xref: /linux/drivers/i2c/busses/i2c-uniphier-f.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2015 Masahiro Yamada <yamada.masahiro@socionext.com>
4  */
5 
6 #include <linux/clk.h>
7 #include <linux/i2c.h>
8 #include <linux/iopoll.h>
9 #include <linux/interrupt.h>
10 #include <linux/io.h>
11 #include <linux/module.h>
12 #include <linux/platform_device.h>
13 
14 #define UNIPHIER_FI2C_CR	0x00	/* control register */
15 #define     UNIPHIER_FI2C_CR_MST	BIT(3)	/* master mode */
16 #define     UNIPHIER_FI2C_CR_STA	BIT(2)	/* start condition */
17 #define     UNIPHIER_FI2C_CR_STO	BIT(1)	/* stop condition */
18 #define     UNIPHIER_FI2C_CR_NACK	BIT(0)	/* do not return ACK */
19 #define UNIPHIER_FI2C_DTTX	0x04	/* TX FIFO */
20 #define     UNIPHIER_FI2C_DTTX_CMD	BIT(8)	/* send command (slave addr) */
21 #define     UNIPHIER_FI2C_DTTX_RD	BIT(0)	/* read transaction */
22 #define UNIPHIER_FI2C_DTRX	0x04	/* RX FIFO */
23 #define UNIPHIER_FI2C_SLAD	0x0c	/* slave address */
24 #define UNIPHIER_FI2C_CYC	0x10	/* clock cycle control */
25 #define UNIPHIER_FI2C_LCTL	0x14	/* clock low period control */
26 #define UNIPHIER_FI2C_SSUT	0x18	/* restart/stop setup time control */
27 #define UNIPHIER_FI2C_DSUT	0x1c	/* data setup time control */
28 #define UNIPHIER_FI2C_INT	0x20	/* interrupt status */
29 #define UNIPHIER_FI2C_IE	0x24	/* interrupt enable */
30 #define UNIPHIER_FI2C_IC	0x28	/* interrupt clear */
31 #define     UNIPHIER_FI2C_INT_TE	BIT(9)	/* TX FIFO empty */
32 #define     UNIPHIER_FI2C_INT_RF	BIT(8)	/* RX FIFO full */
33 #define     UNIPHIER_FI2C_INT_TC	BIT(7)	/* send complete (STOP) */
34 #define     UNIPHIER_FI2C_INT_RC	BIT(6)	/* receive complete (STOP) */
35 #define     UNIPHIER_FI2C_INT_TB	BIT(5)	/* sent specified bytes */
36 #define     UNIPHIER_FI2C_INT_RB	BIT(4)	/* received specified bytes */
37 #define     UNIPHIER_FI2C_INT_NA	BIT(2)	/* no ACK */
38 #define     UNIPHIER_FI2C_INT_AL	BIT(1)	/* arbitration lost */
39 #define UNIPHIER_FI2C_SR	0x2c	/* status register */
40 #define     UNIPHIER_FI2C_SR_DB		BIT(12)	/* device busy */
41 #define     UNIPHIER_FI2C_SR_STS	BIT(11)	/* stop condition detected */
42 #define     UNIPHIER_FI2C_SR_BB		BIT(8)	/* bus busy */
43 #define     UNIPHIER_FI2C_SR_RFF	BIT(3)	/* RX FIFO full */
44 #define     UNIPHIER_FI2C_SR_RNE	BIT(2)	/* RX FIFO not empty */
45 #define     UNIPHIER_FI2C_SR_TNF	BIT(1)	/* TX FIFO not full */
46 #define     UNIPHIER_FI2C_SR_TFE	BIT(0)	/* TX FIFO empty */
