xref: /linux/drivers/i2c/i2c-core-base.c (revision 0b0e9cdb3d1f8fda823b592b0667b4b0595e2ba7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux I2C core
4  *
5  * Copyright (C) 1995-99 Simon G. Vogl
6  *   With some changes from Kyösti Mälkki <kmalkki@cc.hut.fi>
7  *   Mux support by Rodolfo Giometti <giometti@enneenne.com> and
8  *   Michael Lawnick <michael.lawnick.ext@nsn.com>
9  *
10  * Copyright (C) 2013-2017 Wolfram Sang <wsa@kernel.org>
11  */
12 
13 #define pr_fmt(fmt) "i2c-core: " fmt
14 
15 #include <dt-bindings/i2c/i2c.h>
16 #include <linux/acpi.h>
17 #include <linux/clk/clk-conf.h>
18 #include <linux/completion.h>
19 #include <linux/debugfs.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/errno.h>
23 #include <linux/gpio/consumer.h>
24 #include <linux/i2c.h>
25 #include <linux/i2c-smbus.h>
26 #include <linux/idr.h>
27 #include <linux/init.h>
28 #include <linux/interrupt.h>
29 #include <linux/irqflags.h>
30 #include <linux/jump_label.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/mutex.h>
34 #include <linux/of_device.h>
35 #include <linux/of.h>
36 #include <linux/of_irq.h>
37 #include <linux/pinctrl/consumer.h>
38 #include <linux/pinctrl/devinfo.h>
39 #include <linux/pm_domain.h>
40 #include <linux/pm_runtime.h>
41 #include <linux/pm_wakeirq.h>
42 #include <linux/property.h>
43 #include <linux/rwsem.h>
44 #include <linux/slab.h>
45 
46 #include "i2c-core.h"
47 
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/i2c.h>
50 
51 #define I2C_ADDR_OFFSET_TEN_BIT	0xa000
52 #define I2C_ADDR_OFFSET_SLAVE	0x1000
53 
54 #define I2C_ADDR_7BITS_MAX	0x77
55 #define I2C_ADDR_7BITS_COUNT	(I2C_ADDR_7BITS_MAX + 1)
56 
57 #define I2C_ADDR_DEVICE_ID	0x7c
58 
59 /*
60  * core_lock protects i2c_adapter_idr, and guarantees that device detection,
61  * deletion of detected devices are serialized
62  */
63 static DEFINE_MUTEX(core_lock);
64 static DEFINE_IDR(i2c_adapter_idr);
65 
66 static int i2c_detect(struct i2c_adapter *adapter, struct i2c_driver *driver);
67 
68 static DEFINE_STATIC_KEY_FALSE(i2c_trace_msg_key);
69 static bool is_registered;
70 
71 static struct dentry *i2c_debugfs_root;
72 
73 int i2c_transfer_trace_reg(void)
74 {
75 	static_branch_inc(&i2c_trace_msg_key);
76 	return 0;
77 }
78 
79 void i2c_transfer_trace_unreg(void)
80 {
81 	static_branch_dec(&i2c_trace_msg_key);
82 }
83 
84 const char *i2c_freq_mode_string(u32 bus_freq_hz)
85 {
86 	switch (bus_freq_hz) {
87 	case I2C_MAX_STANDARD_MODE_FREQ:
88 		return "Standard Mode (100 kHz)";
89 	case I2C_MAX_FAST_MODE_FREQ:
90 		return "Fast Mode (400 kHz)";
91 	case I2C_MAX_FAST_MODE_PLUS_FREQ:
92 		return "Fast Mode Plus (1.0 MHz)";
93 	case I2C_MAX_TURBO_MODE_FREQ:
94 		return "Turbo Mode (1.4 MHz)";
95 	case I2C_MAX_HIGH_SPEED_MODE_FREQ:
96 		return "High Speed Mode (3.4 MHz)";
97 	case I2C_MAX_ULTRA_FAST_MODE_FREQ:
98 		return "Ultra Fast Mode (5.0 MHz)";
99 	default:
100 		return "Unknown Mode";
101 	}
102 }
103 EXPORT_SYMBOL_GPL(i2c_freq_mode_string);
104 
105 const struct i2c_device_id *i2c_match_id(const struct i2c_device_id *id,
106 						const struct i2c_client *client)
107 {
108 	if (!(id && client))
109 		return NULL;
110 
111 	while (id->name[0]) {
112 		if (strcmp(client->name, id->name) == 0)
113 			return id;
114 		id++;
115 	}
116 	return NULL;
117 }
118 EXPORT_SYMBOL_GPL(i2c_match_id);
119 
120 const void *i2c_get_match_data(const struct i2c_client *client)
121 {
122 	struct i2c_driver *driver = to_i2c_driver(client->dev.driver);
123 	const struct i2c_device_id *match;
124 	const void *data;
125 
126 	data = device_get_match_data(&client->dev);
127 	if (!data) {
128 		match = i2c_match_id(driver->id_table, client);
129 		if (!match)
130 			return NULL;
131 
132 		data = (const void *)match->driver_data;
133 	}
134 
135 	return data;
136 }
137 EXPORT_SYMBOL(i2c_get_match_data);
138 
139 static int i2c_device_match(struct device *dev, const struct device_driver *drv)
140 {
141 	struct i2c_client	*client = i2c_verify_client(dev);
142 	const struct i2c_driver	*driver;
143 
144 
145 	/* Attempt an OF style match */
146 	if (i2c_of_match_device(drv->of_match_table, client))
147 		return 1;
148 
149 	/* Then ACPI style match */
150 	if (acpi_driver_match_device(dev, drv))
151 		return 1;
152 
153 	driver = to_i2c_driver(drv);
154 
155 	/* Finally an I2C match */
156 	if (i2c_match_id(driver->id_table, client))
157 		return 1;
158 
159 	return 0;
160 }
161 
162 static int i2c_device_uevent(const struct device *dev, struct kobj_uevent_env *env)
163 {
164 	const struct i2c_client *client = to_i2c_client(dev);
165 	int rc;
166 
167 	rc = of_device_uevent_modalias(dev, env);
168 	if (rc != -ENODEV)
169 		return rc;
170 
171 	rc = acpi_device_uevent_modalias(dev, env);
172 	if (rc != -ENODEV)
173 		return rc;
174 
175 	return add_uevent_var(env, "MODALIAS=%s%s", I2C_MODULE_PREFIX, client->name);
176 }
177 
178 /* i2c bus recovery routines */
179 static int get_scl_gpio_value(struct i2c_adapter *adap)
180 {
181 	return gpiod_get_value_cansleep(adap->bus_recovery_info->scl_gpiod);
182 }
183 
184 static void set_scl_gpio_value(struct i2c_adapter *adap, int val)
185 {
186 	gpiod_set_value_cansleep(adap->bus_recovery_info->scl_gpiod, val);
187 }
188 
189 static int get_sda_gpio_value(struct i2c_adapter *adap)
190 {
191 	return gpiod_get_value_cansleep(adap->bus_recovery_info->sda_gpiod);
192 }
193 
194 static void set_sda_gpio_value(struct i2c_adapter *adap, int val)
195 {
196 	gpiod_set_value_cansleep(adap->bus_recovery_info->sda_gpiod, val);
197 }
198 
199 static int i2c_generic_bus_free(struct i2c_adapter *adap)
200 {
201 	struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
202 	int ret = -EOPNOTSUPP;
203 
204 	if (bri->get_bus_free)
205 		ret = bri->get_bus_free(adap);
206 	else if (bri->get_sda)
207 		ret = bri->get_sda(adap);
208 
209 	if (ret < 0)
210 		return ret;
211 
212 	return ret ? 0 : -EBUSY;
213 }
214 
215 /*
216  * We are generating clock pulses. ndelay() determines durating of clk pulses.
217  * We will generate clock with rate 100 KHz and so duration of both clock levels
218  * is: delay in ns = (10^6 / 100) / 2
219  */
220 #define RECOVERY_NDELAY		5000
221 #define RECOVERY_CLK_CNT	9
222 
223 int i2c_generic_scl_recovery(struct i2c_adapter *adap)
224 {
225 	struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
226 	int i = 0, scl = 1, ret = 0;
227 
228 	if (bri->prepare_recovery)
229 		bri->prepare_recovery(adap);
230 	if (bri->pinctrl)
231 		pinctrl_select_state(bri->pinctrl, bri->pins_gpio);
232 
233 	/*
234 	 * If we can set SDA, we will always create a STOP to ensure additional
235 	 * pulses will do no harm. This is achieved by letting SDA follow SCL
236 	 * half a cycle later. Check the 'incomplete_write_byte' fault injector
237 	 * for details. Note that we must honour tsu:sto, 4us, but lets use 5us
238 	 * here for simplicity.
239 	 */
240 	bri->set_scl(adap, scl);
241 	ndelay(RECOVERY_NDELAY);
242 	if (bri->set_sda)
243 		bri->set_sda(adap, scl);
244 	ndelay(RECOVERY_NDELAY / 2);
245 
246 	/*
247 	 * By this time SCL is high, as we need to give 9 falling-rising edges
248 	 */
249 	while (i++ < RECOVERY_CLK_CNT * 2) {
250 		if (scl) {
251 			/* SCL shouldn't be low here */
252 			if (!bri->get_scl(adap)) {
253 				dev_err(&adap->dev,
254 					"SCL is stuck low, exit recovery\n");
255 				ret = -EBUSY;
256 				break;
257 			}
258 		}
259 
260 		scl = !scl;
261 		bri->set_scl(adap, scl);
262 		/* Creating STOP again, see above */
263 		if (scl)  {
264 			/* Honour minimum tsu:sto */
265 			ndelay(RECOVERY_NDELAY);
266 		} else {
267 			/* Honour minimum tf and thd:dat */
268 			ndelay(RECOVERY_NDELAY / 2);
269 		}
270 		if (bri->set_sda)
271 			bri->set_sda(adap, scl);
272 		ndelay(RECOVERY_NDELAY / 2);
273 
274 		if (scl) {
275 			ret = i2c_generic_bus_free(adap);
276 			if (ret == 0)
277 				break;
278 		}
279 	}
280 
281 	/* If we can't check bus status, assume recovery worked */
282 	if (ret == -EOPNOTSUPP)
283 		ret = 0;
284 
285 	if (bri->unprepare_recovery)
286 		bri->unprepare_recovery(adap);
287 	if (bri->pinctrl)
288 		pinctrl_select_state(bri->pinctrl, bri->pins_default);
289 
290 	return ret;
291 }
292 EXPORT_SYMBOL_GPL(i2c_generic_scl_recovery);
293 
294 int i2c_recover_bus(struct i2c_adapter *adap)
295 {
296 	if (!adap->bus_recovery_info)
297 		return -EBUSY;
298 
299 	dev_dbg(&adap->dev, "Trying i2c bus recovery\n");
300 	return adap->bus_recovery_info->recover_bus(adap);
301 }
302 EXPORT_SYMBOL_GPL(i2c_recover_bus);
303 
304 static void i2c_gpio_init_pinctrl_recovery(struct i2c_adapter *adap)
305 {
306 	struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
307 	struct device *dev = &adap->dev;
308 	struct pinctrl *p = bri->pinctrl ?: dev_pinctrl(dev->parent);
309 
310 	bri->pinctrl = p;
311 
312 	/*
313 	 * we can't change states without pinctrl, so remove the states if
314 	 * populated
315 	 */
316 	if (!p) {
317 		bri->pins_default = NULL;
318 		bri->pins_gpio = NULL;
319 		return;
320 	}
321 
322 	if (!bri->pins_default) {
323 		bri->pins_default = pinctrl_lookup_state(p,
324 							 PINCTRL_STATE_DEFAULT);
325 		if (IS_ERR(bri->pins_default)) {
326 			dev_dbg(dev, PINCTRL_STATE_DEFAULT " state not found for GPIO recovery\n");
327 			bri->pins_default = NULL;
328 		}
329 	}
330 	if (!bri->pins_gpio) {
331 		bri->pins_gpio = pinctrl_lookup_state(p, "gpio");
332 		if (IS_ERR(bri->pins_gpio))
333 			bri->pins_gpio = pinctrl_lookup_state(p, "recovery");
334 
335 		if (IS_ERR(bri->pins_gpio)) {
336 			dev_dbg(dev, "no gpio or recovery state found for GPIO recovery\n");
337 			bri->pins_gpio = NULL;
338 		}
339 	}
340 
341 	/* for pinctrl state changes, we need all the information */
342 	if (bri->pins_default && bri->pins_gpio) {
343 		dev_info(dev, "using pinctrl states for GPIO recovery");
344 	} else {
345 		bri->pinctrl = NULL;
346 		bri->pins_default = NULL;
347 		bri->pins_gpio = NULL;
348 	}
349 }
350 
351 static int i2c_gpio_init_generic_recovery(struct i2c_adapter *adap)
352 {
353 	struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
354 	struct device *dev = &adap->dev;
355 	struct gpio_desc *gpiod;
356 	int ret = 0;
357 
358 	/*
359 	 * don't touch the recovery information if the driver is not using
360 	 * generic SCL recovery
361 	 */
362 	if (bri->recover_bus && bri->recover_bus != i2c_generic_scl_recovery)
363 		return 0;
364 
365 	/*
366 	 * pins might be taken as GPIO, so we should inform pinctrl about
367 	 * this and move the state to GPIO
368 	 */
369 	if (bri->pinctrl)
370 		pinctrl_select_state(bri->pinctrl, bri->pins_gpio);
371 
372 	/*
373 	 * if there is incomplete or no recovery information, see if generic
374 	 * GPIO recovery is available
375 	 */
376 	if (!bri->scl_gpiod) {
377 		gpiod = devm_gpiod_get(dev, "scl", GPIOD_OUT_HIGH_OPEN_DRAIN);
378 		if (PTR_ERR(gpiod) == -EPROBE_DEFER) {
379 			ret  = -EPROBE_DEFER;
380 			goto cleanup_pinctrl_state;
381 		}
382 		if (!IS_ERR(gpiod)) {
383 			bri->scl_gpiod = gpiod;
384 			bri->recover_bus = i2c_generic_scl_recovery;
385 			dev_info(dev, "using generic GPIOs for recovery\n");
386 		}
387 	}
388 
389 	/* SDA GPIOD line is optional, so we care about DEFER only */
390 	if (!bri->sda_gpiod) {
391 		/*
392 		 * We have SCL. Pull SCL low and wait a bit so that SDA glitches
393 		 * have no effect.
