xref: /linux/drivers/i2c/busses/i2c-tegra.c (revision c01044cc819160323f3ca4acd44fca487c4432e6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/i2c/busses/i2c-tegra.c
4  *
5  * Copyright (C) 2010 Google, Inc.
6  * Author: Colin Cross <ccross@android.com>
7  */
8 
9 #include <linux/bitfield.h>
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/err.h>
15 #include <linux/i2c.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/irq.h>
21 #include <linux/kernel.h>
22 #include <linux/ktime.h>
23 #include <linux/module.h>
24 #include <linux/of_device.h>
25 #include <linux/pinctrl/consumer.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/reset.h>
29 
30 #define BYTES_PER_FIFO_WORD 4
31 
32 #define I2C_CNFG				0x000
33 #define I2C_CNFG_DEBOUNCE_CNT			GENMASK(14, 12)
34 #define I2C_CNFG_PACKET_MODE_EN			BIT(10)
35 #define I2C_CNFG_NEW_MASTER_FSM			BIT(11)
36 #define I2C_CNFG_MULTI_MASTER_MODE		BIT(17)
37 #define I2C_STATUS				0x01c
38 #define I2C_SL_CNFG				0x020
39 #define I2C_SL_CNFG_NACK			BIT(1)
40 #define I2C_SL_CNFG_NEWSL			BIT(2)
41 #define I2C_SL_ADDR1				0x02c
42 #define I2C_SL_ADDR2				0x030
43 #define I2C_TLOW_SEXT				0x034
44 #define I2C_TX_FIFO				0x050
45 #define I2C_RX_FIFO				0x054
46 #define I2C_PACKET_TRANSFER_STATUS		0x058
47 #define I2C_FIFO_CONTROL			0x05c
48 #define I2C_FIFO_CONTROL_TX_FLUSH		BIT(1)
49 #define I2C_FIFO_CONTROL_RX_FLUSH		BIT(0)
50 #define I2C_FIFO_CONTROL_TX_TRIG(x)		(((x) - 1) << 5)
51 #define I2C_FIFO_CONTROL_RX_TRIG(x)		(((x) - 1) << 2)
52 #define I2C_FIFO_STATUS				0x060
53 #define I2C_FIFO_STATUS_TX			GENMASK(7, 4)
54 #define I2C_FIFO_STATUS_RX			GENMASK(3, 0)
55 #define I2C_INT_MASK				0x064
56 #define I2C_INT_STATUS				0x068
57 #define I2C_INT_BUS_CLR_DONE			BIT(11)
58 #define I2C_INT_PACKET_XFER_COMPLETE		BIT(7)
59 #define I2C_INT_NO_ACK				BIT(3)
60 #define I2C_INT_ARBITRATION_LOST		BIT(2)
61 #define I2C_INT_TX_FIFO_DATA_REQ		BIT(1)
62 #define I2C_INT_RX_FIFO_DATA_REQ		BIT(0)
63 #define I2C_CLK_DIVISOR				0x06c
64 #define I2C_CLK_DIVISOR_STD_FAST_MODE		GENMASK(31, 16)
65 #define I2C_CLK_DIVISOR_HSMODE			GENMASK(15, 0)
66 
67 #define DVC_CTRL_REG1				0x000
68 #define DVC_CTRL_REG1_INTR_EN			BIT(10)
69 #define DVC_CTRL_REG3				0x008
70 #define DVC_CTRL_REG3_SW_PROG			BIT(26)
71 #define DVC_CTRL_REG3_I2C_DONE_INTR_EN		BIT(30)
72 #define DVC_STATUS				0x00c
73 #define DVC_STATUS_I2C_DONE_INTR		BIT(30)
74 
75 #define I2C_ERR_NONE				0x00
76 #define I2C_ERR_NO_ACK				BIT(0)
77 #define I2C_ERR_ARBITRATION_LOST		BIT(1)
78 #define I2C_ERR_UNKNOWN_INTERRUPT		BIT(2)
79 #define I2C_ERR_RX_BUFFER_OVERFLOW		BIT(3)
80 
81 #define PACKET_HEADER0_HEADER_SIZE		GENMASK(29, 28)
82 #define PACKET_HEADER0_PACKET_ID		GENMASK(23, 16)
83 #define PACKET_HEADER0_CONT_ID			GENMASK(15, 12)
84 #define PACKET_HEADER0_PROTOCOL			GENMASK(7, 4)
85 #define PACKET_HEADER0_PROTOCOL_I2C		1
86 
87 #define I2C_HEADER_CONT_ON_NAK			BIT(21)
88 #define I2C_HEADER_READ				BIT(19)
89 #define I2C_HEADER_10BIT_ADDR			BIT(18)
90 #define I2C_HEADER_IE_ENABLE			BIT(17)
91 #define I2C_HEADER_REPEAT_START			BIT(16)
92 #define I2C_HEADER_CONTINUE_XFER		BIT(15)
93 #define I2C_HEADER_SLAVE_ADDR_SHIFT		1
94 
95 #define I2C_BUS_CLEAR_CNFG			0x084
96 #define I2C_BC_SCLK_THRESHOLD			GENMASK(23, 16)
97 #define I2C_BC_STOP_COND			BIT(2)
98 #define I2C_BC_TERMINATE			BIT(1)
99 #define I2C_BC_ENABLE				BIT(0)
100 #define I2C_BUS_CLEAR_STATUS			0x088
101 #define I2C_BC_STATUS				BIT(0)
102 
103 #define I2C_CONFIG_LOAD				0x08c
104 #define I2C_MSTR_CONFIG_LOAD			BIT(0)
105 
106 #define I2C_CLKEN_OVERRIDE			0x090
107 #define I2C_MST_CORE_CLKEN_OVR			BIT(0)
108 
109 #define I2C_INTERFACE_TIMING_0			0x094
110 #define  I2C_INTERFACE_TIMING_THIGH		GENMASK(13, 8)
111 #define  I2C_INTERFACE_TIMING_TLOW		GENMASK(5, 0)
112 #define I2C_INTERFACE_TIMING_1			0x098
113 #define  I2C_INTERFACE_TIMING_TBUF		GENMASK(29, 24)
114 #define  I2C_INTERFACE_TIMING_TSU_STO		GENMASK(21, 16)
115 #define  I2C_INTERFACE_TIMING_THD_STA		GENMASK(13, 8)
116 #define  I2C_INTERFACE_TIMING_TSU_STA		GENMASK(5, 0)
117 
118 #define I2C_HS_INTERFACE_TIMING_0		0x09c
119 #define  I2C_HS_INTERFACE_TIMING_THIGH		GENMASK(13, 8)
120 #define  I2C_HS_INTERFACE_TIMING_TLOW		GENMASK(5, 0)
121 #define I2C_HS_INTERFACE_TIMING_1		0x0a0
122 #define  I2C_HS_INTERFACE_TIMING_TSU_STO	GENMASK(21, 16)
123 #define  I2C_HS_INTERFACE_TIMING_THD_STA	GENMASK(13, 8)
124 #define  I2C_HS_INTERFACE_TIMING_TSU_STA	GENMASK(5, 0)
125 
126 #define I2C_MST_FIFO_CONTROL			0x0b4
127 #define I2C_MST_FIFO_CONTROL_RX_FLUSH		BIT(0)
128 #define I2C_MST_FIFO_CONTROL_TX_FLUSH		BIT(1)
129 #define I2C_MST_FIFO_CONTROL_RX_TRIG(x)		(((x) - 1) <<  4)
130 #define I2C_MST_FIFO_CONTROL_TX_TRIG(x)		(((x) - 1) << 16)
131 
132 #define I2C_MST_FIFO_STATUS			0x0b8
133 #define I2C_MST_FIFO_STATUS_TX			GENMASK(23, 16)
134 #define I2C_MST_FIFO_STATUS_RX			GENMASK(7, 0)
135 
136 /* configuration load timeout in microseconds */
137 #define I2C_CONFIG_LOAD_TIMEOUT			1000000
138 
139 /* Packet header size in bytes */
140 #define I2C_PACKET_HEADER_SIZE			12
141 
142 /*
143  * I2C Controller will use PIO mode for transfers up to 32 bytes in order to
144  * avoid DMA overhead, otherwise external APB DMA controller will be used.
