xref: /linux/drivers/i2c/i2c-core-base.c (revision 3d0fe49454652117522f60bfbefb978ba0e5300b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux I2C core
4  *
5  * Copyright (C) 1995-99 Simon G. Vogl
6  *   With some changes from Kyösti Mälkki <kmalkki@cc.hut.fi>
7  *   Mux support by Rodolfo Giometti <giometti@enneenne.com> and
8  *   Michael Lawnick <michael.lawnick.ext@nsn.com>
9  *
10  * Copyright (C) 2013-2017 Wolfram Sang <wsa@kernel.org>
11  */
12 
13 #define pr_fmt(fmt) "i2c-core: " fmt
14 
15 #include <dt-bindings/i2c/i2c.h>
16 #include <linux/acpi.h>
17 #include <linux/clk/clk-conf.h>
18 #include <linux/completion.h>
19 #include <linux/delay.h>
20 #include <linux/err.h>
21 #include <linux/errno.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/i2c.h>
24 #include <linux/i2c-smbus.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/irqflags.h>
29 #include <linux/jump_label.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/mutex.h>
33 #include <linux/of_device.h>
34 #include <linux/of.h>
35 #include <linux/of_irq.h>
36 #include <linux/pinctrl/consumer.h>
37 #include <linux/pinctrl/devinfo.h>
38 #include <linux/pm_domain.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/pm_wakeirq.h>
41 #include <linux/property.h>
42 #include <linux/rwsem.h>
43 #include <linux/slab.h>
44 
45 #include "i2c-core.h"
46 
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/i2c.h>
49 
50 #define I2C_ADDR_OFFSET_TEN_BIT	0xa000
51 #define I2C_ADDR_OFFSET_SLAVE	0x1000
52 
53 #define I2C_ADDR_7BITS_MAX	0x77
54 #define I2C_ADDR_7BITS_COUNT	(I2C_ADDR_7BITS_MAX + 1)
55 
56 #define I2C_ADDR_DEVICE_ID	0x7c
57 
58 /*
59  * core_lock protects i2c_adapter_idr, and guarantees that device detection,
60  * deletion of detected devices are serialized
61  */
62 static DEFINE_MUTEX(core_lock);
63 static DEFINE_IDR(i2c_adapter_idr);
64 
65 static int i2c_detect(struct i2c_adapter *adapter, struct i2c_driver *driver);
66 
67 static DEFINE_STATIC_KEY_FALSE(i2c_trace_msg_key);
68 static bool is_registered;
69 
70 int i2c_transfer_trace_reg(void)
71 {
72 	static_branch_inc(&i2c_trace_msg_key);
73 	return 0;
74 }
75 
76 void i2c_transfer_trace_unreg(void)
77 {
78 	static_branch_dec(&i2c_trace_msg_key);
79 }
80 
81 const char *i2c_freq_mode_string(u32 bus_freq_hz)
82 {
83 	switch (bus_freq_hz) {
84 	case I2C_MAX_STANDARD_MODE_FREQ:
85 		return "Standard Mode (100 kHz)";
86 	case I2C_MAX_FAST_MODE_FREQ:
87 		return "Fast Mode (400 kHz)";
88 	case I2C_MAX_FAST_MODE_PLUS_FREQ:
89 		return "Fast Mode Plus (1.0 MHz)";
90 	case I2C_MAX_TURBO_MODE_FREQ:
91 		return "Turbo Mode (1.4 MHz)";
92 	case I2C_MAX_HIGH_SPEED_MODE_FREQ:
93 		return "High Speed Mode (3.4 MHz)";
94 	case I2C_MAX_ULTRA_FAST_MODE_FREQ:
95 		return "Ultra Fast Mode (5.0 MHz)";
96 	default:
97 		return "Unknown Mode";
98 	}
99 }
100 EXPORT_SYMBOL_GPL(i2c_freq_mode_string);
101 
102 const struct i2c_device_id *i2c_match_id(const struct i2c_device_id *id,
103 						const struct i2c_client *client)
104 {
105 	if (!(id && client))
106 		return NULL;
107 
108 	while (id->name[0]) {
109 		if (strcmp(client->name, id->name) == 0)
110 			return id;
111 		id++;
112 	}
113 	return NULL;
114 }
115 EXPORT_SYMBOL_GPL(i2c_match_id);
116 
117 const void *i2c_get_match_data(const struct i2c_client *client)
118 {
119 	struct i2c_driver *driver = to_i2c_driver(client->dev.driver);
120 	const struct i2c_device_id *match;
121 	const void *data;
122 
123 	data = device_get_match_data(&client->dev);
124 	if (!data) {
125 		match = i2c_match_id(driver->id_table, client);
126 		if (!match)
127 			return NULL;
128 
129 		data = (const void *)match->driver_data;
130 	}
131 
132 	return data;
133 }
134 EXPORT_SYMBOL(i2c_get_match_data);
135 
136 static int i2c_device_match(struct device *dev, struct device_driver *drv)
137 {
138 	struct i2c_client	*client = i2c_verify_client(dev);
139 	struct i2c_driver	*driver;
140 
141 
142 	/* Attempt an OF style match */
143 	if (i2c_of_match_device(drv->of_match_table, client))
144 		return 1;
145 
146 	/* Then ACPI style match */
147 	if (acpi_driver_match_device(dev, drv))
148 		return 1;
149 
150 	driver = to_i2c_driver(drv);
151 
152 	/* Finally an I2C match */
153 	if (i2c_match_id(driver->id_table, client))
154 		return 1;
155 
156 	return 0;
157 }
158 
159 static int i2c_device_uevent(const struct device *dev, struct kobj_uevent_env *env)
160 {
161 	const struct i2c_client *client = to_i2c_client(dev);
162 	int rc;
163 
164 	rc = of_device_uevent_modalias(dev, env);
165 	if (rc != -ENODEV)
166 		return rc;
167 
168 	rc = acpi_device_uevent_modalias(dev, env);
169 	if (rc != -ENODEV)
170 		return rc;
171 
172 	return add_uevent_var(env, "MODALIAS=%s%s", I2C_MODULE_PREFIX, client->name);
173 }
174 
175 /* i2c bus recovery routines */
176 static int get_scl_gpio_value(struct i2c_adapter *adap)
177 {
178 	return gpiod_get_value_cansleep(adap->bus_recovery_info->scl_gpiod);
179 }
180 
181 static void set_scl_gpio_value(struct i2c_adapter *adap, int val)
182 {
183 	gpiod_set_value_cansleep(adap->bus_recovery_info->scl_gpiod, val);
184 }
185 
186 static int get_sda_gpio_value(struct i2c_adapter *adap)
187 {
188 	return gpiod_get_value_cansleep(adap->bus_recovery_info->sda_gpiod);
189 }
190 
191 static void set_sda_gpio_value(struct i2c_adapter *adap, int val)
192 {
193 	gpiod_set_value_cansleep(adap->bus_recovery_info->sda_gpiod, val);
194 }
195 
196 static int i2c_generic_bus_free(struct i2c_adapter *adap)
197 {
198 	struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
199 	int ret = -EOPNOTSUPP;
200 
201 	if (bri->get_bus_free)
202 		ret = bri->get_bus_free(adap);
203 	else if (bri->get_sda)
204 		ret = bri->get_sda(adap);
205 
206 	if (ret < 0)
207 		return ret;
208 
209 	return ret ? 0 : -EBUSY;
210 }
211 
212 /*
213  * We are generating clock pulses. ndelay() determines durating of clk pulses.
214  * We will generate clock with rate 100 KHz and so duration of both clock levels
215  * is: delay in ns = (10^6 / 100) / 2
216  */
217 #define RECOVERY_NDELAY		5000
218 #define RECOVERY_CLK_CNT	9
219 
220 int i2c_generic_scl_recovery(struct i2c_adapter *adap)
221 {
222 	struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
223 	int i = 0, scl = 1, ret = 0;
224 
225 	if (bri->prepare_recovery)
226 		bri->prepare_recovery(adap);
227 	if (bri->pinctrl)
228 		pinctrl_select_state(bri->pinctrl, bri->pins_gpio);
229 
230 	/*
231 	 * If we can set SDA, we will always create a STOP to ensure additional
232 	 * pulses will do no harm. This is achieved by letting SDA follow SCL
233 	 * half a cycle later. Check the 'incomplete_write_byte' fault injector
234 	 * for details. Note that we must honour tsu:sto, 4us, but lets use 5us
235 	 * here for simplicity.
236 	 */
237 	bri->set_scl(adap, scl);
238 	ndelay(RECOVERY_NDELAY);
239 	if (bri->set_sda)
240 		bri->set_sda(adap, scl);
241 	ndelay(RECOVERY_NDELAY / 2);
242 
243 	/*
244 	 * By this time SCL is high, as we need to give 9 falling-rising edges
245 	 */
246 	while (i++ < RECOVERY_CLK_CNT * 2) {
247 		if (scl) {
248 			/* SCL shouldn't be low here */
249 			if (!bri->get_scl(adap)) {
250 				dev_err(&adap->dev,
251 					"SCL is stuck low, exit recovery\n");
252 				ret = -EBUSY;
253 				break;
254 			}
255 		}
256 
257 		scl = !scl;
258 		bri->set_scl(adap, scl);
259 		/* Creating STOP again, see above */
260 		if (scl)  {
261 			/* Honour minimum tsu:sto */
262 			ndelay(RECOVERY_NDELAY);
263 		} else {
264 			/* Honour minimum tf and thd:dat */
265 			ndelay(RECOVERY_NDELAY / 2);
266 		}
267 		if (bri->set_sda)
268 			bri->set_sda(adap, scl);
269 		ndelay(RECOVERY_NDELAY / 2);
270 
271 		if (scl) {
272 			ret = i2c_generic_bus_free(adap);
273 			if (ret == 0)
274 				break;
275 		}
276 	}
277 
278 	/* If we can't check bus status, assume recovery worked */
279 	if (ret == -EOPNOTSUPP)
280 		ret = 0;
281 
282 	if (bri->unprepare_recovery)
283 		bri->unprepare_recovery(adap);
284 	if (bri->pinctrl)
285 		pinctrl_select_state(bri->pinctrl, bri->pins_default);
286 
287 	return ret;
288 }
289 EXPORT_SYMBOL_GPL(i2c_generic_scl_recovery);
290 
291 int i2c_recover_bus(struct i2c_adapter *adap)
292 {
293 	if (!adap->bus_recovery_info)
294 		return -EBUSY;
295 
296 	dev_dbg(&adap->dev, "Trying i2c bus recovery\n");
297 	return adap->bus_recovery_info->recover_bus(adap);
298 }
299 EXPORT_SYMBOL_GPL(i2c_recover_bus);
300 
301 static void i2c_gpio_init_pinctrl_recovery(struct i2c_adapter *adap)
302 {
303 	struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
304 	struct device *dev = &adap->dev;
305 	struct pinctrl *p = bri->pinctrl ?: dev_pinctrl(dev->parent);
306 
307 	bri->pinctrl = p;
308 
309 	/*
310 	 * we can't change states without pinctrl, so remove the states if
311 	 * populated
312 	 */
313 	if (!p) {
314 		bri->pins_default = NULL;
315 		bri->pins_gpio = NULL;
316 		return;
317 	}
318 
319 	if (!bri->pins_default) {
320 		bri->pins_default = pinctrl_lookup_state(p,
321 							 PINCTRL_STATE_DEFAULT);
322 		if (IS_ERR(bri->pins_default)) {
323 			dev_dbg(dev, PINCTRL_STATE_DEFAULT " state not found for GPIO recovery\n");
324 			bri->pins_default = NULL;
325 		}
326 	}
327 	if (!bri->pins_gpio) {
328 		bri->pins_gpio = pinctrl_lookup_state(p, "gpio");
329 		if (IS_ERR(bri->pins_gpio))
330 			bri->pins_gpio = pinctrl_lookup_state(p, "recovery");
331 
332 		if (IS_ERR(bri->pins_gpio)) {
333 			dev_dbg(dev, "no gpio or recovery state found for GPIO recovery\n");
334 			bri->pins_gpio = NULL;
335 		}
336 	}
337 
338 	/* for pinctrl state changes, we need all the information */
339 	if (bri->pins_default && bri->pins_gpio) {
340 		dev_info(dev, "using pinctrl states for GPIO recovery");
341 	} else {
342 		bri->pinctrl = NULL;
343 		bri->pins_default = NULL;
344 		bri->pins_gpio = NULL;
345 	}
346 }
347 
348 static int i2c_gpio_init_generic_recovery(struct i2c_adapter *adap)
349 {
350 	struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
351 	struct device *dev = &adap->dev;
352 	struct gpio_desc *gpiod;
353 	int ret = 0;
354 
355 	/*
356 	 * don't touch the recovery information if the driver is not using
357 	 * generic SCL recovery
358 	 */
359 	if (bri->recover_bus && bri->recover_bus != i2c_generic_scl_recovery)
360 		return 0;
361 
362 	/*
363 	 * pins might be taken as GPIO, so we should inform pinctrl about
364 	 * this and move the state to GPIO
365 	 */
366 	if (bri->pinctrl)
367 		pinctrl_select_state(bri->pinctrl, bri->pins_gpio);
368 
369 	/*
370 	 * if there is incomplete or no recovery information, see if generic
371 	 * GPIO recovery is available
372 	 */
373 	if (!bri->scl_gpiod) {
374 		gpiod = devm_gpiod_get(dev, "scl", GPIOD_OUT_HIGH_OPEN_DRAIN);
375 		if (PTR_ERR(gpiod) == -EPROBE_DEFER) {
376 			ret  = -EPROBE_DEFER;
377 			goto cleanup_pinctrl_state;
378 		}
379 		if (!IS_ERR(gpiod)) {
380 			bri->scl_gpiod = gpiod;
381 			bri->recover_bus = i2c_generic_scl_recovery;
382 			dev_info(dev, "using generic GPIOs for recovery\n");
383 		}
384 	}
385 
386 	/* SDA GPIOD line is optional, so we care about DEFER only */
387 	if (!bri->sda_gpiod) {
388 		/*
389 		 * We have SCL. Pull SCL low and wait a bit so that SDA glitches
390 		 * have no effect.
