr, 837 i2c_check_mux_children); 838 839 return result; 840 } 841 842 /** 843 * i2c_adapter_lock_bus - Get exclusive access to an I2C bus segment 844 * @adapter: Target I2C bus segment 845 * @flags: I2C_LOCK_ROOT_ADAPTER locks the root i2c adapter, I2C_LOCK_SEGMENT 846 * locks only this branch in the adapter tree 847 */ 848 static void i2c_adapter_lock_bus(struct i2c_adapter *adapter, 849 unsigned int flags) 850 { 851 rt_mutex_lock_nested(&adapter->bus_lock, i2c_adapter_depth(adapter)); 852 } 853 854 /** 855 * i2c_adapter_trylock_bus - Try to get exclusive access to an I2C bus segment 856 * @adapter: Target I2C bus segment 857 * @flags: I2C_LOCK_ROOT_ADAPTER trylocks the root i2c adapter, I2C_LOCK_SEGMENT 858 * trylocks only this branch in the adapter tree 859 */ 860 static int i2c_adapter_trylock_bus(struct i2c_adapter *adapter, 861 unsigned int flags) 862 { 863 return rt_mutex_trylock(&adapter->bus_lock); 864 } 865 866 /** 867 * i2c_adapter_unlock_bus - Release exclusive access to an I2C bus segment 868 * @adapter: Target I2C bus segment 869 * @flags: I2C_LOCK_ROOT_ADAPTER unlocks the root i2c adapter, I2C_LOCK_SEGMENT 870 * unlocks only this branch in the adapter tree 871 */ 872 static void i2c_adapter_unlock_bus(struct i2c_adapter *adapter, 873 unsigned int flags) 874 { 875 rt_mutex_unlock(&adapter->bus_lock); 876 } 877 878 static void i2c_dev_set_name(struct i2c_adapter *adap, 879 struct i2c_client *client, 880 struct i2c_board_info const *info) 881 { 882 struct acpi_device *adev = ACPI_COMPANION(&client->dev); 883 884 if (info && info->dev_name) { 885 dev_set_name(&client->dev, "i2c-%s", info->dev_name); 886 return; 887 } 888 889 if (adev) { 890 dev_set_name(&client->dev, "i2c-%s", acpi_dev_name(adev)); 891 return; 892 } 893 894 dev_set_name(&client->dev, "%d-%04x", i2c_adapter_id(adap), 895 i2c_encode_flags_to_addr(client)); 896 } 897 898 int i2c_dev_irq_from_resources(const struct resource *resources, 899 unsigned int num_resources) 900 { 901 struct irq_data *irqd; 902 int i; 903 904 for (i = 0; i < num_resources; i++) { 905 const struct resource *r = &resources[i]; 906 907 if (resource_type(r) != IORESOURCE_IRQ) 908 continue; 909 910 if (r->flags & IORESOURCE_BITS) { 911 irqd = irq_get_irq_data(r->start); 912 if (!irqd) 913 break; 914 915 irqd_set_trigger_type(irqd, r->flags & IORESOURCE_BITS); 916 } 917 918 return r->start; 919 } 920 921 return 0; 922 } 923 924 /* 925 * Serialize device instantiation in case it can be instantiated explicitly 926 * and by auto-detection 927 */ 928 static int i2c_lock_addr(struct i2c_adapter *adap, unsigned short addr, 929 unsigned short flags) 930 { 931 if (!(flags & I2C_CLIENT_TEN) && 932 test_and_set_bit(addr, adap->addrs_in_instantiation)) 933 return -EBUSY; 934 935 return 0; 936 } 937 938 static void i2c_unlock_addr(struct i2c_adapter *adap, unsigned short addr, 939 unsigned short flags) 940 { 941 if (!(flags & I2C_CLIENT_TEN)) 942 clear_bit(addr, adap->addrs_in_instantiation); 943 } 944 945 /** 946 * i2c_new_client_device - instantiate an i2c device 947 * @adap: the adapter managing the device 948 * @info: describes one I2C device; bus_num is ignored 949 * Context: can sleep 950 * 951 * Create an i2c device. Binding is handled through driver model 952 * probe()/remove() methods. A driver may be bound to this device when we 953 * return from this function, or any later moment (e.g. maybe hotplugging will 954 * load the driver module). This call is not appropriate for use by mainboard 955 * initialization logic, which usually runs during an arch_initcall() long 956 * before any i2c_adapter could exist. 957 * 958 * This returns the new i2c client, which may be saved for later use with 959 * i2c_unregister_device(); or an ERR_PTR to describe the error. 960 */ 961 struct i2c_client * 962 i2c_new_client_device(struct i2c_adapter *adap, struct i2c_board_info const *info) 963 { 964 struct i2c_client *client; 965 bool need_put = false; 966 int status; 967 968 client = kzalloc(sizeof *client, GFP_KERNEL); 969 if (!client) 970 return ERR_PTR(-ENOMEM); 971 972 client->adapter = adap; 973 974 client->dev.platform_data = info->platform_data; 975 client->flags = info->flags; 976 client->addr = info->addr; 977 978 client->init_irq = info->irq; 979 if (!client->init_irq) 980 client->init_irq = i2c_dev_irq_from_resources(info->resources, 981 info->num_resources); 982 983 strscpy(client->name, info->type, sizeof(client->name)); 984 985 status = i2c_check_addr_validity(client->addr, client->flags); 986 if (status) { 987 dev_err(&adap->dev, "Invalid %d-bit I2C address 0x%02hx\n", 988 client->flags & I2C_CLIENT_TEN ? 10 : 7, client->addr); 989 goto out_err_silent; 990 } 991 992 status = i2c_lock_addr(adap, client->addr, client->flags); 993 if (status) 994 goto out_err_silent; 995 996 /* Check for address business */ 997 status = i2c_check_addr_busy(adap, i2c_encode_flags_to_addr(client)); 998 if (status) 999 goto out_err; 1000 1001 client->dev.parent = &client->adapter->dev; 1002 client->dev.bus = &i2c_bus_type; 1003 client->dev.type = &i2c_client_type; 1004 client->dev.of_node = of_node_get(info->of_node); 1005 client->dev.fwnode = info->fwnode; 1006 1007 device_enable_async_suspend(&client->dev); 1008 1009 if (info->swnode) { 1010 status = device_add_software_node(&client->dev, info->swnode); 1011 if (status) { 1012 dev_err(&adap->dev, 1013 "Failed to add software node to client %s: %d\n", 1014 client->name, status); 1015 goto out_err_put_of_node; 1016 } 1017 } 1018 1019 i2c_dev_set_name(adap, client, info); 1020 status = device_register(&client->dev); 1021 if (status) 1022 goto out_remove_swnode; 1023 1024 dev_dbg(&adap->dev, "client [%s] registered with bus id %s\n", 1025 client->name, dev_name(&client->dev)); 1026 1027 i2c_unlock_addr(adap, client->addr, client->flags); 1028 1029 return client; 1030 1031 out_remove_swnode: 1032 device_remove_software_node(&client->dev); 1033 need_put = true; 1034 out_err_put_of_node: 1035 of_node_put(info->of_node); 1036 out_err: 1037 dev_err(&adap->dev, 1038 "Failed to register i2c client %s at 0x%02x (%d)\n", 1039 client->name, client->addr, status); 1040 i2c_unlock_addr(adap, client->addr, client->flags); 1041 out_err_silent: 1042 if (need_put) 1043 put_device(&client->dev); 1044 else 1045 kfree(client); 1046 return ERR_PTR(status); 1047 } 1048 EXPORT_SYMBOL_GPL(i2c_new_client_device); 1049 1050 /** 1051 * i2c_unregister_device - reverse effect of i2c_new_*_device() 1052 * @client: value returned from i2c_new_*_device() 1053 * Context: can sleep 1054 */ 1055 void i2c_unregister_device(struct i2c_client *client) 1056 { 1057 if (IS_ERR_OR_NULL(client)) 1058 return; 1059 1060 if (client->dev.of_node) { 1061 of_node_clear_flag(client->dev.of_node, OF_POPULATED); 1062 of_node_put(client->dev.of_node); 1063 } 1064 1065 if (ACPI_COMPANION(&client->dev)) 1066 acpi_device_clear_enumerated(ACPI_COMPANION(&client->dev)); 1067 1068 device_remove_software_node(&client->dev); 1069 device_unregister(&client->dev); 1070 } 1071 EXPORT_SYMBOL_GPL(i2c_unregister_device); 1072 1073 /** 1074 * i2c_find_device_by_fwnode() - find an i2c_client for the fwnode 1075 * @fwnode: &struct fwnode_handle corresponding to the &struct i2c_client 1076 * 1077 * Look up and return the &struct i2c_client corresponding to the @fwnode. 