47 #define UNIPHIER_FI2C_RST	0x34	/* reset control */
48 #define     UNIPHIER_FI2C_RST_TBRST	BIT(2)	/* clear TX FIFO */
49 #define     UNIPHIER_FI2C_RST_RBRST	BIT(1)	/* clear RX FIFO */
50 #define     UNIPHIER_FI2C_RST_RST	BIT(0)	/* forcible bus reset */
51 #define UNIPHIER_FI2C_BM	0x38	/* bus monitor */
52 #define     UNIPHIER_FI2C_BM_SDAO	BIT(3)	/* output for SDA line */
53 #define     UNIPHIER_FI2C_BM_SDAS	BIT(2)	/* readback of SDA line */
54 #define     UNIPHIER_FI2C_BM_SCLO	BIT(1)	/* output for SCL line */
55 #define     UNIPHIER_FI2C_BM_SCLS	BIT(0)	/* readback of SCL line */
56 #define UNIPHIER_FI2C_NOISE	0x3c	/* noise filter control */
57 #define UNIPHIER_FI2C_TBC	0x40	/* TX byte count setting */
58 #define UNIPHIER_FI2C_RBC	0x44	/* RX byte count setting */
59 #define UNIPHIER_FI2C_TBCM	0x48	/* TX byte count monitor */
60 #define UNIPHIER_FI2C_RBCM	0x4c	/* RX byte count monitor */
61 #define UNIPHIER_FI2C_BRST	0x50	/* bus reset */
62 #define     UNIPHIER_FI2C_BRST_FOEN	BIT(1)	/* normal operation */
63 #define     UNIPHIER_FI2C_BRST_RSCL	BIT(0)	/* release SCL */
64 
65 #define UNIPHIER_FI2C_INT_FAULTS	\
66 				(UNIPHIER_FI2C_INT_NA | UNIPHIER_FI2C_INT_AL)
67 #define UNIPHIER_FI2C_INT_STOP		\
68 				(UNIPHIER_FI2C_INT_TC | UNIPHIER_FI2C_INT_RC)
69 
70 #define UNIPHIER_FI2C_RD		BIT(0)
71 #define UNIPHIER_FI2C_STOP		BIT(1)
72 #define UNIPHIER_FI2C_MANUAL_NACK	BIT(2)
73 #define UNIPHIER_FI2C_BYTE_WISE		BIT(3)
74 #define UNIPHIER_FI2C_DEFER_STOP_COMP	BIT(4)
75 
76 #define UNIPHIER_FI2C_FIFO_SIZE		8
77 
78 struct uniphier_fi2c_priv {
79 	struct completion comp;
80 	struct i2c_adapter adap;
81 	void __iomem *membase;
82 	struct clk *clk;
83 	unsigned int len;
84 	u8 *buf;
85 	u32 enabled_irqs;
86 	int error;
87 	unsigned int flags;
88 	unsigned int busy_cnt;
89 	unsigned int clk_cycle;
90 	spinlock_t lock;	/* IRQ synchronization */
91 };
92 
93 static void uniphier_fi2c_fill_txfifo(struct uniphier_fi2c_priv *priv,
94 				      bool first)
95 {
96 	int fifo_space = UNIPHIER_FI2C_FIFO_SIZE;
97 
98 	/*
99 	 * TX-FIFO stores slave address in it for the first access.
100 	 * Decrement the counter.
101 	 */
102 	if (first)
103 		fifo_space--;
104 
105 	while (priv->len) {
106 		if (fifo_space-- <= 0)
107 			break;
108 
109 		writel(*priv->buf++, priv->membase + UNIPHIER_FI2C_DTTX);
110 		priv->len--;
111 	}
112 }
113 
114 static void uniphier_fi2c_drain_rxfifo(struct uniphier_fi2c_priv *priv)
115 {
116 	int fifo_left = priv->flags & UNIPHIER_FI2C_BYTE_WISE ?