145  * Note that the actual MAX PIO length is 20 bytes because 32 bytes include
146  * I2C_PACKET_HEADER_SIZE.
147  */
148 #define I2C_PIO_MODE_PREFERRED_LEN		32
149 
150 /*
151  * msg_end_type: The bus control which need to be send at end of transfer.
152  * @MSG_END_STOP: Send stop pulse at end of transfer.
153  * @MSG_END_REPEAT_START: Send repeat start at end of transfer.
154  * @MSG_END_CONTINUE: The following on message is coming and so do not send
155  *		stop or repeat start.
156  */
157 enum msg_end_type {
158 	MSG_END_STOP,
159 	MSG_END_REPEAT_START,
160 	MSG_END_CONTINUE,
161 };
162 
163 /**
164  * struct tegra_i2c_hw_feature : Different HW support on Tegra
165  * @has_continue_xfer_support: Continue transfer supports.
166  * @has_per_pkt_xfer_complete_irq: Has enable/disable capability for transfer
167  *		complete interrupt per packet basis.
168  * @has_single_clk_source: The I2C controller has single clock source. Tegra30
169  *		and earlier SoCs have two clock sources i.e. div-clk and
170  *		fast-clk.
171  * @has_config_load_reg: Has the config load register to load the new
172  *		configuration.
173  * @clk_divisor_hs_mode: Clock divisor in HS mode.
174  * @clk_divisor_std_mode: Clock divisor in standard mode. It is
175  *		applicable if there is no fast clock source i.e. single clock
176  *		source.
177  * @clk_divisor_fast_mode: Clock divisor in fast mode. It is
178  *		applicable if there is no fast clock source i.e. single clock
179  *		source.
180  * @clk_divisor_fast_plus_mode: Clock divisor in fast mode plus. It is
181  *		applicable if there is no fast clock source (i.e. single
182  *		clock source).
183  * @has_multi_master_mode: The I2C controller supports running in single-master
184  *		or multi-master mode.
185  * @has_slcg_override_reg: The I2C controller supports a register that
186  *		overrides the second level clock gating.
187  * @has_mst_fifo: The I2C controller contains the new MST FIFO interface that
188  *		provides additional features and allows for longer messages to
189  *		be transferred in one go.
190  * @quirks: i2c adapter quirks for limiting write/read transfer size and not
191  *		allowing 0 length transfers.
192  * @supports_bus_clear: Bus Clear support to recover from bus hang during
193  *		SDA stuck low from device for some unknown reasons.
194  * @has_apb_dma: Support of APBDMA on corresponding Tegra chip.
195  * @tlow_std_mode: Low period of the clock in standard mode.
196  * @thigh_std_mode: High period of the clock in standard mode.
197  * @tlow_fast_fastplus_mode: Low period of the clock in fast/fast-plus modes.
198  * @thigh_fast_fastplus_mode: High period of the clock in fast/fast-plus modes.
199  * @setup_hold_time_std_mode: Setup and hold time for start and stop conditions
200  *		in standard mode.
201  * @setup_hold_time_fast_fast_plus_mode: Setup and hold time for start and stop
202  *		conditions in fast/fast-plus modes.
203  * @setup_hold_time_hs_mode: Setup and hold time for start and stop conditions
204  *		in HS mode.
205  * @has_interface_timing_reg: Has interface timing register to program the tuned
206  *		timing settings.