1078 * If no client can be found, or @fwnode is NULL, this returns NULL. 1079 * 1080 * The user must call put_device(&client->dev) once done with the i2c client. 1081 */ 1082 struct i2c_client *i2c_find_device_by_fwnode(struct fwnode_handle *fwnode) 1083 { 1084 struct i2c_client *client; 1085 struct device *dev; 1086 1087 if (!fwnode) 1088 return NULL; 1089 1090 dev = bus_find_device_by_fwnode(&i2c_bus_type, fwnode); 1091 if (!dev) 1092 return NULL; 1093 1094 client = i2c_verify_client(dev); 1095 if (!client) 1096 put_device(dev); 1097 1098 return client; 1099 } 1100 EXPORT_SYMBOL(i2c_find_device_by_fwnode); 1101 1102 1103 static const struct i2c_device_id dummy_id[] = { 1104 { "dummy", }, 1105 { "smbus_host_notify", }, 1106 { } 1107 }; 1108 1109 static int dummy_probe(struct i2c_client *client) 1110 { 1111 return 0; 1112 } 1113 1114 static struct i2c_driver dummy_driver = { 1115 .driver.name = "dummy", 1116 .probe = dummy_probe, 1117 .id_table = dummy_id, 1118 }; 1119 1120 /** 1121 * i2c_new_dummy_device - return a new i2c device bound to a dummy driver 1122 * @adapter: the adapter managing the device 1123 * @address: seven bit address to be used 1124 * Context: can sleep 1125 * 1126 * This returns an I2C client bound to the "dummy" driver, intended for use 1127 * with devices that consume multiple addresses. Examples of such chips 1128 * include various EEPROMS (like 24c04 and 24c08 models). 1129 * 1130 * These dummy devices have two main uses. First, most I2C and SMBus calls 1131 * except i2c_transfer() need a client handle; the dummy will be that handle. 1132 * And second, this prevents the specified address from being bound to a 1133 * different driver. 1134 * 1135 * This returns the new i2c client, which should be saved for later use with 1136 * i2c_unregister_device(); or an ERR_PTR to describe the error. 1137 */ 1138 struct i2c_client *i2c_new_dummy_device(struct i2c_adapter *adapter, u16 address) 1139 { 1140 struct i2c_board_info info = { 1141 I2C_BOARD_INFO("dummy", address), 1142 }; 1143 1144 return i2c_new_client_device(adapter, &info); 1145 } 1146 EXPORT_SYMBOL_GPL(i2c_new_dummy_device); 1147 1148 static void devm_i2c_release_dummy(void *client) 1149 { 1150 i2c_unregister_device(client); 1151 } 1152 1153 /** 1154 * devm_i2c_new_dummy_device - return a new i2c device bound to a dummy driver 1155 * @dev: device the managed resource is bound to 1156 * @adapter: the adapter managing the device 1157 * @address: seven bit address to be used 1158 * Context: can sleep 1159 * 1160 * This is the device-managed version of @i2c_new_dummy_device. It returns the 1161 * new i2c client or an ERR_PTR in case of an error. 1162 */ 1163 struct i2c_client *devm_i2c_new_dummy_device(struct device *dev, 1164 struct i2c_adapter *adapter, 1165 u16 address) 1166 { 1167 struct i2c_client *client; 1168 int ret; 1169 1170 client = i2c_new_dummy_device(adapter, address); 1171 if (IS_ERR(client)) 1172 return client; 1173 1174 ret = devm_add_action_or_reset(dev, devm_i2c_release_dummy, client); 1175 if (ret) 1176 return ERR_PTR(ret); 1177 1178 return client; 1179 } 1180 EXPORT_SYMBOL_GPL(devm_i2c_new_dummy_device); 1181 1182 /** 1183 * i2c_new_ancillary_device - Helper to get the instantiated secondary address 1184 * and create the associated device 1185 * @client: Handle to the primary client 1186 * @name: Handle to specify which secondary address to get 1187 * @default_addr: Used as a fallback if no secondary address was specified 1188 * Context: can sleep 1189 * 1190 * I2C clients can be composed of multiple I2C slaves bound together in a single 1191 * component. The I2C client driver then binds to the master I2C slave and needs 1192 * to create I2C dummy clients to communicate with all the other slaves. 1193 * 1194 * This function creates and returns an I2C dummy client whose I2C address is 1195 * retrieved from the platform firmware based on the given slave name. If no 1196 * address is specified by the firmware default_addr is used. 1197 * 1198 * On DT-based platforms the address is retrieved from the "reg" property entry 1199 * cell whose "reg-names" value matches the slave name. 1200 * 1201 * This returns the new i2c client, which should be saved for later use with 1202 * i2c_unregister_device(); or an ERR_PTR to describe the error. 1203 */ 1204 struct i2c_client *i2c_new_ancillary_device(struct i2c_client *client, 1205 const char *name, 1206 u16 default_addr) 1207 { 1208 struct device_node *np = client->dev.of_node; 1209 u32 addr = default_addr; 1210 int i; 1211 1212 if (np) { 1213 i = of_property_match_string(np, "reg-names", name); 1214 if (i >= 0) 1215 of_property_read_u32_index(np, "reg", i, &addr); 1216 } 1217 1218 dev_dbg(&client->adapter->dev, "Address for %s : 0x%x\n", name, addr); 1219 return i2c_new_dummy_device(client->adapter, addr); 1220 } 1221 EXPORT_SYMBOL_GPL(i2c_new_ancillary_device); 1222 1223 /* ------------------------------------------------------------------------- */ 1224 1225 /* I2C bus adapters -- one roots each I2C or SMBUS segment */ 1226 1227 static void i2c_adapter_dev_release(struct device *dev) 1228 { 1229 struct i2c_adapter *adap = to_i2c_adapter(dev); 1230 complete(&adap->dev_released); 1231 } 1232 1233 unsigned int i2c_adapter_depth(struct i2c_adapter *adapter) 1234 { 1235 unsigned int depth = 0; 1236 struct device *parent; 1237 1238 for (parent = adapter->dev.parent; parent; parent = parent->parent) 1239 if (parent->type == &i2c_adapter_type) 1240 depth++; 1241 1242 WARN_ONCE(depth >= MAX_LOCKDEP_SUBCLASSES, 1243 "adapter depth exceeds lockdep subclass limit\n"); 1244 1245 return depth; 1246 } 1247 EXPORT_SYMBOL_GPL(i2c_adapter_depth); 1248 1249 /* 1250 * Let users instantiate I2C devices through sysfs. This can be used when 1251 * platform initialization code doesn't contain the proper data for 1252 * whatever reason. Also useful for drivers that do device detection and 1253 * detection fails, either because the device uses an unexpected address, 1254 * or this is a compatible device with different ID register values. 1255 * 1256 * Parameter checking may look overzealous, but we really don't want 1257 * the user to provide incorrect parameters. 1258 */ 1259 static ssize_t 1260 new_device_store(struct device *dev, struct device_attribute *attr, 1261 const char *buf, size_t count) 1262 { 1263 struct i2c_adapter *adap = to_i2c_adapter(dev); 1264 struct i2c_board_info info; 1265 struct i2c_client *client; 1266 char *blank, end; 1267 int res; 1268 1269 memset(&info, 0, sizeof(struct i2c_board_info)); 1270 1271 blank = strchr(buf, ' '); 1272 if (!blank) { 1273 dev_err(dev, "%s: Missing parameters\n", "new_device"); 1274 return -EINVAL; 1275 } 1276 if (blank - buf > I2C_NAME_SIZE - 1) { 1277 dev_err(dev, "%s: Invalid device name\n", "new_device"); 1278 return -EINVAL; 1279 } 1280 memcpy(info.type, buf, blank - buf); 1281 1282 /* Parse remaining parameters, reject extra parameters */ 1283 res = sscanf(++blank, "%hi%c", &info.addr, &end); 1284 if (res < 1) { 1285 dev_err(dev, "%s: Can't parse I2C address\n", "new_device"); 1286 return -EINVAL; 1287 } 1288 if (res > 1 && end != '\n') { 1289 dev_err(dev, "%s: Extra parameters\n", "new_device"); 1290 return -EINVAL; 1291 } 1292 1293 if ((info.addr & I2C_ADDR_OFFSET_TEN_BIT) == I2C_ADDR_OFFSET_TEN_BIT) { 1294 info.addr &= ~I2C_ADDR_OFFSET_TEN_BIT; 1295 