394 		 */
395 		gpiod_direction_output(bri->scl_gpiod, 0);
396 		udelay(10);
397 		gpiod = devm_gpiod_get(dev, "sda", GPIOD_IN);
398 
399 		/* Wait a bit in case of a SDA glitch, and then release SCL. */
400 		udelay(10);
401 		gpiod_direction_output(bri->scl_gpiod, 1);
402 
403 		if (PTR_ERR(gpiod) == -EPROBE_DEFER) {
404 			ret = -EPROBE_DEFER;
405 			goto cleanup_pinctrl_state;
406 		}
407 		if (!IS_ERR(gpiod))
408 			bri->sda_gpiod = gpiod;
409 	}
410 
411 cleanup_pinctrl_state:
412 	/* change the state of the pins back to their default state */
413 	if (bri->pinctrl)
414 		pinctrl_select_state(bri->pinctrl, bri->pins_default);
415 
416 	return ret;
417 }
418 
419 static int i2c_gpio_init_recovery(struct i2c_adapter *adap)
420 {
421 	i2c_gpio_init_pinctrl_recovery(adap);
422 	return i2c_gpio_init_generic_recovery(adap);
423 }
424 
425 static int i2c_init_recovery(struct i2c_adapter *adap)
426 {
427 	struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
428 	bool is_error_level = true;
429 	char *err_str;
430 
431 	if (!bri)
432 		return 0;
433 
434 	if (i2c_gpio_init_recovery(adap) == -EPROBE_DEFER)
435 		return -EPROBE_DEFER;
436 
437 	if (!bri->recover_bus) {
438 		err_str = "no suitable method provided";
439 		is_error_level = false;
440 		goto err;
441 	}
442 
443 	if (bri->scl_gpiod && bri->recover_bus == i2c_generic_scl_recovery) {
444 		bri->get_scl = get_scl_gpio_value;
445 		bri->set_scl = set_scl_gpio_value;
446 		if (bri->sda_gpiod) {
447 			bri->get_sda = get_sda_gpio_value;
448 			/* FIXME: add proper flag instead of '0' once available */
449 			if (gpiod_get_direction(bri->sda_gpiod) == 0)
450 				bri->set_sda = set_sda_gpio_value;
451 		}
452 	} else if (bri->recover_bus == i2c_generic_scl_recovery) {
453 		/* Generic SCL recovery */
454 		if (!bri->set_scl || !bri->get_scl) {
455 			err_str = "no {get|set}_scl() found";
456 			goto err;
457 		}
458 		if (!bri->set_sda && !bri->get_sda) {
459 			err_str = "either get_sda() or set_sda() needed";
460 			goto err;
461 		}
462 	}
463 
464 	return 0;
465  err:
466 	if (is_error_level)
467 		dev_err(&adap->dev, "Not using recovery: %s\n", err_str);
468 	else
469 		dev_dbg(&adap->dev, "Not using recovery: %s\n", err_str);
470 	adap->bus_recovery_info = NULL;
471 
472 	return -EINVAL;
473 }
474 
475 static int i2c_smbus_host_notify_to_irq(const struct i2c_client *client)
476 {
477 	struct i2c_adapter *adap = client->adapter;
478 	unsigned int irq;
479 
480 	if (!adap->host_notify_domain)
481 		return -ENXIO;
482 
483 	if (client->flags & I2C_CLIENT_TEN)
484 		return -EINVAL;
485 
486 	irq = irq_create_mapping(adap->host_notify_domain, client->addr);
487 
488 	return irq > 0 ? irq : -ENXIO;
489 }
490 
491 static int i2c_device_probe(struct device *dev)
492 {
493 	struct i2c_client	*client = i2c_verify_client(dev);
494 	struct i2c_driver	*driver;
495 	bool do_power_on;
496 	int status;
497 
498 	if (!client)
499 		return 0;
500 
501 	client->irq = client->init_irq;
502 
503 	if (!client->irq) {
504 		int irq = -ENOENT;
505 
506 		if (client->flags & I2C_CLIENT_HOST_NOTIFY) {
507 			dev_dbg(dev, "Using Host Notify IRQ\n");
508 			/* Keep adapter active when Host Notify is required */
509 			pm_runtime_get_sync(&client->adapter->dev);
510 			irq = i2c_smbus_host_notify_to_irq(client);
511 		} else if (dev->of_node) {
512 			irq = of_irq_get_byname(dev->of_node, "irq");
513 			if (irq == -EINVAL || irq == -ENODATA)
514 				irq = of_irq_get(dev->of_node, 0);
515 		} else if (ACPI_COMPANION(dev)) {
516 			bool wake_capable;
517 
518 			irq = i2c_acpi_get_irq(client, &wake_capable);
519 			if (irq > 0 && wake_capable)
520 				client->flags |= I2C_CLIENT_WAKE;
521 		}
522 		if (irq == -EPROBE_DEFER) {
523 			status = irq;
524 			goto put_sync_adapter;
525 		}
526 
527 		if (irq < 0)
528 			irq = 0;
529 
530 		client->irq = irq;
531 	}
532 
533 	driver = to_i2c_driver(dev->driver);
534 
535 	/*
536 	 * An I2C ID table is not mandatory, if and only if, a suitable OF
537 	 * or ACPI ID table is supplied for the probing device.
538 	 */
539 	if (!driver->id_table &&
540 	    !acpi_driver_match_device(dev, dev->driver) &&
541 	    !i2c_of_match_device(dev->driver->of_match_table, client)) {
542 		status = -ENODEV;
543 		goto put_sync_adapter;
544 	}
545 
546 	if (client->flags & I2C_CLIENT_WAKE) {
547 		int wakeirq;
548 
549 		wakeirq = of_irq_get_byname(dev->of_node, "wakeup");
550 		if (wakeirq == -EPROBE_DEFER) {
551 			status = wakeirq;
552 			goto put_sync_adapter;
553 		}
554 
555 		device_init_wakeup(&client->dev, true);
556 
557 		if (wakeirq > 0 && wakeirq != client->irq)
558 			status = dev_pm_set_dedicated_wake_irq(dev, wakeirq);
559 		else if (client->irq > 0)
560 			status = dev_pm_set_wake_irq(dev, client->irq);
561 		else
562 			status = 0;
563 
564 		if (status)
565 			dev_warn(&client->dev, "failed to set up wakeup irq\n");
566 	}
567 
568 	dev_dbg(dev, "probe\n");
569 
570 	status = of_clk_set_defaults(dev->of_node, false);
571 	if (status < 0)
572 		goto err_clear_wakeup_irq;
573 
574 	do_power_on = !i2c_acpi_waive_d0_probe(dev);
575 	status = dev_pm_domain_attach(&client->dev, do_power_on);
576 	if (status)
577 		goto err_clear_wakeup_irq;
578 
579 	client->devres_group_id = devres_open_group(&client->dev, NULL,
580 						    GFP_KERNEL);
581 	if (!client->devres_group_id) {
582 		status = -ENOMEM;
583 		goto err_detach_pm_domain;
584 	}
585 
586 	if (driver->probe)
587 		status = driver->probe(client);
588 	else
589 		status = -EINVAL;
590 
591 	/*
592 	 * Note that we are not closing the devres group opened above so
593 	 * even resources that were attached to the device after probe is
594 	 * run are released when i2c_device_remove() is executed. This is
595 	 * needed as some drivers would allocate additional resources,
596 	 * for example when updating firmware.
597 	 */
598 
599 	if (status)
600 		goto err_release_driver_resources;
601 
602 	return 0;
603 
604 err_release_driver_resources:
605 	devres_release_group(&client->dev, client->devres_group_id);
606 err_detach_pm_domain:
607 	dev_pm_domain_detach(&client->dev, do_power_on);
608 err_clear_wakeup_irq:
609 	dev_pm_clear_wake_irq(&client->dev);
610 	device_init_wakeup(&client->dev, false);
611 put_sync_adapter:
612 	if (client->flags & I2C_CLIENT_HOST_NOTIFY)
613 		pm_runtime_put_sync(&client->adapter->dev);
614 
615 	return status;
616 }
617 
618 static void i2c_device_remove(struct device *dev)
619 {
620 	struct i2c_client	*client = to_i2c_client(dev);
621 	struct i2c_driver	*driver;
622 
623 	driver = to_i2c_driver(dev->driver);
624 	if (driver->remove) {
625 		dev_dbg(dev, "remove\n");
626 
627 		driver->remove(client);
628 	}
629 
630 	devres_release_group(&client->dev, client->devres_group_id);
631 
632 	dev_pm_domain_detach(&client->dev, true);
633 
634 	dev_pm_clear_wake_irq(&client->dev);
635 	device_init_wakeup(&client->dev, false);
636 
637 	client->irq = 0;
638 	if (client->flags & I2C_CLIENT_HOST_NOTIFY)
639 		pm_runtime_put(&client->adapter->dev);
640 }
641 
642 static void i2c_device_shutdown(struct device *dev)
643 {
644 	struct i2c_client *client = i2c_verify_client(dev);
645 	struct i2c_driver *driver;
646 
647 	if (!client || !dev->driver)
648 		return;
649 	driver = to_i2c_driver(dev->driver);
650 	if (driver->shutdown)
651 		driver->shutdown(client);
652 	else if (client->irq > 0)
653 		disable_irq(client->irq);
654 }
655 
656 static void i2c_client_dev_release(struct device *dev)
657 {
658 	kfree(to_i2c_client(dev));
659 }
660 
661 static ssize_t
662 name_show(struct device *dev, struct device_attribute *attr, char *buf)
663 {
664 	return sprintf(buf, "%s\n", dev->type == &i2c_client_type ?
665 		       to_i2c_client(dev)->name : to_i2c_adapter(dev)->name);
666 }
667 static DEVICE_ATTR_RO(name);
668 
669 static ssize_t
670 modalias_show(struct device *dev, struct device_attribute *attr, char *buf)
671 {
672 	struct i2c_client *client = to_i2c_client(dev);
673 	int len;
674 
675 	len = of_device_modalias(dev, buf, PAGE_SIZE);
676 	if (len != -ENODEV)
677 		return len;
678 
679 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
680 	if (len != -ENODEV)
681 		return len;
682 
683 	return sprintf(buf, "%s%s\n", I2C_MODULE_PREFIX, client->name);
684 }
685 static DEVICE_ATTR_RO(modalias);
686 
687 static struct attribute *i2c_dev_attrs[] = {
688 	&dev_attr_name.attr,
689 	/* modalias helps coldplug:  modprobe $(cat .../modalias) */
690 	&dev_attr_modalias.attr,
691 	NULL
692 };
693 ATTRIBUTE_GROUPS(i2c_dev);
694 
695 const struct bus_type i2c_bus_type = {
696 	.name		= "i2c",
697 	.match		= i2c_device_match,
698 	.probe		= i2c_device_probe,
699 	.remove		= i2c_device_remove,
700 	.shutdown	= i2c_device_shutdown,
701 };
702 EXPORT_SYMBOL_GPL(i2c_bus_type);
703 
704 const struct device_type i2c_client_type = {
705 	.groups		= i2c_dev_groups,
706 	.uevent		= i2c_device_uevent,
707 	.release	= i2c_client_dev_release,
708 };
709 EXPORT_SYMBOL_GPL(i2c_client_type);
710 
711 
712 /**
713  * i2c_verify_client - return parameter as i2c_client, or NULL
714  * @dev: device, probably from some driver model iterator
715  *
716  * When traversing the driver model tree, perhaps using driver model
717  * iterators like @device_for_each_child(), you can't assume very much
718  * about the nodes you find.  Use this function to avoid oopses caused
719  * by wrongly treating some non-I2C device as an i2c_client.