207  */
208 struct tegra_i2c_hw_feature {
209 	bool has_continue_xfer_support;
210 	bool has_per_pkt_xfer_complete_irq;
211 	bool has_single_clk_source;
212 	bool has_config_load_reg;
213 	int clk_divisor_hs_mode;
214 	int clk_divisor_std_mode;
215 	int clk_divisor_fast_mode;
216 	u16 clk_divisor_fast_plus_mode;
217 	bool has_multi_master_mode;
218 	bool has_slcg_override_reg;
219 	bool has_mst_fifo;
220 	const struct i2c_adapter_quirks *quirks;
221 	bool supports_bus_clear;
222 	bool has_apb_dma;
223 	u8 tlow_std_mode;
224 	u8 thigh_std_mode;
225 	u8 tlow_fast_fastplus_mode;
226 	u8 thigh_fast_fastplus_mode;
227 	u32 setup_hold_time_std_mode;
228 	u32 setup_hold_time_fast_fast_plus_mode;
229 	u32 setup_hold_time_hs_mode;
230 	bool has_interface_timing_reg;
231 };
232 
233 /**
234  * struct tegra_i2c_dev - per device I2C context
235  * @dev: device reference for power management
236  * @hw: Tegra I2C HW feature
237  * @adapter: core I2C layer adapter information
238  * @div_clk: clock reference for div clock of I2C controller
239  * @fast_clk: clock reference for fast clock of I2C controller
240  * @rst: reset control for the I2C controller
241  * @base: ioremapped registers cookie
242  * @base_phys: physical base address of the I2C controller
243  * @cont_id: I2C controller ID, used for packet header
244  * @irq: IRQ number of transfer complete interrupt
245  * @is_dvc: identifies the DVC I2C controller, has a different register layout
246  * @is_vi: identifies the VI I2C controller, has a different register layout
247  * @msg_complete: transfer completion notifier
248  * @msg_err: error code for completed message
249  * @msg_buf: pointer to current message data
250  * @msg_buf_remaining: size of unsent data in the message buffer
251  * @msg_read: identifies read transfers
252  * @bus_clk_rate: current I2C bus clock rate
253  * @clk_divisor_non_hs_mode: clock divider for non-high-speed modes
254  * @is_multimaster_mode: track if I2C controller is in multi-master mode
255  * @tx_dma_chan: DMA transmit channel
256  * @rx_dma_chan: DMA receive channel
257  * @dma_phys: handle to DMA resources
258  * @dma_buf: pointer to allocated DMA buffer
259  * @dma_buf_size: DMA buffer size
260  * @is_curr_dma_xfer: indicates active DMA transfer
261  * @dma_complete: DMA completion notifier
262  * @is_curr_atomic_xfer: indicates active atomic transfer
263  */
264 struct tegra_i2c_dev {
265 	struct device *dev;
266 	const struct tegra_i2c_hw_feature *hw;
267 	struct i2c_adapter adapter;
268 	struct clk *div_clk;
269 	struct clk *fast_clk;
270 	struct clk *slow_clk;
271 	struct reset_control *rst;
272 	void __iomem *base;
273 	phys_addr_t base_phys;
274 	int cont_id;
275 	int irq;
276 	int is_dvc;
277 	bool is_vi;
278 	struct completion msg_complete;
279 	int msg_err;
280 	u8 *msg_buf;
281 	size_t msg_buf_remaining;
282 	int msg_read;
283 	u32 bus_clk_rate;
284 	u16 clk_divisor_non_hs_mode;
285 	bool is_multimaster_mode;
286 	struct dma_chan *tx_dma_chan;
287 	struct dma_chan *rx_dma_chan;
288 	dma_addr_t dma_phys;
289 	u32 *dma_buf;
290 	unsigned int dma_buf_size;
291 	bool is_curr_dma_xfer;
292 	struct completion dma_complete;
293 	bool is_curr_atomic_xfer;
294 };
295 
296 static int tegra_i2c_init(struct tegra_i2c_dev *i2c_dev, bool clk_reinit);
297 
298 static void dvc_writel(struct tegra_i2c_dev *i2c_dev, u32 val,
299 		       unsigned long reg)
300 {
301 	writel_relaxed(val, i2c_dev->base + reg);
302 }
303 
304 static u32 dvc_readl(struct tegra_i2c_dev *i2c_dev, unsigned long reg)
305 {
306 	return readl_relaxed(i2c_dev->base + reg);
307 }
308 
309 /*
310  * i2c_writel and i2c_readl will offset the register if necessary to talk
311  * to the I2C block inside the DVC block
312  */
313 static unsigned long tegra_i2c_reg_addr(struct tegra_i2c_dev *i2c_dev,
314 					unsigned long reg)
315 {
316 	if (i2c_dev->is_dvc)
317 		reg += (reg >= I2C_TX_FIFO) ? 0x10 : 0x40;
318 	else if (i2c_dev->is_vi)
319 		reg = 0xc00 + (reg << 2);
320 	return reg;
321 }
322 
323 static void i2c_writel(struct tegra_i2c_dev *i2c_dev, u32 val,
324 		       unsigned long reg)
325 {
326 	writel_relaxed(val, i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
327 
328 	/* Read back register to make sure that register writes completed */
329 	if (reg != I2C_TX_FIFO)
330 		readl_relaxed(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
331 }
332 
333 static u32 i2c_readl(struct tegra_i2c_dev *i2c_dev, unsigned long reg)
334 {
335 	return readl_relaxed(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
336 }
337 
338 static void i2c_writesl(struct tegra_i2c_dev *i2c_dev, void *data,
339 			unsigned long reg, int len)
340 {
341 	writesl(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg), data, len);
342 }
343 
344 static void i2c_readsl(struct tegra_i2c_dev *i2c_dev, void *data,
345 		       unsigned long reg, int len)
346 {
347 	readsl(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg), data, len);
348 }
349 
350 static void tegra_i2c_mask_irq(struct tegra_i2c_dev *i2c_dev, u32 mask)
351 {
352 	u32 int_mask;
353 
354 	int_mask = i2c_readl(i2c_dev, I2C_INT_MASK) & ~mask;
355 	i2c_writel(i2c_dev, int_mask, I2C_INT_MASK);
356 }
357 
358 static void tegra_i2c_unmask_irq(struct tegra_i2c_dev *i2c_dev, u32 mask)
359 {
360 	u32 int_mask;
361 
362 	int_mask = i2c_readl(i2c_dev, I2C_INT_MASK) | mask;
363 	i2c_writel(i2c_dev, int_mask, I2C_INT_MASK);
364 }
365 
366 static void tegra_i2c_dma_complete(void *args)
367 {
368 	struct tegra_i2c_dev *i2c_dev = args;
369 
370 	complete(&i2c_dev->dma_complete);
371 }
372 
373 static int tegra_i2c_dma_submit(struct tegra_i2c_dev *i2c_dev, size_t len)
374 {
375 	struct dma_async_tx_descriptor *dma_desc;
376 	enum dma_transfer_direction dir;
377 	struct dma_chan *chan;
378 
379 	dev_dbg(i2c_dev->dev, "starting DMA for length: %zu\n", len);
380 	reinit_completion(&i2c_dev->dma_complete);
381 	dir = i2c_dev->msg_read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
382 	chan = i2c_dev->msg_read ? i2c_dev->rx_dma_chan : i2c_dev->tx_dma_chan;
383 	dma_desc = dmaengine_prep_slave_single(chan, i2c_dev->dma_phys,
384 					       len, dir, DMA_PREP_INTERRUPT |