info.flags |= I2C_CLIENT_TEN; 1296 } 1297 1298 if (info.addr & I2C_ADDR_OFFSET_SLAVE) { 1299 info.addr &= ~I2C_ADDR_OFFSET_SLAVE; 1300 info.flags |= I2C_CLIENT_SLAVE; 1301 } 1302 1303 info.flags |= I2C_CLIENT_USER; 1304 1305 client = i2c_new_client_device(adap, &info); 1306 if (IS_ERR(client)) 1307 return PTR_ERR(client); 1308 1309 dev_info(dev, "%s: Instantiated device %s at 0x%02hx\n", "new_device", 1310 info.type, info.addr); 1311 1312 return count; 1313 } 1314 static DEVICE_ATTR_WO(new_device); 1315 1316 static int __i2c_find_user_addr(struct device *dev, const void *addrp) 1317 { 1318 struct i2c_client *client = i2c_verify_client(dev); 1319 unsigned short addr = *(unsigned short *)addrp; 1320 1321 return client && client->flags & I2C_CLIENT_USER && 1322 i2c_encode_flags_to_addr(client) == addr; 1323 } 1324 1325 /* 1326 * And of course let the users delete the devices they instantiated, if 1327 * they got it wrong. This interface can only be used to delete devices 1328 * instantiated by i2c_sysfs_new_device above. This guarantees that we 1329 * don't delete devices to which some kernel code still has references. 1330 * 1331 * Parameter checking may look overzealous, but we really don't want 1332 * the user to delete the wrong device. 1333 */ 1334 static ssize_t 1335 delete_device_store(struct device *dev, struct device_attribute *attr, 1336 const char *buf, size_t count) 1337 { 1338 struct i2c_adapter *adap = to_i2c_adapter(dev); 1339 struct device *child_dev; 1340 unsigned short addr; 1341 char end; 1342 int res; 1343 1344 /* Parse parameters, reject extra parameters */ 1345 res = sscanf(buf, "%hi%c", &addr, &end); 1346 if (res < 1) { 1347 dev_err(dev, "%s: Can't parse I2C address\n", "delete_device"); 1348 return -EINVAL; 1349 } 1350 if (res > 1 && end != '\n') { 1351 dev_err(dev, "%s: Extra parameters\n", "delete_device"); 1352 return -EINVAL; 1353 } 1354 1355 mutex_lock(&core_lock); 1356 /* Make sure the device was added through sysfs */ 1357 child_dev = device_find_child(&adap->dev, &addr, __i2c_find_user_addr); 1358 if (child_dev) { 1359 i2c_unregister_device(i2c_verify_client(child_dev)); 1360 put_device(child_dev); 1361 } else { 1362 dev_err(dev, "Can't find userspace-created device at %#x\n", addr); 1363 count = -ENOENT; 1364 } 1365 mutex_unlock(&core_lock); 1366 1367 return count; 1368 } 1369 static DEVICE_ATTR_IGNORE_LOCKDEP(delete_device, S_IWUSR, NULL, 1370 delete_device_store); 1371 1372 static struct attribute *i2c_adapter_attrs[] = { 1373 &dev_attr_name.attr, 1374 &dev_attr_new_device.attr, 1375 &dev_attr_delete_device.attr, 1376 NULL 1377 }; 1378 ATTRIBUTE_GROUPS(i2c_adapter); 1379 1380 const struct device_type i2c_adapter_type = { 1381 .groups = i2c_adapter_groups, 1382 .release = i2c_adapter_dev_release, 1383 }; 1384 EXPORT_SYMBOL_GPL(i2c_adapter_type); 1385 1386 /** 1387 * i2c_verify_adapter - return parameter as i2c_adapter or NULL 1388 * @dev: device, probably from some driver model iterator 1389 * 1390 * When traversing the driver model tree, perhaps using driver model 1391 * iterators like @device_for_each_child(), you can't assume very much 1392 * about the nodes you find. Use this function to avoid oopses caused 1393 * by wrongly treating some non-I2C device as an i2c_adapter. 1394 */ 1395 struct i2c_adapter *i2c_verify_adapter(struct device *dev) 1396 { 1397 return (dev->type == &i2c_adapter_type) 1398 ? to_i2c_adapter(dev) 1399 : NULL; 1400 } 1401 EXPORT_SYMBOL(i2c_verify_adapter); 1402 1403 static void i2c_scan_static_board_info(struct i2c_adapter *adapter) 1404 { 1405 struct i2c_devinfo *devinfo; 1406 1407 down_read(&__i2c_board_lock); 1408 list_for_each_entry(devinfo, &__i2c_board_list, list) { 1409 if (devinfo->busnum == adapter->nr && 1410 IS_ERR(i2c_new_client_device(adapter, &devinfo->board_info))) 1411 dev_err(&adapter->dev, 1412 "Can't create device at 0x%02x\n", 1413 devinfo->board_info.addr); 1414 } 1415 up_read(&__i2c_board_lock); 1416 } 1417 1418 static int i2c_do_add_adapter(struct i2c_driver *driver, 1419 struct i2c_adapter *adap) 1420 { 1421 /* Detect supported devices on that bus, and instantiate them */ 1422 i2c_detect(adap, driver); 1423 1424 return 0; 1425 } 1426 1427 static int __process_new_adapter(struct device_driver *d, void *data) 1428 { 1429 return i2c_do_add_adapter(to_i2c_driver(d), data); 1430 } 1431 1432 static const struct i2c_lock_operations i2c_adapter_lock_ops = { 1433 .lock_bus = i2c_adapter_lock_bus, 1434 .trylock_bus = i2c_adapter_trylock_bus, 1435 .unlock_bus = i2c_adapter_unlock_bus, 1436 }; 1437 1438 static void i2c_host_notify_irq_teardown(struct i2c_adapter *adap) 1439 { 1440 struct irq_domain *domain = adap->host_notify_domain; 1441 irq_hw_number_t hwirq; 1442 1443 if (!domain) 1444 return; 1445 1446 for (hwirq = 0 ; hwirq < I2C_ADDR_7BITS_COUNT ; hwirq++) 1447 irq_dispose_mapping(irq_find_mapping(domain, hwirq)); 1448 1449 irq_domain_remove(domain); 1450 adap->host_notify_domain = NULL; 1451 } 1452 1453 static int i2c_host_notify_irq_map(struct irq_domain *h, 1454 unsigned int virq, 1455 irq_hw_number_t hw_irq_num) 1456 { 1457 irq_set_chip_and_handler(virq, &dummy_irq_chip, handle_simple_irq); 1458 1459 return 0; 1460 } 1461 1462 static const struct irq_domain_ops i2c_host_notify_irq_ops = { 1463 .map = i2c_host_notify_irq_map, 1464 }; 1465 1466 static int i2c_setup_host_notify_irq_domain(struct i2c_adapter *adap) 1467 { 1468 struct irq_domain *domain; 1469 1470 if (!i2c_check_functionality(adap, I2C_FUNC_SMBUS_HOST_NOTIFY)) 1471 return 0; 1472 1473 domain = irq_domain_create_linear(adap->dev.parent->fwnode, 1474 I2C_ADDR_7BITS_COUNT, 1475 &i2c_host_notify_irq_ops, adap); 1476 if (!domain) 1477 return -ENOMEM; 1478 1479 adap->host_notify_domain = domain; 1480 1481 return 0; 1482 } 1483 1484 /** 1485 * i2c_handle_smbus_host_notify - Forward a Host Notify event to the correct 1486 * I2C client. 1487 * @adap: the adapter 1488 * @addr: the I2C address of the notifying device 1489 * Context: can't sleep 1490 * 1491 * Helper function to be called from an I2C bus driver's interrupt 1492 * handler. It will schedule the Host Notify IRQ. 1493 */ 1494 int i2c_handle_smbus_host_notify(struct i2c_adapter *adap, unsigned short addr) 1495 { 1496 int irq; 1497 1498 if (!adap) 1499 return -EINVAL; 1500 1501 dev_dbg(&adap->dev, "Detected HostNotify from address 0x%02x", addr); 1502 1503 irq = irq_find_mapping(adap->host_notify_domain, addr); 1504 if (irq <= 0) 1505 return -ENXIO; 1506 1507 generic_handle_irq_safe(irq); 1508 1509 return 0; 1510 } 1511 EXPORT_SYMBOL_GPL(i2c_handle_smbus_host_notify); 1512 1513 static int i2c_register_adapter(struct i2c_adapter *adap) 1514 { 1515 int res = -EINVAL; 1516 1517 /* Can't register until after driver model init */ 1518 if (WARN_ON(!is_registered)) { 1519 res = -EAGAIN; 1520 goto out_list; 1521 } 1522 1523 /* Sanity checks */ 1524 if (WARN(!adap->name[0], "i2c adapter has no name")) 1525 goto out_list; 1526 1527 if (!adap->algo) { 1528 pr_err("adapter '%s': no algo supplied!