720  */
721 struct i2c_client *i2c_verify_client(struct device *dev)
722 {
723 	return (dev->type == &i2c_client_type)
724 			? to_i2c_client(dev)
725 			: NULL;
726 }
727 EXPORT_SYMBOL(i2c_verify_client);
728 
729 
730 /* Return a unique address which takes the flags of the client into account */
731 static unsigned short i2c_encode_flags_to_addr(struct i2c_client *client)
732 {
733 	unsigned short addr = client->addr;
734 
735 	/* For some client flags, add an arbitrary offset to avoid collisions */
736 	if (client->flags & I2C_CLIENT_TEN)
737 		addr |= I2C_ADDR_OFFSET_TEN_BIT;
738 
739 	if (client->flags & I2C_CLIENT_SLAVE)
740 		addr |= I2C_ADDR_OFFSET_SLAVE;
741 
742 	return addr;
743 }
744 
745 /* This is a permissive address validity check, I2C address map constraints
746  * are purposely not enforced, except for the general call address. */
747 static int i2c_check_addr_validity(unsigned int addr, unsigned short flags)
748 {
749 	if (flags & I2C_CLIENT_TEN) {
750 		/* 10-bit address, all values are valid */
751 		if (addr > 0x3ff)
752 			return -EINVAL;
753 	} else {
754 		/* 7-bit address, reject the general call address */
755 		if (addr == 0x00 || addr > 0x7f)
756 			return -EINVAL;
757 	}
758 	return 0;
759 }
760 
761 /* And this is a strict address validity check, used when probing. If a
762  * device uses a reserved address, then it shouldn't be probed. 7-bit
763  * addressing is assumed, 10-bit address devices are rare and should be
764  * explicitly enumerated. */
765 int i2c_check_7bit_addr_validity_strict(unsigned short addr)
766 {
767 	/*
768 	 * Reserved addresses per I2C specification:
769 	 *  0x00       General call address / START byte
770 	 *  0x01       CBUS address
771 	 *  0x02       Reserved for different bus format
772 	 *  0x03       Reserved for future purposes
773 	 *  0x04-0x07  Hs-mode master code
774 	 *  0x78-0x7b  10-bit slave addressing
775 	 *  0x7c-0x7f  Reserved for future purposes
776 	 */
777 	if (addr < 0x08 || addr > 0x77)
778 		return -EINVAL;
779 	return 0;
780 }
781 
782 static int __i2c_check_addr_busy(struct device *dev, void *addrp)
783 {
784 	struct i2c_client	*client = i2c_verify_client(dev);
785 	int			addr = *(int *)addrp;
786 
787 	if (client && i2c_encode_flags_to_addr(client) == addr)
788 		return -EBUSY;
789 	return 0;
790 }
791 
792 /* walk up mux tree */
793 static int i2c_check_mux_parents(struct i2c_adapter *adapter, int addr)
794 {
795 	struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
796 	int result;
797 
798 	result = device_for_each_child(&adapter->dev, &addr,
799 					__i2c_check_addr_busy);
800 
801 	if (!result && parent)
802 		result = i2c_check_mux_parents(parent, addr);
803 
804 	return result;
805 }
806 
807 /* recurse down mux tree */
808 static int i2c_check_mux_children(struct device *dev, void *addrp)
809 {
810 	int result;
811 
812 	if (dev->type == &i2c_adapter_type)
813 		result = device_for_each_child(dev, addrp,
814 						i2c_check_mux_children);
815 	else
816 		result = __i2c_check_addr_busy(dev, addrp);
817 
818 	return result;
819 }
820 
821 static int i2c_check_addr_busy(struct i2c_adapter *adapter, int addr)
822 {
823 	struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
824 	int result = 0;
825 
826 	if (parent)
827 		result = i2c_check_mux_parents(parent, addr);
828 
829 	if (!result)
830 		result = device_for_each_child(&adapter->dev, &addr,
831 						i2c_check_mux_children);
832 
833 	return result;
834 }
835 
836 /**
837  * i2c_adapter_lock_bus - Get exclusive access to an I2C bus segment
838  * @adapter: Target I2C bus segment
839  * @flags: I2C_LOCK_ROOT_ADAPTER locks the root i2c adapter, I2C_LOCK_SEGMENT
840  *	locks only this branch in the adapter tree
841  */
842 static void i2c_adapter_lock_bus(struct i2c_adapter *adapter,
843 				 unsigned int flags)
844 {
845 	rt_mutex_lock_nested(&adapter->bus_lock, i2c_adapter_depth(adapter));
846 }
847 
848 /**
849  * i2c_adapter_trylock_bus - Try to get exclusive access to an I2C bus segment
850  * @adapter: Target I2C bus segment
851  * @flags: I2C_LOCK_ROOT_ADAPTER trylocks the root i2c adapter, I2C_LOCK_SEGMENT
852  *	trylocks only this branch in the adapter tree
853  */
854 static int i2c_adapter_trylock_bus(struct i2c_adapter *adapter,
855 				   unsigned int flags)
856 {
857 	return rt_mutex_trylock(&adapter->bus_lock);
858 }
859 
860 /**
861  * i2c_adapter_unlock_bus - Release exclusive access to an I2C bus segment
862  * @adapter: Target I2C bus segment
863  * @flags: I2C_LOCK_ROOT_ADAPTER unlocks the root i2c adapter, I2C_LOCK_SEGMENT
864  *	unlocks only this branch in the adapter tree
865  */
866 static void i2c_adapter_unlock_bus(struct i2c_adapter *adapter,
867 				   unsigned int flags)
868 {
869 	rt_mutex_unlock(&adapter->bus_lock);
870 }
871 
872 static void i2c_dev_set_name(struct i2c_adapter *adap,
873 			     struct i2c_client *client,
874 			     struct i2c_board_info const *info)
875 {
876 	struct acpi_device *adev = ACPI_COMPANION(&client->dev);
877 
878 	if (info && info->dev_name) {
879 		dev_set_name(&client->dev, "i2c-%s", info->dev_name);
880 		return;
881 	}
882 
883 	if (adev) {
884 		dev_set_name(&client->dev, "i2c-%s", acpi_dev_name(adev));
885 		return;
886 	}
887 
888 	dev_set_name(&client->dev, "%d-%04x", i2c_adapter_id(adap),
889 		     i2c_encode_flags_to_addr(client));
890 }
891 
892 int i2c_dev_irq_from_resources(const struct resource *resources,
893 			       unsigned int num_resources)
894 {
895 	struct irq_data *irqd;
896 	int i;
897 
898 	for (i = 0; i < num_resources; i++) {
899 		const struct resource *r = &resources[i];
900 
901 		if (resource_type(r) != IORESOURCE_IRQ)
902 			continue;
903 
904 		if (r->flags & IORESOURCE_BITS) {
905 			irqd = irq_get_irq_data(r->start);
906 			if (!irqd)
907 				break;
908 
909 			irqd_set_trigger_type(irqd, r->flags & IORESOURCE_BITS);
910 		}
911 
912 		return r->start;
913 	}
914 
915 	return 0;
916 }
917 
918 /**
919  * i2c_new_client_device - instantiate an i2c device
920  * @adap: the adapter managing the device
921  * @info: describes one I2C device; bus_num is ignored
922  * Context: can sleep
923  *
924  * Create an i2c device. Binding is handled through driver model
925  * probe()/remove() methods.  A driver may be bound to this device when we
926  * return from this function, or any later moment (e.g. maybe hotplugging will
927  * load the driver module).  This call is not appropriate for use by mainboard
928  * initialization logic, which usually runs during an arch_initcall() long
929  * before any i2c_adapter could exist.
930  *
931  * This returns the new i2c client, which may be saved for later use with
932  * i2c_unregister_device(); or an ERR_PTR to describe the error.
933  */
934 struct i2c_client *
935 i2c_new_client_device(struct i2c_adapter *adap, struct i2c_board_info const *info)
936 {
937 	struct i2c_client *client;
938 	bool need_put = false;
939 	int status;
940 
941 	client = kzalloc(sizeof *client, GFP_KERNEL);
942 	if (!client)
943 		return ERR_PTR(-ENOMEM);
944 
945 	client->adapter = adap;
946 
947 	client->dev.platform_data = info->platform_data;
948 	client->flags = info->flags;
949 	client->addr = info->addr;
950 
951 	client->init_irq = info->irq;
952 	if (!client->init_irq)
953 		client->init_irq = i2c_dev_irq_from_resources(info->resources,
954 							 info->num_resources);
955 
956 	strscpy(client->name, info->type, sizeof(client->name));
957 
958 	status = i2c_check_addr_validity(client->addr, client->flags);
959 	if (status) {
960 		dev_err(&adap->dev, "Invalid %d-bit I2C address 0x%02hx\n",
961 			client->flags & I2C_CLIENT_TEN ? 10 : 7, client->addr);
962 		goto out_err_silent;
963 	}
964 
965 	/* Check for address business */
966 	status = i2c_check_addr_busy(adap, i2c_encode_flags_to_addr(client));
967 	if (status)
968 		goto out_err;
969 
970 	client->dev.parent = &client->adapter->dev;
971 	client->dev.bus = &i2c_bus_type;
972 	client->dev.type = &i2c_client_type;
973 	client->dev.of_node = of_node_get(info->of_node);
974 	client->dev.fwnode = info->fwnode;
975 
976 	device_enable_async_suspend(&client->dev);
977 
978 	if (info->swnode) {
979 		status = device_add_software_node(&client->dev, info->swnode);
980 		if (status) {
981 			dev_err(&adap->dev,
982 				"Failed to add software node to client %s: %d\n",
983 				client->name, status);
984 			goto out_err_put_of_node;
985 		}
986 	}
987 
988 	i2c_dev_set_name(adap, client, info);
989 	status = device_register(&client->dev);
990 	if (status)
991 		goto out_remove_swnode;
992 
993 	dev_dbg(&adap->dev, "client [%s] registered with bus id %s\n",
994 		client->name, dev_name(&client->dev));
995 
996 	return client;
997 
998 out_remove_swnode:
999 	device_remove_software_node(&client->dev);
1000 	need_put = true;
1001 out_err_put_of_node:
1002 	of_node_put(info->of_node);
1003 out_err:
1004 	dev_err(&adap->dev,
1005 		"Failed to register i2c client %s at 0x%02x (%d)\n",
1006 		client->name, client->addr, status);
1007 out_err_silent:
1008 	if (need_put)
1009 		put_device(&client->dev);
1010 	else
1011 		kfree(client);
1012 	return ERR_PTR(status);
1013 }
1014 EXPORT_SYMBOL_GPL(i2c_new_client_device);
1015 
1016 /**
1017  * i2c_unregister_device - reverse effect of i2c_new_*_device()
1018  * @client: value returned from i2c_new_*_device()
1019  * Context: can sleep
1020  */
1021 void i2c_unregister_device(struct i2c_client *client)
1022 {
1023 	if (IS_ERR_OR_NULL(client))
1024 		return;
1025 
1026 	if (client->dev.of_node) {
1027 		of_node_clear_flag(client->dev.of_node, OF_POPULATED);
1028 		of_node_put(client->dev.of_node);
1029 	}
1030 
1031 	if (ACPI_COMPANION(&client->dev))
1032 		acpi_device_clear_enumerated(ACPI_COMPANION(&client->dev));
1033 	device_remove_software_node(&client->dev);
1034 	device_unregister(&client->dev);
1035 }
1036 EXPORT_SYMBOL_GPL(i2c_unregister_device);
1037 
1038 /**
1039  * i2c_find_device_by_fwnode() - find an i2c_client for the fwnode
1040  * @fwnode: &struct fwnode_handle corresponding to the &struct i2c_client
1041  *
1042  * Look up and return the &struct i2c_client corresponding to the @fwnode.
1043  * If no client can be found, or @fwnode is NULL, this returns NULL.
1044  *
1045  * The user must call put_device(&client->dev) once done with the i2c client.
1046  */
1047 struct i2c_client *i2c_find_device_by_fwnode(struct fwnode_handle *fwnode)
1048 {
1049 	struct i2c_client *client;
1050 	struct device *dev;
1051 
1052 	if (!fwnode)
1053 		return NULL;
1054 
1055 	dev = bus_find_device_by_fwnode(&i2c_bus_type, fwnode);
1056 	if (!dev)
1057 		return NULL;
1058 
1059 	client = i2c_verify_client(dev);
1060 	if (!client)
1061 		put_device(dev);
1062 
1063 	return client;
1064 }
1065 EXPORT_SYMBOL(i2c_find_device_by_fwnode);
1066 
1067 
1068 static const struct i2c_device_id dummy_id[] = {
1069 	{ "dummy", },
1070 	{ "smbus_host_notify", },
1071 	{ },
1072 };
1073 
1074 static int dummy_probe(struct i2c_client *client)
1075 {
1076 	return 0;
1077 }
1078 
1079 static struct i2c_driver dummy_driver = {
1080 	.driver.name	= "dummy",
1081 	.probe		= dummy_probe,
1082 	.id_table	= dummy_id,
1083 };
1084 
1085 /**
1086  * i2c_new_dummy_device - return a new i2c device bound to a dummy driver
1087  * @adapter: the adapter managing the device
1088  * @address: seven bit address to be used
1089  * Context: can sleep
1090  *
1091  * This returns an I2C client bound to the "dummy" driver, intended for use
1092  * with devices that consume multiple addresses.  Examples of such chips
1093  * include various EEPROMS (like 24c04 and 24c08 models).