385 					       DMA_CTRL_ACK);
386 	if (!dma_desc) {
387 		dev_err(i2c_dev->dev, "failed to get DMA descriptor\n");
388 		return -EINVAL;
389 	}
390 
391 	dma_desc->callback = tegra_i2c_dma_complete;
392 	dma_desc->callback_param = i2c_dev;
393 	dmaengine_submit(dma_desc);
394 	dma_async_issue_pending(chan);
395 	return 0;
396 }
397 
398 static void tegra_i2c_release_dma(struct tegra_i2c_dev *i2c_dev)
399 {
400 	if (i2c_dev->dma_buf) {
401 		dma_free_coherent(i2c_dev->dev, i2c_dev->dma_buf_size,
402 				  i2c_dev->dma_buf, i2c_dev->dma_phys);
403 		i2c_dev->dma_buf = NULL;
404 	}
405 
406 	if (i2c_dev->tx_dma_chan) {
407 		dma_release_channel(i2c_dev->tx_dma_chan);
408 		i2c_dev->tx_dma_chan = NULL;
409 	}
410 
411 	if (i2c_dev->rx_dma_chan) {
412 		dma_release_channel(i2c_dev->rx_dma_chan);
413 		i2c_dev->rx_dma_chan = NULL;
414 	}
415 }
416 
417 static int tegra_i2c_init_dma(struct tegra_i2c_dev *i2c_dev)
418 {
419 	struct dma_chan *chan;
420 	u32 *dma_buf;
421 	dma_addr_t dma_phys;
422 	int err;
423 
424 	if (!i2c_dev->hw->has_apb_dma || i2c_dev->is_vi)
425 		return 0;
426 
427 	if (!IS_ENABLED(CONFIG_TEGRA20_APB_DMA)) {
428 		dev_dbg(i2c_dev->dev, "Support for APB DMA not enabled!\n");
429 		return 0;
430 	}
431 
432 	chan = dma_request_chan(i2c_dev->dev, "rx");
433 	if (IS_ERR(chan)) {
434 		err = PTR_ERR(chan);
435 		goto err_out;
436 	}
437 
438 	i2c_dev->rx_dma_chan = chan;
439 
440 	chan = dma_request_chan(i2c_dev->dev, "tx");
441 	if (IS_ERR(chan)) {
442 		err = PTR_ERR(chan);
443 		goto err_out;
444 	}
445 
446 	i2c_dev->tx_dma_chan = chan;
447 
448 	dma_buf = dma_alloc_coherent(i2c_dev->dev, i2c_dev->dma_buf_size,
449 				     &dma_phys, GFP_KERNEL | __GFP_NOWARN);
450 	if (!dma_buf) {
451 		dev_err(i2c_dev->dev, "failed to allocate the DMA buffer\n");
452 		err = -ENOMEM;
453 		goto err_out;
454 	}
455 
456 	i2c_dev->dma_buf = dma_buf;
457 	i2c_dev->dma_phys = dma_phys;
458 	return 0;
459 
460 err_out:
461 	tegra_i2c_release_dma(i2c_dev);
462 	if (err != -EPROBE_DEFER) {
463 		dev_err(i2c_dev->dev, "cannot use DMA: %d\n", err);
464 		dev_err(i2c_dev->dev, "falling back to PIO\n");
465 		return 0;
466 	}
467 
468 	return err;
469 }
470 
471 static int tegra_i2c_flush_fifos(struct tegra_i2c_dev *i2c_dev)
472 {
473 	unsigned long timeout = jiffies + HZ;
474 	unsigned int offset;
475 	u32 mask, val;
476 
477 	if (i2c_dev->hw->has_mst_fifo) {
478 		mask = I2C_MST_FIFO_CONTROL_TX_FLUSH |
479 		       I2C_MST_FIFO_CONTROL_RX_FLUSH;
480 		offset = I2C_MST_FIFO_CONTROL;
481 	} else {
482 		mask = I2C_FIFO_CONTROL_TX_FLUSH |
483 		       I2C_FIFO_CONTROL_RX_FLUSH;
484 		offset = I2C_FIFO_CONTROL;
485 	}
486 
487 	val = i2c_readl(i2c_dev, offset);
488 	val |= mask;
489 	i2c_writel(i2c_dev, val, offset);
490 
491 	while (i2c_readl(i2c_dev, offset) & mask) {
492 		if (time_after(jiffies, timeout)) {
493 			dev_warn(i2c_dev->dev, "timeout waiting for fifo flush\n");
494 			return -ETIMEDOUT;
495 		}
496 		usleep_range(1000, 2000);
497 	}
498 	return 0;
499 }
500 
501 static int tegra_i2c_empty_rx_fifo(struct tegra_i2c_dev *i2c_dev)
502 {
503 	u32 val;
504 	int rx_fifo_avail;
505 	u8 *buf = i2c_dev->msg_buf;
506 	size_t buf_remaining = i2c_dev->msg_buf_remaining;
507 	int words_to_transfer;
508 
509 	/*
510 	 * Catch overflow due to message fully sent
511 	 * before the check for RX FIFO availability.
512 	 */
513 	if (WARN_ON_ONCE(!(i2c_dev->msg_buf_remaining)))
514 		return -EINVAL;
515 
516 	if (i2c_dev->hw->has_mst_fifo) {
517 		val = i2c_readl(i2c_dev, I2C_MST_FIFO_STATUS);
518 		rx_fifo_avail = FIELD_GET(I2C_MST_FIFO_STATUS_RX, val);
519 	} else {
520 		val = i2c_readl(i2c_dev, I2C_FIFO_STATUS);
521 		rx_fifo_avail = FIELD_GET(I2C_FIFO_STATUS_RX, val);
522 	}
523 
524 	/* Rounds down to not include partial word at the end of buf */
525 	words_to_transfer = buf_remaining / BYTES_PER_FIFO_WORD;
526 	if (words_to_transfer > rx_fifo_avail)
527 		words_to_transfer = rx_fifo_avail;
528 
529 	i2c_readsl(i2c_dev, buf, I2C_RX_FIFO, words_to_transfer);
530 
531 	buf += words_to_transfer * BYTES_PER_FIFO_WORD;
532 	buf_remaining -= words_to_transfer * BYTES_PER_FIFO_WORD;
533 	rx_fifo_avail -= words_to_transfer;
534 
535 	/*
536 	 * If there is a partial word at the end of buf, handle it manually to
537 	 * prevent overwriting past the end of buf
538 	 */
539 	if (rx_fifo_avail > 0 && buf_remaining > 0) {
540 		/*
541 		 * buf_remaining > 3 check not needed as rx_fifo_avail == 0
542 		 * when (words_to_transfer was > rx_fifo_avail) earlier
543 		 * in this function.
544 		 */
545 		val = i2c_readl(i2c_dev, I2C_RX_FIFO);
546 		val = cpu_to_le32(val);
547 		memcpy(buf, &val, buf_remaining);
548 		buf_remaining = 0;
549 		rx_fifo_avail--;
550 	}
551 
552 	/* RX FIFO must be drained, otherwise it's an Overflow case. */
553 	if (WARN_ON_ONCE(rx_fifo_avail))
554 		return -EINVAL;
555 
556 	i2c_dev->msg_buf_remaining = buf_remaining;
557 	i2c_dev->msg_buf = buf;
558 
559 	return 0;
560 }
561 
562 static int tegra_i2c_fill_tx_fifo(struct tegra_i2c_dev *i2c_dev)
563 {
564 	u32 val;
565 	int tx_fifo_avail;
566 	u8 *buf = i2c_dev->msg_buf;
567 	size_t buf_remaining = i2c_dev->msg_buf_remaining;
568 	int words_to_transfer;
569 
570 	if (i2c_dev->hw->has_mst_fifo) {
571 		val = i2c_readl(i2c_dev, I2C_MST_FIFO_STATUS);
572 		tx_fifo_avail = FIELD_GET(I2C_MST_FIFO_STATUS_TX, val);
573 	} else {
574 		val = i2c_readl(i2c_dev, I2C_FIFO_STATUS);
575 		tx_fifo_avail = FIELD_GET(I2C_FIFO_STATUS_TX, val);
576 	}
577 
578 	/* Rounds down to not include partial word at the end of buf */
579 	words_to_transfer = buf_remaining / BYTES_PER_FIFO_WORD;
580 
581 	/* It's very common to have < 4 bytes, so optimize that case. */
582 	if (words_to_transfer) {
583 		if (words_to_transfer > tx_fifo_avail)
584 			words_to_transfer = tx_fifo_avail;
585 
586 		/*
587 		 * Update state before writing to FIFO.  If this casues us
588 		 * to finish writing all bytes (AKA buf_remaining goes to 0) we
589 		 * have a potential for an interrupt (PACKET_XFER_COMPLETE is
590 		 * not maskable).  We need to make sure that the isr sees
591 		 * buf_remaining as 0 and doesn't call us back re-entrantly.