391 		 */
392 		gpiod_direction_output(bri->scl_gpiod, 0);
393 		udelay(10);
394 		gpiod = devm_gpiod_get(dev, "sda", GPIOD_IN);
395 
396 		/* Wait a bit in case of a SDA glitch, and then release SCL. */
397 		udelay(10);
398 		gpiod_direction_output(bri->scl_gpiod, 1);
399 
400 		if (PTR_ERR(gpiod) == -EPROBE_DEFER) {
401 			ret = -EPROBE_DEFER;
402 			goto cleanup_pinctrl_state;
403 		}
404 		if (!IS_ERR(gpiod))
405 			bri->sda_gpiod = gpiod;
406 	}
407 
408 cleanup_pinctrl_state:
409 	/* change the state of the pins back to their default state */
410 	if (bri->pinctrl)
411 		pinctrl_select_state(bri->pinctrl, bri->pins_default);
412 
413 	return ret;
414 }
415 
416 static int i2c_gpio_init_recovery(struct i2c_adapter *adap)
417 {
418 	i2c_gpio_init_pinctrl_recovery(adap);
419 	return i2c_gpio_init_generic_recovery(adap);
420 }
421 
422 static int i2c_init_recovery(struct i2c_adapter *adap)
423 {
424 	struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
425 	bool is_error_level = true;
426 	char *err_str;
427 
428 	if (!bri)
429 		return 0;
430 
431 	if (i2c_gpio_init_recovery(adap) == -EPROBE_DEFER)
432 		return -EPROBE_DEFER;
433 
434 	if (!bri->recover_bus) {
435 		err_str = "no suitable method provided";
436 		is_error_level = false;
437 		goto err;
438 	}
439 
440 	if (bri->scl_gpiod && bri->recover_bus == i2c_generic_scl_recovery) {
441 		bri->get_scl = get_scl_gpio_value;
442 		bri->set_scl = set_scl_gpio_value;
443 		if (bri->sda_gpiod) {
444 			bri->get_sda = get_sda_gpio_value;
445 			/* FIXME: add proper flag instead of '0' once available */
446 			if (gpiod_get_direction(bri->sda_gpiod) == 0)
447 				bri->set_sda = set_sda_gpio_value;
448 		}
449 	} else if (bri->recover_bus == i2c_generic_scl_recovery) {
450 		/* Generic SCL recovery */
451 		if (!bri->set_scl || !bri->get_scl) {
452 			err_str = "no {get|set}_scl() found";
453 			goto err;
454 		}
455 		if (!bri->set_sda && !bri->get_sda) {
456 			err_str = "either get_sda() or set_sda() needed";
457 			goto err;
458 		}
459 	}
460 
461 	return 0;
462  err:
463 	if (is_error_level)
464 		dev_err(&adap->dev, "Not using recovery: %s\n", err_str);
465 	else
466 		dev_dbg(&adap->dev, "Not using recovery: %s\n", err_str);
467 	adap->bus_recovery_info = NULL;
468 
469 	return -EINVAL;
470 }
471 
472 static int i2c_smbus_host_notify_to_irq(const struct i2c_client *client)
473 {
474 	struct i2c_adapter *adap = client->adapter;
475 	unsigned int irq;
476 
477 	if (!adap->host_notify_domain)
478 		return -ENXIO;
479 
480 	if (client->flags & I2C_CLIENT_TEN)
481 		return -EINVAL;
482 
483 	irq = irq_create_mapping(adap->host_notify_domain, client->addr);
484 
485 	return irq > 0 ? irq : -ENXIO;
486 }
487 
488 static int i2c_device_probe(struct device *dev)
489 {
490 	struct i2c_client	*client = i2c_verify_client(dev);
491 	struct i2c_driver	*driver;
492 	bool do_power_on;
493 	int status;
494 
495 	if (!client)
496 		return 0;
497 
498 	client->irq = client->init_irq;
499 
500 	if (!client->irq) {
501 		int irq = -ENOENT;
502 
503 		if (client->flags & I2C_CLIENT_HOST_NOTIFY) {
504 			dev_dbg(dev, "Using Host Notify IRQ\n");
505 			/* Keep adapter active when Host Notify is required */
506 			pm_runtime_get_sync(&client->adapter->dev);
507 			irq = i2c_smbus_host_notify_to_irq(client);
508 		} else if (dev->of_node) {
509 			irq = of_irq_get_byname(dev->of_node, "irq");
510 			if (irq == -EINVAL || irq == -ENODATA)
511 				irq = of_irq_get(dev->of_node, 0);
512 		} else if (ACPI_COMPANION(dev)) {
513 			bool wake_capable;
514 
515 			irq = i2c_acpi_get_irq(client, &wake_capable);
516 			if (irq > 0 && wake_capable)
517 				client->flags |= I2C_CLIENT_WAKE;
518 		}
519 		if (irq == -EPROBE_DEFER) {
520 			status = irq;
521 			goto put_sync_adapter;
522 		}
523 
524 		if (irq < 0)
525 			irq = 0;
526 
527 		client->irq = irq;
528 	}
529 
530 	driver = to_i2c_driver(dev->driver);
531 
532 	/*
533 	 * An I2C ID table is not mandatory, if and only if, a suitable OF
534 	 * or ACPI ID table is supplied for the probing device.
535 	 */
536 	if (!driver->id_table &&
537 	    !acpi_driver_match_device(dev, dev->driver) &&
538 	    !i2c_of_match_device(dev->driver->of_match_table, client)) {
539 		status = -ENODEV;
540 		goto put_sync_adapter;
541 	}
542 
543 	if (client->flags & I2C_CLIENT_WAKE) {
544 		int wakeirq;
545 
546 		wakeirq = of_irq_get_byname(dev->of_node, "wakeup");
547 		if (wakeirq == -EPROBE_DEFER) {
548 			status = wakeirq;
549 			goto put_sync_adapter;
550 		}
551 
552 		device_init_wakeup(&client->dev, true);
553 
554 		if (wakeirq > 0 && wakeirq != client->irq)
555 			status = dev_pm_set_dedicated_wake_irq(dev, wakeirq);
556 		else if (client->irq > 0)
557 			status = dev_pm_set_wake_irq(dev, client->irq);
558 		else
559 			status = 0;
560 
561 		if (status)
562 			dev_warn(&client->dev, "failed to set up wakeup irq\n");
563 	}
564 
565 	dev_dbg(dev, "probe\n");
566 
567 	status = of_clk_set_defaults(dev->of_node, false);
568 	if (status < 0)
569 		goto err_clear_wakeup_irq;
570 
571 	do_power_on = !i2c_acpi_waive_d0_probe(dev);
572 	status = dev_pm_domain_attach(&client->dev, do_power_on);
573 	if (status)
574 		goto err_clear_wakeup_irq;
575 
576 	client->devres_group_id = devres_open_group(&client->dev, NULL,
577 						    GFP_KERNEL);
578 	if (!client->devres_group_id) {
579 		status = -ENOMEM;
580 		goto err_detach_pm_domain;
581 	}
582 
583 	if (driver->probe)
584 		status = driver->probe(client);
585 	else
586 		status = -EINVAL;
587 
588 	/*
589 	 * Note that we are not closing the devres group opened above so
590 	 * even resources that were attached to the device after probe is
591 	 * run are released when i2c_device_remove() is executed. This is
592 	 * needed as some drivers would allocate additional resources,
593 	 * for example when updating firmware.
594 	 */
595 
596 	if (status)
597 		goto err_release_driver_resources;
598 
599 	return 0;
600 
601 err_release_driver_resources:
602 	devres_release_group(&client->dev, client->devres_group_id);
603 err_detach_pm_domain:
604 	dev_pm_domain_detach(&client->dev, do_power_on);
605 err_clear_wakeup_irq:
606 	dev_pm_clear_wake_irq(&client->dev);
607 	device_init_wakeup(&client->dev, false);
608 put_sync_adapter:
609 	if (client->flags & I2C_CLIENT_HOST_NOTIFY)
610 		pm_runtime_put_sync(&client->adapter->dev);
611 
612 	return status;
613 }
614 
615 static void i2c_device_remove(struct device *dev)
616 {
617 	struct i2c_client	*client = to_i2c_client(dev);
618 	struct i2c_driver	*driver;
619 
620 	driver = to_i2c_driver(dev->driver);
621 	if (driver->remove) {
622 		dev_dbg(dev, "remove\n");
623 
624 		driver->remove(client);
625 	}
626 
627 	devres_release_group(&client->dev, client->devres_group_id);
628 
629 	dev_pm_domain_detach(&client->dev, true);
630 
631 	dev_pm_clear_wake_irq(&client->dev);
632 	device_init_wakeup(&client->dev, false);
633 
634 	client->irq = 0;
635 	if (client->flags & I2C_CLIENT_HOST_NOTIFY)
636 		pm_runtime_put(&client->adapter->dev);
637 }
638 
639 static void i2c_device_shutdown(struct device *dev)
640 {
641 	struct i2c_client *client = i2c_verify_client(dev);
642 	struct i2c_driver *driver;
643 
644 	if (!client || !dev->driver)
645 		return;
646 	driver = to_i2c_driver(dev->driver);
647 	if (driver->shutdown)
648 		driver->shutdown(client);
649 	else if (client->irq > 0)
650 		disable_irq(client->irq);
651 }
652 
653 static void i2c_client_dev_release(struct device *dev)
654 {
655 	kfree(to_i2c_client(dev));
656 }
657 
658 static ssize_t
659 name_show(struct device *dev, struct device_attribute *attr, char *buf)
660 {
661 	return sprintf(buf, "%s\n", dev->type == &i2c_client_type ?
662 		       to_i2c_client(dev)->name : to_i2c_adapter(dev)->name);
663 }
664 static DEVICE_ATTR_RO(name);
665 
666 static ssize_t
667 modalias_show(struct device *dev, struct device_attribute *attr, char *buf)
668 {
669 	struct i2c_client *client = to_i2c_client(dev);
670 	int len;
671 
672 	len = of_device_modalias(dev, buf, PAGE_SIZE);
673 	if (len != -ENODEV)
674 		return len;
675 
676 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
677 	if (len != -ENODEV)
678 		return len;
679 
680 	return sprintf(buf, "%s%s\n", I2C_MODULE_PREFIX, client->name);
681 }
682 static DEVICE_ATTR_RO(modalias);
683 
684 static struct attribute *i2c_dev_attrs[] = {
685 	&dev_attr_name.attr,
686 	/* modalias helps coldplug:  modprobe $(cat .../modalias) */
687 	&dev_attr_modalias.attr,
688 	NULL
689 };
690 ATTRIBUTE_GROUPS(i2c_dev);
691 
692 struct bus_type i2c_bus_type = {
693 	.name		= "i2c",
694 	.match		= i2c_device_match,
695 	.probe		= i2c_device_probe,
696 	.remove		= i2c_device_remove,
697 	.shutdown	= i2c_device_shutdown,
698 };
699 EXPORT_SYMBOL_GPL(i2c_bus_type);
700 
701 struct device_type i2c_client_type = {
702 	.groups		= i2c_dev_groups,
703 	.uevent		= i2c_device_uevent,
704 	.release	= i2c_client_dev_release,
705 };
706 EXPORT_SYMBOL_GPL(i2c_client_type);
707 
708 
709 /**
710  * i2c_verify_client - return parameter as i2c_client, or NULL
711  * @dev: device, probably from some driver model iterator
712  *
713  * When traversing the driver model tree, perhaps using driver model
714  * iterators like @device_for_each_child(), you can't assume very much
715  * about the nodes you find.  Use this function to avoid oopses caused
716  * by wrongly treating some non-I2C device as an i2c_client.