\n", adap->name); 1529 goto out_list; 1530 } 1531 1532 if (!adap->lock_ops) 1533 adap->lock_ops = &i2c_adapter_lock_ops; 1534 1535 adap->locked_flags = 0; 1536 rt_mutex_init(&adap->bus_lock); 1537 rt_mutex_init(&adap->mux_lock); 1538 1539 /* Set default timeout to 1 second if not already set */ 1540 if (adap->timeout == 0) 1541 adap->timeout = HZ; 1542 1543 /* register soft irqs for Host Notify */ 1544 res = i2c_setup_host_notify_irq_domain(adap); 1545 if (res) { 1546 pr_err("adapter '%s': can't create Host Notify IRQs (%d)\n", 1547 adap->name, res); 1548 goto out_list; 1549 } 1550 1551 dev_set_name(&adap->dev, "i2c-%d", adap->nr); 1552 adap->dev.bus = &i2c_bus_type; 1553 adap->dev.type = &i2c_adapter_type; 1554 device_initialize(&adap->dev); 1555 1556 /* 1557 * This adapter can be used as a parent immediately after device_add(), 1558 * setup runtime-pm (especially ignore-children) before hand. 1559 */ 1560 device_enable_async_suspend(&adap->dev); 1561 pm_runtime_no_callbacks(&adap->dev); 1562 pm_suspend_ignore_children(&adap->dev, true); 1563 pm_runtime_enable(&adap->dev); 1564 1565 res = device_add(&adap->dev); 1566 if (res) { 1567 pr_err("adapter '%s': can't register device (%d)\n", adap->name, res); 1568 put_device(&adap->dev); 1569 goto out_list; 1570 } 1571 1572 adap->debugfs = debugfs_create_dir(dev_name(&adap->dev), i2c_debugfs_root); 1573 1574 res = i2c_setup_smbus_alert(adap); 1575 if (res) 1576 goto out_reg; 1577 1578 res = i2c_init_recovery(adap); 1579 if (res == -EPROBE_DEFER) 1580 goto out_reg; 1581 1582 dev_dbg(&adap->dev, "adapter [%s] registered\n", adap->name); 1583 1584 /* create pre-declared device nodes */ 1585 of_i2c_register_devices(adap); 1586 i2c_acpi_install_space_handler(adap); 1587 i2c_acpi_register_devices(adap); 1588 1589 if (adap->nr < __i2c_first_dynamic_bus_num) 1590 i2c_scan_static_board_info(adap); 1591 1592 /* Notify drivers */ 1593 mutex_lock(&core_lock); 1594 bus_for_each_drv(&i2c_bus_type, NULL, adap, __process_new_adapter); 1595 mutex_unlock(&core_lock); 1596 1597 return 0; 1598 1599 out_reg: 1600 debugfs_remove_recursive(adap->debugfs); 1601 init_completion(&adap->dev_released); 1602 device_unregister(&adap->dev); 1603 wait_for_completion(&adap->dev_released); 1604 out_list: 1605 mutex_lock(&core_lock); 1606 idr_remove(&i2c_adapter_idr, adap->nr); 1607 mutex_unlock(&core_lock); 1608 return res; 1609 } 1610 1611 /** 1612 * __i2c_add_numbered_adapter - i2c_add_numbered_adapter where nr is never -1 1613 * @adap: the adapter to register (with adap->nr initialized) 1614 * Context: can sleep 1615 * 1616 * See i2c_add_numbered_adapter() for details. 1617 */ 1618 static int __i2c_add_numbered_adapter(struct i2c_adapter *adap) 1619 { 1620 int id; 1621 1622 mutex_lock(&core_lock); 1623 id = idr_alloc(&i2c_adapter_idr, adap, adap->nr, adap->nr + 1, GFP_KERNEL); 1624 mutex_unlock(&core_lock); 1625 if (WARN(id < 0, "couldn't get idr")) 1626 return id == -ENOSPC ? -EBUSY : id; 1627 1628 return i2c_register_adapter(adap); 1629 } 1630 1631 /** 1632 * i2c_add_adapter - declare i2c adapter, use dynamic bus number 1633 * @adapter: the adapter to add 1634 * Context: can sleep 1635 * 1636 * This routine is used to declare an I2C adapter when its bus number 1637 * doesn't matter or when its bus number is specified by an dt alias. 1638 * Examples of bases when the bus number doesn't matter: I2C adapters 1639 * dynamically added by USB links or PCI plugin cards. 1640 * 1641 * When this returns zero, a new bus number was allocated and stored 1642 * in adap->nr, and the specified adapter became available for clients. 1643 * Otherwise, a negative errno value is returned. 1644 */ 1645 int i2c_add_adapter(struct i2c_adapter *adapter) 1646 { 1647 struct device *dev = &adapter->dev; 1648 int id; 1649 1650 if (dev->of_node) { 1651 id = of_alias_get_id(dev->of_node, "i2c"); 1652 if (id >= 0) { 1653 adapter->nr = id; 1654 return __i2c_add_numbered_adapter(adapter); 1655 } 1656 } 1657 1658 mutex_lock(&core_lock); 1659 id = idr_alloc(&i2c_adapter_idr, adapter, 1660 __i2c_first_dynamic_bus_num, 0, GFP_KERNEL); 1661 mutex_unlock(&core_lock); 1662 if (WARN(id < 0, "couldn't get idr")) 1663 return id; 1664 1665 adapter->nr = id; 1666 1667 return i2c_register_adapter(adapter); 1668 } 1669 EXPORT_SYMBOL(i2c_add_adapter); 1670 1671 /** 1672 * i2c_add_numbered_adapter - declare i2c adapter, use static bus number 1673 * @adap: the adapter to register (with adap->nr initialized) 1674 * Context: can sleep 1675 * 1676 * This routine is used to declare an I2C adapter when its bus number 1677 * matters. For example, use it for I2C adapters from system-on-chip CPUs, 1678 * or otherwise built in to the system's mainboard, and where i2c_board_info 1679 * is used to properly configure I2C devices. 1680 * 1681 * If the requested bus number is set to -1, then this function will behave 1682 * identically to i2c_add_adapter, and will dynamically assign a bus number. 1683 * 1684 * If no devices have pre-been declared for this bus, then be sure to 1685 * register the adapter before any dynamically allocated ones. Otherwise 1686 * the required bus ID may not be available. 1687 * 1688 * When this returns zero, the specified adapter became available for 1689 * clients using the bus number provided in adap->nr. Also, the table 1690 * of I2C devices pre-declared using i2c_register_board_info() is scanned, 1691 * and the appropriate driver model device nodes are created. Otherwise, a 1692 * negative errno value is returned. 1693 */ 1694 int i2c_add_numbered_adapter(struct i2c_adapter *adap) 1695 { 1696 if (adap->nr == -1) /* -1 means dynamically assign bus id */ 1697 return i2c_add_adapter(adap); 1698 1699 return __i2c_add_numbered_adapter(adap); 1700 } 1701 EXPORT_SYMBOL_GPL(i2c_add_numbered_adapter); 1702 1703 static int __unregister_client(struct device *dev, void *dummy) 1704 { 1705 struct i2c_client *client = i2c_verify_client(dev); 1706 if (client && strcmp(client->name, "dummy")) 1707 i2c_unregister_device(client); 1708 return 0; 1709 } 1710 1711 static int __unregister_dummy(struct device *dev, void *dummy) 1712 { 1713 struct i2c_client *client = i2c_verify_client(dev); 1714 i2c_unregister_device(client); 1715 return 0; 1716 } 1717 1718 /** 1719 * i2c_del_adapter - unregister I2C adapter 1720 * @adap: the adapter being unregistered 1721 * Context: can sleep 1722 * 1723 * This unregisters an I2C adapter which was previously registered 1724 * by @i2c_add_adapter or @i2c_add_numbered_adapter. 1725 */ 1726 void i2c_del_adapter(struct i2c_adapter *adap) 1727 { 1728 struct i2c_adapter *found; 1729 1730 /* First make sure that this adapter was ever added */ 1731 mutex_lock(&core_lock); 1732 found = idr_find(&i2c_adapter_idr, adap->nr); 1733 mutex_unlock(&core_lock); 1734 if (found != adap) { 1735 pr_debug("attempting to delete unregistered adapter [%s]\n", adap->name); 1736 return; 1737 } 1738 1739 i2c_acpi_remove_space_handler(adap); 1740 1741 /* Detach any active clients. This can't fail, thus we do not 1742 * check the returned value. This is a two-pass process, because 1743 * we can't remove the dummy devices during the first pass: they 1744 * could have been instantiated by real devices wishing to clean 1745 * them up properly, so we give them a chance to do that first. */ 1746 mutex_lock(&core_lock); 1747 device_for_each_child(&adap->dev, NULL, __unregister_client); 1748 device_for_each_child(&adap->dev, NULL, __unregister_dummy); 1749 mutex_unlock(&core_lock); 1750 1751 /* device name is gone after device_unregister */ 1752 dev_dbg(&adap->dev, "adapter [%s] unregistered\n", adap->name); 1753 1754 pm_runtime_disable(&adap->dev); 1755 1756 i2c_host_notify_irq_teardown(adap); 1757 1758 debugfs_remove_recursive(adap->debugfs); 1759 1760 /* wait until all references to the device are gone 1761 * 1762 * FIXME: This is old code and should ideally be replaced by an 1763 * alternative which results in decoupling the lifetime of the struct 1764 * device from the i2c_adapter, like spi or netdev do. Any solution 1765 * should be thoroughly tested with DEBUG_KOBJECT_RELEASE enabled! 