592 		 */
593 		buf_remaining -= words_to_transfer * BYTES_PER_FIFO_WORD;
594 		tx_fifo_avail -= words_to_transfer;
595 		i2c_dev->msg_buf_remaining = buf_remaining;
596 		i2c_dev->msg_buf = buf +
597 			words_to_transfer * BYTES_PER_FIFO_WORD;
598 		barrier();
599 
600 		i2c_writesl(i2c_dev, buf, I2C_TX_FIFO, words_to_transfer);
601 
602 		buf += words_to_transfer * BYTES_PER_FIFO_WORD;
603 	}
604 
605 	/*
606 	 * If there is a partial word at the end of buf, handle it manually to
607 	 * prevent reading past the end of buf, which could cross a page
608 	 * boundary and fault.
609 	 */
610 	if (tx_fifo_avail > 0 && buf_remaining > 0) {
611 		/*
612 		 * buf_remaining > 3 check not needed as tx_fifo_avail == 0
613 		 * when (words_to_transfer was > tx_fifo_avail) earlier
614 		 * in this function for non-zero words_to_transfer.
615 		 */
616 		memcpy(&val, buf, buf_remaining);
617 		val = le32_to_cpu(val);
618 
619 		/* Again update before writing to FIFO to make sure isr sees. */
620 		i2c_dev->msg_buf_remaining = 0;
621 		i2c_dev->msg_buf = NULL;
622 		barrier();
623 
624 		i2c_writel(i2c_dev, val, I2C_TX_FIFO);
625 	}
626 
627 	return 0;
628 }
629 
630 /*
631  * One of the Tegra I2C blocks is inside the DVC (Digital Voltage Controller)
632  * block.  This block is identical to the rest of the I2C blocks, except that
633  * it only supports master mode, it has registers moved around, and it needs
634  * some extra init to get it into I2C mode.  The register moves are handled
635  * by i2c_readl and i2c_writel
636  */
637 static void tegra_dvc_init(struct tegra_i2c_dev *i2c_dev)
638 {
639 	u32 val;
640 
641 	val = dvc_readl(i2c_dev, DVC_CTRL_REG3);
642 	val |= DVC_CTRL_REG3_SW_PROG;
643 	val |= DVC_CTRL_REG3_I2C_DONE_INTR_EN;
644 	dvc_writel(i2c_dev, val, DVC_CTRL_REG3);
645 
646 	val = dvc_readl(i2c_dev, DVC_CTRL_REG1);
647 	val |= DVC_CTRL_REG1_INTR_EN;
648 	dvc_writel(i2c_dev, val, DVC_CTRL_REG1);
649 }
650 
651 static int __maybe_unused tegra_i2c_runtime_resume(struct device *dev)
652 {
653 	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
654 	int ret;
655 
656 	ret = pinctrl_pm_select_default_state(i2c_dev->dev);
657 	if (ret)
658 		return ret;
659 
660 	ret = clk_enable(i2c_dev->fast_clk);
661 	if (ret < 0) {
662 		dev_err(i2c_dev->dev,
663 			"Enabling fast clk failed, err %d\n", ret);
664 		return ret;
665 	}
666 
667 	ret = clk_enable(i2c_dev->slow_clk);
668 	if (ret < 0) {
669 		dev_err(dev, "failed to enable slow clock: %d\n", ret);
670 		goto disable_fast_clk;
671 	}
672 
673 	ret = clk_enable(i2c_dev->div_clk);
674 	if (ret < 0) {
675 		dev_err(i2c_dev->dev,
676 			"Enabling div clk failed, err %d\n", ret);
677 		goto disable_slow_clk;
678 	}
679 
680 	/*
681 	 * VI I2C device is attached to VE power domain which goes through
682 	 * power ON/OFF during PM runtime resume/suspend. So, controller
683 	 * should go through reset and need to re-initialize after power
684 	 * domain ON.
685 	 */
686 	if (i2c_dev->is_vi) {
687 		ret = tegra_i2c_init(i2c_dev, true);
688 		if (ret)
689 			goto disable_div_clk;
690 	}
691 
692 	return 0;
693 
694 disable_div_clk:
695 	clk_disable(i2c_dev->div_clk);
696 disable_slow_clk:
697 	clk_disable(i2c_dev->slow_clk);
698 disable_fast_clk:
699 	clk_disable(i2c_dev->fast_clk);
700 	return ret;
701 }
702 
703 static int __maybe_unused tegra_i2c_runtime_suspend(struct device *dev)
704 {
705 	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
706 
707 	clk_disable(i2c_dev->div_clk);
708 	clk_disable(i2c_dev->slow_clk);
709 	clk_disable(i2c_dev->fast_clk);
710 
711 	return pinctrl_pm_select_idle_state(i2c_dev->dev);
712 }
713 
714 static int tegra_i2c_wait_for_config_load(struct tegra_i2c_dev *i2c_dev)
715 {
716 	unsigned long reg_offset;
717 	void __iomem *addr;
718 	u32 val;
719 	int err;
720 
721 	if (i2c_dev->hw->has_config_load_reg) {
722 		reg_offset = tegra_i2c_reg_addr(i2c_dev, I2C_CONFIG_LOAD);
723 		addr = i2c_dev->base + reg_offset;
724 		i2c_writel(i2c_dev, I2C_MSTR_CONFIG_LOAD, I2C_CONFIG_LOAD);
725 
726 		if (i2c_dev->is_curr_atomic_xfer)
727 			err = readl_relaxed_poll_timeout_atomic(
728 						addr, val, val == 0, 1000,
729 						I2C_CONFIG_LOAD_TIMEOUT);
730 		else
731 			err = readl_relaxed_poll_timeout(
732 						addr, val, val == 0, 1000,
733 						I2C_CONFIG_LOAD_TIMEOUT);
734 
735 		if (err) {
736 			dev_warn(i2c_dev->dev,
737 				 "timeout waiting for config load\n");
738 			return err;
739 		}
740 	}
741 
742 	return 0;
743 }
744 