117 						1 : UNIPHIER_FI2C_FIFO_SIZE;
118 
119 	while (priv->len) {
120 		if (fifo_left-- <= 0)
121 			break;
122 
123 		*priv->buf++ = readl(priv->membase + UNIPHIER_FI2C_DTRX);
124 		priv->len--;
125 	}
126 }
127 
128 static void uniphier_fi2c_set_irqs(struct uniphier_fi2c_priv *priv)
129 {
130 	writel(priv->enabled_irqs, priv->membase + UNIPHIER_FI2C_IE);
131 }
132 
133 static void uniphier_fi2c_clear_irqs(struct uniphier_fi2c_priv *priv,
134 				     u32 mask)
135 {
136 	writel(mask, priv->membase + UNIPHIER_FI2C_IC);
137 }
138 
139 static void uniphier_fi2c_stop(struct uniphier_fi2c_priv *priv)
140 {
141 	priv->enabled_irqs |= UNIPHIER_FI2C_INT_STOP;
142 	uniphier_fi2c_set_irqs(priv);
143 	writel(UNIPHIER_FI2C_CR_MST | UNIPHIER_FI2C_CR_STO,
144 	       priv->membase + UNIPHIER_FI2C_CR);
145 }
146 
147 static irqreturn_t uniphier_fi2c_interrupt(int irq, void *dev_id)
148 {
149 	struct uniphier_fi2c_priv *priv = dev_id;
150 	u32 irq_status;
151 
152 	spin_lock(&priv->lock);
153 
154 	irq_status = readl(priv->membase + UNIPHIER_FI2C_INT);
155 	irq_status &= priv->enabled_irqs;
156 
157 	if (irq_status & UNIPHIER_FI2C_INT_STOP)
158 		goto complete;
159 
160 	if (unlikely(irq_status & UNIPHIER_FI2C_INT_AL)) {
161 		priv->error = -EAGAIN;
162 		goto complete;
163 	}
164 
165 	if (unlikely(irq_status & UNIPHIER_FI2C_INT_NA)) {
166 		priv->error = -ENXIO;
167 		if (priv->flags & UNIPHIER_FI2C_RD) {
168 			/*
169 			 * work around a hardware bug:
170 			 * The receive-completed interrupt is never set even if
171 			 * STOP condition is detected after the address phase
172 			 * of read transaction fails to get ACK.
173 			 * To avoid time-out error, we issue STOP here,
174 			 * but do not wait for its completion.
175 			 * It should be checked after exiting this handler.
176 			 */
177 			uniphier_fi2c_stop(priv);
178 			priv->flags |= UNIPHIER_FI2C_DEFER_STOP_COMP;
179 			goto complete;
180 		}
181 		goto stop;
182 	}
183 
184 	if (irq_status & UNIPHIER_FI2C_INT_TE) {
185 		if (!priv->len)
186 			goto data_done;
187 
188 		uniphier_fi2c_fill_txfifo(priv, false);
189 		goto handled;
190 	}
191 
192 	if (irq_status & (UNIPHIER_FI2C_INT_RF | UNIPHIER_FI2C_INT_RB)) {
193 		uniphier_fi2c_drain_rxfifo(priv);
194 		/*
195 		 * If the number of bytes to read is multiple of the FIFO size
196 		 * (msg->len == 8, 16, 24, ...), the INT_RF bit is set a little
197 		 * earlier than INT_RB. We wait for INT_RB to confirm the
198 		 * completion of the current message.
199 		 */
200 		if (!priv->len && (irq_status & UNIPHIER_FI2C_INT_RB))
201 			goto data_done;
202 
203 		if (unlikely(priv->flags & UNIPHIER_FI2C_MANUAL_NACK)) {
204 			if (priv->len <= UNIPHIER_FI2C_FIFO_SIZE &&
205 			    !(priv->flags & UNIPHIER_FI2C_BYTE_WISE)) {
206 				priv->enabled_irqs |= UNIPHIER_FI2C_INT_RB;
207 				uniphier_fi2c_set_irqs(priv);
208 				priv->flags |= UNIPHIER_FI2C_BYTE_WISE;
209 			}
210 			if (priv->len <= 1)
211 				writel(UNIPHIER_FI2C_CR_MST |
212 				       UNIPHIER_FI2C_CR_NACK,
213 				       priv->membase + UNIPHIER_FI2C_CR);
214 		}
215 
216 		goto handled;
217 	}
218 
219 	spin_unlock(&priv->lock);
220 
221 	return IRQ_NONE;
222 
223 data_done:
224 	if (priv->flags & UNIPHIER_FI2C_STOP) {
225 stop:
226 		uniphier_fi2c_stop(priv);
227 	} else {
228 complete:
229 		priv->enabled_irqs = 0;
230 		uniphier_fi2c_set_irqs(priv);
231 		complete(&priv->comp);
232 	}
233 
234 handled:
235 	/*
236 	 * This controller makes a pause while any bit of the IRQ status is
237 	 * asserted. Clear the asserted bit to kick the controller just before
238 	 * exiting the handler.