1766 */ 1767 init_completion(&adap->dev_released); 1768 device_unregister(&adap->dev); 1769 wait_for_completion(&adap->dev_released); 1770 1771 /* free bus id */ 1772 mutex_lock(&core_lock); 1773 idr_remove(&i2c_adapter_idr, adap->nr); 1774 mutex_unlock(&core_lock); 1775 1776 /* Clear the device structure in case this adapter is ever going to be 1777 added again */ 1778 memset(&adap->dev, 0, sizeof(adap->dev)); 1779 } 1780 EXPORT_SYMBOL(i2c_del_adapter); 1781 1782 static void devm_i2c_del_adapter(void *adapter) 1783 { 1784 i2c_del_adapter(adapter); 1785 } 1786 1787 /** 1788 * devm_i2c_add_adapter - device-managed variant of i2c_add_adapter() 1789 * @dev: managing device for adding this I2C adapter 1790 * @adapter: the adapter to add 1791 * Context: can sleep 1792 * 1793 * Add adapter with dynamic bus number, same with i2c_add_adapter() 1794 * but the adapter will be auto deleted on driver detach. 1795 */ 1796 int devm_i2c_add_adapter(struct device *dev, struct i2c_adapter *adapter) 1797 { 1798 int ret; 1799 1800 ret = i2c_add_adapter(adapter); 1801 if (ret) 1802 return ret; 1803 1804 return devm_add_action_or_reset(dev, devm_i2c_del_adapter, adapter); 1805 } 1806 EXPORT_SYMBOL_GPL(devm_i2c_add_adapter); 1807 1808 static int i2c_dev_or_parent_fwnode_match(struct device *dev, const void *data) 1809 { 1810 if (dev_fwnode(dev) == data) 1811 return 1; 1812 1813 if (dev->parent && dev_fwnode(dev->parent) == data) 1814 return 1; 1815 1816 return 0; 1817 } 1818 1819 /** 1820 * i2c_find_adapter_by_fwnode() - find an i2c_adapter for the fwnode 1821 * @fwnode: &struct fwnode_handle corresponding to the &struct i2c_adapter 1822 * 1823 * Look up and return the &struct i2c_adapter corresponding to the @fwnode. 1824 * If no adapter can be found, or @fwnode is NULL, this returns NULL. 1825 * 1826 * The user must call put_device(&adapter->dev) once done with the i2c adapter. 1827 */ 1828 struct i2c_adapter *i2c_find_adapter_by_fwnode(struct fwnode_handle *fwnode) 1829 { 1830 struct i2c_adapter *adapter; 1831 struct device *dev; 1832 1833 if (!fwnode) 1834 return NULL; 1835 1836 dev = bus_find_device(&i2c_bus_type, NULL, fwnode, 1837 i2c_dev_or_parent_fwnode_match); 1838 if (!dev) 1839 return NULL; 1840 1841 adapter = i2c_verify_adapter(dev); 1842 if (!adapter) 1843 put_device(dev); 1844 1845 return adapter; 1846 } 1847 EXPORT_SYMBOL(i2c_find_adapter_by_fwnode); 1848 1849 /** 1850 * i2c_get_adapter_by_fwnode() - find an i2c_adapter for the fwnode 1851 * @fwnode: &struct fwnode_handle corresponding to the &struct i2c_adapter 1852 * 1853 * Look up and return the &struct i2c_adapter corresponding to the @fwnode, 1854 * and increment the adapter module's use count. If no adapter can be found, 1855 * or @fwnode is NULL, this returns NULL. 1856 * 1857 * The user must call i2c_put_adapter(adapter) once done with the i2c adapter. 1858 * Note that this is different from i2c_find_adapter_by_node(). 1859 */ 1860 struct i2c_adapter *i2c_get_adapter_by_fwnode(struct fwnode_handle *fwnode) 1861 { 1862 struct i2c_adapter *adapter; 1863 1864 adapter = i2c_find_adapter_by_fwnode(fwnode); 1865 if (!adapter) 1866 return NULL; 1867 1868 if (!try_module_get(adapter->owner)) { 1869 put_device(&adapter->dev); 1870 adapter = NULL; 1871 } 1872 1873 return adapter; 1874 } 1875 EXPORT_SYMBOL(i2c_get_adapter_by_fwnode); 1876 1877 static void i2c_parse_timing(struct device *dev, char *prop_name, u32 *cur_val_p, 1878 u32 def_val, bool use_def) 1879 { 1880 int ret; 1881 1882 ret = device_property_read_u32(dev, prop_name, cur_val_p); 1883 if (ret && use_def) 1884 *cur_val_p = def_val; 1885 1886 dev_dbg(dev, "%s: %u\n", prop_name, *cur_val_p); 1887 } 1888 1889 /** 1890 * i2c_parse_fw_timings - get I2C related timing parameters from firmware 1891 * @dev: The device to scan for I2C timing properties 1892 * @t: the i2c_timings struct to be filled with values 1893 * @use_defaults: bool to use sane defaults derived from the I2C specification 1894 * when properties are not found, otherwise don't update 1895 * 1896 * Scan the device for the generic I2C properties describing timing parameters 1897 * for the signal and fill the given struct with the results. If a property was 1898 * not found and use_defaults was true, then maximum timings are assumed which 1899 * are derived from the I2C specification. If use_defaults is not used, the 1900 * results will be as before, so drivers can apply their own defaults before 1901 * calling this helper. The latter is mainly intended for avoiding regressions 1902 * of existing drivers which want to switch to this function. New drivers 1903 * almost always should use the defaults. 1904 */ 1905 void i2c_parse_fw_timings(struct device *dev, struct i2c_timings *t, bool use_defaults) 1906 { 1907 bool u = use_defaults; 1908 u32 d; 1909 1910 i2c_parse_timing(dev, "clock-frequency", &t->bus_freq_hz, 1911 I2C_MAX_STANDARD_MODE_FREQ, u); 1912 1913 d = t->bus_freq_hz <= I2C_MAX_STANDARD_MODE_FREQ ? 1000 : 1914 t->bus_freq_hz <= I2C_MAX_FAST_MODE_FREQ ? 300 : 120; 1915 i2c_parse_timing(dev, "i2c-scl-rising-time-ns", &t->scl_rise_ns, d, u); 1916 1917 d = t->bus_freq_hz <= I2C_MAX_FAST_MODE_FREQ ? 300 : 120; 1918 i2c_parse_timing(dev, "i2c-scl-falling-time-ns", &t->scl_fall_ns, d, u); 1919 1920 i2c_parse_timing(dev, "i2c-scl-internal-delay-ns", 1921 &t->scl_int_delay_ns, 0, u); 1922 i2c_parse_timing(dev, "i2c-sda-falling-time-ns", &t->sda_fall_ns, 1923 t->scl_fall_ns, u); 1924 i2c_parse_timing(dev, "i2c-sda-hold-time-ns", &t->sda_hold_ns, 0, u); 1925 i2c_parse_timing(dev, "i2c-digital-filter-width-ns", 1926 &t->digital_filter_width_ns, 0, u); 1927 i2c_parse_timing(dev, "i2c-analog-filter-cutoff-frequency", 1928 &t->analog_filter_cutoff_freq_hz, 0, u); 1929 } 1930 EXPORT_SYMBOL_GPL(i2c_parse_fw_timings); 1931 1932 /* ------------------------------------------------------------------------- */ 1933 1934 int i2c_for_each_dev(void *data, int (*fn)(struct device *dev, void *data)) 1935 { 1936 int res; 1937 1938 mutex_lock(&core_lock); 1939 res = bus_for_each_dev(&i2c_bus_type, NULL, data, fn); 1940 mutex_unlock(&core_lock); 1941 1942 return res; 1943 } 1944 EXPORT_SYMBOL_GPL(i2c_for_each_dev); 1945 1946 static int __process_new_driver(struct device *dev, void *data) 1947 { 1948 if (dev->type != &i2c_adapter_type) 1949 return 0; 1950 return i2c_do_add_adapter(data, to_i2c_adapter(dev)); 1951 } 1952 1953 /* 1954 * An i2c_driver is used with one or more i2c_client (device) nodes to access 1955 * i2c slave chips, on a bus instance associated with some i2c_adapter. 1956 */ 1957 1958 int i2c_register_driver(struct module *owner, struct i2c_driver *driver) 1959 { 1960 int res; 1961 1962 /* Can't register until after driver model init */ 1963 if (WARN_ON(!is_registered)) 1964 return -EAGAIN; 1965 1966 /* add the driver to the list of i2c drivers in the driver core */ 1967 driver->driver.owner = owner; 1968 driver->driver.bus = &i2c_bus_type; 1969 1970 /* When registration returns, the driver core 1971 * will have called probe() for all matching-but-unbound devices. 