1094  *
1095  * These dummy devices have two main uses.  First, most I2C and SMBus calls
1096  * except i2c_transfer() need a client handle; the dummy will be that handle.
1097  * And second, this prevents the specified address from being bound to a
1098  * different driver.
1099  *
1100  * This returns the new i2c client, which should be saved for later use with
1101  * i2c_unregister_device(); or an ERR_PTR to describe the error.
1102  */
1103 struct i2c_client *i2c_new_dummy_device(struct i2c_adapter *adapter, u16 address)
1104 {
1105 	struct i2c_board_info info = {
1106 		I2C_BOARD_INFO("dummy", address),
1107 	};
1108 
1109 	return i2c_new_client_device(adapter, &info);
1110 }
1111 EXPORT_SYMBOL_GPL(i2c_new_dummy_device);
1112 
1113 static void devm_i2c_release_dummy(void *client)
1114 {
1115 	i2c_unregister_device(client);
1116 }
1117 
1118 /**
1119  * devm_i2c_new_dummy_device - return a new i2c device bound to a dummy driver
1120  * @dev: device the managed resource is bound to
1121  * @adapter: the adapter managing the device
1122  * @address: seven bit address to be used
1123  * Context: can sleep
1124  *
1125  * This is the device-managed version of @i2c_new_dummy_device. It returns the
1126  * new i2c client or an ERR_PTR in case of an error.
1127  */
1128 struct i2c_client *devm_i2c_new_dummy_device(struct device *dev,
1129 					     struct i2c_adapter *adapter,
1130 					     u16 address)
1131 {
1132 	struct i2c_client *client;
1133 	int ret;
1134 
1135 	client = i2c_new_dummy_device(adapter, address);
1136 	if (IS_ERR(client))
1137 		return client;
1138 
1139 	ret = devm_add_action_or_reset(dev, devm_i2c_release_dummy, client);
1140 	if (ret)
1141 		return ERR_PTR(ret);
1142 
1143 	return client;
1144 }
1145 EXPORT_SYMBOL_GPL(devm_i2c_new_dummy_device);
1146 
1147 /**
1148  * i2c_new_ancillary_device - Helper to get the instantiated secondary address
1149  * and create the associated device
1150  * @client: Handle to the primary client
1151  * @name: Handle to specify which secondary address to get
1152  * @default_addr: Used as a fallback if no secondary address was specified
1153  * Context: can sleep
1154  *
1155  * I2C clients can be composed of multiple I2C slaves bound together in a single
1156  * component. The I2C client driver then binds to the master I2C slave and needs
1157  * to create I2C dummy clients to communicate with all the other slaves.
1158  *
1159  * This function creates and returns an I2C dummy client whose I2C address is
1160  * retrieved from the platform firmware based on the given slave name. If no
1161  * address is specified by the firmware default_addr is used.
1162  *
1163  * On DT-based platforms the address is retrieved from the "reg" property entry
1164  * cell whose "reg-names" value matches the slave name.
1165  *
1166  * This returns the new i2c client, which should be saved for later use with
1167  * i2c_unregister_device(); or an ERR_PTR to describe the error.
1168  */
1169 struct i2c_client *i2c_new_ancillary_device(struct i2c_client *client,
1170 						const char *name,
1171 						u16 default_addr)
1172 {
1173 	struct device_node *np = client->dev.of_node;
1174 	u32 addr = default_addr;
1175 	int i;
1176 
1177 	if (np) {
1178 		i = of_property_match_string(np, "reg-names", name);
1179 		if (i >= 0)
1180 			of_property_read_u32_index(np, "reg", i, &addr);
1181 	}
1182 
1183 	dev_dbg(&client->adapter->dev, "Address for %s : 0x%x\n", name, addr);
1184 	return i2c_new_dummy_device(client->adapter, addr);
1185 }
1186 EXPORT_SYMBOL_GPL(i2c_new_ancillary_device);
1187 
1188 /* ------------------------------------------------------------------------- */
1189 
1190 /* I2C bus adapters -- one roots each I2C or SMBUS segment */
1191 
1192 static void i2c_adapter_dev_release(struct device *dev)
1193 {
1194 	struct i2c_adapter *adap = to_i2c_adapter(dev);
1195 	complete(&adap->dev_released);
1196 }
1197 
1198 unsigned int i2c_adapter_depth(struct i2c_adapter *adapter)
1199 {
1200 	unsigned int depth = 0;
1201 	struct device *parent;
1202 
1203 	for (parent = adapter->dev.parent; parent; parent = parent->parent)
1204 		if (parent->type == &i2c_adapter_type)
1205 			depth++;
1206 
1207 	WARN_ONCE(depth >= MAX_LOCKDEP_SUBCLASSES,
1208 		  "adapter depth exceeds lockdep subclass limit\n");
1209 
1210 	return depth;
1211 }
1212 EXPORT_SYMBOL_GPL(i2c_adapter_depth);
1213 
1214 /*
1215  * Let users instantiate I2C devices through sysfs. This can be used when
1216  * platform initialization code doesn't contain the proper data for
1217  * whatever reason. Also useful for drivers that do device detection and
1218  * detection fails, either because the device uses an unexpected address,
1219  * or this is a compatible device with different ID register values.
1220  *
1221  * Parameter checking may look overzealous, but we really don't want
1222  * the user to provide incorrect parameters.
1223  */
1224 static ssize_t
1225 new_device_store(struct device *dev, struct device_attribute *attr,
1226 		 const char *buf, size_t count)
1227 {
1228 	struct i2c_adapter *adap = to_i2c_adapter(dev);
1229 	struct i2c_board_info info;
1230 	struct i2c_client *client;
1231 	char *blank, end;
1232 	int res;
1233 
1234 	memset(&info, 0, sizeof(struct i2c_board_info));
1235 
1236 	blank = strchr(buf, ' ');
1237 	if (!blank) {
1238 		dev_err(dev, "%s: Missing parameters\n", "new_device");
1239 		return -EINVAL;
1240 	}
1241 	if (blank - buf > I2C_NAME_SIZE - 1) {
1242 		dev_err(dev, "%s: Invalid device name\n", "new_device");
1243 		return -EINVAL;
1244 	}
1245 	memcpy(info.type, buf, blank - buf);
1246 
1247 	/* Parse remaining parameters, reject extra parameters */
1248 	res = sscanf(++blank, "%hi%c", &info.addr, &end);
1249 	if (res < 1) {
1250 		dev_err(dev, "%s: Can't parse I2C address\n", "new_device");
1251 		return -EINVAL;
1252 	}
1253 	if (res > 1  && end != '\n') {
1254 		dev_err(dev, "%s: Extra parameters\n", "new_device");
1255 		return -EINVAL;
1256 	}
1257 
1258 	if ((info.addr & I2C_ADDR_OFFSET_TEN_BIT) == I2C_ADDR_OFFSET_TEN_BIT) {
1259 		info.addr &= ~I2C_ADDR_OFFSET_TEN_BIT;
1260 		info.flags |= I2C_CLIENT_TEN;
1261 	}
1262 
1263 	if (info.addr & I2C_ADDR_OFFSET_SLAVE) {
1264 		info.addr &= ~I2C_ADDR_OFFSET_SLAVE;
1265 		info.flags |= I2C_CLIENT_SLAVE;
1266 	}
1267 
1268 	client = i2c_new_client_device(adap, &info);
1269 	if (IS_ERR(client))
1270 		return PTR_ERR(client);
1271 
1272 	/* Keep track of the added device */
1273 	mutex_lock(&adap->userspace_clients_lock);
1274 	list_add_tail(&client->detected, &adap->userspace_clients);
1275 	mutex_unlock(&adap->userspace_clients_lock);
1276 	dev_info(dev, "%s: Instantiated device %s at 0x%02hx\n", "new_device",
1277 		 info.type, info.addr);
1278 
1279 	return count;
1280 }
1281 static DEVICE_ATTR_WO(new_device);
1282 
1283 /*
1284  * And of course let the users delete the devices they instantiated, if
1285  * they got it wrong. This interface can only be used to delete devices
1286  * instantiated by i2c_sysfs_new_device above. This guarantees that we
1287  * don't delete devices to which some kernel code still has references.
1288  *
1289  * Parameter checking may look overzealous, but we really don't want
1290  * the user to delete the wrong device.
1291  */
1292 static ssize_t
1293 delete_device_store(struct device *dev, struct device_attribute *attr,
1294 		    const char *buf, size_t count)
1295 {
1296 	struct i2c_adapter *adap = to_i2c_adapter(dev);
1297 	struct i2c_client *client, *next;
1298 	unsigned short addr;
1299 	char end;
1300 	int res;
1301 
1302 	/* Parse parameters, reject extra parameters */
1303 	res = sscanf(buf, "%hi%c", &addr, &end);
1304 	if (res < 1) {
1305 		dev_err(dev, "%s: Can't parse I2C address\n", "delete_device");
1306 		return -EINVAL;
1307 	}
1308 	if (res > 1  && end != '\n') {
1309 		dev_err(dev, "%s: Extra parameters\n", "delete_device");
1310 		return -EINVAL;
1311 	}
1312 
1313 	/* Make sure the device was added through sysfs */
1314 	res = -ENOENT;
1315 	mutex_lock_nested(&adap->userspace_clients_lock,
1316 			  i2c_adapter_depth(adap));
1317 	list_for_each_entry_safe(client, next, &adap->userspace_clients,
1318 				 detected) {
1319 		if (i2c_encode_flags_to_addr(client) == addr) {
1320 			dev_info(dev, "%s: Deleting device %s at 0x%02hx\n",
1321 				 "delete_device", client->name, client->addr);
1322 
1323 			list_del(&client->detected);
1324 			i2c_unregister_device(client);
1325 			res = count;
1326 			break;
1327 		}
1328 	}
1329 	mutex_unlock(&adap->userspace_clients_lock);
1330 
1331 	if (res < 0)
1332 		dev_err(dev, "%s: Can't find device in list\n",
1333 			"delete_device");
1334 	return res;
1335 }
1336 static DEVICE_ATTR_IGNORE_LOCKDEP(delete_device, S_IWUSR, NULL,
1337 				  delete_device_store);
1338 
1339 static struct attribute *i2c_adapter_attrs[] = {
1340 	&dev_attr_name.attr,
1341 	&dev_attr_new_device.attr,
1342 	&dev_attr_delete_device.attr,
1343 	NULL
1344 };
1345 ATTRIBUTE_GROUPS(i2c_adapter);
1346 
1347 const struct device_type i2c_adapter_type = {
1348 	.groups		= i2c_adapter_groups,
1349 	.release	= i2c_adapter_dev_release,
1350 };
1351 EXPORT_SYMBOL_GPL(i2c_adapter_type);
1352 
1353 /**
1354  * i2c_verify_adapter - return parameter as i2c_adapter or NULL
1355  * @dev: device, probably from some driver model iterator
1356  *
1357  * When traversing the driver model tree, perhaps using driver model
1358  * iterators like @device_for_each_child(), you can't assume very much
1359  * about the nodes you find.  Use this function to avoid oopses caused
1360  * by wrongly treating some non-I2C device as an i2c_adapter.