745 static void tegra_i2c_vi_init(struct tegra_i2c_dev *i2c_dev)
746 {
747 	u32 value;
748 
749 	value = FIELD_PREP(I2C_INTERFACE_TIMING_THIGH, 2) |
750 		FIELD_PREP(I2C_INTERFACE_TIMING_TLOW, 4);
751 	i2c_writel(i2c_dev, value, I2C_INTERFACE_TIMING_0);
752 
753 	value = FIELD_PREP(I2C_INTERFACE_TIMING_TBUF, 4) |
754 		FIELD_PREP(I2C_INTERFACE_TIMING_TSU_STO, 7) |
755 		FIELD_PREP(I2C_INTERFACE_TIMING_THD_STA, 4) |
756 		FIELD_PREP(I2C_INTERFACE_TIMING_TSU_STA, 4);
757 	i2c_writel(i2c_dev, value, I2C_INTERFACE_TIMING_1);
758 
759 	value = FIELD_PREP(I2C_HS_INTERFACE_TIMING_THIGH, 3) |
760 		FIELD_PREP(I2C_HS_INTERFACE_TIMING_TLOW, 8);
761 	i2c_writel(i2c_dev, value, I2C_HS_INTERFACE_TIMING_0);
762 
763 	value = FIELD_PREP(I2C_HS_INTERFACE_TIMING_TSU_STO, 11) |
764 		FIELD_PREP(I2C_HS_INTERFACE_TIMING_THD_STA, 11) |
765 		FIELD_PREP(I2C_HS_INTERFACE_TIMING_TSU_STA, 11);
766 	i2c_writel(i2c_dev, value, I2C_HS_INTERFACE_TIMING_1);
767 
768 	value = FIELD_PREP(I2C_BC_SCLK_THRESHOLD, 9) | I2C_BC_STOP_COND;
769 	i2c_writel(i2c_dev, value, I2C_BUS_CLEAR_CNFG);
770 
771 	i2c_writel(i2c_dev, 0x0, I2C_TLOW_SEXT);
772 }
773 
774 static int tegra_i2c_init(struct tegra_i2c_dev *i2c_dev, bool clk_reinit)
775 {
776 	u32 val;
777 	int err;
778 	u32 clk_divisor, clk_multiplier;
779 	u32 tsu_thd;
780 	u8 tlow, thigh;
781 
782 	reset_control_assert(i2c_dev->rst);
783 	udelay(2);
784 	reset_control_deassert(i2c_dev->rst);
785 
786 	if (i2c_dev->is_dvc)
787 		tegra_dvc_init(i2c_dev);
788 
789 	val = I2C_CNFG_NEW_MASTER_FSM | I2C_CNFG_PACKET_MODE_EN |
790 	      FIELD_PREP(I2C_CNFG_DEBOUNCE_CNT, 2);
791 
792 	if (i2c_dev->hw->has_multi_master_mode)
793 		val |= I2C_CNFG_MULTI_MASTER_MODE;
794 
795 	i2c_writel(i2c_dev, val, I2C_CNFG);
796 	i2c_writel(i2c_dev, 0, I2C_INT_MASK);
797 
798 	if (i2c_dev->is_vi)
799 		tegra_i2c_vi_init(i2c_dev);
800 
801 	/* Make sure clock divisor programmed correctly */
802 	clk_divisor = FIELD_PREP(I2C_CLK_DIVISOR_HSMODE,
803 				 i2c_dev->hw->clk_divisor_hs_mode) |
804 		      FIELD_PREP(I2C_CLK_DIVISOR_STD_FAST_MODE,
805 				 i2c_dev->clk_divisor_non_hs_mode);
806 	i2c_writel(i2c_dev, clk_divisor, I2C_CLK_DIVISOR);
807 
808 	if (i2c_dev->bus_clk_rate > I2C_MAX_STANDARD_MODE_FREQ &&
809 	    i2c_dev->bus_clk_rate <= I2C_MAX_FAST_MODE_PLUS_FREQ) {
810 		tlow = i2c_dev->hw->tlow_fast_fastplus_mode;
811 		thigh = i2c_dev->hw->thigh_fast_fastplus_mode;
812 		tsu_thd = i2c_dev->hw->setup_hold_time_fast_fast_plus_mode;
813 	} else {
814 		tlow = i2c_dev->hw->tlow_std_mode;
815 		thigh = i2c_dev->hw->thigh_std_mode;
816 		tsu_thd = i2c_dev->hw->setup_hold_time_std_mode;
817 	}
818 
819 	if (i2c_dev->hw->has_interface_timing_reg) {
820 		val = FIELD_PREP(I2C_INTERFACE_TIMING_THIGH, thigh) |
821 		      FIELD_PREP(I2C_INTERFACE_TIMING_TLOW, tlow);
822 		i2c_writel(i2c_dev, val, I2C_INTERFACE_TIMING_0);
823 	}
824 
825 	/*
826 	 * configure setup and hold times only when tsu_thd is non-zero.
827 	 * otherwise, preserve the chip default values
828 	 */
829 	if (i2c_dev->hw->has_interface_timing_reg && tsu_thd)
830 		i2c_writel(i2c_dev, tsu_thd, I2C_INTERFACE_TIMING_1);
831 
832 	if (!clk_reinit) {
833 		clk_multiplier = (tlow + thigh + 2);
834 		clk_multiplier *= (i2c_dev->clk_divisor_non_hs_mode + 1);
835 		err = clk_set_rate(i2c_dev->div_clk,
836 				   i2c_dev->bus_clk_rate * clk_multiplier);
837 		if (err) {
838 			dev_err(i2c_dev->dev,
839 				"failed changing clock rate: %d\n", err);
840 			return err;
841 		}
842 	}
843 
844 	if (!i2c_dev->is_dvc && !i2c_dev->is_vi) {
845 		u32 sl_cfg = i2c_readl(i2c_dev, I2C_SL_CNFG);
846 
847 		sl_cfg |= I2C_SL_CNFG_NACK | I2C_SL_CNFG_NEWSL;
848 		i2c_writel(i2c_dev, sl_cfg, I2C_SL_CNFG);
849 		i2c_writel(i2c_dev, 0xfc, I2C_SL_ADDR1);
850 		i2c_writel(i2c_dev, 0x00, I2C_SL_ADDR2);
851 	}
852 
853 	err = tegra_i2c_flush_fifos(i2c_dev);
854 	if (err)
855 		return err;
856 
857 	if (i2c_dev->is_multimaster_mode && i2c_dev->hw->has_slcg_override_reg)
858 		i2c_writel(i2c_dev, I2C_MST_CORE_CLKEN_OVR, I2C_CLKEN_OVERRIDE);
859 
860 	err = tegra_i2c_wait_for_config_load(i2c_dev);
861 	if (err)
862 		return err;
863 
864 	return 0;
865 }
866 
867 static int tegra_i2c_disable_packet_mode(struct tegra_i2c_dev *i2c_dev)
868 {
869 	u32 cnfg;
870 
871 	/*
872 	 * NACK interrupt is generated before the I2C controller generates
873 	 * the STOP condition on the bus. So wait for 2 clock periods
874 	 * before disabling the controller so that the STOP condition has
875 	 * been delivered properly.