1972 */ 1973 res = driver_register(&driver->driver); 1974 if (res) 1975 return res; 1976 1977 pr_debug("driver [%s] registered\n", driver->driver.name); 1978 1979 /* Walk the adapters that are already present */ 1980 i2c_for_each_dev(driver, __process_new_driver); 1981 1982 return 0; 1983 } 1984 EXPORT_SYMBOL(i2c_register_driver); 1985 1986 static int __i2c_unregister_detected_client(struct device *dev, void *argp) 1987 { 1988 struct i2c_client *client = i2c_verify_client(dev); 1989 1990 if (client && client->flags & I2C_CLIENT_AUTO) 1991 i2c_unregister_device(client); 1992 1993 return 0; 1994 } 1995 1996 /** 1997 * i2c_del_driver - unregister I2C driver 1998 * @driver: the driver being unregistered 1999 * Context: can sleep 2000 */ 2001 void i2c_del_driver(struct i2c_driver *driver) 2002 { 2003 mutex_lock(&core_lock); 2004 /* Satisfy __must_check, function can't fail */ 2005 if (driver_for_each_device(&driver->driver, NULL, NULL, 2006 __i2c_unregister_detected_client)) { 2007 } 2008 mutex_unlock(&core_lock); 2009 2010 driver_unregister(&driver->driver); 2011 pr_debug("driver [%s] unregistered\n", driver->driver.name); 2012 } 2013 EXPORT_SYMBOL(i2c_del_driver); 2014 2015 /* ------------------------------------------------------------------------- */ 2016 2017 struct i2c_cmd_arg { 2018 unsigned cmd; 2019 void *arg; 2020 }; 2021 2022 static int i2c_cmd(struct device *dev, void *_arg) 2023 { 2024 struct i2c_client *client = i2c_verify_client(dev); 2025 struct i2c_cmd_arg *arg = _arg; 2026 struct i2c_driver *driver; 2027 2028 if (!client || !client->dev.driver) 2029 return 0; 2030 2031 driver = to_i2c_driver(client->dev.driver); 2032 if (driver->command) 2033 driver->command(client, arg->cmd, arg->arg); 2034 return 0; 2035 } 2036 2037 void i2c_clients_command(struct i2c_adapter *adap, unsigned int cmd, void *arg) 2038 { 2039 struct i2c_cmd_arg cmd_arg; 2040 2041 cmd_arg.cmd = cmd; 2042 cmd_arg.arg = arg; 2043 device_for_each_child(&adap->dev, &cmd_arg, i2c_cmd); 2044 } 2045 EXPORT_SYMBOL(i2c_clients_command); 2046 2047 static int __init i2c_init(void) 2048 { 2049 int retval; 2050 2051 retval = of_alias_get_highest_id("i2c"); 2052 2053 down_write(&__i2c_board_lock); 2054 if (retval >= __i2c_first_dynamic_bus_num) 2055 __i2c_first_dynamic_bus_num = retval + 1; 2056 up_write(&__i2c_board_lock); 2057 2058 retval = bus_register(&i2c_bus_type); 2059 if (retval) 2060 return retval; 2061 2062 is_registered = true; 2063 2064 i2c_debugfs_root = debugfs_create_dir("i2c", NULL); 2065 2066 retval = i2c_add_driver(&dummy_driver); 2067 if (retval) 2068 goto class_err; 2069 2070 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 2071 WARN_ON(of_reconfig_notifier_register(&i2c_of_notifier)); 2072 if (IS_ENABLED(CONFIG_ACPI)) 2073 WARN_ON(acpi_reconfig_notifier_register(&i2c_acpi_notifier)); 2074 2075 return 0; 2076 2077 class_err: 2078 is_registered = false; 2079 bus_unregister(&i2c_bus_type); 2080 return retval; 2081 } 2082 2083 static void __exit i2c_exit(void) 2084 { 2085 if (IS_ENABLED(CONFIG_ACPI)) 2086 WARN_ON(acpi_reconfig_notifier_unregister(&i2c_acpi_notifier)); 2087 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 2088 WARN_ON(of_reconfig_notifier_unregister(&i2c_of_notifier)); 2089 i2c_del_driver(&dummy_driver); 2090 debugfs_remove_recursive(i2c_debugfs_root); 2091 bus_unregister(&i2c_bus_type); 2092 tracepoint_synchronize_unregister(); 2093 } 2094 2095 /* We must initialize early, because some subsystems register i2c drivers 2096 * in subsys_initcall() code, but are linked (and initialized) before i2c. 2097 */ 2098 postcore_initcall(i2c_init); 2099 module_exit(i2c_exit); 2100 2101 /* ---------------------------------------------------- 2102 * the functional interface to the i2c busses. 2103 * ---------------------------------------------------- 2104 */ 2105 2106 /* Check if val is exceeding the quirk IFF quirk is non 0 */ 2107 #define i2c_quirk_exceeded(val, quirk) ((quirk) && ((val) > (quirk))) 2108 2109 static int i2c_quirk_error(struct i2c_adapter *adap, struct i2c_msg *msg, char *err_msg) 2110 { 2111 dev_err_ratelimited(&adap->dev, "adapter quirk: %s (addr 0x%04x, size %u, %s)\n", 2112 err_msg, msg->addr, msg->len, 2113 msg->flags & I2C_M_RD ? "read" : "write"); 2114 return -EOPNOTSUPP; 2115 } 2116 2117 static int i2c_check_for_quirks(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) 2118 { 2119 const struct i2c_adapter_quirks *q = adap->quirks; 2120 int max_num = q->max_num_msgs, i; 2121 bool do_len_check = true; 2122 2123 if (q->flags & I2C_AQ_COMB) { 2124 max_num = 2; 2125 2126 /* special checks for combined messages */ 2127 if (num == 2) { 2128 if (q->flags & I2C_AQ_COMB_WRITE_FIRST && msgs[0].flags & I2C_M_RD) 2129 return i2c_quirk_error(adap, &msgs[0], "1st comb msg must be write"); 2130 2131 if (q->flags & I2C_AQ_COMB_READ_SECOND && !(msgs[1].flags & I2C_M_RD)) 2132 return i2c_quirk_error(adap, &msgs[1], "2nd comb msg must be read"); 2133 2134 if (q->flags & I2C_AQ_COMB_SAME_ADDR && msgs[0].addr != msgs[1].addr) 2135 return i2c_quirk_error(adap, &msgs[0], "comb msg only to same addr"); 2136 2137 if (i2c_quirk_exceeded(msgs[0].len, q->max_comb_1st_msg_len)) 2138 return i2c_quirk_error(adap, &msgs[0], "msg too long"); 2139 2140 if (i2c_quirk_exceeded(msgs[1].len, q->max_comb_2nd_msg_len)) 2141 return i2c_quirk_error(adap, &msgs[1], "msg too long"); 2142 2143 do_len_check = false; 2144 } 2145 } 2146 2147 if (i2c_quirk_exceeded(num, max_num)) 2148 return i2c_quirk_error(adap, &msgs[0], "too many messages"); 2149 2150 for (i = 0; i < num; i++) { 2151 u16 len = msgs[i].len; 2152 2153 if (msgs[i].flags & I2C_M_RD) { 2154 if (do_len_check && i2c_quirk_exceeded(len, q->max_read_len)) 2155 return i2c_quirk_error(adap, &msgs[i], "msg too long"); 2156 2157 if (q->flags & I2C_AQ_NO_ZERO_LEN_READ && len == 0) 2158 return i2c_quirk_error(adap, &msgs[i], "no zero length"); 2159 } else { 2160 if (do_len_check && i2c_quirk_exceeded(len, q->max_write_len)) 2161 return i2c_quirk_error(adap, &msgs[i], "msg too long"); 2162 2163 if (q->flags & I2C_AQ_NO_ZERO_LEN_WRITE && len == 0) 2164 return i2c_quirk_error(adap, &msgs[i], "no zero length"); 2165 } 2166 } 2167 2168 return 0; 2169 } 2170 2171 /** 2172 * __i2c_transfer - unlocked flavor of i2c_transfer 2173 * @adap: Handle to I2C bus 2174 * @msgs: One or more messages to execute before STOP is issued to 2175 * terminate the operation; each message begins with a START. 2176 * @num: Number of messages to be executed. 2177 * 2178 * Returns negative errno, else the number of messages executed. 2179 * 2180 * Adapter lock must be held when calling this function. No debug logging 2181 * takes place. 2182 */ 2183 int __i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) 2184 { 2185 unsigned long orig_jiffies; 2186 int ret, try; 2187 2188 if (!adap->algo->master_xfer) { 2189 dev_dbg(&adap->dev, "I2C level transfers not supported\n"); 2190 return -EOPNOTSUPP; 2191 } 2192 2193 if (WARN_ON(!msgs || num < 1)) 2194 return -EINVAL; 2195 2196 ret = __i2c_check_suspended(adap); 2197 if (ret) 2198 return ret; 2199 2200 if (adap->quirks && i2c_check_for_quirks(adap, msgs, num)) 2201 return -EOPNOTSUPP; 2202 2203 /* 2204 * i2c_trace_msg_key gets enabled when tracepoint i2c_transfer gets 2205 * enabled. This is an efficient way of keeping the for-loop from 2206 * being executed when not needed. 