717  */
718 struct i2c_client *i2c_verify_client(struct device *dev)
719 {
720 	return (dev->type == &i2c_client_type)
721 			? to_i2c_client(dev)
722 			: NULL;
723 }
724 EXPORT_SYMBOL(i2c_verify_client);
725 
726 
727 /* Return a unique address which takes the flags of the client into account */
728 static unsigned short i2c_encode_flags_to_addr(struct i2c_client *client)
729 {
730 	unsigned short addr = client->addr;
731 
732 	/* For some client flags, add an arbitrary offset to avoid collisions */
733 	if (client->flags & I2C_CLIENT_TEN)
734 		addr |= I2C_ADDR_OFFSET_TEN_BIT;
735 
736 	if (client->flags & I2C_CLIENT_SLAVE)
737 		addr |= I2C_ADDR_OFFSET_SLAVE;
738 
739 	return addr;
740 }
741 
742 /* This is a permissive address validity check, I2C address map constraints
743  * are purposely not enforced, except for the general call address. */
744 static int i2c_check_addr_validity(unsigned int addr, unsigned short flags)
745 {
746 	if (flags & I2C_CLIENT_TEN) {
747 		/* 10-bit address, all values are valid */
748 		if (addr > 0x3ff)
749 			return -EINVAL;
750 	} else {
751 		/* 7-bit address, reject the general call address */
752 		if (addr == 0x00 || addr > 0x7f)
753 			return -EINVAL;
754 	}
755 	return 0;
756 }
757 
758 /* And this is a strict address validity check, used when probing. If a
759  * device uses a reserved address, then it shouldn't be probed. 7-bit
760  * addressing is assumed, 10-bit address devices are rare and should be
761  * explicitly enumerated. */
762 int i2c_check_7bit_addr_validity_strict(unsigned short addr)
763 {
764 	/*
765 	 * Reserved addresses per I2C specification:
766 	 *  0x00       General call address / START byte
767 	 *  0x01       CBUS address
768 	 *  0x02       Reserved for different bus format
769 	 *  0x03       Reserved for future purposes
770 	 *  0x04-0x07  Hs-mode master code
771 	 *  0x78-0x7b  10-bit slave addressing
772 	 *  0x7c-0x7f  Reserved for future purposes
773 	 */
774 	if (addr < 0x08 || addr > 0x77)
775 		return -EINVAL;
776 	return 0;
777 }
778 
779 static int __i2c_check_addr_busy(struct device *dev, void *addrp)
780 {
781 	struct i2c_client	*client = i2c_verify_client(dev);
782 	int			addr = *(int *)addrp;
783 
784 	if (client && i2c_encode_flags_to_addr(client) == addr)
785 		return -EBUSY;
786 	return 0;
787 }
788 
789 /* walk up mux tree */
790 static int i2c_check_mux_parents(struct i2c_adapter *adapter, int addr)
791 {
792 	struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
793 	int result;
794 
795 	result = device_for_each_child(&adapter->dev, &addr,
796 					__i2c_check_addr_busy);
797 
798 	if (!result && parent)
799 		result = i2c_check_mux_parents(parent, addr);
800 
801 	return result;
802 }
803 
804 /* recurse down mux tree */
805 static int i2c_check_mux_children(struct device *dev, void *addrp)
806 {
807 	int result;
808 
809 	if (dev->type == &i2c_adapter_type)
810 		result = device_for_each_child(dev, addrp,
811 						i2c_check_mux_children);
812 	else
813 		result = __i2c_check_addr_busy(dev, addrp);
814 
815 	return result;
816 }
817 
818 static int i2c_check_addr_busy(struct i2c_adapter *adapter, int addr)
819 {
820 	struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
821 	int result = 0;
822 
823 	if (parent)
824 		result = i2c_check_mux_parents(parent, addr);
825 
826 	if (!result)
827 		result = device_for_each_child(&adapter->dev, &addr,
828 						i2c_check_mux_children);
829 
830 	return result;
831 }
832 
833 /**
834  * i2c_adapter_lock_bus - Get exclusive access to an I2C bus segment
835  * @adapter: Target I2C bus segment
836  * @flags: I2C_LOCK_ROOT_ADAPTER locks the root i2c adapter, I2C_LOCK_SEGMENT
837  *	locks only this branch in the adapter tree
838  */
839 static void i2c_adapter_lock_bus(struct i2c_adapter *adapter,
840 				 unsigned int flags)
841 {
842 	rt_mutex_lock_nested(&adapter->bus_lock, i2c_adapter_depth(adapter));
843 }
844 
845 /**
846  * i2c_adapter_trylock_bus - Try to get exclusive access to an I2C bus segment
847  * @adapter: Target I2C bus segment
848  * @flags: I2C_LOCK_ROOT_ADAPTER trylocks the root i2c adapter, I2C_LOCK_SEGMENT
849  *	trylocks only this branch in the adapter tree
850  */
851 static int i2c_adapter_trylock_bus(struct i2c_adapter *adapter,
852 				   unsigned int flags)
853 {
854 	return rt_mutex_trylock(&adapter->bus_lock);
855 }
856 
857 /**
858  * i2c_adapter_unlock_bus - Release exclusive access to an I2C bus segment
859  * @adapter: Target I2C bus segment
860  * @flags: I2C_LOCK_ROOT_ADAPTER unlocks the root i2c adapter, I2C_LOCK_SEGMENT
861  *	unlocks only this branch in the adapter tree
862  */
863 static void i2c_adapter_unlock_bus(struct i2c_adapter *adapter,
864 				   unsigned int flags)
865 {
866 	rt_mutex_unlock(&adapter->bus_lock);
867 }
868 
869 static void i2c_dev_set_name(struct i2c_adapter *adap,
870 			     struct i2c_client *client,
871 			     struct i2c_board_info const *info)
872 {
873 	struct acpi_device *adev = ACPI_COMPANION(&client->dev);
874 
875 	if (info && info->dev_name) {
876 		dev_set_name(&client->dev, "i2c-%s", info->dev_name);
877 		return;
878 	}
879 
880 	if (adev) {
881 		dev_set_name(&client->dev, "i2c-%s", acpi_dev_name(adev));
882 		return;
883 	}
884 
885 	dev_set_name(&client->dev, "%d-%04x", i2c_adapter_id(adap),
886 		     i2c_encode_flags_to_addr(client));
887 }
888 
889 int i2c_dev_irq_from_resources(const struct resource *resources,
890 			       unsigned int num_resources)
891 {
892 	struct irq_data *irqd;
893 	int i;
894 
895 	for (i = 0; i < num_resources; i++) {
896 		const struct resource *r = &resources[i];
897 
898 		if (resource_type(r) != IORESOURCE_IRQ)
899 			continue;
900 
901 		if (r->flags & IORESOURCE_BITS) {
902 			irqd = irq_get_irq_data(r->start);
903 			if (!irqd)
904 				break;
905 
906 			irqd_set_trigger_type(irqd, r->flags & IORESOURCE_BITS);
907 		}
908 
909 		return r->start;
910 	}
911 
912 	return 0;
913 }
914 
915 /**
916  * i2c_new_client_device - instantiate an i2c device
917  * @adap: the adapter managing the device
918  * @info: describes one I2C device; bus_num is ignored
919  * Context: can sleep
920  *
921  * Create an i2c device. Binding is handled through driver model
922  * probe()/remove() methods.  A driver may be bound to this device when we
923  * return from this function, or any later moment (e.g. maybe hotplugging will
924  * load the driver module).  This call is not appropriate for use by mainboard
925  * initialization logic, which usually runs during an arch_initcall() long
926  * before any i2c_adapter could exist.
927  *
928  * This returns the new i2c client, which may be saved for later use with
929  * i2c_unregister_device(); or an ERR_PTR to describe the error.
930  */
931 struct i2c_client *
932 i2c_new_client_device(struct i2c_adapter *adap, struct i2c_board_info const *info)
933 {
934 	struct i2c_client *client;
935 	bool need_put = false;
936 	int status;
937 
938 	client = kzalloc(sizeof *client, GFP_KERNEL);
939 	if (!client)
940 		return ERR_PTR(-ENOMEM);
941 
942 	client->adapter = adap;
943 
944 	client->dev.platform_data = info->platform_data;
945 	client->flags = info->flags;
946 	client->addr = info->addr;
947 
948 	client->init_irq = info->irq;
949 	if (!client->init_irq)
950 		client->init_irq = i2c_dev_irq_from_resources(info->resources,
951 							 info->num_resources);
952 
953 	strscpy(client->name, info->type, sizeof(client->name));
954 
955 	status = i2c_check_addr_validity(client->addr, client->flags);
956 	if (status) {
957 		dev_err(&adap->dev, "Invalid %d-bit I2C address 0x%02hx\n",
958 			client->flags & I2C_CLIENT_TEN ? 10 : 7, client->addr);
959 		goto out_err_silent;
960 	}
961 
962 	/* Check for address business */
963 	status = i2c_check_addr_busy(adap, i2c_encode_flags_to_addr(client));
964 	if (status)
965 		goto out_err;
966 
967 	client->dev.parent = &client->adapter->dev;
968 	client->dev.bus = &i2c_bus_type;
969 	client->dev.type = &i2c_client_type;
970 	client->dev.of_node = of_node_get(info->of_node);
971 	client->dev.fwnode = info->fwnode;
972 
973 	device_enable_async_suspend(&client->dev);
974 
975 	if (info->swnode) {
976 		status = device_add_software_node(&client->dev, info->swnode);
977 		if (status) {
978 			dev_err(&adap->dev,
979 				"Failed to add software node to client %s: %d\n",
980 				client->name, status);
981 			goto out_err_put_of_node;
982 		}
983 	}
984 
985 	i2c_dev_set_name(adap, client, info);
986 	status = device_register(&client->dev);
987 	if (status)
988 		goto out_remove_swnode;
989 
990 	dev_dbg(&adap->dev, "client [%s] registered with bus id %s\n",
991 		client->name, dev_name(&client->dev));
992 
993 	return client;
994 
995 out_remove_swnode:
996 	device_remove_software_node(&client->dev);
997 	need_put = true;
998 out_err_put_of_node:
999 	of_node_put(info->of_node);
1000 out_err:
1001 	dev_err(&adap->dev,
1002 		"Failed to register i2c client %s at 0x%02x (%d)\n",
1003 		client->name, client->addr, status);
1004 out_err_silent:
1005 	if (need_put)
1006 		put_device(&client->dev);
1007 	else
1008 		kfree(client);
1009 	return ERR_PTR(status);
1010 }
1011 EXPORT_SYMBOL_GPL(i2c_new_client_device);
1012 
1013 /**
1014  * i2c_unregister_device - reverse effect of i2c_new_*_device()
1015  * @client: value returned from i2c_new_*_device()
1016  * Context: can sleep
1017  */
1018 void i2c_unregister_device(struct i2c_client *client)
1019 {
1020 	if (IS_ERR_OR_NULL(client))
1021 		return;
1022 
1023 	if (client->dev.of_node) {
1024 		of_node_clear_flag(client->dev.of_node, OF_POPULATED);
1025 		of_node_put(client->dev.of_node);
1026 	}
1027 
1028 	if (ACPI_COMPANION(&client->dev))
1029 		acpi_device_clear_enumerated(ACPI_COMPANION(&client->dev));
1030 	device_remove_software_node(&client->dev);
1031 	device_unregister(&client->dev);
1032 }
1033 EXPORT_SYMBOL_GPL(i2c_unregister_device);
1034 
1035 /**
1036  * i2c_find_device_by_fwnode() - find an i2c_client for the fwnode
1037  * @fwnode: &struct fwnode_handle corresponding to the &struct i2c_client
1038  *
1039  * Look up and return the &struct i2c_client corresponding to the @fwnode.
1040  * If no client can be found, or @fwnode is NULL, this returns NULL.
1041  *
1042  * The user must call put_device(&client->dev) once done with the i2c client.
1043  */
1044 struct i2c_client *i2c_find_device_by_fwnode(struct fwnode_handle *fwnode)
1045 {
1046 	struct i2c_client *client;
1047 	struct device *dev;
1048 
1049 	if (!fwnode)
1050 		return NULL;
1051 
1052 	dev = bus_find_device_by_fwnode(&i2c_bus_type, fwnode);
1053 	if (!dev)
1054 		return NULL;
1055 
1056 	client = i2c_verify_client(dev);
1057 	if (!client)
1058 		put_device(dev);
1059 
1060 	return client;
1061 }
1062 EXPORT_SYMBOL(i2c_find_device_by_fwnode);
1063 
1064 
1065 static const struct i2c_device_id dummy_id[] = {
1066 	{ "dummy", 0 },
1067 	{ },
1068 };
1069 
1070 static int dummy_probe(struct i2c_client *client)
1071 {
1072 	return 0;
1073 }
1074 
1075 static struct i2c_driver dummy_driver = {
1076 	.driver.name	= "dummy",
1077 	.probe		= dummy_probe,
1078 	.id_table	= dummy_id,
1079 };
1080 
1081 /**
1082  * i2c_new_dummy_device - return a new i2c device bound to a dummy driver
1083  * @adapter: the adapter managing the device
1084  * @address: seven bit address to be used
1085  * Context: can sleep
1086  *
1087  * This returns an I2C client bound to the "dummy" driver, intended for use
1088  * with devices that consume multiple addresses.  Examples of such chips
1089  * include various EEPROMS (like 24c04 and 24c08 models).