1361  */
1362 struct i2c_adapter *i2c_verify_adapter(struct device *dev)
1363 {
1364 	return (dev->type == &i2c_adapter_type)
1365 			? to_i2c_adapter(dev)
1366 			: NULL;
1367 }
1368 EXPORT_SYMBOL(i2c_verify_adapter);
1369 
1370 #ifdef CONFIG_I2C_COMPAT
1371 static struct class_compat *i2c_adapter_compat_class;
1372 #endif
1373 
1374 static void i2c_scan_static_board_info(struct i2c_adapter *adapter)
1375 {
1376 	struct i2c_devinfo	*devinfo;
1377 
1378 	down_read(&__i2c_board_lock);
1379 	list_for_each_entry(devinfo, &__i2c_board_list, list) {
1380 		if (devinfo->busnum == adapter->nr &&
1381 		    IS_ERR(i2c_new_client_device(adapter, &devinfo->board_info)))
1382 			dev_err(&adapter->dev,
1383 				"Can't create device at 0x%02x\n",
1384 				devinfo->board_info.addr);
1385 	}
1386 	up_read(&__i2c_board_lock);
1387 }
1388 
1389 static int i2c_do_add_adapter(struct i2c_driver *driver,
1390 			      struct i2c_adapter *adap)
1391 {
1392 	/* Detect supported devices on that bus, and instantiate them */
1393 	i2c_detect(adap, driver);
1394 
1395 	return 0;
1396 }
1397 
1398 static int __process_new_adapter(struct device_driver *d, void *data)
1399 {
1400 	return i2c_do_add_adapter(to_i2c_driver(d), data);
1401 }
1402 
1403 static const struct i2c_lock_operations i2c_adapter_lock_ops = {
1404 	.lock_bus =    i2c_adapter_lock_bus,
1405 	.trylock_bus = i2c_adapter_trylock_bus,
1406 	.unlock_bus =  i2c_adapter_unlock_bus,
1407 };
1408 
1409 static void i2c_host_notify_irq_teardown(struct i2c_adapter *adap)
1410 {
1411 	struct irq_domain *domain = adap->host_notify_domain;
1412 	irq_hw_number_t hwirq;
1413 
1414 	if (!domain)
1415 		return;
1416 
1417 	for (hwirq = 0 ; hwirq < I2C_ADDR_7BITS_COUNT ; hwirq++)
1418 		irq_dispose_mapping(irq_find_mapping(domain, hwirq));
1419 
1420 	irq_domain_remove(domain);
1421 	adap->host_notify_domain = NULL;
1422 }
1423 
1424 static int i2c_host_notify_irq_map(struct irq_domain *h,
1425 					  unsigned int virq,
1426 					  irq_hw_number_t hw_irq_num)
1427 {
1428 	irq_set_chip_and_handler(virq, &dummy_irq_chip, handle_simple_irq);
1429 
1430 	return 0;
1431 }
1432 
1433 static const struct irq_domain_ops i2c_host_notify_irq_ops = {
1434 	.map = i2c_host_notify_irq_map,
1435 };
1436 
1437 static int i2c_setup_host_notify_irq_domain(struct i2c_adapter *adap)
1438 {
1439 	struct irq_domain *domain;
1440 
1441 	if (!i2c_check_functionality(adap, I2C_FUNC_SMBUS_HOST_NOTIFY))
1442 		return 0;
1443 
1444 	domain = irq_domain_create_linear(adap->dev.parent->fwnode,
1445 					  I2C_ADDR_7BITS_COUNT,
1446 					  &i2c_host_notify_irq_ops, adap);
1447 	if (!domain)
1448 		return -ENOMEM;
1449 
1450 	adap->host_notify_domain = domain;
1451 
1452 	return 0;
1453 }
1454 
1455 /**
1456  * i2c_handle_smbus_host_notify - Forward a Host Notify event to the correct
1457  * I2C client.
1458  * @adap: the adapter
1459  * @addr: the I2C address of the notifying device
1460  * Context: can't sleep
1461  *
1462  * Helper function to be called from an I2C bus driver's interrupt
1463  * handler. It will schedule the Host Notify IRQ.
1464  */
1465 int i2c_handle_smbus_host_notify(struct i2c_adapter *adap, unsigned short addr)
1466 {
1467 	int irq;
1468 
1469 	if (!adap)
1470 		return -EINVAL;
1471 
1472 	dev_dbg(&adap->dev, "Detected HostNotify from address 0x%02x", addr);
1473 
1474 	irq = irq_find_mapping(adap->host_notify_domain, addr);
1475 	if (irq <= 0)
1476 		return -ENXIO;
1477 
1478 	generic_handle_irq_safe(irq);
1479 
1480 	return 0;
1481 }
1482 EXPORT_SYMBOL_GPL(i2c_handle_smbus_host_notify);
1483 
1484 static int i2c_register_adapter(struct i2c_adapter *adap)
1485 {
1486 	int res = -EINVAL;
1487 
1488 	/* Can't register until after driver model init */
1489 	if (WARN_ON(!is_registered)) {
1490 		res = -EAGAIN;
1491 		goto out_list;
1492 	}
1493 
1494 	/* Sanity checks */
1495 	if (WARN(!adap->name[0], "i2c adapter has no name"))
1496 		goto out_list;
1497 
1498 	if (!adap->algo) {
1499 		pr_err("adapter '%s': no algo supplied!\n", adap->name);
1500 		goto out_list;
1501 	}
1502 
1503 	if (!adap->lock_ops)
1504 		adap->lock_ops = &i2c_adapter_lock_ops;
1505 
1506 	adap->locked_flags = 0;
1507 	rt_mutex_init(&adap->bus_lock);
1508 	rt_mutex_init(&adap->mux_lock);
1509 	mutex_init(&adap->userspace_clients_lock);
1510 	INIT_LIST_HEAD(&adap->userspace_clients);
1511 
1512 	/* Set default timeout to 1 second if not already set */
1513 	if (adap->timeout == 0)
1514 		adap->timeout = HZ;
1515 
1516 	/* register soft irqs for Host Notify */
1517 	res = i2c_setup_host_notify_irq_domain(adap);
1518 	if (res) {
1519 		pr_err("adapter '%s': can't create Host Notify IRQs (%d)\n",
1520 		       adap->name, res);
1521 		goto out_list;
1522 	}
1523 
1524 	dev_set_name(&adap->dev, "i2c-%d", adap->nr);
1525 	adap->dev.bus = &i2c_bus_type;
1526 	adap->dev.type = &i2c_adapter_type;
1527 	res = device_register(&adap->dev);
1528 	if (res) {
1529 		pr_err("adapter '%s': can't register device (%d)\n", adap->name, res);
1530 		goto out_list;
1531 	}
1532 
1533 	adap->debugfs = debugfs_create_dir(dev_name(&adap->dev), i2c_debugfs_root);
1534 
1535 	res = i2c_setup_smbus_alert(adap);
1536 	if (res)
1537 		goto out_reg;
1538 
1539 	device_enable_async_suspend(&adap->dev);
1540 	pm_runtime_no_callbacks(&adap->dev);
1541 	pm_suspend_ignore_children(&adap->dev, true);
1542 	pm_runtime_enable(&adap->dev);
1543 
1544 	res = i2c_init_recovery(adap);
1545 	if (res == -EPROBE_DEFER)
1546 		goto out_reg;
1547 
1548 	dev_dbg(&adap->dev, "adapter [%s] registered\n", adap->name);
1549 
1550 #ifdef CONFIG_I2C_COMPAT
1551 	res = class_compat_create_link(i2c_adapter_compat_class, &adap->dev,
1552 				       adap->dev.parent);
1553 	if (res)
1554 		dev_warn(&adap->dev,
1555 			 "Failed to create compatibility class link\n");
1556 #endif
1557 
1558 	/* create pre-declared device nodes */
1559 	of_i2c_register_devices(adap);
1560 	i2c_acpi_install_space_handler(adap);
1561 	i2c_acpi_register_devices(adap);
1562 
1563 	if (adap->nr < __i2c_first_dynamic_bus_num)
1564 		i2c_scan_static_board_info(adap);
1565 
1566 	/* Notify drivers */
1567 	mutex_lock(&core_lock);
1568 	bus_for_each_drv(&i2c_bus_type, NULL, adap, __process_new_adapter);
1569 	mutex_unlock(&core_lock);
1570 
1571 	return 0;
1572 
1573 out_reg:
1574 	debugfs_remove_recursive(adap->debugfs);
1575 	init_completion(&adap->dev_released);
1576 	device_unregister(&adap->dev);
1577 	wait_for_completion(&adap->dev_released);
1578 out_list:
1579 	mutex_lock(&core_lock);
1580 	idr_remove(&i2c_adapter_idr, adap->nr);
1581 	mutex_unlock(&core_lock);
1582 	return res;
1583 }
1584 
1585 /**
1586  * __i2c_add_numbered_adapter - i2c_add_numbered_adapter where nr is never -1
1587  * @adap: the adapter to register (with adap->nr initialized)
1588  * Context: can sleep
1589  *
1590  * See i2c_add_numbered_adapter() for details.
1591  */
1592 static int __i2c_add_numbered_adapter(struct i2c_adapter *adap)
1593 {
1594 	int id;
1595 
1596 	mutex_lock(&core_lock);
1597 	id = idr_alloc(&i2c_adapter_idr, adap, adap->nr, adap->nr + 1, GFP_KERNEL);
1598 	mutex_unlock(&core_lock);
1599 	if (WARN(id < 0, "couldn't get idr"))
1600 		return id == -ENOSPC ? -EBUSY : id;
1601 
1602 	return i2c_register_adapter(adap);
1603 }
1604 
1605 /**
1606  * i2c_add_adapter - declare i2c adapter, use dynamic bus number
1607  * @adapter: the adapter to add
1608  * Context: can sleep
1609  *
1610  * This routine is used to declare an I2C adapter when its bus number
1611  * doesn't matter or when its bus number is specified by an dt alias.
1612  * Examples of bases when the bus number doesn't matter: I2C adapters
1613  * dynamically added by USB links or PCI plugin cards.
1614  *
1615  * When this returns zero, a new bus number was allocated and stored
1616  * in adap->nr, and the specified adapter became available for clients.
1617  * Otherwise, a negative errno value is returned.
1618  */
1619 int i2c_add_adapter(struct i2c_adapter *adapter)
1620 {
1621 	struct device *dev = &adapter->dev;
1622 	int id;
1623 
1624 	if (dev->of_node) {
1625 		id = of_alias_get_id(dev->of_node, "i2c");
1626 		if (id >= 0) {
1627 			adapter->nr = id;
1628 			return __i2c_add_numbered_adapter(adapter);
1629 		}
1630 	}
1631 
1632 	mutex_lock(&core_lock);
1633 	id = idr_alloc(&i2c_adapter_idr, adapter,
1634 		       __i2c_first_dynamic_bus_num, 0, GFP_KERNEL);
1635 	mutex_unlock(&core_lock);
1636 	if (WARN(id < 0, "couldn't get idr"))
1637 		return id;
1638 
1639 	adapter->nr = id;
1640 
1641 	return i2c_register_adapter(adapter);
1642 }
1643 EXPORT_SYMBOL(i2c_add_adapter);
1644 
1645 /**
1646  * i2c_add_numbered_adapter - declare i2c adapter, use static bus number
1647  * @adap: the adapter to register (with adap->nr initialized)
1648  * Context: can sleep
1649  *
1650  * This routine is used to declare an I2C adapter when its bus number
1651  * matters.  For example, use it for I2C adapters from system-on-chip CPUs,
1652  * or otherwise built in to the system's mainboard, and where i2c_board_info
1653  * is used to properly configure I2C devices.
1654  *
1655  * If the requested bus number is set to -1, then this function will behave
1656  * identically to i2c_add_adapter, and will dynamically assign a bus number.
1657  *
1658  * If no devices have pre-been declared for this bus, then be sure to
1659  * register the adapter before any dynamically allocated ones.  Otherwise
1660  * the required bus ID may not be available.
1661  *
1662  * When this returns zero, the specified adapter became available for
1663  * clients using the bus number provided in adap->nr.  Also, the table
1664  * of I2C devices pre-declared using i2c_register_board_info() is scanned,
1665  * and the appropriate driver model device nodes are created.  Otherwise, a
1666  * negative errno value is returned.
1667  */
1668 int i2c_add_numbered_adapter(struct i2c_adapter *adap)
1669 {
1670 	if (adap->nr == -1) /* -1 means dynamically assign bus id */
1671 		return i2c_add_adapter(adap);
1672 
1673 	return __i2c_add_numbered_adapter(adap);
1674 }
1675 EXPORT_SYMBOL_GPL(i2c_add_numbered_adapter);
1676 
1677 static void i2c_do_del_adapter(struct i2c_driver *driver,
1678 			      struct i2c_adapter *adapter)
1679 {
1680 	struct i2c_client *client, *_n;
1681 
1682 	/* Remove the devices we created ourselves as the result of hardware
1683 	 * probing (using a driver's detect method) */
1684 	list_for_each_entry_safe(client, _n, &driver->clients, detected) {
1685 		if (client->adapter == adapter) {
1686 			dev_dbg(&adapter->dev, "Removing %s at 0x%x\n",
1687 				client->name, client->addr);
1688 			list_del(&client->detected);
1689 			i2c_unregister_device(client);
1690 		}
1691 	}
1692 }
1693 
1694 static int __unregister_client(struct device *dev, void *dummy)
1695 {
1696 	struct i2c_client *client = i2c_verify_client(dev);
1697 	if (client && strcmp(client->name, "dummy"))
1698 		i2c_unregister_device(client);
1699 	return 0;
1700 }
1701 
1702 static int __unregister_dummy(struct device *dev, void *dummy)
1703 {
1704 	struct i2c_client *client = i2c_verify_client(dev);
1705 	i2c_unregister_device(client);
1706 	return 0;
1707 }
1708 
1709 static int __process_removed_adapter(struct device_driver *d, void *data)
1710 {
1711 	i2c_do_del_adapter(to_i2c_driver(d), data);
1712 	return 0;
1713 }
1714 
1715 /**
1716  * i2c_del_adapter - unregister I2C adapter
1717  * @adap: the adapter being unregistered
1718  * Context: can sleep
1719  *
1720  * This unregisters an I2C adapter which was previously registered
1721  * by @i2c_add_adapter or @i2c_add_numbered_adapter.