239 	 */
240 	uniphier_fi2c_clear_irqs(priv, irq_status);
241 
242 	spin_unlock(&priv->lock);
243 
244 	return IRQ_HANDLED;
245 }
246 
247 static void uniphier_fi2c_tx_init(struct uniphier_fi2c_priv *priv, u16 addr,
248 				  bool repeat)
249 {
250 	priv->enabled_irqs |= UNIPHIER_FI2C_INT_TE;
251 	uniphier_fi2c_set_irqs(priv);
252 
253 	/* do not use TX byte counter */
254 	writel(0, priv->membase + UNIPHIER_FI2C_TBC);
255 	/* set slave address */
256 	writel(UNIPHIER_FI2C_DTTX_CMD | addr << 1,
257 	       priv->membase + UNIPHIER_FI2C_DTTX);
258 	/*
259 	 * First chunk of data. For a repeated START condition, do not write
260 	 * data to the TX fifo here to avoid the timing issue.
261 	 */
262 	if (!repeat)
263 		uniphier_fi2c_fill_txfifo(priv, true);
264 }
265 
266 static void uniphier_fi2c_rx_init(struct uniphier_fi2c_priv *priv, u16 addr)
267 {
268 	priv->flags |= UNIPHIER_FI2C_RD;
269 
270 	if (likely(priv->len < 256)) {
271 		/*
272 		 * If possible, use RX byte counter.
273 		 * It can automatically handle NACK for the last byte.
274 		 */
275 		writel(priv->len, priv->membase + UNIPHIER_FI2C_RBC);
276 		priv->enabled_irqs |= UNIPHIER_FI2C_INT_RF |
277 				      UNIPHIER_FI2C_INT_RB;
278 	} else {
279 		/*
280 		 * The byte counter can not count over 256.  In this case,
281 		 * do not use it at all.  Drain data when FIFO gets full,
282 		 * but treat the last portion as a special case.
283 		 */
284 		writel(0, priv->membase + UNIPHIER_FI2C_RBC);
285 		priv->flags |= UNIPHIER_FI2C_MANUAL_NACK;
286 		priv->enabled_irqs |= UNIPHIER_FI2C_INT_RF;
287 	}
288 
289 	uniphier_fi2c_set_irqs(priv);
290 
291 	/* set slave address with RD bit */
292 	writel(UNIPHIER_FI2C_DTTX_CMD | UNIPHIER_FI2C_DTTX_RD | addr << 1,
293 	       priv->membase + UNIPHIER_FI2C_DTTX);
294 }
295 
296 static void uniphier_fi2c_reset(struct uniphier_fi2c_priv *priv)
297 {
298 	writel(UNIPHIER_FI2C_RST_RST, priv->membase + UNIPHIER_FI2C_RST);
299 }
300 
301 static void uniphier_fi2c_prepare_operation(struct uniphier_fi2c_priv *priv)
302 {
303 	writel(UNIPHIER_FI2C_BRST_FOEN | UNIPHIER_FI2C_BRST_RSCL,
304 	       priv->membase + UNIPHIER_FI2C_BRST);
305 }
306 
307 static void uniphier_fi2c_recover(struct uniphier_fi2c_priv *priv)
308 {
309 	uniphier_fi2c_reset(priv);
310 	i2c_recover_bus(&priv->adap);
311 }
312 
313 static int uniphier_fi2c_master_xfer_one(struct i2c_adapter *adap,
314 					 struct i2c_msg *msg, bool repeat,
315 					 bool stop)
316 {
317 	struct uniphier_fi2c_priv *priv = i2c_get_adapdata(adap);
318 	bool is_read = msg->flags & I2C_M_RD;
319 	unsigned long time_left, flags;
320 
321 	priv->len = msg->len;
322 	priv->buf = msg->buf;
323 	priv->enabled_irqs = UNIPHIER_FI2C_INT_FAULTS;
324 	priv->error = 0;
325 	priv->flags = 0;
326 
327 	if (stop)
328 		priv->flags |= UNIPHIER_FI2C_STOP;
329 
330 	reinit_completion(&priv->comp);
331 	uniphier_fi2c_clear_irqs(priv, U32_MAX);
332 	writel(UNIPHIER_FI2C_RST_TBRST | UNIPHIER_FI2C_RST_RBRST,
333 	       priv->membase + UNIPHIER_FI2C_RST);	/* reset TX/RX FIFO */
334 
335 	spin_lock_irqsave(&priv->lock, flags);
336 
337 	if (is_read)
338 		uniphier_fi2c_rx_init(priv, msg->addr);
339 	else
340 		uniphier_fi2c_tx_init(priv, msg->addr, repeat);
341 
342 	/*
343 	 * For a repeated START condition, writing a slave address to the FIFO
344 	 * kicks the controller. So, the UNIPHIER_FI2C_CR register should be
345 	 * written only for a non-repeated START condition.