2207 */ 2208 if (static_branch_unlikely(&i2c_trace_msg_key)) { 2209 int i; 2210 for (i = 0; i < num; i++) 2211 if (msgs[i].flags & I2C_M_RD) 2212 trace_i2c_read(adap, &msgs[i], i); 2213 else 2214 trace_i2c_write(adap, &msgs[i], i); 2215 } 2216 2217 /* Retry automatically on arbitration loss */ 2218 orig_jiffies = jiffies; 2219 for (ret = 0, try = 0; try <= adap->retries; try++) { 2220 if (i2c_in_atomic_xfer_mode() && adap->algo->master_xfer_atomic) 2221 ret = adap->algo->master_xfer_atomic(adap, msgs, num); 2222 else 2223 ret = adap->algo->master_xfer(adap, msgs, num); 2224 2225 if (ret != -EAGAIN) 2226 break; 2227 if (time_after(jiffies, orig_jiffies + adap->timeout)) 2228 break; 2229 } 2230 2231 if (static_branch_unlikely(&i2c_trace_msg_key)) { 2232 int i; 2233 for (i = 0; i < ret; i++) 2234 if (msgs[i].flags & I2C_M_RD) 2235 trace_i2c_reply(adap, &msgs[i], i); 2236 trace_i2c_result(adap, num, ret); 2237 } 2238 2239 return ret; 2240 } 2241 EXPORT_SYMBOL(__i2c_transfer); 2242 2243 /** 2244 * i2c_transfer - execute a single or combined I2C message 2245 * @adap: Handle to I2C bus 2246 * @msgs: One or more messages to execute before STOP is issued to 2247 * terminate the operation; each message begins with a START. 2248 * @num: Number of messages to be executed. 2249 * 2250 * Returns negative errno, else the number of messages executed. 2251 * 2252 * Note that there is no requirement that each message be sent to 2253 * the same slave address, although that is the most common model. 2254 */ 2255 int i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) 2256 { 2257 int ret; 2258 2259 /* REVISIT the fault reporting model here is weak: 2260 * 2261 * - When we get an error after receiving N bytes from a slave, 2262 * there is no way to report "N". 2263 * 2264 * - When we get a NAK after transmitting N bytes to a slave, 2265 * there is no way to report "N" ... or to let the master 2266 * continue executing the rest of this combined message, if 2267 * that's the appropriate response. 2268 * 2269 * - When for example "num" is two and we successfully complete 2270 * the first message but get an error part way through the 2271 * second, it's unclear whether that should be reported as 2272 * one (discarding status on the second message) or errno 2273 * (discarding status on the first one). 2274 */ 2275 ret = __i2c_lock_bus_helper(adap); 2276 if (ret) 2277 return ret; 2278 2279 ret = __i2c_transfer(adap, msgs, num); 2280 i2c_unlock_bus(adap, I2C_LOCK_SEGMENT); 2281 2282 return ret; 2283 } 2284 EXPORT_SYMBOL(i2c_transfer); 2285 2286 /** 2287 * i2c_transfer_buffer_flags - issue a single I2C message transferring data 2288 * to/from a buffer 2289 * @client: Handle to slave device 2290 * @buf: Where the data is stored 2291 * @count: How many bytes to transfer, must be less than 64k since msg.len is u16 2292 * @flags: The flags to be used for the message, e.g. I2C_M_RD for reads 2293 * 2294 * Returns negative errno, or else the number of bytes transferred. 2295 */ 2296 int i2c_transfer_buffer_flags(const struct i2c_client *client, char *buf, 2297 int count, u16 flags) 2298 { 2299 int ret; 2300 struct i2c_msg msg = { 2301 .addr = client->addr, 2302 .flags = flags | (client->flags & I2C_M_TEN), 2303 .len = count, 2304 .buf = buf, 2305 }; 2306 2307 ret = i2c_transfer(client->adapter, &msg, 1); 2308 2309 /* 2310 * If everything went ok (i.e. 1 msg transferred), return #bytes 2311 * transferred, else error code. 2312 */ 2313 return (ret == 1) ? count : ret; 2314 } 2315 EXPORT_SYMBOL(i2c_transfer_buffer_flags); 2316 2317 /** 2318 * i2c_get_device_id - get manufacturer, part id and die revision of a device 2319 * @client: The device to query 2320 * @id: The queried information 2321 * 2322 * Returns negative errno on error, zero on success. 2323 */ 2324 int i2c_get_device_id(const struct i2c_client *client, 2325 struct i2c_device_identity *id) 2326 { 2327 struct i2c_adapter *adap = client->adapter; 2328 union i2c_smbus_data raw_id; 2329 int ret; 2330 2331 if (!i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_I2C_BLOCK)) 2332 return -EOPNOTSUPP; 2333 2334 raw_id.block[0] = 3; 2335 ret = i2c_smbus_xfer(adap, I2C_ADDR_DEVICE_ID, 0, 2336 I2C_SMBUS_READ, client->addr << 1, 2337 I2C_SMBUS_I2C_BLOCK_DATA, &raw_id); 2338 if (ret) 2339 return ret; 2340 2341 id->manufacturer_id = (raw_id.block[1] << 4) | (raw_id.block[2] >> 4); 2342 id->part_id = ((raw_id.block[2] & 0xf) << 5) | (raw_id.block[3] >> 3); 2343 id->die_revision = raw_id.block[3] & 0x7; 2344 return 0; 2345 } 2346 EXPORT_SYMBOL_GPL(i2c_get_device_id); 2347 2348 /** 2349 * i2c_client_get_device_id - get the driver match table entry of a device 2350 * @client: the device to query. The device must be bound to a driver 2351 * 2352 * Returns a pointer to the matching entry if found, NULL otherwise. 2353 */ 2354 const struct i2c_device_id *i2c_client_get_device_id(const struct i2c_client *client) 2355 { 2356 const struct i2c_driver *drv = to_i2c_driver(client->dev.driver); 2357 2358 return i2c_match_id(drv->id_table, client); 2359 } 2360 EXPORT_SYMBOL_GPL(i2c_client_get_device_id); 2361 2362 /* ---------------------------------------------------- 2363 * the i2c address scanning function 2364 * Will not work for 10-bit addresses! 2365 * ---------------------------------------------------- 2366 */ 2367 2368 /* 2369 * Legacy default probe function, mostly relevant for SMBus. The default 2370 * probe method is a quick write, but it is known to corrupt the 24RF08 2371 * EEPROMs due to a state machine bug, and could also irreversibly 2372 * write-protect some EEPROMs, so for address ranges 0x30-0x37 and 0x50-0x5f, 2373 * we use a short byte read instead. Also, some bus drivers don't implement 2374 * quick write, so we fallback to a byte read in that case too. 2375 * On x86, there is another special case for FSC hardware monitoring chips, 2376 * which want regular byte reads (address 0x73.) Fortunately, these are the 2377 * only known chips using this I2C address on PC hardware. 2378 * Returns 1 if probe succeeded, 0 if not. 2379 */ 2380 static int i2c_default_probe(struct i2c_adapter *adap, unsigned short addr) 2381 { 2382 int err; 2383 union i2c_smbus_data dummy; 2384 2385 #ifdef CONFIG_X86 2386 if (addr == 0x73 && (adap->class & I2C_CLASS_HWMON) 2387 && i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_BYTE_DATA)) 2388 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0, 2389 I2C_SMBUS_BYTE_DATA, &dummy); 2390 else 2391 #endif 2392 if (!