1090  *
1091  * These dummy devices have two main uses.  First, most I2C and SMBus calls
1092  * except i2c_transfer() need a client handle; the dummy will be that handle.
1093  * And second, this prevents the specified address from being bound to a
1094  * different driver.
1095  *
1096  * This returns the new i2c client, which should be saved for later use with
1097  * i2c_unregister_device(); or an ERR_PTR to describe the error.
1098  */
1099 struct i2c_client *i2c_new_dummy_device(struct i2c_adapter *adapter, u16 address)
1100 {
1101 	struct i2c_board_info info = {
1102 		I2C_BOARD_INFO("dummy", address),
1103 	};
1104 
1105 	return i2c_new_client_device(adapter, &info);
1106 }
1107 EXPORT_SYMBOL_GPL(i2c_new_dummy_device);
1108 
1109 static void devm_i2c_release_dummy(void *client)
1110 {
1111 	i2c_unregister_device(client);
1112 }
1113 
1114 /**
1115  * devm_i2c_new_dummy_device - return a new i2c device bound to a dummy driver
1116  * @dev: device the managed resource is bound to
1117  * @adapter: the adapter managing the device
1118  * @address: seven bit address to be used
1119  * Context: can sleep
1120  *
1121  * This is the device-managed version of @i2c_new_dummy_device. It returns the
1122  * new i2c client or an ERR_PTR in case of an error.
1123  */
1124 struct i2c_client *devm_i2c_new_dummy_device(struct device *dev,
1125 					     struct i2c_adapter *adapter,
1126 					     u16 address)
1127 {
1128 	struct i2c_client *client;
1129 	int ret;
1130 
1131 	client = i2c_new_dummy_device(adapter, address);
1132 	if (IS_ERR(client))
1133 		return client;
1134 
1135 	ret = devm_add_action_or_reset(dev, devm_i2c_release_dummy, client);
1136 	if (ret)
1137 		return ERR_PTR(ret);
1138 
1139 	return client;
1140 }
1141 EXPORT_SYMBOL_GPL(devm_i2c_new_dummy_device);
1142 
1143 /**
1144  * i2c_new_ancillary_device - Helper to get the instantiated secondary address
1145  * and create the associated device
1146  * @client: Handle to the primary client
1147  * @name: Handle to specify which secondary address to get
1148  * @default_addr: Used as a fallback if no secondary address was specified
1149  * Context: can sleep
1150  *
1151  * I2C clients can be composed of multiple I2C slaves bound together in a single
1152  * component. The I2C client driver then binds to the master I2C slave and needs
1153  * to create I2C dummy clients to communicate with all the other slaves.
1154  *
1155  * This function creates and returns an I2C dummy client whose I2C address is
1156  * retrieved from the platform firmware based on the given slave name. If no
1157  * address is specified by the firmware default_addr is used.
1158  *
1159  * On DT-based platforms the address is retrieved from the "reg" property entry
1160  * cell whose "reg-names" value matches the slave name.
1161  *
1162  * This returns the new i2c client, which should be saved for later use with
1163  * i2c_unregister_device(); or an ERR_PTR to describe the error.
1164  */
1165 struct i2c_client *i2c_new_ancillary_device(struct i2c_client *client,
1166 						const char *name,
1167 						u16 default_addr)
1168 {
1169 	struct device_node *np = client->dev.of_node;
1170 	u32 addr = default_addr;
1171 	int i;
1172 
1173 	if (np) {
1174 		i = of_property_match_string(np, "reg-names", name);
1175 		if (i >= 0)
1176 			of_property_read_u32_index(np, "reg", i, &addr);
1177 	}
1178 
1179 	dev_dbg(&client->adapter->dev, "Address for %s : 0x%x\n", name, addr);
1180 	return i2c_new_dummy_device(client->adapter, addr);
1181 }
1182 EXPORT_SYMBOL_GPL(i2c_new_ancillary_device);
1183 
1184 /* ------------------------------------------------------------------------- */
1185 
1186 /* I2C bus adapters -- one roots each I2C or SMBUS segment */
1187 
1188 static void i2c_adapter_dev_release(struct device *dev)
1189 {
1190 	struct i2c_adapter *adap = to_i2c_adapter(dev);
1191 	complete(&adap->dev_released);
1192 }
1193 
1194 unsigned int i2c_adapter_depth(struct i2c_adapter *adapter)
1195 {
1196 	unsigned int depth = 0;
1197 	struct device *parent;
1198 
1199 	for (parent = adapter->dev.parent; parent; parent = parent->parent)
1200 		if (parent->type == &i2c_adapter_type)
1201 			depth++;
1202 
1203 	WARN_ONCE(depth >= MAX_LOCKDEP_SUBCLASSES,
1204 		  "adapter depth exceeds lockdep subclass limit\n");
1205 
1206 	return depth;
1207 }
1208 EXPORT_SYMBOL_GPL(i2c_adapter_depth);
1209 
1210 /*
1211  * Let users instantiate I2C devices through sysfs. This can be used when
1212  * platform initialization code doesn't contain the proper data for
1213  * whatever reason. Also useful for drivers that do device detection and
1214  * detection fails, either because the device uses an unexpected address,
1215  * or this is a compatible device with different ID register values.
1216  *
1217  * Parameter checking may look overzealous, but we really don't want
1218  * the user to provide incorrect parameters.
1219  */
1220 static ssize_t
1221 new_device_store(struct device *dev, struct device_attribute *attr,
1222 		 const char *buf, size_t count)
1223 {
1224 	struct i2c_adapter *adap = to_i2c_adapter(dev);
1225 	struct i2c_board_info info;
1226 	struct i2c_client *client;
1227 	char *blank, end;
1228 	int res;
1229 
1230 	memset(&info, 0, sizeof(struct i2c_board_info));
1231 
1232 	blank = strchr(buf, ' ');
1233 	if (!blank) {
1234 		dev_err(dev, "%s: Missing parameters\n", "new_device");
1235 		return -EINVAL;
1236 	}
1237 	if (blank - buf > I2C_NAME_SIZE - 1) {
1238 		dev_err(dev, "%s: Invalid device name\n", "new_device");
1239 		return -EINVAL;
1240 	}
1241 	memcpy(info.type, buf, blank - buf);
1242 
1243 	/* Parse remaining parameters, reject extra parameters */
1244 	res = sscanf(++blank, "%hi%c", &info.addr, &end);
1245 	if (res < 1) {
1246 		dev_err(dev, "%s: Can't parse I2C address\n", "new_device");
1247 		return -EINVAL;
1248 	}
1249 	if (res > 1  && end != '\n') {
1250 		dev_err(dev, "%s: Extra parameters\n", "new_device");
1251 		return -EINVAL;
1252 	}
1253 
1254 	if ((info.addr & I2C_ADDR_OFFSET_TEN_BIT) == I2C_ADDR_OFFSET_TEN_BIT) {
1255 		info.addr &= ~I2C_ADDR_OFFSET_TEN_BIT;
1256 		info.flags |= I2C_CLIENT_TEN;
1257 	}
1258 
1259 	if (info.addr & I2C_ADDR_OFFSET_SLAVE) {
1260 		info.addr &= ~I2C_ADDR_OFFSET_SLAVE;
1261 		info.flags |= I2C_CLIENT_SLAVE;
1262 	}
1263 
1264 	client = i2c_new_client_device(adap, &info);
1265 	if (IS_ERR(client))
1266 		return PTR_ERR(client);
1267 
1268 	/* Keep track of the added device */
1269 	mutex_lock(&adap->userspace_clients_lock);
1270 	list_add_tail(&client->detected, &adap->userspace_clients);
1271 	mutex_unlock(&adap->userspace_clients_lock);
1272 	dev_info(dev, "%s: Instantiated device %s at 0x%02hx\n", "new_device",
1273 		 info.type, info.addr);
1274 
1275 	return count;
1276 }
1277 static DEVICE_ATTR_WO(new_device);
1278 
1279 /*
1280  * And of course let the users delete the devices they instantiated, if
1281  * they got it wrong. This interface can only be used to delete devices
1282  * instantiated by i2c_sysfs_new_device above. This guarantees that we
1283  * don't delete devices to which some kernel code still has references.
1284  *
1285  * Parameter checking may look overzealous, but we really don't want
1286  * the user to delete the wrong device.
1287  */
1288 static ssize_t
1289 delete_device_store(struct device *dev, struct device_attribute *attr,
1290 		    const char *buf, size_t count)
1291 {
1292 	struct i2c_adapter *adap = to_i2c_adapter(dev);
1293 	struct i2c_client *client, *next;
1294 	unsigned short addr;
1295 	char end;
1296 	int res;
1297 
1298 	/* Parse parameters, reject extra parameters */
1299 	res = sscanf(buf, "%hi%c", &addr, &end);
1300 	if (res < 1) {
1301 		dev_err(dev, "%s: Can't parse I2C address\n", "delete_device");
1302 		return -EINVAL;
1303 	}
1304 	if (res > 1  && end != '\n') {
1305 		dev_err(dev, "%s: Extra parameters\n", "delete_device");
1306 		return -EINVAL;
1307 	}
1308 
1309 	/* Make sure the device was added through sysfs */
1310 	res = -ENOENT;
1311 	mutex_lock_nested(&adap->userspace_clients_lock,
1312 			  i2c_adapter_depth(adap));
1313 	list_for_each_entry_safe(client, next, &adap->userspace_clients,
1314 				 detected) {
1315 		if (i2c_encode_flags_to_addr(client) == addr) {
1316 			dev_info(dev, "%s: Deleting device %s at 0x%02hx\n",
1317 				 "delete_device", client->name, client->addr);
1318 
1319 			list_del(&client->detected);
1320 			i2c_unregister_device(client);
1321 			res = count;
1322 			break;
1323 		}
1324 	}
1325 	mutex_unlock(&adap->userspace_clients_lock);
1326 
1327 	if (res < 0)
1328 		dev_err(dev, "%s: Can't find device in list\n",
1329 			"delete_device");
1330 	return res;
1331 }
1332 static DEVICE_ATTR_IGNORE_LOCKDEP(delete_device, S_IWUSR, NULL,
1333 				  delete_device_store);
1334 
1335 static struct attribute *i2c_adapter_attrs[] = {
1336 	&dev_attr_name.attr,
1337 	&dev_attr_new_device.attr,
1338 	&dev_attr_delete_device.attr,
1339 	NULL
1340 };
1341 ATTRIBUTE_GROUPS(i2c_adapter);
1342 
1343 struct device_type i2c_adapter_type = {
1344 	.groups		= i2c_adapter_groups,
1345 	.release	= i2c_adapter_dev_release,
1346 };
1347 EXPORT_SYMBOL_GPL(i2c_adapter_type);
1348 
1349 /**
1350  * i2c_verify_adapter - return parameter as i2c_adapter or NULL
1351  * @dev: device, probably from some driver model iterator
1352  *
1353  * When traversing the driver model tree, perhaps using driver model
1354  * iterators like @device_for_each_child(), you can't assume very much
1355  * about the nodes you find.  Use this function to avoid oopses caused
1356  * by wrongly treating some non-I2C device as an i2c_adapter.