346 	 */
347 	if (!repeat)
348 		writel(UNIPHIER_FI2C_CR_MST | UNIPHIER_FI2C_CR_STA,
349 		       priv->membase + UNIPHIER_FI2C_CR);
350 
351 	spin_unlock_irqrestore(&priv->lock, flags);
352 
353 	time_left = wait_for_completion_timeout(&priv->comp, adap->timeout);
354 
355 	spin_lock_irqsave(&priv->lock, flags);
356 	priv->enabled_irqs = 0;
357 	uniphier_fi2c_set_irqs(priv);
358 	spin_unlock_irqrestore(&priv->lock, flags);
359 
360 	if (!time_left) {
361 		uniphier_fi2c_recover(priv);
362 		return -ETIMEDOUT;
363 	}
364 
365 	if (unlikely(priv->flags & UNIPHIER_FI2C_DEFER_STOP_COMP)) {
366 		u32 status;
367 		int ret;
368 
369 		ret = readl_poll_timeout(priv->membase + UNIPHIER_FI2C_SR,
370 					 status,
371 					 (status & UNIPHIER_FI2C_SR_STS) &&
372 					 !(status & UNIPHIER_FI2C_SR_BB),
373 					 1, 20);
374 		if (ret) {
375 			dev_err(&adap->dev,
376 				"stop condition was not completed.\n");
377 			uniphier_fi2c_recover(priv);
378 			return ret;
379 		}
380 	}
381 
382 	return priv->error;
383 }
384 
385 static int uniphier_fi2c_check_bus_busy(struct i2c_adapter *adap)
386 {
387 	struct uniphier_fi2c_priv *priv = i2c_get_adapdata(adap);
388 
389 	if (readl(priv->membase + UNIPHIER_FI2C_SR) & UNIPHIER_FI2C_SR_DB) {
390 		if (priv->busy_cnt++ > 3) {
391 			/*
392 			 * If bus busy continues too long, it is probably
393 			 * in a wrong state.  Try bus recovery.
394 			 */
395 			uniphier_fi2c_recover(priv);
396 			priv->busy_cnt = 0;
397 		}
398 
399 		return -EAGAIN;
400 	}
401 
402 	priv->busy_cnt = 0;
403 	return 0;
404 }
405 
406 static int uniphier_fi2c_master_xfer(struct i2c_adapter *adap,
407 				     struct i2c_msg *msgs, int num)
408 {
409 	struct i2c_msg *msg, *emsg = msgs + num;
410 	bool repeat = false;
411 	int ret;
412 
413 	ret = uniphier_fi2c_check_bus_busy(adap);
414 	if (ret)
415 		return ret;
416 
417 	for (msg = msgs; msg < emsg; msg++) {
418 		/* Emit STOP if it is the last message or I2C_M_STOP is set. */
419 		bool stop = (msg + 1 == emsg) || (msg->flags & I2C_M_STOP);
420 
421 		ret = uniphier_fi2c_master_xfer_one(adap, msg, repeat, stop);
422 		if (ret)
423 			return ret;
424 
425 		repeat = !stop;
426 	}
427 
428 	return num;
429 }
430 
431 static u32 uniphier_fi2c_functionality(struct i2c_adapter *adap)
432 {
433 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
434 }
435 
436 static const struct i2c_algorithm uniphier_fi2c_algo = {
437 	.master_xfer = uniphier_fi2c_master_xfer,
438 	.functionality = uniphier_fi2c_functionality,
439 };
440 
441 static int uniphier_fi2c_get_scl(struct i2c_adapter *adap)
442 {
443 	struct uniphier_fi2c_priv *priv = i2c_get_adapdata(adap);
444 
445 	return !!(readl(priv->membase + UNIPHIER_FI2C_BM) &
446 							UNIPHIER_FI2C_BM_SCLS);
447 }
448 