1722  */
1723 void i2c_del_adapter(struct i2c_adapter *adap)
1724 {
1725 	struct i2c_adapter *found;
1726 	struct i2c_client *client, *next;
1727 
1728 	/* First make sure that this adapter was ever added */
1729 	mutex_lock(&core_lock);
1730 	found = idr_find(&i2c_adapter_idr, adap->nr);
1731 	mutex_unlock(&core_lock);
1732 	if (found != adap) {
1733 		pr_debug("attempting to delete unregistered adapter [%s]\n", adap->name);
1734 		return;
1735 	}
1736 
1737 	i2c_acpi_remove_space_handler(adap);
1738 	/* Tell drivers about this removal */
1739 	mutex_lock(&core_lock);
1740 	bus_for_each_drv(&i2c_bus_type, NULL, adap,
1741 			       __process_removed_adapter);
1742 	mutex_unlock(&core_lock);
1743 
1744 	/* Remove devices instantiated from sysfs */
1745 	mutex_lock_nested(&adap->userspace_clients_lock,
1746 			  i2c_adapter_depth(adap));
1747 	list_for_each_entry_safe(client, next, &adap->userspace_clients,
1748 				 detected) {
1749 		dev_dbg(&adap->dev, "Removing %s at 0x%x\n", client->name,
1750 			client->addr);
1751 		list_del(&client->detected);
1752 		i2c_unregister_device(client);
1753 	}
1754 	mutex_unlock(&adap->userspace_clients_lock);
1755 
1756 	/* Detach any active clients. This can't fail, thus we do not
1757 	 * check the returned value. This is a two-pass process, because
1758 	 * we can't remove the dummy devices during the first pass: they
1759 	 * could have been instantiated by real devices wishing to clean
1760 	 * them up properly, so we give them a chance to do that first. */
1761 	device_for_each_child(&adap->dev, NULL, __unregister_client);
1762 	device_for_each_child(&adap->dev, NULL, __unregister_dummy);
1763 
1764 #ifdef CONFIG_I2C_COMPAT
1765 	class_compat_remove_link(i2c_adapter_compat_class, &adap->dev,
1766 				 adap->dev.parent);
1767 #endif
1768 
1769 	/* device name is gone after device_unregister */
1770 	dev_dbg(&adap->dev, "adapter [%s] unregistered\n", adap->name);
1771 
1772 	pm_runtime_disable(&adap->dev);
1773 
1774 	i2c_host_notify_irq_teardown(adap);
1775 
1776 	debugfs_remove_recursive(adap->debugfs);
1777 
1778 	/* wait until all references to the device are gone
1779 	 *
1780 	 * FIXME: This is old code and should ideally be replaced by an
1781 	 * alternative which results in decoupling the lifetime of the struct
1782 	 * device from the i2c_adapter, like spi or netdev do. Any solution
1783 	 * should be thoroughly tested with DEBUG_KOBJECT_RELEASE enabled!
1784 	 */
1785 	init_completion(&adap->dev_released);
1786 	device_unregister(&adap->dev);
1787 	wait_for_completion(&adap->dev_released);
1788 
1789 	/* free bus id */
1790 	mutex_lock(&core_lock);
1791 	idr_remove(&i2c_adapter_idr, adap->nr);
1792 	mutex_unlock(&core_lock);
1793 
1794 	/* Clear the device structure in case this adapter is ever going to be
1795 	   added again */
1796 	memset(&adap->dev, 0, sizeof(adap->dev));
1797 }
1798 EXPORT_SYMBOL(i2c_del_adapter);
1799 
1800 static void devm_i2c_del_adapter(void *adapter)
1801 {
1802 	i2c_del_adapter(adapter);
1803 }
1804 
1805 /**
1806  * devm_i2c_add_adapter - device-managed variant of i2c_add_adapter()
1807  * @dev: managing device for adding this I2C adapter
1808  * @adapter: the adapter to add
1809  * Context: can sleep
1810  *
1811  * Add adapter with dynamic bus number, same with i2c_add_adapter()
1812  * but the adapter will be auto deleted on driver detach.
1813  */
1814 int devm_i2c_add_adapter(struct device *dev, struct i2c_adapter *adapter)
1815 {
1816 	int ret;
1817 
1818 	ret = i2c_add_adapter(adapter);
1819 	if (ret)
1820 		return ret;
1821 
1822 	return devm_add_action_or_reset(dev, devm_i2c_del_adapter, adapter);
1823 }
1824 EXPORT_SYMBOL_GPL(devm_i2c_add_adapter);
1825 
1826 static int i2c_dev_or_parent_fwnode_match(struct device *dev, const void *data)
1827 {
1828 	if (dev_fwnode(dev) == data)
1829 		return 1;
1830 
1831 	if (dev->parent && dev_fwnode(dev->parent) == data)
1832 		return 1;
1833 
1834 	return 0;
1835 }
1836 
1837 /**
1838  * i2c_find_adapter_by_fwnode() - find an i2c_adapter for the fwnode
1839  * @fwnode: &struct fwnode_handle corresponding to the &struct i2c_adapter
1840  *
1841  * Look up and return the &struct i2c_adapter corresponding to the @fwnode.
1842  * If no adapter can be found, or @fwnode is NULL, this returns NULL.
1843  *
1844  * The user must call put_device(&adapter->dev) once done with the i2c adapter.
1845  */
1846 struct i2c_adapter *i2c_find_adapter_by_fwnode(struct fwnode_handle *fwnode)
1847 {
1848 	struct i2c_adapter *adapter;
1849 	struct device *dev;
1850 
1851 	if (!fwnode)
1852 		return NULL;
1853 
1854 	dev = bus_find_device(&i2c_bus_type, NULL, fwnode,
1855 			      i2c_dev_or_parent_fwnode_match);
1856 	if (!dev)
1857 		return NULL;
1858 
1859 	adapter = i2c_verify_adapter(dev);
1860 	if (!adapter)
1861 		put_device(dev);
1862 
1863 	return adapter;
1864 }
1865 EXPORT_SYMBOL(i2c_find_adapter_by_fwnode);
1866 
1867 /**
1868  * i2c_get_adapter_by_fwnode() - find an i2c_adapter for the fwnode
1869  * @fwnode: &struct fwnode_handle corresponding to the &struct i2c_adapter
1870  *
1871  * Look up and return the &struct i2c_adapter corresponding to the @fwnode,
1872  * and increment the adapter module's use count. If no adapter can be found,
1873  * or @fwnode is NULL, this returns NULL.
1874  *
1875  * The user must call i2c_put_adapter(adapter) once done with the i2c adapter.
1876  * Note that this is different from i2c_find_adapter_by_node().
1877  */
1878 struct i2c_adapter *i2c_get_adapter_by_fwnode(struct fwnode_handle *fwnode)
1879 {
1880 	struct i2c_adapter *adapter;
1881 
1882 	adapter = i2c_find_adapter_by_fwnode(fwnode);
1883 	if (!adapter)
1884 		return NULL;
1885 
1886 	if (!try_module_get(adapter->owner)) {
1887 		put_device(&adapter->dev);
1888 		adapter = NULL;
1889 	}
1890 
1891 	return adapter;
1892 }
1893 EXPORT_SYMBOL(i2c_get_adapter_by_fwnode);
1894 
1895 static void i2c_parse_timing(struct device *dev, char *prop_name, u32 *cur_val_p,
1896 			    u32 def_val, bool use_def)
1897 {
1898 	int ret;
1899 
1900 	ret = device_property_read_u32(dev, prop_name, cur_val_p);
1901 	if (ret && use_def)
1902 		*cur_val_p = def_val;
1903 
1904 	dev_dbg(dev, "%s: %u\n", prop_name, *cur_val_p);
1905 }
1906 
1907 /**
1908  * i2c_parse_fw_timings - get I2C related timing parameters from firmware
1909  * @dev: The device to scan for I2C timing properties
1910  * @t: the i2c_timings struct to be filled with values
1911  * @use_defaults: bool to use sane defaults derived from the I2C specification
1912  *		  when properties are not found, otherwise don't update
1913  *
1914  * Scan the device for the generic I2C properties describing timing parameters
1915  * for the signal and fill the given struct with the results. If a property was
1916  * not found and use_defaults was true, then maximum timings are assumed which
1917  * are derived from the I2C specification. If use_defaults is not used, the
1918  * results will be as before, so drivers can apply their own defaults before
1919  * calling this helper. The latter is mainly intended for avoiding regressions
1920  * of existing drivers which want to switch to this function. New drivers
1921  * almost always should use the defaults.
1922  */
1923 void i2c_parse_fw_timings(struct device *dev, struct i2c_timings *t, bool use_defaults)
1924 {
1925 	bool u = use_defaults;
1926 	u32 d;
1927 
1928 	i2c_parse_timing(dev, "clock-frequency", &t->bus_freq_hz,
1929 			 I2C_MAX_STANDARD_MODE_FREQ, u);
1930 
1931 	d = t->bus_freq_hz <= I2C_MAX_STANDARD_MODE_FREQ ? 1000 :
1932 	    t->bus_freq_hz <= I2C_MAX_FAST_MODE_FREQ ? 300 : 120;
1933 	i2c_parse_timing(dev, "i2c-scl-rising-time-ns", &t->scl_rise_ns, d, u);
1934 
1935 	d = t->bus_freq_hz <= I2C_MAX_FAST_MODE_FREQ ? 300 : 120;
1936 	i2c_parse_timing(dev, "i2c-scl-falling-time-ns", &t->scl_fall_ns, d, u);
1937 
1938 	i2c_parse_timing(dev, "i2c-scl-internal-delay-ns",
1939 			 &t->scl_int_delay_ns, 0, u);
1940 	i2c_parse_timing(dev, "i2c-sda-falling-time-ns", &t->sda_fall_ns,
1941 			 t->scl_fall_ns, u);
1942 	i2c_parse_timing(dev, "i2c-sda-hold-time-ns", &t->sda_hold_ns, 0, u);
1943 	i2c_parse_timing(dev, "i2c-digital-filter-width-ns",
1944 			 &t->digital_filter_width_ns, 0, u);
1945 	i2c_parse_timing(dev, "i2c-analog-filter-cutoff-frequency",
1946 			 &t->analog_filter_cutoff_freq_hz, 0, u);
1947 }
1948 EXPORT_SYMBOL_GPL(i2c_parse_fw_timings);
1949 
1950 /* ------------------------------------------------------------------------- */
1951 
1952 int i2c_for_each_dev(void *data, int (*fn)(struct device *dev, void *data))
1953 {
1954 	int res;
1955 
1956 	mutex_lock(&core_lock);
1957 	res = bus_for_each_dev(&i2c_bus_type, NULL, data, fn);
1958 	mutex_unlock(&core_lock);
1959 
1960 	return res;
1961 }
1962 EXPORT_SYMBOL_GPL(i2c_for_each_dev);
1963 
1964 static int __process_new_driver(struct device *dev, void *data)
1965 {
1966 	if (dev->type != &i2c_adapter_type)
1967 		return 0;
1968 	return i2c_do_add_adapter(data, to_i2c_adapter(dev));
1969 }
1970 
1971 /*
1972  * An i2c_driver is used with one or more i2c_client (device) nodes to access
1973  * i2c slave chips, on a bus instance associated with some i2c_adapter.
1974  */
1975 
1976 int i2c_register_driver(struct module *owner, struct i2c_driver *driver)
1977 {
1978 	int res;
1979 
1980 	/* Can't register until after driver model init */
1981 	if (WARN_ON(!is_registered))
1982 		return -EAGAIN;
1983 
1984 	/* add the driver to the list of i2c drivers in the driver core */
1985 	driver->driver.owner = owner;
1986 	driver->driver.bus = &i2c_bus_type;
1987 	INIT_LIST_HEAD(&driver->clients);
1988 
1989 	/* When registration returns, the driver core
1990 	 * will have called probe() for all matching-but-unbound devices.