1357  */
1358 struct i2c_adapter *i2c_verify_adapter(struct device *dev)
1359 {
1360 	return (dev->type == &i2c_adapter_type)
1361 			? to_i2c_adapter(dev)
1362 			: NULL;
1363 }
1364 EXPORT_SYMBOL(i2c_verify_adapter);
1365 
1366 #ifdef CONFIG_I2C_COMPAT
1367 static struct class_compat *i2c_adapter_compat_class;
1368 #endif
1369 
1370 static void i2c_scan_static_board_info(struct i2c_adapter *adapter)
1371 {
1372 	struct i2c_devinfo	*devinfo;
1373 
1374 	down_read(&__i2c_board_lock);
1375 	list_for_each_entry(devinfo, &__i2c_board_list, list) {
1376 		if (devinfo->busnum == adapter->nr &&
1377 		    IS_ERR(i2c_new_client_device(adapter, &devinfo->board_info)))
1378 			dev_err(&adapter->dev,
1379 				"Can't create device at 0x%02x\n",
1380 				devinfo->board_info.addr);
1381 	}
1382 	up_read(&__i2c_board_lock);
1383 }
1384 
1385 static int i2c_do_add_adapter(struct i2c_driver *driver,
1386 			      struct i2c_adapter *adap)
1387 {
1388 	/* Detect supported devices on that bus, and instantiate them */
1389 	i2c_detect(adap, driver);
1390 
1391 	return 0;
1392 }
1393 
1394 static int __process_new_adapter(struct device_driver *d, void *data)
1395 {
1396 	return i2c_do_add_adapter(to_i2c_driver(d), data);
1397 }
1398 
1399 static const struct i2c_lock_operations i2c_adapter_lock_ops = {
1400 	.lock_bus =    i2c_adapter_lock_bus,
1401 	.trylock_bus = i2c_adapter_trylock_bus,
1402 	.unlock_bus =  i2c_adapter_unlock_bus,
1403 };
1404 
1405 static void i2c_host_notify_irq_teardown(struct i2c_adapter *adap)
1406 {
1407 	struct irq_domain *domain = adap->host_notify_domain;
1408 	irq_hw_number_t hwirq;
1409 
1410 	if (!domain)
1411 		return;
1412 
1413 	for (hwirq = 0 ; hwirq < I2C_ADDR_7BITS_COUNT ; hwirq++)
1414 		irq_dispose_mapping(irq_find_mapping(domain, hwirq));
1415 
1416 	irq_domain_remove(domain);
1417 	adap->host_notify_domain = NULL;
1418 }
1419 
1420 static int i2c_host_notify_irq_map(struct irq_domain *h,
1421 					  unsigned int virq,
1422 					  irq_hw_number_t hw_irq_num)
1423 {
1424 	irq_set_chip_and_handler(virq, &dummy_irq_chip, handle_simple_irq);
1425 
1426 	return 0;
1427 }
1428 
1429 static const struct irq_domain_ops i2c_host_notify_irq_ops = {
1430 	.map = i2c_host_notify_irq_map,
1431 };
1432 
1433 static int i2c_setup_host_notify_irq_domain(struct i2c_adapter *adap)
1434 {
1435 	struct irq_domain *domain;
1436 
1437 	if (!i2c_check_functionality(adap, I2C_FUNC_SMBUS_HOST_NOTIFY))
1438 		return 0;
1439 
1440 	domain = irq_domain_create_linear(adap->dev.parent->fwnode,
1441 					  I2C_ADDR_7BITS_COUNT,
1442 					  &i2c_host_notify_irq_ops, adap);
1443 	if (!domain)
1444 		return -ENOMEM;
1445 
1446 	adap->host_notify_domain = domain;
1447 
1448 	return 0;
1449 }
1450 
1451 /**
1452  * i2c_handle_smbus_host_notify - Forward a Host Notify event to the correct
1453  * I2C client.
1454  * @adap: the adapter
1455  * @addr: the I2C address of the notifying device
1456  * Context: can't sleep
1457  *
1458  * Helper function to be called from an I2C bus driver's interrupt
1459  * handler. It will schedule the Host Notify IRQ.
1460  */
1461 int i2c_handle_smbus_host_notify(struct i2c_adapter *adap, unsigned short addr)
1462 {
1463 	int irq;
1464 
1465 	if (!adap)
1466 		return -EINVAL;
1467 
1468 	irq = irq_find_mapping(adap->host_notify_domain, addr);
1469 	if (irq <= 0)
1470 		return -ENXIO;
1471 
1472 	generic_handle_irq_safe(irq);
1473 
1474 	return 0;
1475 }
1476 EXPORT_SYMBOL_GPL(i2c_handle_smbus_host_notify);
1477 
1478 static int i2c_register_adapter(struct i2c_adapter *adap)
1479 {
1480 	int res = -EINVAL;
1481 
1482 	/* Can't register until after driver model init */
1483 	if (WARN_ON(!is_registered)) {
1484 		res = -EAGAIN;
1485 		goto out_list;
1486 	}
1487 
1488 	/* Sanity checks */
1489 	if (WARN(!adap->name[0], "i2c adapter has no name"))
1490 		goto out_list;
1491 
1492 	if (!adap->algo) {
1493 		pr_err("adapter '%s': no algo supplied!\n", adap->name);
1494 		goto out_list;
1495 	}
1496 
1497 	if (!adap->lock_ops)
1498 		adap->lock_ops = &i2c_adapter_lock_ops;
1499 
1500 	adap->locked_flags = 0;
1501 	rt_mutex_init(&adap->bus_lock);
1502 	rt_mutex_init(&adap->mux_lock);
1503 	mutex_init(&adap->userspace_clients_lock);
1504 	INIT_LIST_HEAD(&adap->userspace_clients);
1505 
1506 	/* Set default timeout to 1 second if not already set */
1507 	if (adap->timeout == 0)
1508 		adap->timeout = HZ;
1509 
1510 	/* register soft irqs for Host Notify */
1511 	res = i2c_setup_host_notify_irq_domain(adap);
1512 	if (res) {
1513 		pr_err("adapter '%s': can't create Host Notify IRQs (%d)\n",
1514 		       adap->name, res);
1515 		goto out_list;
1516 	}
1517 
1518 	dev_set_name(&adap->dev, "i2c-%d", adap->nr);
1519 	adap->dev.bus = &i2c_bus_type;
1520 	adap->dev.type = &i2c_adapter_type;
1521 	res = device_register(&adap->dev);
1522 	if (res) {
1523 		pr_err("adapter '%s': can't register device (%d)\n", adap->name, res);
1524 		goto out_list;
1525 	}
1526 
1527 	res = i2c_setup_smbus_alert(adap);
1528 	if (res)
1529 		goto out_reg;
1530 
1531 	device_enable_async_suspend(&adap->dev);
1532 	pm_runtime_no_callbacks(&adap->dev);
1533 	pm_suspend_ignore_children(&adap->dev, true);
1534 	pm_runtime_enable(&adap->dev);
1535 
1536 	res = i2c_init_recovery(adap);
1537 	if (res == -EPROBE_DEFER)
1538 		goto out_reg;
1539 
1540 	dev_dbg(&adap->dev, "adapter [%s] registered\n", adap->name);
1541 
1542 #ifdef CONFIG_I2C_COMPAT
1543 	res = class_compat_create_link(i2c_adapter_compat_class, &adap->dev,
1544 				       adap->dev.parent);
1545 	if (res)
1546 		dev_warn(&adap->dev,
1547 			 "Failed to create compatibility class link\n");
1548 #endif
1549 
1550 	/* create pre-declared device nodes */
1551 	of_i2c_register_devices(adap);
1552 	i2c_acpi_install_space_handler(adap);
1553 	i2c_acpi_register_devices(adap);
1554 
1555 	if (adap->nr < __i2c_first_dynamic_bus_num)
1556 		i2c_scan_static_board_info(adap);
1557 
1558 	/* Notify drivers */
1559 	mutex_lock(&core_lock);
1560 	bus_for_each_drv(&i2c_bus_type, NULL, adap, __process_new_adapter);
1561 	mutex_unlock(&core_lock);
1562 
1563 	return 0;
1564 
1565 out_reg:
1566 	init_completion(&adap->dev_released);
1567 	device_unregister(&adap->dev);
1568 	wait_for_completion(&adap->dev_released);
1569 out_list:
1570 	mutex_lock(&core_lock);
1571 	idr_remove(&i2c_adapter_idr, adap->nr);
1572 	mutex_unlock(&core_lock);
1573 	return res;
1574 }
1575 
1576 /**
1577  * __i2c_add_numbered_adapter - i2c_add_numbered_adapter where nr is never -1
1578  * @adap: the adapter to register (with adap->nr initialized)
1579  * Context: can sleep
1580  *
1581  * See i2c_add_numbered_adapter() for details.
1582  */
1583 static int __i2c_add_numbered_adapter(struct i2c_adapter *adap)
1584 {
1585 	int id;
1586 
1587 	mutex_lock(&core_lock);
1588 	id = idr_alloc(&i2c_adapter_idr, adap, adap->nr, adap->nr + 1, GFP_KERNEL);
1589 	mutex_unlock(&core_lock);
1590 	if (WARN(id < 0, "couldn't get idr"))
1591 		return id == -ENOSPC ? -EBUSY : id;
1592 
1593 	return i2c_register_adapter(adap);
1594 }
1595 
1596 /**
1597  * i2c_add_adapter - declare i2c adapter, use dynamic bus number
1598  * @adapter: the adapter to add
1599  * Context: can sleep
1600  *
1601  * This routine is used to declare an I2C adapter when its bus number
1602  * doesn't matter or when its bus number is specified by an dt alias.
1603  * Examples of bases when the bus number doesn't matter: I2C adapters
1604  * dynamically added by USB links or PCI plugin cards.
1605  *
1606  * When this returns zero, a new bus number was allocated and stored
1607  * in adap->nr, and the specified adapter became available for clients.
1608  * Otherwise, a negative errno value is returned.
1609  */
1610 int i2c_add_adapter(struct i2c_adapter *adapter)
1611 {
1612 	struct device *dev = &adapter->dev;
1613 	int id;
1614 
1615 	if (dev->of_node) {
1616 		id = of_alias_get_id(dev->of_node, "i2c");
1617 		if (id >= 0) {
1618 			adapter->nr = id;
1619 			return __i2c_add_numbered_adapter(adapter);
1620 		}
1621 	}
1622 
1623 	mutex_lock(&core_lock);
1624 	id = idr_alloc(&i2c_adapter_idr, adapter,
1625 		       __i2c_first_dynamic_bus_num, 0, GFP_KERNEL);
1626 	mutex_unlock(&core_lock);
1627 	if (WARN(id < 0, "couldn't get idr"))
1628 		return id;
1629 
1630 	adapter->nr = id;
1631 
1632 	return i2c_register_adapter(adapter);
1633 }
1634 EXPORT_SYMBOL(i2c_add_adapter);
1635 
1636 /**
1637  * i2c_add_numbered_adapter - declare i2c adapter, use static bus number
1638  * @adap: the adapter to register (with adap->nr initialized)
1639  * Context: can sleep
1640  *
1641  * This routine is used to declare an I2C adapter when its bus number
1642  * matters.  For example, use it for I2C adapters from system-on-chip CPUs,
1643  * or otherwise built in to the system's mainboard, and where i2c_board_info
1644  * is used to properly configure I2C devices.
1645  *
1646  * If the requested bus number is set to -1, then this function will behave
1647  * identically to i2c_add_adapter, and will dynamically assign a bus number.
1648  *
1649  * If no devices have pre-been declared for this bus, then be sure to
1650  * register the adapter before any dynamically allocated ones.  Otherwise
1651  * the required bus ID may not be available.
1652  *
1653  * When this returns zero, the specified adapter became available for
1654  * clients using the bus number provided in adap->nr.  Also, the table
1655  * of I2C devices pre-declared using i2c_register_board_info() is scanned,
1656  * and the appropriate driver model device nodes are created.  Otherwise, a
1657  * negative errno value is returned.
1658  */
1659 int i2c_add_numbered_adapter(struct i2c_adapter *adap)
1660 {
1661 	if (adap->nr == -1) /* -1 means dynamically assign bus id */
1662 		return i2c_add_adapter(adap);
1663 
1664 	return __i2c_add_numbered_adapter(adap);
1665 }
1666 EXPORT_SYMBOL_GPL(i2c_add_numbered_adapter);
1667 
1668 static void i2c_do_del_adapter(struct i2c_driver *driver,
1669 			      struct i2c_adapter *adapter)
1670 {
1671 	struct i2c_client *client, *_n;
1672 
1673 	/* Remove the devices we created ourselves as the result of hardware
1674 	 * probing (using a driver's detect method) */
1675 	list_for_each_entry_safe(client, _n, &driver->clients, detected) {
1676 		if (client->adapter == adapter) {
1677 			dev_dbg(&adapter->dev, "Removing %s at 0x%x\n",
1678 				client->name, client->addr);
1679 			list_del(&client->detected);
1680 			i2c_unregister_device(client);
1681 		}
1682 	}
1683 }
1684 
1685 static int __unregister_client(struct device *dev, void *dummy)
1686 {
1687 	struct i2c_client *client = i2c_verify_client(dev);
1688 	if (client && strcmp(client->name, "dummy"))
1689 		i2c_unregister_device(client);
1690 	return 0;
1691 }
1692 
1693 static int __unregister_dummy(struct device *dev, void *dummy)
1694 {
1695 	struct i2c_client *client = i2c_verify_client(dev);
1696 	i2c_unregister_device(client);
1697 	return 0;
1698 }
1699 
1700 static int __process_removed_adapter(struct device_driver *d, void *data)
1701 {
1702 	i2c_do_del_adapter(to_i2c_driver(d), data);
1703 	return 0;
1704 }
1705 
1706 /**
1707  * i2c_del_adapter - unregister I2C adapter
1708  * @adap: the adapter being unregistered
1709  * Context: can sleep
1710  *
1711  * This unregisters an I2C adapter which was previously registered
1712  * by @i2c_add_adapter or @i2c_add_numbered_adapter.