449 static void uniphier_fi2c_set_scl(struct i2c_adapter *adap, int val)
450 {
451 	struct uniphier_fi2c_priv *priv = i2c_get_adapdata(adap);
452 
453 	writel(val ? UNIPHIER_FI2C_BRST_RSCL : 0,
454 	       priv->membase + UNIPHIER_FI2C_BRST);
455 }
456 
457 static int uniphier_fi2c_get_sda(struct i2c_adapter *adap)
458 {
459 	struct uniphier_fi2c_priv *priv = i2c_get_adapdata(adap);
460 
461 	return !!(readl(priv->membase + UNIPHIER_FI2C_BM) &
462 							UNIPHIER_FI2C_BM_SDAS);
463 }
464 
465 static void uniphier_fi2c_unprepare_recovery(struct i2c_adapter *adap)
466 {
467 	uniphier_fi2c_prepare_operation(i2c_get_adapdata(adap));
468 }
469 
470 static struct i2c_bus_recovery_info uniphier_fi2c_bus_recovery_info = {
471 	.recover_bus = i2c_generic_scl_recovery,
472 	.get_scl = uniphier_fi2c_get_scl,
473 	.set_scl = uniphier_fi2c_set_scl,
474 	.get_sda = uniphier_fi2c_get_sda,
475 	.unprepare_recovery = uniphier_fi2c_unprepare_recovery,
476 };
477 
478 static void uniphier_fi2c_hw_init(struct uniphier_fi2c_priv *priv)
479 {
480 	unsigned int cyc = priv->clk_cycle;
481 	u32 tmp;
482 
483 	tmp = readl(priv->membase + UNIPHIER_FI2C_CR);
484 	tmp |= UNIPHIER_FI2C_CR_MST;
485 	writel(tmp, priv->membase + UNIPHIER_FI2C_CR);
486 
487 	uniphier_fi2c_reset(priv);
488 
489 	/*
490 	 *  Standard-mode: tLOW + tHIGH = 10 us
491 	 *  Fast-mode:     tLOW + tHIGH = 2.5 us
492 	 */
493 	writel(cyc, priv->membase + UNIPHIER_FI2C_CYC);
494 	/*
495 	 *  Standard-mode: tLOW = 4.7 us, tHIGH = 4.0 us, tBUF = 4.7 us
496 	 *  Fast-mode:     tLOW = 1.3 us, tHIGH = 0.6 us, tBUF = 1.3 us
497 	 * "tLow/tHIGH = 5/4" meets both.
498 	 */
499 	writel(cyc * 5 / 9, priv->membase + UNIPHIER_FI2C_LCTL);
500 	/*
501 	 *  Standard-mode: tHD;STA = 4.0 us, tSU;STA = 4.7 us, tSU;STO = 4.0 us
502 	 *  Fast-mode:     tHD;STA = 0.6 us, tSU;STA = 0.6 us, tSU;STO = 0.6 us
503 	 */
504 	writel(cyc / 2, priv->membase + UNIPHIER_FI2C_SSUT);
505 	/*
506 	 *  Standard-mode: tSU;DAT = 250 ns
507 	 *  Fast-mode:     tSU;DAT = 100 ns
508 	 */
509 	writel(cyc / 16, priv->membase + UNIPHIER_FI2C_DSUT);
510 
511 	uniphier_fi2c_prepare_operation(priv);
512 }
513 
514 static int uniphier_fi2c_probe(struct platform_device *pdev)
515 {
516 	struct device *dev = &pdev->dev;
517 	struct uniphier_fi2c_priv *priv;
518 	u32 bus_speed;
519 	unsigned long clk_rate;
520 	int irq, ret;
521 
522 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
523 	if (!priv)
524 		return -ENOMEM;
525 
526 	priv->membase = devm_platform_ioremap_resource(pdev, 0);
527 	if (IS_ERR(priv->membase))
528 		return PTR_ERR(priv->membase);
529 
530 	irq = platform_get_irq(pdev, 0);
531 	if (irq < 0)
532 		return irq;
533 
534 	if (of_property_read_u32(dev->of_node, "clock-frequency", &bus_speed))
535 		bus_speed = I2C_MAX_STANDARD_MODE_FREQ;
536 