1991 	 */
1992 	res = driver_register(&driver->driver);
1993 	if (res)
1994 		return res;
1995 
1996 	pr_debug("driver [%s] registered\n", driver->driver.name);
1997 
1998 	/* Walk the adapters that are already present */
1999 	i2c_for_each_dev(driver, __process_new_driver);
2000 
2001 	return 0;
2002 }
2003 EXPORT_SYMBOL(i2c_register_driver);
2004 
2005 static int __process_removed_driver(struct device *dev, void *data)
2006 {
2007 	if (dev->type == &i2c_adapter_type)
2008 		i2c_do_del_adapter(data, to_i2c_adapter(dev));
2009 	return 0;
2010 }
2011 
2012 /**
2013  * i2c_del_driver - unregister I2C driver
2014  * @driver: the driver being unregistered
2015  * Context: can sleep
2016  */
2017 void i2c_del_driver(struct i2c_driver *driver)
2018 {
2019 	i2c_for_each_dev(driver, __process_removed_driver);
2020 
2021 	driver_unregister(&driver->driver);
2022 	pr_debug("driver [%s] unregistered\n", driver->driver.name);
2023 }
2024 EXPORT_SYMBOL(i2c_del_driver);
2025 
2026 /* ------------------------------------------------------------------------- */
2027 
2028 struct i2c_cmd_arg {
2029 	unsigned	cmd;
2030 	void		*arg;
2031 };
2032 
2033 static int i2c_cmd(struct device *dev, void *_arg)
2034 {
2035 	struct i2c_client	*client = i2c_verify_client(dev);
2036 	struct i2c_cmd_arg	*arg = _arg;
2037 	struct i2c_driver	*driver;
2038 
2039 	if (!client || !client->dev.driver)
2040 		return 0;
2041 
2042 	driver = to_i2c_driver(client->dev.driver);
2043 	if (driver->command)
2044 		driver->command(client, arg->cmd, arg->arg);
2045 	return 0;
2046 }
2047 
2048 void i2c_clients_command(struct i2c_adapter *adap, unsigned int cmd, void *arg)
2049 {
2050 	struct i2c_cmd_arg	cmd_arg;
2051 
2052 	cmd_arg.cmd = cmd;
2053 	cmd_arg.arg = arg;
2054 	device_for_each_child(&adap->dev, &cmd_arg, i2c_cmd);
2055 }
2056 EXPORT_SYMBOL(i2c_clients_command);
2057 
2058 static int __init i2c_init(void)
2059 {
2060 	int retval;
2061 
2062 	retval = of_alias_get_highest_id("i2c");
2063 
2064 	down_write(&__i2c_board_lock);
2065 	if (retval >= __i2c_first_dynamic_bus_num)
2066 		__i2c_first_dynamic_bus_num = retval + 1;
2067 	up_write(&__i2c_board_lock);
2068 
2069 	retval = bus_register(&i2c_bus_type);
2070 	if (retval)
2071 		return retval;
2072 
2073 	is_registered = true;
2074 
2075 	i2c_debugfs_root = debugfs_create_dir("i2c", NULL);
2076 
2077 #ifdef CONFIG_I2C_COMPAT
2078 	i2c_adapter_compat_class = class_compat_register("i2c-adapter");
2079 	if (!i2c_adapter_compat_class) {
2080 		retval = -ENOMEM;
2081 		goto bus_err;
2082 	}
2083 #endif
2084 	retval = i2c_add_driver(&dummy_driver);
2085 	if (retval)
2086 		goto class_err;
2087 
2088 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
2089 		WARN_ON(of_reconfig_notifier_register(&i2c_of_notifier));
2090 	if (IS_ENABLED(CONFIG_ACPI))
2091 		WARN_ON(acpi_reconfig_notifier_register(&i2c_acpi_notifier));
2092 
2093 	return 0;
2094 
2095 class_err:
2096 #ifdef CONFIG_I2C_COMPAT
2097 	class_compat_unregister(i2c_adapter_compat_class);
2098 bus_err:
2099 #endif
2100 	is_registered = false;
2101 	bus_unregister(&i2c_bus_type);
2102 	return retval;
2103 }
2104 
2105 static void __exit i2c_exit(void)
2106 {
2107 	if (IS_ENABLED(CONFIG_ACPI))
2108 		WARN_ON(acpi_reconfig_notifier_unregister(&i2c_acpi_notifier));
2109 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
2110 		WARN_ON(of_reconfig_notifier_unregister(&i2c_of_notifier));
2111 	i2c_del_driver(&dummy_driver);
2112 #ifdef CONFIG_I2C_COMPAT
2113 	class_compat_unregister(i2c_adapter_compat_class);
2114 #endif
2115 	debugfs_remove_recursive(i2c_debugfs_root);
2116 	bus_unregister(&i2c_bus_type);
2117 	tracepoint_synchronize_unregister();
2118 }
2119 
2120 /* We must initialize early, because some subsystems register i2c drivers
2121  * in subsys_initcall() code, but are linked (and initialized) before i2c.
2122  */
2123 postcore_initcall(i2c_init);
2124 module_exit(i2c_exit);
2125 
2126 /* ----------------------------------------------------
2127  * the functional interface to the i2c busses.
2128  * ----------------------------------------------------
2129  */
2130 
2131 /* Check if val is exceeding the quirk IFF quirk is non 0 */
2132 #define i2c_quirk_exceeded(val, quirk) ((quirk) && ((val) > (quirk)))
2133 
2134 static int i2c_quirk_error(struct i2c_adapter *adap, struct i2c_msg *msg, char *err_msg)
2135 {
2136 	dev_err_ratelimited(&adap->dev, "adapter quirk: %s (addr 0x%04x, size %u, %s)\n",
2137 			    err_msg, msg->addr, msg->len,
2138 			    msg->flags & I2C_M_RD ? "read" : "write");
2139 	return -EOPNOTSUPP;
2140 }
2141 
2142 static int i2c_check_for_quirks(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
2143 {
2144 	const struct i2c_adapter_quirks *q = adap->quirks;
2145 	int max_num = q->max_num_msgs, i;
2146 	bool do_len_check = true;
2147 
2148 	if (q->flags & I2C_AQ_COMB) {
2149 		max_num = 2;
2150 
2151 		/* special checks for combined messages */
2152 		if (num == 2) {
2153 			if (q->flags & I2C_AQ_COMB_WRITE_FIRST && msgs[0].flags & I2C_M_RD)
2154 				return i2c_quirk_error(adap, &msgs[0], "1st comb msg must be write");
2155 
2156 			if (q->flags & I2C_AQ_COMB_READ_SECOND && !(msgs[1].flags & I2C_M_RD))
2157 				return i2c_quirk_error(adap, &msgs[1], "2nd comb msg must be read");
2158 
2159 			if (q->flags & I2C_AQ_COMB_SAME_ADDR && msgs[0].addr != msgs[1].addr)
2160 				return i2c_quirk_error(adap, &msgs[0], "comb msg only to same addr");
2161 
2162 			if (i2c_quirk_exceeded(msgs[0].len, q->max_comb_1st_msg_len))
2163 				return i2c_quirk_error(adap, &msgs[0], "msg too long");
2164 
2165 			if (i2c_quirk_exceeded(msgs[1].len, q->max_comb_2nd_msg_len))
2166 				return i2c_quirk_error(adap, &msgs[1], "msg too long");
2167 
2168 			do_len_check = false;
2169 		}
2170 	}
2171 
2172 	if (i2c_quirk_exceeded(num, max_num))
2173 		return i2c_quirk_error(adap, &msgs[0], "too many messages");
2174 
2175 	for (i = 0; i < num; i++) {
2176 		u16 len = msgs[i].len;
2177 
2178 		if (msgs[i].flags & I2C_M_RD) {
2179 			if (do_len_check && i2c_quirk_exceeded(len, q->max_read_len))
2180 				return i2c_quirk_error(adap, &msgs[i], "msg too long");
2181 
2182 			if (q->flags & I2C_AQ_NO_ZERO_LEN_READ && len == 0)
2183 				return i2c_quirk_error(adap, &msgs[i], "no zero length");
2184 		} else {
2185 			if (do_len_check && i2c_quirk_exceeded(len, q->max_write_len))
2186 				return i2c_quirk_error(adap, &msgs[i], "msg too long");
2187 
2188 			if (q->flags & I2C_AQ_NO_ZERO_LEN_WRITE && len == 0)
2189 				return i2c_quirk_error(adap, &msgs[i], "no zero length");
2190 		}
2191 	}
2192 
2193 	return 0;
2194 }
2195 
2196 /**
2197  * __i2c_transfer - unlocked flavor of i2c_transfer
2198  * @adap: Handle to I2C bus
2199  * @msgs: One or more messages to execute before STOP is issued to
2200  *	terminate the operation; each message begins with a START.
2201  * @num: Number of messages to be executed.
2202  *
2203  * Returns negative errno, else the number of messages executed.
2204  *
2205  * Adapter lock must be held when calling this function. No debug logging
2206  * takes place.
2207  */
2208 int __i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
2209 {
2210 	unsigned long orig_jiffies;
2211 	int ret, try;
2212 
2213 	if (!adap->algo->master_xfer) {
2214 		dev_dbg(&adap->dev, "I2C level transfers not supported\n");
2215 		return -EOPNOTSUPP;
2216 	}
2217 
2218 	if (WARN_ON(!msgs || num < 1))
2219 		return -EINVAL;
2220 
2221 	ret = __i2c_check_suspended(adap);
2222 	if (ret)
2223 		return ret;
2224 
2225 	if (adap->quirks && i2c_check_for_quirks(adap, msgs, num))
2226 		return -EOPNOTSUPP;
2227 
2228 	/*
2229 	 * i2c_trace_msg_key gets enabled when tracepoint i2c_transfer gets
2230 	 * enabled.  This is an efficient way of keeping the for-loop from
2231 	 * being executed when not needed.
2232 	 */
2233 	if (static_branch_unlikely(&i2c_trace_msg_key)) {
2234 		int i;
2235 		for (i = 0; i < num; i++)
2236 			if (msgs[i].flags & I2C_M_RD)
2237 				trace_i2c_read(adap, &msgs[i], i);
2238 			else
2239 				trace_i2c_write(adap, &msgs[i], i);
2240 	}
2241 
2242 	/* Retry automatically on arbitration loss */
2243 	orig_jiffies = jiffies;
2244 	for (ret = 0, try = 0; try <= adap->retries; try++) {
2245 		if (i2c_in_atomic_xfer_mode() && adap->algo->master_xfer_atomic)
2246 			ret = adap->algo->master_xfer_atomic(adap, msgs, num);
2247 		else
2248 			ret = adap->algo->master_xfer(adap, msgs, num);
2249 
2250 		if (ret != -EAGAIN)
2251 			break;
2252 		if (time_after(jiffies, orig_jiffies + adap->timeout))
2253 			break;
2254 	}
2255 
2256 	if (static_branch_unlikely(&i2c_trace_msg_key)) {
2257 		int i;
2258 		for (i = 0; i < ret; i++)
2259 			if (msgs[i].flags & I2C_M_RD)
2260 				trace_i2c_reply(adap, &msgs[i], i);
2261 		trace_i2c_result(adap, num, ret);
2262 	}
2263 
2264 	return ret;
2265 }
2266 EXPORT_SYMBOL(__i2c_transfer);
2267 
2268 /**
2269  * i2c_transfer - execute a single or combined I2C message
2270  * @adap: Handle to I2C bus
2271  * @msgs: One or more messages to execute before STOP is issued to
2272  *	terminate the operation; each message begins with a START.
2273  * @num: Number of messages to be executed.
2274  *
2275  * Returns negative errno, else the number of messages executed.
2276  *
2277  * Note that there is no requirement that each message be sent to
2278  * the same slave address, although that is the most common model.
2279  */
2280 int i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
2281 {
2282 	int ret;
2283 
2284 	/* REVISIT the fault reporting model here is weak:
2285 	 *
2286 	 *  - When we get an error after receiving N bytes from a slave,
2287 	 *    there is no way to report "N".
2288 	 *
2289 	 *  - When we get a NAK after transmitting N bytes to a slave,
2290 	 *    there is no way to report "N" ... or to let the master
2291 	 *    continue executing the rest of this combined message, if
2292 	 *    that's the appropriate response.
2293 	 *
2294 	 *  - When for example "num" is two and we successfully complete
2295 	 *    the first message but get an error part way through the
2296 	 *    second, it's unclear whether that should be reported as
2297 	 *    one (discarding status on the second message) or errno
2298 	 *    (discarding status on the first one).
2299 	 */
2300 	ret = __i2c_lock_bus_helper(adap);
2301 	if (ret)
2302 		return ret;
2303 
2304 	ret = __i2c_transfer(adap, msgs, num);
2305 	i2c_unlock_bus(adap, I2C_LOCK_SEGMENT);
2306 
2307 	return ret;
2308 }
2309 EXPORT_SYMBOL(i2c_transfer);
2310 
2311 /**
2312  * i2c_transfer_buffer_flags - issue a single I2C message transferring data
2313  *			       to/from a buffer
2314  * @client: Handle to slave device
2315  * @buf: Where the data is stored
2316  * @count: How many bytes to transfer, must be less than 64k since msg.len is u16
2317  * @flags: The flags to be used for the message, e.g. I2C_M_RD for reads
2318  *
2319  * Returns negative errno, or else the number of bytes transferred.
2320  */
2321 int i2c_transfer_buffer_flags(const struct i2c_client *client, char *buf,
2322 			      int count, u16 flags)
2323 {
2324 	int ret;
2325 	struct i2c_msg msg = {
2326 		.addr = client->addr,
2327 		.flags = flags | (client->flags & I2C_M_TEN),
2328 		.len = count,
2329 		.buf = buf,
2330 	};
2331 
2332 	ret = i2c_transfer(client->adapter, &msg, 1);
2333 
2334 	/*
2335 	 * If everything went ok (i.e. 1 msg transferred), return #bytes
2336 	 * transferred, else error code.
2337 	 */
2338 	return (ret == 1) ? count : ret;
2339 }
2340 EXPORT_SYMBOL(i2c_transfer_buffer_flags);
2341 
2342 /**
2343  * i2c_get_device_id - get manufacturer, part id and die revision of a device
2344  * @client: The device to query
2345  * @id: The queried information
2346  *
2347  * Returns negative errno on error, zero on success.