1713  */
1714 void i2c_del_adapter(struct i2c_adapter *adap)
1715 {
1716 	struct i2c_adapter *found;
1717 	struct i2c_client *client, *next;
1718 
1719 	/* First make sure that this adapter was ever added */
1720 	mutex_lock(&core_lock);
1721 	found = idr_find(&i2c_adapter_idr, adap->nr);
1722 	mutex_unlock(&core_lock);
1723 	if (found != adap) {
1724 		pr_debug("attempting to delete unregistered adapter [%s]\n", adap->name);
1725 		return;
1726 	}
1727 
1728 	i2c_acpi_remove_space_handler(adap);
1729 	/* Tell drivers about this removal */
1730 	mutex_lock(&core_lock);
1731 	bus_for_each_drv(&i2c_bus_type, NULL, adap,
1732 			       __process_removed_adapter);
1733 	mutex_unlock(&core_lock);
1734 
1735 	/* Remove devices instantiated from sysfs */
1736 	mutex_lock_nested(&adap->userspace_clients_lock,
1737 			  i2c_adapter_depth(adap));
1738 	list_for_each_entry_safe(client, next, &adap->userspace_clients,
1739 				 detected) {
1740 		dev_dbg(&adap->dev, "Removing %s at 0x%x\n", client->name,
1741 			client->addr);
1742 		list_del(&client->detected);
1743 		i2c_unregister_device(client);
1744 	}
1745 	mutex_unlock(&adap->userspace_clients_lock);
1746 
1747 	/* Detach any active clients. This can't fail, thus we do not
1748 	 * check the returned value. This is a two-pass process, because
1749 	 * we can't remove the dummy devices during the first pass: they
1750 	 * could have been instantiated by real devices wishing to clean
1751 	 * them up properly, so we give them a chance to do that first. */
1752 	device_for_each_child(&adap->dev, NULL, __unregister_client);
1753 	device_for_each_child(&adap->dev, NULL, __unregister_dummy);
1754 
1755 #ifdef CONFIG_I2C_COMPAT
1756 	class_compat_remove_link(i2c_adapter_compat_class, &adap->dev,
1757 				 adap->dev.parent);
1758 #endif
1759 
1760 	/* device name is gone after device_unregister */
1761 	dev_dbg(&adap->dev, "adapter [%s] unregistered\n", adap->name);
1762 
1763 	pm_runtime_disable(&adap->dev);
1764 
1765 	i2c_host_notify_irq_teardown(adap);
1766 
1767 	/* wait until all references to the device are gone
1768 	 *
1769 	 * FIXME: This is old code and should ideally be replaced by an
1770 	 * alternative which results in decoupling the lifetime of the struct
1771 	 * device from the i2c_adapter, like spi or netdev do. Any solution
1772 	 * should be thoroughly tested with DEBUG_KOBJECT_RELEASE enabled!
1773 	 */
1774 	init_completion(&adap->dev_released);
1775 	device_unregister(&adap->dev);
1776 	wait_for_completion(&adap->dev_released);
1777 
1778 	/* free bus id */
1779 	mutex_lock(&core_lock);
1780 	idr_remove(&i2c_adapter_idr, adap->nr);
1781 	mutex_unlock(&core_lock);
1782 
1783 	/* Clear the device structure in case this adapter is ever going to be
1784 	   added again */
1785 	memset(&adap->dev, 0, sizeof(adap->dev));
1786 }
1787 EXPORT_SYMBOL(i2c_del_adapter);
1788 
1789 static void devm_i2c_del_adapter(void *adapter)
1790 {
1791 	i2c_del_adapter(adapter);
1792 }
1793 
1794 /**
1795  * devm_i2c_add_adapter - device-managed variant of i2c_add_adapter()
1796  * @dev: managing device for adding this I2C adapter
1797  * @adapter: the adapter to add
1798  * Context: can sleep
1799  *
1800  * Add adapter with dynamic bus number, same with i2c_add_adapter()
1801  * but the adapter will be auto deleted on driver detach.
1802  */
1803 int devm_i2c_add_adapter(struct device *dev, struct i2c_adapter *adapter)
1804 {
1805 	int ret;
1806 
1807 	ret = i2c_add_adapter(adapter);
1808 	if (ret)
1809 		return ret;
1810 
1811 	return devm_add_action_or_reset(dev, devm_i2c_del_adapter, adapter);
1812 }
1813 EXPORT_SYMBOL_GPL(devm_i2c_add_adapter);
1814 
1815 static int i2c_dev_or_parent_fwnode_match(struct device *dev, const void *data)
1816 {
1817 	if (dev_fwnode(dev) == data)
1818 		return 1;
1819 
1820 	if (dev->parent && dev_fwnode(dev->parent) == data)
1821 		return 1;
1822 
1823 	return 0;
1824 }
1825 
1826 /**
1827  * i2c_find_adapter_by_fwnode() - find an i2c_adapter for the fwnode
1828  * @fwnode: &struct fwnode_handle corresponding to the &struct i2c_adapter
1829  *
1830  * Look up and return the &struct i2c_adapter corresponding to the @fwnode.
1831  * If no adapter can be found, or @fwnode is NULL, this returns NULL.
1832  *
1833  * The user must call put_device(&adapter->dev) once done with the i2c adapter.
1834  */
1835 struct i2c_adapter *i2c_find_adapter_by_fwnode(struct fwnode_handle *fwnode)
1836 {
1837 	struct i2c_adapter *adapter;
1838 	struct device *dev;
1839 
1840 	if (!fwnode)
1841 		return NULL;
1842 
1843 	dev = bus_find_device(&i2c_bus_type, NULL, fwnode,
1844 			      i2c_dev_or_parent_fwnode_match);
1845 	if (!dev)
1846 		return NULL;
1847 
1848 	adapter = i2c_verify_adapter(dev);
1849 	if (!adapter)
1850 		put_device(dev);
1851 
1852 	return adapter;
1853 }
1854 EXPORT_SYMBOL(i2c_find_adapter_by_fwnode);
1855 
1856 /**
1857  * i2c_get_adapter_by_fwnode() - find an i2c_adapter for the fwnode
1858  * @fwnode: &struct fwnode_handle corresponding to the &struct i2c_adapter
1859  *
1860  * Look up and return the &struct i2c_adapter corresponding to the @fwnode,
1861  * and increment the adapter module's use count. If no adapter can be found,
1862  * or @fwnode is NULL, this returns NULL.
1863  *
1864  * The user must call i2c_put_adapter(adapter) once done with the i2c adapter.
1865  * Note that this is different from i2c_find_adapter_by_node().
1866  */
1867 struct i2c_adapter *i2c_get_adapter_by_fwnode(struct fwnode_handle *fwnode)
1868 {
1869 	struct i2c_adapter *adapter;
1870 
1871 	adapter = i2c_find_adapter_by_fwnode(fwnode);
1872 	if (!adapter)
1873 		return NULL;
1874 
1875 	if (!try_module_get(adapter->owner)) {
1876 		put_device(&adapter->dev);
1877 		adapter = NULL;
1878 	}
1879 
1880 	return adapter;
1881 }
1882 EXPORT_SYMBOL(i2c_get_adapter_by_fwnode);
1883 
1884 static void i2c_parse_timing(struct device *dev, char *prop_name, u32 *cur_val_p,
1885 			    u32 def_val, bool use_def)
1886 {
1887 	int ret;
1888 
1889 	ret = device_property_read_u32(dev, prop_name, cur_val_p);
1890 	if (ret && use_def)
1891 		*cur_val_p = def_val;
1892 
1893 	dev_dbg(dev, "%s: %u\n", prop_name, *cur_val_p);
1894 }
1895 
1896 /**
1897  * i2c_parse_fw_timings - get I2C related timing parameters from firmware
1898  * @dev: The device to scan for I2C timing properties
1899  * @t: the i2c_timings struct to be filled with values
1900  * @use_defaults: bool to use sane defaults derived from the I2C specification
1901  *		  when properties are not found, otherwise don't update
1902  *
1903  * Scan the device for the generic I2C properties describing timing parameters
1904  * for the signal and fill the given struct with the results. If a property was
1905  * not found and use_defaults was true, then maximum timings are assumed which
1906  * are derived from the I2C specification. If use_defaults is not used, the
1907  * results will be as before, so drivers can apply their own defaults before
1908  * calling this helper. The latter is mainly intended for avoiding regressions
1909  * of existing drivers which want to switch to this function. New drivers
1910  * almost always should use the defaults.
1911  */
1912 void i2c_parse_fw_timings(struct device *dev, struct i2c_timings *t, bool use_defaults)
1913 {
1914 	bool u = use_defaults;
1915 	u32 d;
1916 
1917 	i2c_parse_timing(dev, "clock-frequency", &t->bus_freq_hz,
1918 			 I2C_MAX_STANDARD_MODE_FREQ, u);
1919 
1920 	d = t->bus_freq_hz <= I2C_MAX_STANDARD_MODE_FREQ ? 1000 :
1921 	    t->bus_freq_hz <= I2C_MAX_FAST_MODE_FREQ ? 300 : 120;
1922 	i2c_parse_timing(dev, "i2c-scl-rising-time-ns", &t->scl_rise_ns, d, u);
1923 
1924 	d = t->bus_freq_hz <= I2C_MAX_FAST_MODE_FREQ ? 300 : 120;
1925 	i2c_parse_timing(dev, "i2c-scl-falling-time-ns", &t->scl_fall_ns, d, u);
1926 
1927 	i2c_parse_timing(dev, "i2c-scl-internal-delay-ns",
1928 			 &t->scl_int_delay_ns, 0, u);
1929 	i2c_parse_timing(dev, "i2c-sda-falling-time-ns", &t->sda_fall_ns,
1930 			 t->scl_fall_ns, u);
1931 	i2c_parse_timing(dev, "i2c-sda-hold-time-ns", &t->sda_hold_ns, 0, u);
1932 	i2c_parse_timing(dev, "i2c-digital-filter-width-ns",
1933 			 &t->digital_filter_width_ns, 0, u);
1934 	i2c_parse_timing(dev, "i2c-analog-filter-cutoff-frequency",
1935 			 &t->analog_filter_cutoff_freq_hz, 0, u);
1936 }
1937 EXPORT_SYMBOL_GPL(i2c_parse_fw_timings);
1938 
1939 /* ------------------------------------------------------------------------- */
1940 
1941 int i2c_for_each_dev(void *data, int (*fn)(struct device *dev, void *data))
1942 {
1943 	int res;
1944 
1945 	mutex_lock(&core_lock);
1946 	res = bus_for_each_dev(&i2c_bus_type, NULL, data, fn);
1947 	mutex_unlock(&core_lock);
1948 
1949 	return res;
1950 }
1951 EXPORT_SYMBOL_GPL(i2c_for_each_dev);
1952 
1953 static int __process_new_driver(struct device *dev, void *data)
1954 {
1955 	if (dev->type != &i2c_adapter_type)
1956 		return 0;
1957 	return i2c_do_add_adapter(data, to_i2c_adapter(dev));
1958 }
1959 
1960 /*
1961  * An i2c_driver is used with one or more i2c_client (device) nodes to access
1962  * i2c slave chips, on a bus instance associated with some i2c_adapter.
1963  */
1964 
1965 int i2c_register_driver(struct module *owner, struct i2c_driver *driver)
1966 {
1967 	int res;
1968 
1969 	/* Can't register until after driver model init */
1970 	if (WARN_ON(!is_registered))
1971 		return -EAGAIN;
1972 
1973 	/* add the driver to the list of i2c drivers in the driver core */
1974 	driver->driver.owner = owner;
1975 	driver->driver.bus = &i2c_bus_type;
1976 	INIT_LIST_HEAD(&driver->clients);
1977 
1978 	/* When registration returns, the driver core
1979 	 * will have called probe() for all matching-but-unbound devices.