876 	 */
877 	udelay(DIV_ROUND_UP(2 * 1000000, i2c_dev->bus_clk_rate));
878 
879 	cnfg = i2c_readl(i2c_dev, I2C_CNFG);
880 	if (cnfg & I2C_CNFG_PACKET_MODE_EN)
881 		i2c_writel(i2c_dev, cnfg & ~I2C_CNFG_PACKET_MODE_EN, I2C_CNFG);
882 
883 	return tegra_i2c_wait_for_config_load(i2c_dev);
884 }
885 
886 static irqreturn_t tegra_i2c_isr(int irq, void *dev_id)
887 {
888 	u32 status;
889 	const u32 status_err = I2C_INT_NO_ACK | I2C_INT_ARBITRATION_LOST;
890 	struct tegra_i2c_dev *i2c_dev = dev_id;
891 
892 	status = i2c_readl(i2c_dev, I2C_INT_STATUS);
893 
894 	if (status == 0) {
895 		dev_warn(i2c_dev->dev, "irq status 0 %08x %08x %08x\n",
896 			 i2c_readl(i2c_dev, I2C_PACKET_TRANSFER_STATUS),
897 			 i2c_readl(i2c_dev, I2C_STATUS),
898 			 i2c_readl(i2c_dev, I2C_CNFG));
899 		i2c_dev->msg_err |= I2C_ERR_UNKNOWN_INTERRUPT;
900 		goto err;
901 	}
902 
903 	if (unlikely(status & status_err)) {
904 		tegra_i2c_disable_packet_mode(i2c_dev);
905 		if (status & I2C_INT_NO_ACK)
906 			i2c_dev->msg_err |= I2C_ERR_NO_ACK;
907 		if (status & I2C_INT_ARBITRATION_LOST)
908 			i2c_dev->msg_err |= I2C_ERR_ARBITRATION_LOST;
909 		goto err;
910 	}
911 
912 	/*
913 	 * I2C transfer is terminated during the bus clear so skip
914 	 * processing the other interrupts.
915 	 */
916 	if (i2c_dev->hw->supports_bus_clear && (status & I2C_INT_BUS_CLR_DONE))
917 		goto err;
918 
919 	if (!i2c_dev->is_curr_dma_xfer) {
920 		if (i2c_dev->msg_read && (status & I2C_INT_RX_FIFO_DATA_REQ)) {
921 			if (tegra_i2c_empty_rx_fifo(i2c_dev)) {
922 				/*
923 				 * Overflow error condition: message fully sent,
924 				 * with no XFER_COMPLETE interrupt but hardware
925 				 * asks to transfer more.
926 				 */
927 				i2c_dev->msg_err |= I2C_ERR_RX_BUFFER_OVERFLOW;
928 				goto err;
929 			}
930 		}
931 
932 		if (!i2c_dev->msg_read && (status & I2C_INT_TX_FIFO_DATA_REQ)) {
933 			if (i2c_dev->msg_buf_remaining)
934 				tegra_i2c_fill_tx_fifo(i2c_dev);
935 			else
936 				tegra_i2c_mask_irq(i2c_dev,
937 						   I2C_INT_TX_FIFO_DATA_REQ);
938 		}
939 	}
940 
941 	i2c_writel(i2c_dev, status, I2C_INT_STATUS);
942 	if (i2c_dev->is_dvc)
943 		dvc_writel(i2c_dev, DVC_STATUS_I2C_DONE_INTR, DVC_STATUS);
944 
945 	/*
946 	 * During message read XFER_COMPLETE interrupt is triggered prior to
947 	 * DMA completion and during message write XFER_COMPLETE interrupt is
948 	 * triggered after DMA completion.
949 	 * PACKETS_XFER_COMPLETE indicates completion of all bytes of transfer.
950 	 * so forcing msg_buf_remaining to 0 in DMA mode.
951 	 */
952 	if (status & I2C_INT_PACKET_XFER_COMPLETE) {
953 		if (i2c_dev->is_curr_dma_xfer)
954 			i2c_dev->msg_buf_remaining = 0;
955 		/*
956 		 * Underflow error condition: XFER_COMPLETE before message
957 		 * fully sent.
958 		 */
959 		if (WARN_ON_ONCE(i2c_dev->msg_buf_remaining)) {
960 			i2c_dev->msg_err |= I2C_ERR_UNKNOWN_INTERRUPT;
961 			goto err;
962 		}
963 		complete(&i2c_dev->msg_complete);
964 	}
965 	goto done;
966 err:
967 	/* An error occurred, mask all interrupts */
968 	tegra_i2c_mask_irq(i2c_dev, I2C_INT_NO_ACK | I2C_INT_ARBITRATION_LOST |
969 		I2C_INT_PACKET_XFER_COMPLETE | I2C_INT_TX_FIFO_DATA_REQ |
970 		I2C_INT_RX_FIFO_DATA_REQ);
971 	if (i2c_dev->hw->supports_bus_clear)
972 		tegra_i2c_mask_irq(i2c_dev, I2C_INT_BUS_CLR_DONE);
973 	i2c_writel(i2c_dev, status, I2C_INT_STATUS);
974 	if (i2c_dev->is_dvc)
975 		dvc_writel(i2c_dev, DVC_STATUS_I2C_DONE_INTR, DVC_STATUS);
976 
977 	if (i2c_dev->is_curr_dma_xfer) {
978 		if (i2c_dev->msg_read)
979 			dmaengine_terminate_async(i2c_dev->rx_dma_chan);
980 		else
981 			dmaengine_terminate_async(i2c_dev->tx_dma_chan);
982 
983 		complete(&i2c_dev->dma_complete);
984 	}
985 
986 	complete(&i2c_dev->msg_complete);
987 done:
988 	return IRQ_HANDLED;
989 }
990 
991 static void tegra_i2c_config_fifo_trig(struct tegra_i2c_dev *i2c_dev,
992 				       size_t len)
993 {
994 	u32 val, reg;
995 	u8 dma_burst;
996 	struct dma_slave_config slv_config = {0};
997 	struct dma_chan *chan;
998 	int ret;
999 	unsigned long reg_offset;
1000 
1001 	if (i2c_dev->hw->has_mst_fifo)
1002 		reg = I2C_MST_FIFO_CONTROL;
1003 	else
1004 		reg = I2C_FIFO_CONTROL;
1005 
1006 	if (i2c_dev->is_curr_dma_xfer) {
1007 		if (len & 0xF)
1008 			dma_burst = 1;
1009 		else if (len & 0x10)
1010 			dma_burst = 4;
1011 		else
1012 			dma_burst = 8;
1013 
1014 		if (i2c_dev->msg_read) {
1015 			chan = i2c_dev->rx_dma_chan;
1016 			reg_offset = tegra_i2c_reg_addr(i2c_dev, I2C_RX_FIFO);
1017 			slv_config.src_addr = i2c_dev->base_phys + reg_offset;