2348  */
2349 int i2c_get_device_id(const struct i2c_client *client,
2350 		      struct i2c_device_identity *id)
2351 {
2352 	struct i2c_adapter *adap = client->adapter;
2353 	union i2c_smbus_data raw_id;
2354 	int ret;
2355 
2356 	if (!i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_I2C_BLOCK))
2357 		return -EOPNOTSUPP;
2358 
2359 	raw_id.block[0] = 3;
2360 	ret = i2c_smbus_xfer(adap, I2C_ADDR_DEVICE_ID, 0,
2361 			     I2C_SMBUS_READ, client->addr << 1,
2362 			     I2C_SMBUS_I2C_BLOCK_DATA, &raw_id);
2363 	if (ret)
2364 		return ret;
2365 
2366 	id->manufacturer_id = (raw_id.block[1] << 4) | (raw_id.block[2] >> 4);
2367 	id->part_id = ((raw_id.block[2] & 0xf) << 5) | (raw_id.block[3] >> 3);
2368 	id->die_revision = raw_id.block[3] & 0x7;
2369 	return 0;
2370 }
2371 EXPORT_SYMBOL_GPL(i2c_get_device_id);
2372 
2373 /**
2374  * i2c_client_get_device_id - get the driver match table entry of a device
2375  * @client: the device to query. The device must be bound to a driver
2376  *
2377  * Returns a pointer to the matching entry if found, NULL otherwise.
2378  */
2379 const struct i2c_device_id *i2c_client_get_device_id(const struct i2c_client *client)
2380 {
2381 	const struct i2c_driver *drv = to_i2c_driver(client->dev.driver);
2382 
2383 	return i2c_match_id(drv->id_table, client);
2384 }
2385 EXPORT_SYMBOL_GPL(i2c_client_get_device_id);
2386 
2387 /* ----------------------------------------------------
2388  * the i2c address scanning function
2389  * Will not work for 10-bit addresses!
2390  * ----------------------------------------------------
2391  */
2392 
2393 /*
2394  * Legacy default probe function, mostly relevant for SMBus. The default
2395  * probe method is a quick write, but it is known to corrupt the 24RF08
2396  * EEPROMs due to a state machine bug, and could also irreversibly
2397  * write-protect some EEPROMs, so for address ranges 0x30-0x37 and 0x50-0x5f,
2398  * we use a short byte read instead. Also, some bus drivers don't implement
2399  * quick write, so we fallback to a byte read in that case too.
2400  * On x86, there is another special case for FSC hardware monitoring chips,
2401  * which want regular byte reads (address 0x73.) Fortunately, these are the
2402  * only known chips using this I2C address on PC hardware.
2403  * Returns 1 if probe succeeded, 0 if not.
2404  */
2405 static int i2c_default_probe(struct i2c_adapter *adap, unsigned short addr)
2406 {
2407 	int err;
2408 	union i2c_smbus_data dummy;
2409 
2410 #ifdef CONFIG_X86
2411 	if (addr == 0x73 && (adap->class & I2C_CLASS_HWMON)
2412 	 && i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_BYTE_DATA))
2413 		err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
2414 				     I2C_SMBUS_BYTE_DATA, &dummy);
2415 	else
2416 #endif
2417 	if (!((addr & ~0x07) == 0x30 || (addr & ~0x0f) == 0x50)
2418 	 && i2c_check_functionality(adap, I2C_FUNC_SMBUS_QUICK))
2419 		err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_WRITE, 0,
2420 				     I2C_SMBUS_QUICK, NULL);
2421 	else if (i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_BYTE))
2422 		err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
2423 				     I2C_SMBUS_BYTE, &dummy);
2424 	else {
2425 		dev_warn(&adap->dev, "No suitable probing method supported for address 0x%02X\n",
2426 			 addr);
2427 		err = -EOPNOTSUPP;
2428 	}
2429 
2430 	return err >= 0;
2431 }
2432 
2433 static int i2c_detect_address(struct i2c_client *temp_client,
2434 			      struct i2c_driver *driver)
2435 {
2436 	struct i2c_board_info info;
2437 	struct i2c_adapter *adapter = temp_client->adapter;
2438 	int addr = temp_client->addr;
2439 	int err;
2440 
2441 	/* Make sure the address is valid */
2442 	err = i2c_check_7bit_addr_validity_strict(addr);
2443 	if (err) {
2444 		dev_warn(&adapter->dev, "Invalid probe address 0x%02x\n",
2445 			 addr);
2446 		return err;
2447 	}
2448 
2449 	/* Skip if already in use (7 bit, no need to encode flags) */
2450 	if (i2c_check_addr_busy(adapter, addr))
2451 		return 0;
2452 
2453 	/* Make sure there is something at this address */
2454 	if (!i2c_default_probe(adapter, addr))
2455 		return 0;
2456 
2457 	/* Finally call the custom detection function */
2458 	memset(&info, 0, sizeof(struct i2c_board_info));
2459 	info.addr = addr;
2460 	err = driver->detect(temp_client, &info);
2461 	if (err) {
2462 		/* -ENODEV is returned if the detection fails. We catch it
2463 		   here as this isn't an error. */
2464 		return err == -ENODEV ? 0 : err;
2465 	}
2466 
2467 	/* Consistency check */
2468 	if (info.type[0] == '\0') {
2469 		dev_err(&adapter->dev,
2470 			"%s detection function provided no name for 0x%x\n",
2471 			driver->driver.name, addr);
2472 	} else {
2473 		struct i2c_client *client;
2474 
2475 		/* Detection succeeded, instantiate the device */
2476 		if (adapter->class & I2C_CLASS_DEPRECATED)
2477 			dev_warn(&adapter->dev,
2478 				"This adapter will soon drop class based instantiation of devices. "
2479 				"Please make sure client 0x%02x gets instantiated by other means. "
2480 				"Check 'Documentation/i2c/instantiating-devices.rst' for details.\n",
2481 				info.addr);
2482 
2483 		dev_dbg(&adapter->dev, "Creating %s at 0x%02x\n",
2484 			info.type, info.addr);
2485 		client = i2c_new_client_device(adapter, &info);
2486 		if (!IS_ERR(client))
2487 			list_add_tail(&client->detected, &driver->clients);
2488 		else
2489 			dev_err(&adapter->dev, "Failed creating %s at 0x%02x\n",
2490 				info.type, info.addr);
2491 	}
2492 	return 0;
2493 }
2494 
2495 static int i2c_detect(struct i2c_adapter *adapter, struct i2c_driver *driver)
2496 {
2497 	const unsigned short *address_list;
2498 	struct i2c_client *temp_client;
2499 	int i, err = 0;
2500 
2501 	address_list = driver->address_list;
2502 	if (!driver->detect || !address_list)
2503 		return 0;
2504 
2505 	/* Warn that the adapter lost class based instantiation */
2506 	if (adapter->class == I2C_CLASS_DEPRECATED) {
2507 		dev_dbg(&adapter->dev,
2508 			"This adapter dropped support for I2C classes and won't auto-detect %s devices anymore. "
2509 			"If you need it, check 'Documentation/i2c/instantiating-devices.rst' for alternatives.\n",
2510 			driver->driver.name);
2511 		return 0;
2512 	}
2513 
2514 	/* Stop here if the classes do not match */
2515 	if (!(adapter->class & driver->class))
2516 		return 0;
2517 
2518 	/* Set up a temporary client to help detect callback */
2519 	temp_client = kzalloc(sizeof(struct i2c_client), GFP_KERNEL);
2520 	if (!temp_client)
2521 		return -ENOMEM;
2522 	temp_client->adapter = adapter;
2523 
2524 	for (i = 0; address_list[i] != I2C_CLIENT_END; i += 1) {
2525 		dev_dbg(&adapter->dev,
2526 			"found normal entry for adapter %d, addr 0x%02x\n",
2527 			i2c_adapter_id(adapter), address_list[i]);
2528 		temp_client->addr = address_list[i];
2529 		err = i2c_detect_address(temp_client, driver);
2530 		if (unlikely(err))
2531 			break;
2532 	}
2533 
2534 	kfree(temp_client);
2535 	return err;
2536 }
2537 
2538 int i2c_probe_func_quick_read(struct i2c_adapter *adap, unsigned short addr)
2539 {
2540 	return i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
2541 			      I2C_SMBUS_QUICK, NULL) >= 0;
2542 }
2543 EXPORT_SYMBOL_GPL(i2c_probe_func_quick_read);
2544 
2545 struct i2c_client *
2546 i2c_new_scanned_device(struct i2c_adapter *adap,
2547 		       struct i2c_board_info *info,
2548 		       unsigned short const *addr_list,
2549 		       int (*probe)(struct i2c_adapter *adap, unsigned short addr))
2550 {
2551 	int i;
2552 
2553 	if (!probe)
2554 		probe = i2c_default_probe;
2555 
2556 	for (i = 0; addr_list[i] != I2C_CLIENT_END; i++) {
2557 		/* Check address validity */
2558 		if (i2c_check_7bit_addr_validity_strict(addr_list[i]) < 0) {
2559 			dev_warn(&adap->dev, "Invalid 7-bit address 0x%02x\n",
2560 				 addr_list[i]);
2561 			continue;
2562 		}
2563 
2564 		/* Check address availability (7 bit, no need to encode flags) */
2565 		if (i2c_check_addr_busy(adap, addr_list[i])) {
2566 			dev_dbg(&adap->dev,
2567 				"Address 0x%02x already in use, not probing\n",
2568 				addr_list[i]);
2569 			continue;
2570 		}
2571 
2572 		/* Test address responsiveness */
2573 		if (probe(adap, addr_list[i]))
2574 			break;
2575 	}
2576 
2577 	if (addr_list[i] == I2C_CLIENT_END) {
2578 		dev_dbg(&adap->dev, "Probing failed, no device found\n");
2579 		return ERR_PTR(-ENODEV);
2580 	}
2581 
2582 	info->addr = addr_list[i];
2583 	return i2c_new_client_device(adap, info);
2584 }
2585 EXPORT_SYMBOL_GPL(i2c_new_scanned_device);
2586 
2587 struct i2c_adapter *i2c_get_adapter(int nr)
2588 {
2589 	struct i2c_adapter *adapter;
2590 
2591 	mutex_lock(&core_lock);
2592 	adapter = idr_find(&i2c_adapter_idr, nr);
2593 	if (!adapter)
2594 		goto exit;
2595 
2596 	if (try_module_get(adapter->owner))
2597 		get_device(&adapter->dev);
2598 	else
2599 		adapter = NULL;
2600 
2601  exit:
2602 	mutex_unlock(&core_lock);
2603 	return adapter;
2604 }
2605 EXPORT_SYMBOL(i2c_get_adapter);
2606 
2607 void i2c_put_adapter(struct i2c_adapter *adap)
2608 {
2609 	if (!adap)
2610 		return;
2611 
2612 	module_put(adap->owner);
2613 	/* Should be last, otherwise we risk use-after-free with 'adap' */
2614 	put_device(&adap->dev);
2615 }
2616 EXPORT_SYMBOL(i2c_put_adapter);
2617 
2618 /**
2619  * i2c_get_dma_safe_msg_buf() - get a DMA safe buffer for the given i2c_msg
2620  * @msg: the message to be checked
2621  * @threshold: the minimum number of bytes for which using DMA makes sense.
2622  *	       Should at least be 1.
2623  *
2624  * Return: NULL if a DMA safe buffer was not obtained. Use msg->buf with PIO.
2625  *	   Or a valid pointer to be used with DMA. After use, release it by
2626  *	   calling i2c_put_dma_safe_msg_buf().
2627  *
2628  * This function must only be called from process context!
2629  */
2630 u8 *i2c_get_dma_safe_msg_buf(struct i2c_msg *msg, unsigned int threshold)
2631 {
2632 	/* also skip 0-length msgs for bogus thresholds of 0 */
2633 	if (!threshold)
2634 		pr_debug("DMA buffer for addr=0x%02x with length 0 is bogus\n",
2635 			 msg->addr);
2636 	if (msg->len < threshold || msg->len == 0)
2637 		return NULL;
2638 
2639 	if (msg->flags & I2C_M_DMA_SAFE)
2640 		return msg->buf;
2641 
2642 	pr_debug("using bounce buffer for addr=0x%02x, len=%d\n",
2643 		 msg->addr, msg->len);
2644 
2645 	if (msg->flags & I2C_M_RD)
2646 		return kzalloc(msg->len, GFP_KERNEL);
2647 	else
2648 		return kmemdup(msg->buf, msg->len, GFP_KERNEL);
2649 }
2650 EXPORT_SYMBOL_GPL(i2c_get_dma_safe_msg_buf);
2651 
2652 /**
2653  * i2c_put_dma_safe_msg_buf - release DMA safe buffer and sync with i2c_msg
2654  * @buf: the buffer obtained from i2c_get_dma_safe_msg_buf(). May be NULL.
2655  * @msg: the message which the buffer corresponds to
2656  * @xferred: bool saying if the message was transferred
2657  */
2658 void i2c_put_dma_safe_msg_buf(u8 *buf, struct i2c_msg *msg, bool xferred)
2659 {
2660 	if (!buf || buf == msg->buf)
2661 		return;
2662 
2663 	if (xferred && msg->flags & I2C_M_RD)
2664 		memcpy(msg->buf, buf, msg->len);
2665 
2666 	kfree(buf);
2667 }
2668 EXPORT_SYMBOL_GPL(i2c_put_dma_safe_msg_buf);
2669 
2670 MODULE_AUTHOR("Simon G. Vogl <simon@tk.uni-linz.ac.at>");
2671 MODULE_DESCRIPTION("I2C-Bus main module");
2672 MODULE_LICENSE("GPL");
2673