1980 	 */
1981 	res = driver_register(&driver->driver);
1982 	if (res)
1983 		return res;
1984 
1985 	pr_debug("driver [%s] registered\n", driver->driver.name);
1986 
1987 	/* Walk the adapters that are already present */
1988 	i2c_for_each_dev(driver, __process_new_driver);
1989 
1990 	return 0;
1991 }
1992 EXPORT_SYMBOL(i2c_register_driver);
1993 
1994 static int __process_removed_driver(struct device *dev, void *data)
1995 {
1996 	if (dev->type == &i2c_adapter_type)
1997 		i2c_do_del_adapter(data, to_i2c_adapter(dev));
1998 	return 0;
1999 }
2000 
2001 /**
2002  * i2c_del_driver - unregister I2C driver
2003  * @driver: the driver being unregistered
2004  * Context: can sleep
2005  */
2006 void i2c_del_driver(struct i2c_driver *driver)
2007 {
2008 	i2c_for_each_dev(driver, __process_removed_driver);
2009 
2010 	driver_unregister(&driver->driver);
2011 	pr_debug("driver [%s] unregistered\n", driver->driver.name);
2012 }
2013 EXPORT_SYMBOL(i2c_del_driver);
2014 
2015 /* ------------------------------------------------------------------------- */
2016 
2017 struct i2c_cmd_arg {
2018 	unsigned	cmd;
2019 	void		*arg;
2020 };
2021 
2022 static int i2c_cmd(struct device *dev, void *_arg)
2023 {
2024 	struct i2c_client	*client = i2c_verify_client(dev);
2025 	struct i2c_cmd_arg	*arg = _arg;
2026 	struct i2c_driver	*driver;
2027 
2028 	if (!client || !client->dev.driver)
2029 		return 0;
2030 
2031 	driver = to_i2c_driver(client->dev.driver);
2032 	if (driver->command)
2033 		driver->command(client, arg->cmd, arg->arg);
2034 	return 0;
2035 }
2036 
2037 void i2c_clients_command(struct i2c_adapter *adap, unsigned int cmd, void *arg)
2038 {
2039 	struct i2c_cmd_arg	cmd_arg;
2040 
2041 	cmd_arg.cmd = cmd;
2042 	cmd_arg.arg = arg;
2043 	device_for_each_child(&adap->dev, &cmd_arg, i2c_cmd);
2044 }
2045 EXPORT_SYMBOL(i2c_clients_command);
2046 
2047 static int __init i2c_init(void)
2048 {
2049 	int retval;
2050 
2051 	retval = of_alias_get_highest_id("i2c");
2052 
2053 	down_write(&__i2c_board_lock);
2054 	if (retval >= __i2c_first_dynamic_bus_num)
2055 		__i2c_first_dynamic_bus_num = retval + 1;
2056 	up_write(&__i2c_board_lock);
2057 
2058 	retval = bus_register(&i2c_bus_type);
2059 	if (retval)
2060 		return retval;
2061 
2062 	is_registered = true;
2063 
2064 #ifdef CONFIG_I2C_COMPAT
2065 	i2c_adapter_compat_class = class_compat_register("i2c-adapter");
2066 	if (!i2c_adapter_compat_class) {
2067 		retval = -ENOMEM;
2068 		goto bus_err;
2069 	}
2070 #endif
2071 	retval = i2c_add_driver(&dummy_driver);
2072 	if (retval)
2073 		goto class_err;
2074 
2075 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
2076 		WARN_ON(of_reconfig_notifier_register(&i2c_of_notifier));
2077 	if (IS_ENABLED(CONFIG_ACPI))
2078 		WARN_ON(acpi_reconfig_notifier_register(&i2c_acpi_notifier));
2079 
2080 	return 0;
2081 
2082 class_err:
2083 #ifdef CONFIG_I2C_COMPAT
2084 	class_compat_unregister(i2c_adapter_compat_class);
2085 bus_err:
2086 #endif
2087 	is_registered = false;
2088 	bus_unregister(&i2c_bus_type);
2089 	return retval;
2090 }
2091 
2092 static void __exit i2c_exit(void)
2093 {
2094 	if (IS_ENABLED(CONFIG_ACPI))
2095 		WARN_ON(acpi_reconfig_notifier_unregister(&i2c_acpi_notifier));
2096 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
2097 		WARN_ON(of_reconfig_notifier_unregister(&i2c_of_notifier));
2098 	i2c_del_driver(&dummy_driver);
2099 #ifdef CONFIG_I2C_COMPAT
2100 	class_compat_unregister(i2c_adapter_compat_class);
2101 #endif
2102 	bus_unregister(&i2c_bus_type);
2103 	tracepoint_synchronize_unregister();
2104 }
2105 
2106 /* We must initialize early, because some subsystems register i2c drivers
2107  * in subsys_initcall() code, but are linked (and initialized) before i2c.
2108  */
2109 postcore_initcall(i2c_init);
2110 module_exit(i2c_exit);
2111 
2112 /* ----------------------------------------------------
2113  * the functional interface to the i2c busses.
2114  * ----------------------------------------------------
2115  */
2116 
2117 /* Check if val is exceeding the quirk IFF quirk is non 0 */
2118 #define i2c_quirk_exceeded(val, quirk) ((quirk) && ((val) > (quirk)))
2119 
2120 static int i2c_quirk_error(struct i2c_adapter *adap, struct i2c_msg *msg, char *err_msg)
2121 {
2122 	dev_err_ratelimited(&adap->dev, "adapter quirk: %s (addr 0x%04x, size %u, %s)\n",
2123 			    err_msg, msg->addr, msg->len,
2124 			    msg->flags & I2C_M_RD ? "read" : "write");
2125 	return -EOPNOTSUPP;
2126 }
2127 
2128 static int i2c_check_for_quirks(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
2129 {
2130 	const struct i2c_adapter_quirks *q = adap->quirks;
2131 	int max_num = q->max_num_msgs, i;
2132 	bool do_len_check = true;
2133 
2134 	if (q->flags & I2C_AQ_COMB) {
2135 		max_num = 2;
2136 
2137 		/* special checks for combined messages */
2138 		if (num == 2) {
2139 			if (q->flags & I2C_AQ_COMB_WRITE_FIRST && msgs[0].flags & I2C_M_RD)
2140 				return i2c_quirk_error(adap, &msgs[0], "1st comb msg must be write");
2141 
2142 			if (q->flags & I2C_AQ_COMB_READ_SECOND && !(msgs[1].flags & I2C_M_RD))
2143 				return i2c_quirk_error(adap, &msgs[1], "2nd comb msg must be read");
2144 
2145 			if (q->flags & I2C_AQ_COMB_SAME_ADDR && msgs[0].addr != msgs[1].addr)
2146 				return i2c_quirk_error(adap, &msgs[0], "comb msg only to same addr");
2147 
2148 			if (i2c_quirk_exceeded(msgs[0].len, q->max_comb_1st_msg_len))
2149 				return i2c_quirk_error(adap, &msgs[0], "msg too long");
2150 
2151 			if (i2c_quirk_exceeded(msgs[1].len, q->max_comb_2nd_msg_len))
2152 				return i2c_quirk_error(adap, &msgs[1], "msg too long");
2153 
2154 			do_len_check = false;
2155 		}
2156 	}
2157 
2158 	if (i2c_quirk_exceeded(num, max_num))
2159 		return i2c_quirk_error(adap, &msgs[0], "too many messages");
2160 
2161 	for (i = 0; i < num; i++) {
2162 		u16 len = msgs[i].len;
2163 
2164 		if (msgs[i].flags & I2C_M_RD) {
2165 			if (do_len_check && i2c_quirk_exceeded(len, q->max_read_len))
2166 				return i2c_quirk_error(adap, &msgs[i], "msg too long");
2167 
2168 			if (q->flags & I2C_AQ_NO_ZERO_LEN_READ && len == 0)
2169 				return i2c_quirk_error(adap, &msgs[i], "no zero length");
2170 		} else {
2171 			if (do_len_check && i2c_quirk_exceeded(len, q->max_write_len))
2172 				return i2c_quirk_error(adap, &msgs[i], "msg too long");
2173 
2174 			if (q->flags & I2C_AQ_NO_ZERO_LEN_WRITE && len == 0)
2175 				return i2c_quirk_error(adap, &msgs[i], "no zero length");
2176 		}
2177 	}
2178 
2179 	return 0;
2180 }
2181 
2182 /**
2183  * __i2c_transfer - unlocked flavor of i2c_transfer
2184  * @adap: Handle to I2C bus
2185  * @msgs: One or more messages to execute before STOP is issued to
2186  *	terminate the operation; each message begins with a START.
2187  * @num: Number of messages to be executed.
2188  *
2189  * Returns negative errno, else the number of messages executed.
2190  *
2191  * Adapter lock must be held when calling this function. No debug logging
2192  * takes place. adap->algo->master_xfer existence isn't checked.
2193  */
2194 int __i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
2195 {
2196 	unsigned long orig_jiffies;
2197 	int ret, try;
2198 
2199 	if (WARN_ON(!msgs || num < 1))
2200 		return -EINVAL;
2201 
2202 	ret = __i2c_check_suspended(adap);
2203 	if (ret)
2204 		return ret;
2205 
2206 	if (adap->quirks && i2c_check_for_quirks(adap, msgs, num))
2207 		return -EOPNOTSUPP;
2208 
2209 	/*
2210 	 * i2c_trace_msg_key gets enabled when tracepoint i2c_transfer gets
2211 	 * enabled.  This is an efficient way of keeping the for-loop from
2212 	 * being executed when not needed.
2213 	 */
2214 	if (static_branch_unlikely(&i2c_trace_msg_key)) {
2215 		int i;
2216 		for (i = 0; i < num; i++)
2217 			if (msgs[i].flags & I2C_M_RD)
2218 				trace_i2c_read(adap, &msgs[i], i);
2219 			else
2220 				trace_i2c_write(adap, &msgs[i], i);
2221 	}
2222 
2223 	/* Retry automatically on arbitration loss */
2224 	orig_jiffies = jiffies;
2225 	for (ret = 0, try = 0; try <= adap->retries; try++) {
2226 		if (i2c_in_atomic_xfer_mode() && adap->algo->master_xfer_atomic)
2227 			ret = adap->algo->master_xfer_atomic(adap, msgs, num);
2228 		else
2229 			ret = adap->algo->master_xfer(adap, msgs, num);
2230 
2231 		if (ret != -EAGAIN)
2232 			break;
2233 		if (time_after(jiffies, orig_jiffies + adap->timeout))
2234 			break;
2235 	}
2236 
2237 	if (static_branch_unlikely(&i2c_trace_msg_key)) {
2238 		int i;
2239 		for (i = 0; i < ret; i++)
2240 			if (msgs[i].flags & I2C_M_RD)
2241 				trace_i2c_reply(adap, &msgs[i], i);
2242 		trace_i2c_result(adap, num, ret);
2243 	}
2244 
2245 	return ret;
2246 }
2247 EXPORT_SYMBOL(__i2c_transfer);
2248 
2249 /**
2250  * i2c_transfer - execute a single or combined I2C message
2251  * @adap: Handle to I2C bus
2252  * @msgs: One or more messages to execute before STOP is issued to
2253  *	terminate the operation; each message begins with a START.
2254  * @num: Number of messages to be executed.
2255  *
2256  * Returns negative errno, else the number of messages executed.
2257  *
2258  * Note that there is no requirement that each message be sent to
2259  * the same slave address, although that is the most common model.
2260  */
2261 int i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
2262 {
2263 	int ret;
2264 
2265 	if (!adap->algo->master_xfer) {
2266 		dev_dbg(&adap->dev, "I2C level transfers not supported\n");
2267 		return -EOPNOTSUPP;
2268 	}
2269 
2270 	/* REVISIT the fault reporting model here is weak:
2271 	 *
2272 	 *  - When we get an error after receiving N bytes from a slave,
2273 	 *    there is no way to report "N".
2274 	 *
2275 	 *  - When we get a NAK after transmitting N bytes to a slave,
2276 	 *    there is no way to report "N" ... or to let the master
2277 	 *    continue executing the rest of this combined message, if
2278 	 *    that's the appropriate response.
2279 	 *
2280 	 *  - When for example "num" is two and we successfully complete
2281 	 *    the first message but get an error part way through the
2282 	 *    second, it's unclear whether that should be reported as
2283 	 *    one (discarding status on the second message) or errno
2284 	 *    (discarding status on the first one).
2285 	 */
2286 	ret = __i2c_lock_bus_helper(adap);
2287 	if (ret)
2288 		return ret;
2289 
2290 	ret = __i2c_transfer(adap, msgs, num);
2291 	i2c_unlock_bus(adap, I2C_LOCK_SEGMENT);
2292 
2293 	return ret;
2294 }
2295 EXPORT_SYMBOL(i2c_transfer);
2296 
2297 /**
2298  * i2c_transfer_buffer_flags - issue a single I2C message transferring data
2299  *			       to/from a buffer
2300  * @client: Handle to slave device
2301  * @buf: Where the data is stored
2302  * @count: How many bytes to transfer, must be less than 64k since msg.len is u16
2303  * @flags: The flags to be used for the message, e.g. I2C_M_RD for reads
2304  *
2305  * Returns negative errno, or else the number of bytes transferred.
2306  */
2307 int i2c_transfer_buffer_flags(const struct i2c_client *client, char *buf,
2308 			      int count, u16 flags)
2309 {
2310 	int ret;
2311 	struct i2c_msg msg = {
2312 		.addr = client->addr,
2313 		.flags = flags | (client->flags & I2C_M_TEN),
2314 		.len = count,
2315 		.buf = buf,
2316 	};
2317 
2318 	ret = i2c_transfer(client->adapter, &msg, 1);
2319 
2320 	/*
2321 	 * If everything went ok (i.e. 1 msg transferred), return #bytes
2322 	 * transferred, else error code.
2323 	 */
2324 	return (ret == 1) ? count : ret;
2325 }
2326 EXPORT_SYMBOL(i2c_transfer_buffer_flags);
2327 
2328 /**
2329  * i2c_get_device_id - get manufacturer, part id and die revision of a device
2330  * @client: The device to query
2331  * @id: The queried information
2332  *
2333  * Returns negative errno on error, zero on success.