537 	if (!bus_speed || bus_speed > I2C_MAX_FAST_MODE_FREQ) {
538 		dev_err(dev, "invalid clock-frequency %d\n", bus_speed);
539 		return -EINVAL;
540 	}
541 
542 	priv->clk = devm_clk_get_enabled(dev, NULL);
543 	if (IS_ERR(priv->clk)) {
544 		dev_err(dev, "failed to enable clock\n");
545 		return PTR_ERR(priv->clk);
546 	}
547 
548 	clk_rate = clk_get_rate(priv->clk);
549 	if (!clk_rate) {
550 		dev_err(dev, "input clock rate should not be zero\n");
551 		return -EINVAL;
552 	}
553 
554 	priv->clk_cycle = clk_rate / bus_speed;
555 	init_completion(&priv->comp);
556 	spin_lock_init(&priv->lock);
557 	priv->adap.owner = THIS_MODULE;
558 	priv->adap.algo = &uniphier_fi2c_algo;
559 	priv->adap.dev.parent = dev;
560 	priv->adap.dev.of_node = dev->of_node;
561 	strscpy(priv->adap.name, "UniPhier FI2C", sizeof(priv->adap.name));
562 	priv->adap.bus_recovery_info = &uniphier_fi2c_bus_recovery_info;
563 	i2c_set_adapdata(&priv->adap, priv);
564 	platform_set_drvdata(pdev, priv);
565 
566 	uniphier_fi2c_hw_init(priv);
567 
568 	ret = devm_request_irq(dev, irq, uniphier_fi2c_interrupt, 0,
569 			       pdev->name, priv);
570 	if (ret) {
571 		dev_err(dev, "failed to request irq %d\n", irq);
572 		return ret;
573 	}
574 
575 	return i2c_add_adapter(&priv->adap);
576 }
577 
578 static void uniphier_fi2c_remove(struct platform_device *pdev)
579 {
580 	struct uniphier_fi2c_priv *priv = platform_get_drvdata(pdev);
581 
582 	i2c_del_adapter(&priv->adap);
583 }
584 
585 static int __maybe_unused uniphier_fi2c_suspend(struct device *dev)
586 {
587 	struct uniphier_fi2c_priv *priv = dev_get_drvdata(dev);
588 
589 	clk_disable_unprepare(priv->clk);
590 
591 	return 0;
592 }
593 
594 static int __maybe_unused uniphier_fi2c_resume(struct device *dev)
595 {
596 	struct uniphier_fi2c_priv *priv = dev_get_drvdata(dev);
597 	int ret;
598 
599 	ret = clk_prepare_enable(priv->clk);
600 	if (ret)
601 		return ret;
602 
603 	uniphier_fi2c_hw_init(priv);
604 
605 	return 0;
606 }
607 
608 static const struct dev_pm_ops uniphier_fi2c_pm_ops = {
609 	SET_SYSTEM_SLEEP_PM_OPS(uniphier_fi2c_suspend, uniphier_fi2c_resume)
610 };
611 
612 static const struct of_device_id uniphier_fi2c_match[] = {
613 	{ .compatible = "socionext,uniphier-fi2c" },
614 	{ /* sentinel */ }
615 };
616 MODULE_DEVICE_TABLE(of, uniphier_fi2c_match);
617 
618 static struct platform_driver uniphier_fi2c_drv = {
619 	.probe  = uniphier_fi2c_probe,
620 	.remove_new = uniphier_fi2c_remove,
621 	.driver = {
622 		.name  = "uniphier-fi2c",
623 		.of_match_table = uniphier_fi2c_match,
624 		.pm = &uniphier_fi2c_pm_ops,
625 	},
626 };
627 module_platform_driver(uniphier_fi2c_drv);
628 
629 MODULE_AUTHOR("Masahiro Yamada <yamada.masahiro@socionext.com>");
630 MODULE_DESCRIPTION("UniPhier FIFO-builtin I2C bus driver");
631 MODULE_LICENSE("GPL");
632