((addr & ~0x07) == 0x30 || (addr & ~0x0f) == 0x50) 2393 && i2c_check_functionality(adap, I2C_FUNC_SMBUS_QUICK)) 2394 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_WRITE, 0, 2395 I2C_SMBUS_QUICK, NULL); 2396 else if (i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_BYTE)) 2397 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0, 2398 I2C_SMBUS_BYTE, &dummy); 2399 else { 2400 dev_warn(&adap->dev, "No suitable probing method supported for address 0x%02X\n", 2401 addr); 2402 err = -EOPNOTSUPP; 2403 } 2404 2405 return err >= 0; 2406 } 2407 2408 static int i2c_detect_address(struct i2c_client *temp_client, 2409 struct i2c_driver *driver) 2410 { 2411 struct i2c_board_info info; 2412 struct i2c_adapter *adapter = temp_client->adapter; 2413 int addr = temp_client->addr; 2414 int err; 2415 2416 /* Make sure the address is valid */ 2417 err = i2c_check_7bit_addr_validity_strict(addr); 2418 if (err) { 2419 dev_warn(&adapter->dev, "Invalid probe address 0x%02x\n", 2420 addr); 2421 return err; 2422 } 2423 2424 /* Skip if already in use (7 bit, no need to encode flags) */ 2425 if (i2c_check_addr_busy(adapter, addr)) 2426 return 0; 2427 2428 /* Make sure there is something at this address */ 2429 if (!i2c_default_probe(adapter, addr)) 2430 return 0; 2431 2432 /* Finally call the custom detection function */ 2433 memset(&info, 0, sizeof(struct i2c_board_info)); 2434 info.addr = addr; 2435 info.flags = I2C_CLIENT_AUTO; 2436 err = driver->detect(temp_client, &info); 2437 if (err) { 2438 /* -ENODEV is returned if the detection fails. We catch it 2439 here as this isn't an error. */ 2440 return err == -ENODEV ? 0 : err; 2441 } 2442 2443 /* Consistency check */ 2444 if (info.type[0] == '\0') { 2445 dev_err(&adapter->dev, 2446 "%s detection function provided no name for 0x%x\n", 2447 driver->driver.name, addr); 2448 } else { 2449 struct i2c_client *client; 2450 2451 /* Detection succeeded, instantiate the device */ 2452 if (adapter->class & I2C_CLASS_DEPRECATED) 2453 dev_warn(&adapter->dev, 2454 "This adapter will soon drop class based instantiation of devices. " 2455 "Please make sure client 0x%02x gets instantiated by other means. " 2456 "Check 'Documentation/i2c/instantiating-devices.rst' for details.\n", 2457 info.addr); 2458 2459 dev_dbg(&adapter->dev, "Creating %s at 0x%02x\n", 2460 info.type, info.addr); 2461 client = i2c_new_client_device(adapter, &info); 2462 if (IS_ERR(client)) 2463 dev_err(&adapter->dev, "Failed creating %s at 0x%02x\n", 2464 info.type, info.addr); 2465 } 2466 return 0; 2467 } 2468 2469 static int i2c_detect(struct i2c_adapter *adapter, struct i2c_driver *driver) 2470 { 2471 const unsigned short *address_list; 2472 struct i2c_client temp_client; 2473 int i, err = 0; 2474 2475 address_list = driver->address_list; 2476 if (!driver->detect || !address_list) 2477 return 0; 2478 2479 /* Warn that the adapter lost class based instantiation */ 2480 if (adapter->class == I2C_CLASS_DEPRECATED) { 2481 dev_dbg(&adapter->dev, 2482 "This adapter dropped support for I2C classes and won't auto-detect %s devices anymore. " 2483 "If you need it, check 'Documentation/i2c/instantiating-devices.rst' for alternatives.\n", 2484 driver->driver.name); 2485 return 0; 2486 } 2487 2488 /* Stop here if the classes do not match */ 2489 if (!(adapter->class & driver->class)) 2490 return 0; 2491 2492 /* Set up a temporary client to help detect callback */ 2493 memset(&temp_client, 0, sizeof(temp_client)); 2494 temp_client.adapter = adapter; 2495 2496 for (i = 0; address_list[i] != I2C_CLIENT_END; i += 1) { 2497 dev_dbg(&adapter->dev, 2498 "found normal entry for adapter %d, addr 0x%02x\n", 2499 i2c_adapter_id(adapter), address_list[i]); 2500 temp_client.addr = address_list[i]; 2501 err = i2c_detect_address(&temp_client, driver); 2502 if (unlikely(err)) 2503 break; 2504 } 2505 2506 return err; 2507 } 2508 2509 int i2c_probe_func_quick_read(struct i2c_adapter *adap, unsigned short addr) 2510 { 2511 return i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0, 2512 I2C_SMBUS_QUICK, NULL) >= 0; 2513 } 2514 EXPORT_SYMBOL_GPL(i2c_probe_func_quick_read); 2515 2516 struct i2c_client * 2517 i2c_new_scanned_device(struct i2c_adapter *adap, 2518 struct i2c_board_info *info, 2519 unsigned short const *addr_list, 2520 int (*probe)(struct i2c_adapter *adap, unsigned short addr)) 2521 { 2522 int i; 2523 2524 if (!probe) 2525 probe = i2c_default_probe; 2526 2527 for (i = 0; addr_list[i] != I2C_CLIENT_END; i++) { 2528 /* Check address validity */ 2529 if (i2c_check_7bit_addr_validity_strict(addr_list[i]) < 0) { 2530 dev_warn(&adap->dev, "Invalid 7-bit address 0x%02x\n", 2531 addr_list[i]); 2532 continue; 2533 } 2534 2535 /* Check address availability (7 bit, no need to encode flags) */ 2536 if (i2c_check_addr_busy(adap, addr_list[i])) { 2537 dev_dbg(&adap->dev, 2538 "Address 0x%02x already in use, not probing\n", 2539 addr_list[i]); 2540 continue; 2541 } 2542 2543 /* Test address responsiveness */ 2544 if (probe(adap, addr_list[i])) 2545 break; 2546 } 2547 2548 if (addr_list[i] == I2C_CLIENT_END) { 2549 dev_dbg(&adap->dev, "Probing failed, no device found\n"); 2550 return ERR_PTR(-ENODEV); 2551 } 2552 2553 info->addr = addr_list[i]; 2554 return i2c_new_client_device(adap, info); 2555 } 2556 EXPORT_SYMBOL_GPL(i2c_new_scanned_device); 2557 2558 struct i2c_adapter *i2c_get_adapter(int nr) 2559 { 2560 struct i2c_adapter *adapter; 2561 2562 mutex_lock(&core_lock); 2563 adapter = idr_find(&i2c_adapter_idr, nr); 2564 if (!adapter) 2565 goto exit; 2566 2567 if (try_module_get(adapter->owner)) 2568 get_device(&adapter->dev); 2569 else 2570 adapter = NULL; 2571 2572 exit: 2573 mutex_unlock(&core_lock); 2574 return adapter; 2575 } 2576 EXPORT_SYMBOL(i2c_get_adapter); 2577 2578 void i2c_put_adapter(struct i2c_adapter *adap) 2579 { 2580 if (!adap) 2581 return; 2582 2583 module_put(adap->owner); 2584 /* Should be last, otherwise we risk use-after-free with 'adap' */ 2585 put_device(&adap->dev); 2586 } 2587 EXPORT_SYMBOL(i2c_put_adapter); 2588 2589 /** 2590 * i2c_get_dma_safe_msg_buf() - get a DMA safe buffer for the given i2c_msg 2591 * @msg: the message to be checked 2592 * @threshold: the minimum number of bytes for which using DMA makes sense. 2593 * Should at least be 1. 2594 * 2595 * Return: NULL if a DMA safe buffer was not obtained. Use msg->buf with PIO. 2596 * Or a valid pointer to be used with DMA. After use, release it by 2597 * calling i2c_put_dma_safe_msg_buf(). 2598 * 2599 * This function must only be called from process context! 2600 */ 2601 u8 *i2c_get_dma_safe_msg_buf(struct i2c_msg *msg, unsigned int threshold) 2602 { 2603 /* also skip 0-length msgs for bogus thresholds of 0 */ 2604 if (!threshold) 2605 pr_debug("DMA buffer for addr=0x%02x with length 0 is bogus\n", 2606 msg->addr); 2607 if (msg->len < threshold || msg->len == 0) 2608 return NULL; 2609 2610 if (msg->flags & I2C_M_DMA_SAFE) 2611 return msg->buf; 2612 2613 pr_debug("using bounce buffer for addr=0x%02x, len=%d\n", 2614 msg->addr, msg->len); 2615 2616 if (msg->flags & I2C_M_RD) 2617 return kzalloc(msg->len, GFP_KERNEL); 2618 else 2619 return kmemdup(msg->buf, msg->len, GFP_KERNEL); 2620 } 2621 EXPORT_SYMBOL_GPL(i2c_get_dma_safe_msg_buf); 2622 2623 /** 2624 * i2c_put_dma_safe_msg_buf - release DMA safe buffer and sync with i2c_msg 2625 * @buf: the buffer obtained from i2c_get_dma_safe_msg_buf(). May be NULL. 2626 * @msg: the message which the buffer corresponds to 2627 * @xferred: bool saying if the message was transferred 2628 */ 2629 void i2c_put_dma_safe_msg_buf(u8 *buf, struct i2c_msg *msg, bool xferred) 2630 { 2631 if (!buf || buf == msg->buf) 2632 return; 2633 2634 if (xferred && msg->flags & I2C_M_RD) 2635 memcpy(msg->buf, buf, msg->len); 2636 2637 kfree(buf); 2638 } 2639 EXPORT_SYMBOL_GPL(i2c_put_dma_safe_msg_buf); 2640 2641 MODULE_AUTHOR("Simon G. Vogl <simon@tk.uni-linz.ac.at>"); 2642 MODULE_DESCRIPTION("I2C-Bus main module"); 2643 MODULE_LICENSE("GPL"); 2644