2334  */
2335 int i2c_get_device_id(const struct i2c_client *client,
2336 		      struct i2c_device_identity *id)
2337 {
2338 	struct i2c_adapter *adap = client->adapter;
2339 	union i2c_smbus_data raw_id;
2340 	int ret;
2341 
2342 	if (!i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_I2C_BLOCK))
2343 		return -EOPNOTSUPP;
2344 
2345 	raw_id.block[0] = 3;
2346 	ret = i2c_smbus_xfer(adap, I2C_ADDR_DEVICE_ID, 0,
2347 			     I2C_SMBUS_READ, client->addr << 1,
2348 			     I2C_SMBUS_I2C_BLOCK_DATA, &raw_id);
2349 	if (ret)
2350 		return ret;
2351 
2352 	id->manufacturer_id = (raw_id.block[1] << 4) | (raw_id.block[2] >> 4);
2353 	id->part_id = ((raw_id.block[2] & 0xf) << 5) | (raw_id.block[3] >> 3);
2354 	id->die_revision = raw_id.block[3] & 0x7;
2355 	return 0;
2356 }
2357 EXPORT_SYMBOL_GPL(i2c_get_device_id);
2358 
2359 /**
2360  * i2c_client_get_device_id - get the driver match table entry of a device
2361  * @client: the device to query. The device must be bound to a driver
2362  *
2363  * Returns a pointer to the matching entry if found, NULL otherwise.
2364  */
2365 const struct i2c_device_id *i2c_client_get_device_id(const struct i2c_client *client)
2366 {
2367 	const struct i2c_driver *drv = to_i2c_driver(client->dev.driver);
2368 
2369 	return i2c_match_id(drv->id_table, client);
2370 }
2371 EXPORT_SYMBOL_GPL(i2c_client_get_device_id);
2372 
2373 /* ----------------------------------------------------
2374  * the i2c address scanning function
2375  * Will not work for 10-bit addresses!
2376  * ----------------------------------------------------
2377  */
2378 
2379 /*
2380  * Legacy default probe function, mostly relevant for SMBus. The default
2381  * probe method is a quick write, but it is known to corrupt the 24RF08
2382  * EEPROMs due to a state machine bug, and could also irreversibly
2383  * write-protect some EEPROMs, so for address ranges 0x30-0x37 and 0x50-0x5f,
2384  * we use a short byte read instead. Also, some bus drivers don't implement
2385  * quick write, so we fallback to a byte read in that case too.
2386  * On x86, there is another special case for FSC hardware monitoring chips,
2387  * which want regular byte reads (address 0x73.) Fortunately, these are the
2388  * only known chips using this I2C address on PC hardware.
2389  * Returns 1 if probe succeeded, 0 if not.
2390  */
2391 static int i2c_default_probe(struct i2c_adapter *adap, unsigned short addr)
2392 {
2393 	int err;
2394 	union i2c_smbus_data dummy;
2395 
2396 #ifdef CONFIG_X86
2397 	if (addr == 0x73 && (adap->class & I2C_CLASS_HWMON)
2398 	 && i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_BYTE_DATA))
2399 		err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
2400 				     I2C_SMBUS_BYTE_DATA, &dummy);
2401 	else
2402 #endif
2403 	if (!((addr & ~0x07) == 0x30 || (addr & ~0x0f) == 0x50)
2404 	 && i2c_check_functionality(adap, I2C_FUNC_SMBUS_QUICK))
2405 		err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_WRITE, 0,
2406 				     I2C_SMBUS_QUICK, NULL);
2407 	else if (i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_BYTE))
2408 		err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
2409 				     I2C_SMBUS_BYTE, &dummy);
2410 	else {
2411 		dev_warn(&adap->dev, "No suitable probing method supported for address 0x%02X\n",
2412 			 addr);
2413 		err = -EOPNOTSUPP;
2414 	}
2415 
2416 	return err >= 0;
2417 }
2418 
2419 static int i2c_detect_address(struct i2c_client *temp_client,
2420 			      struct i2c_driver *driver)
2421 {
2422 	struct i2c_board_info info;
2423 	struct i2c_adapter *adapter = temp_client->adapter;
2424 	int addr = temp_client->addr;
2425 	int err;
2426 
2427 	/* Make sure the address is valid */
2428 	err = i2c_check_7bit_addr_validity_strict(addr);
2429 	if (err) {
2430 		dev_warn(&adapter->dev, "Invalid probe address 0x%02x\n",
2431 			 addr);
2432 		return err;
2433 	}
2434 
2435 	/* Skip if already in use (7 bit, no need to encode flags) */
2436 	if (i2c_check_addr_busy(adapter, addr))
2437 		return 0;
2438 
2439 	/* Make sure there is something at this address */
2440 	if (!i2c_default_probe(adapter, addr))
2441 		return 0;
2442 
2443 	/* Finally call the custom detection function */
2444 	memset(&info, 0, sizeof(struct i2c_board_info));
2445 	info.addr = addr;
2446 	err = driver->detect(temp_client, &info);
2447 	if (err) {
2448 		/* -ENODEV is returned if the detection fails. We catch it
2449 		   here as this isn't an error. */
2450 		return err == -ENODEV ? 0 : err;
2451 	}
2452 
2453 	/* Consistency check */
2454 	if (info.type[0] == '\0') {
2455 		dev_err(&adapter->dev,
2456 			"%s detection function provided no name for 0x%x\n",
2457 			driver->driver.name, addr);
2458 	} else {
2459 		struct i2c_client *client;
2460 
2461 		/* Detection succeeded, instantiate the device */
2462 		if (adapter->class & I2C_CLASS_DEPRECATED)
2463 			dev_warn(&adapter->dev,
2464 				"This adapter will soon drop class based instantiation of devices. "
2465 				"Please make sure client 0x%02x gets instantiated by other means. "
2466 				"Check 'Documentation/i2c/instantiating-devices.rst' for details.\n",
2467 				info.addr);
2468 
2469 		dev_dbg(&adapter->dev, "Creating %s at 0x%02x\n",
2470 			info.type, info.addr);
2471 		client = i2c_new_client_device(adapter, &info);
2472 		if (!IS_ERR(client))
2473 			list_add_tail(&client->detected, &driver->clients);
2474 		else
2475 			dev_err(&adapter->dev, "Failed creating %s at 0x%02x\n",
2476 				info.type, info.addr);
2477 	}
2478 	return 0;
2479 }
2480 
2481 static int i2c_detect(struct i2c_adapter *adapter, struct i2c_driver *driver)
2482 {
2483 	const unsigned short *address_list;
2484 	struct i2c_client *temp_client;
2485 	int i, err = 0;
2486 
2487 	address_list = driver->address_list;
2488 	if (!driver->detect || !address_list)
2489 		return 0;
2490 
2491 	/* Warn that the adapter lost class based instantiation */
2492 	if (adapter->class == I2C_CLASS_DEPRECATED) {
2493 		dev_dbg(&adapter->dev,
2494 			"This adapter dropped support for I2C classes and won't auto-detect %s devices anymore. "
2495 			"If you need it, check 'Documentation/i2c/instantiating-devices.rst' for alternatives.\n",
2496 			driver->driver.name);
2497 		return 0;
2498 	}
2499 
2500 	/* Stop here if the classes do not match */
2501 	if (!(adapter->class & driver->class))
2502 		return 0;
2503 
2504 	/* Set up a temporary client to help detect callback */
2505 	temp_client = kzalloc(sizeof(struct i2c_client), GFP_KERNEL);
2506 	if (!temp_client)
2507 		return -ENOMEM;
2508 	temp_client->adapter = adapter;
2509 
2510 	for (i = 0; address_list[i] != I2C_CLIENT_END; i += 1) {
2511 		dev_dbg(&adapter->dev,
2512 			"found normal entry for adapter %d, addr 0x%02x\n",
2513 			i2c_adapter_id(adapter), address_list[i]);
2514 		temp_client->addr = address_list[i];
2515 		err = i2c_detect_address(temp_client, driver);
2516 		if (unlikely(err))
2517 			break;
2518 	}
2519 
2520 	kfree(temp_client);
2521 	return err;
2522 }
2523 
2524 int i2c_probe_func_quick_read(struct i2c_adapter *adap, unsigned short addr)
2525 {
2526 	return i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
2527 			      I2C_SMBUS_QUICK, NULL) >= 0;
2528 }
2529 EXPORT_SYMBOL_GPL(i2c_probe_func_quick_read);
2530 
2531 struct i2c_client *
2532 i2c_new_scanned_device(struct i2c_adapter *adap,
2533 		       struct i2c_board_info *info,
2534 		       unsigned short const *addr_list,
2535 		       int (*probe)(struct i2c_adapter *adap, unsigned short addr))
2536 {
2537 	int i;
2538 
2539 	if (!probe)
2540 		probe = i2c_default_probe;
2541 
2542 	for (i = 0; addr_list[i] != I2C_CLIENT_END; i++) {
2543 		/* Check address validity */
2544 		if (i2c_check_7bit_addr_validity_strict(addr_list[i]) < 0) {
2545 			dev_warn(&adap->dev, "Invalid 7-bit address 0x%02x\n",
2546 				 addr_list[i]);
2547 			continue;
2548 		}
2549 
2550 		/* Check address availability (7 bit, no need to encode flags) */
2551 		if (i2c_check_addr_busy(adap, addr_list[i])) {
2552 			dev_dbg(&adap->dev,
2553 				"Address 0x%02x already in use, not probing\n",
2554 				addr_list[i]);
2555 			continue;
2556 		}
2557 
2558 		/* Test address responsiveness */
2559 		if (probe(adap, addr_list[i]))
2560 			break;
2561 	}
2562 
2563 	if (addr_list[i] == I2C_CLIENT_END) {
2564 		dev_dbg(&adap->dev, "Probing failed, no device found\n");
2565 		return ERR_PTR(-ENODEV);
2566 	}
2567 
2568 	info->addr = addr_list[i];
2569 	return i2c_new_client_device(adap, info);
2570 }
2571 EXPORT_SYMBOL_GPL(i2c_new_scanned_device);
2572 
2573 struct i2c_adapter *i2c_get_adapter(int nr)
2574 {
2575 	struct i2c_adapter *adapter;
2576 
2577 	mutex_lock(&core_lock);
2578 	adapter = idr_find(&i2c_adapter_idr, nr);
2579 	if (!adapter)
2580 		goto exit;
2581 
2582 	if (try_module_get(adapter->owner))
2583 		get_device(&adapter->dev);
2584 	else
2585 		adapter = NULL;
2586 
2587  exit:
2588 	mutex_unlock(&core_lock);
2589 	return adapter;
2590 }
2591 EXPORT_SYMBOL(i2c_get_adapter);
2592 
2593 void i2c_put_adapter(struct i2c_adapter *adap)
2594 {
2595 	if (!adap)
2596 		return;
2597 
2598 	module_put(adap->owner);
2599 	/* Should be last, otherwise we risk use-after-free with 'adap' */
2600 	put_device(&adap->dev);
2601 }
2602 EXPORT_SYMBOL(i2c_put_adapter);
2603 
2604 /**
2605  * i2c_get_dma_safe_msg_buf() - get a DMA safe buffer for the given i2c_msg
2606  * @msg: the message to be checked
2607  * @threshold: the minimum number of bytes for which using DMA makes sense.
2608  *	       Should at least be 1.
2609  *
2610  * Return: NULL if a DMA safe buffer was not obtained. Use msg->buf with PIO.
2611  *	   Or a valid pointer to be used with DMA. After use, release it by
2612  *	   calling i2c_put_dma_safe_msg_buf().
2613  *
2614  * This function must only be called from process context!
2615  */
2616 u8 *i2c_get_dma_safe_msg_buf(struct i2c_msg *msg, unsigned int threshold)
2617 {
2618 	/* also skip 0-length msgs for bogus thresholds of 0 */
2619 	if (!threshold)
2620 		pr_debug("DMA buffer for addr=0x%02x with length 0 is bogus\n",
2621 			 msg->addr);
2622 	if (msg->len < threshold || msg->len == 0)
2623 		return NULL;
2624 
2625 	if (msg->flags & I2C_M_DMA_SAFE)
2626 		return msg->buf;
2627 
2628 	pr_debug("using bounce buffer for addr=0x%02x, len=%d\n",
2629 		 msg->addr, msg->len);
2630 
2631 	if (msg->flags & I2C_M_RD)
2632 		return kzalloc(msg->len, GFP_KERNEL);
2633 	else
2634 		return kmemdup(msg->buf, msg->len, GFP_KERNEL);
2635 }
2636 EXPORT_SYMBOL_GPL(i2c_get_dma_safe_msg_buf);
2637 
2638 /**
2639  * i2c_put_dma_safe_msg_buf - release DMA safe buffer and sync with i2c_msg
2640  * @buf: the buffer obtained from i2c_get_dma_safe_msg_buf(). May be NULL.
2641  * @msg: the message which the buffer corresponds to
2642  * @xferred: bool saying if the message was transferred
2643  */
2644 void i2c_put_dma_safe_msg_buf(u8 *buf, struct i2c_msg *msg, bool xferred)
2645 {
2646 	if (!buf || buf == msg->buf)
2647 		return;
2648 
2649 	if (xferred && msg->flags & I2C_M_RD)
2650 		memcpy(msg->buf, buf, msg->len);
2651 
2652 	kfree(buf);
2653 }
2654 EXPORT_SYMBOL_GPL(i2c_put_dma_safe_msg_buf);
2655 
2656 MODULE_AUTHOR("Simon G. Vogl <simon@tk.uni-linz.ac.at>");
2657 MODULE_DESCRIPTION("I2C-Bus main module");
2658 MODULE_LICENSE("GPL");
2659