1018 			slv_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1019 			slv_config.src_maxburst = dma_burst;
1020 
1021 			if (i2c_dev->hw->has_mst_fifo)
1022 				val = I2C_MST_FIFO_CONTROL_RX_TRIG(dma_burst);
1023 			else
1024 				val = I2C_FIFO_CONTROL_RX_TRIG(dma_burst);
1025 		} else {
1026 			chan = i2c_dev->tx_dma_chan;
1027 			reg_offset = tegra_i2c_reg_addr(i2c_dev, I2C_TX_FIFO);
1028 			slv_config.dst_addr = i2c_dev->base_phys + reg_offset;
1029 			slv_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1030 			slv_config.dst_maxburst = dma_burst;
1031 
1032 			if (i2c_dev->hw->has_mst_fifo)
1033 				val = I2C_MST_FIFO_CONTROL_TX_TRIG(dma_burst);
1034 			else
1035 				val = I2C_FIFO_CONTROL_TX_TRIG(dma_burst);
1036 		}
1037 
1038 		slv_config.device_fc = true;
1039 		ret = dmaengine_slave_config(chan, &slv_config);
1040 		if (ret < 0) {
1041 			dev_err(i2c_dev->dev, "DMA slave config failed: %d\n",
1042 				ret);
1043 			dev_err(i2c_dev->dev, "falling back to PIO\n");
1044 			tegra_i2c_release_dma(i2c_dev);
1045 			i2c_dev->is_curr_dma_xfer = false;
1046 		} else {
1047 			goto out;
1048 		}
1049 	}
1050 
1051 	if (i2c_dev->hw->has_mst_fifo)
1052 		val = I2C_MST_FIFO_CONTROL_TX_TRIG(8) |
1053 		      I2C_MST_FIFO_CONTROL_RX_TRIG(1);
1054 	else
1055 		val = I2C_FIFO_CONTROL_TX_TRIG(8) |
1056 		      I2C_FIFO_CONTROL_RX_TRIG(1);
1057 out:
1058 	i2c_writel(i2c_dev, val, reg);
1059 }
1060 
1061 static unsigned long
1062 tegra_i2c_poll_completion_timeout(struct tegra_i2c_dev *i2c_dev,
1063 				  struct completion *complete,
1064 				  unsigned int timeout_ms)
1065 {
1066 	ktime_t ktime = ktime_get();
1067 	ktime_t ktimeout = ktime_add_ms(ktime, timeout_ms);
1068 
1069 	do {
1070 		u32 status = i2c_readl(i2c_dev, I2C_INT_STATUS);
1071 
1072 		if (status)
1073 			tegra_i2c_isr(i2c_dev->irq, i2c_dev);
1074 
1075 		if (completion_done(complete)) {
1076 			s64 delta = ktime_ms_delta(ktimeout, ktime);
1077 
1078 			return msecs_to_jiffies(delta) ?: 1;
1079 		}
1080 
1081 		ktime = ktime_get();
1082 
1083 	} while (ktime_before(ktime, ktimeout));
1084 
1085 	return 0;
1086 }
1087 
1088 static unsigned long
1089 tegra_i2c_wait_completion_timeout(struct tegra_i2c_dev *i2c_dev,
1090 				  struct completion *complete,
1091 				  unsigned int timeout_ms)
1092 {
1093 	unsigned long ret;
1094 
1095 	if (i2c_dev->is_curr_atomic_xfer) {
1096 		ret = tegra_i2c_poll_completion_timeout(i2c_dev, complete,
1097 							timeout_ms);
1098 	} else {
1099 		enable_irq(i2c_dev->irq);
1100 		ret = wait_for_completion_timeout(complete,
1101 						  msecs_to_jiffies(timeout_ms));
1102 		disable_irq(i2c_dev->irq);
1103 
1104 		/*
1105 		 * Under some rare circumstances (like running KASAN +
1106 		 * NFS root) CPU, which handles interrupt, may stuck in
1107 		 * uninterruptible state for a significant time.  In this
1108 		 * case we will get timeout if I2C transfer is running on
1109 		 * a sibling CPU, despite of IRQ being raised.
1110 		 *
1111 		 * In order to handle this rare condition, the IRQ status
1112 		 * needs to be checked after timeout.
1113 		 */
1114 		if (ret == 0)
1115 			ret = tegra_i2c_poll_completion_timeout(i2c_dev,
1116 								complete, 0);
1117 	}
1118 
1119 	return ret;
1120 }
1121 
1122 static int tegra_i2c_issue_bus_clear(struct i2c_adapter *adap)
1123 {
1124 	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1125 	int err;
1126 	unsigned long time_left;
1127 	u32 reg;
1128 
1129 	reinit_completion(&i2c_dev->msg_complete);
1130 	reg = FIELD_PREP(I2C_BC_SCLK_THRESHOLD, 9) | I2C_BC_STOP_COND |
1131 	      I2C_BC_TERMINATE;
1132 	i2c_writel(i2c_dev, reg, I2C_BUS_CLEAR_CNFG);
1133 	if (i2c_dev->hw->has_config_load_reg) {
1134 		err = tegra_i2c_wait_for_config_load(i2c_dev);
1135 		if (err)
1136 			return err;
1137 	}
1138 
1139 	reg |= I2C_BC_ENABLE;
1140 	i2c_writel(i2c_dev, reg, I2C_BUS_CLEAR_CNFG);
1141 	tegra_i2c_unmask_irq(i2c_dev, I2C_INT_BUS_CLR_DONE);
1142 
1143 	time_left = tegra_i2c_wait_completion_timeout(
1144 			i2c_dev, &i2c_dev->msg_complete, 50);
1145 	if (time_left == 0) {
1146 		dev_err(i2c_dev->dev, "timed out for bus clear\n");
1147 		return -ETIMEDOUT;
1148 	}
1149 
1150 	reg = i2c_readl(i2c_dev, I2C_BUS_CLEAR_STATUS);
1151 	if (!(reg & I2C_BC_STATUS)) {
1152 		dev_err(i2c_dev->dev,
1153 			"un-recovered arbitration lost\n");
1154 		return -EIO;
1155 	}
1156 
1157 	return -EAGAIN;
1158 }
1159 
1160 static int tegra_i2c_xfer_msg(struct tegra_i2c_dev *i2c_dev,
1161 			      struct i2c_msg *msg,
1162 			      enum msg_end_type end_state)
1163 {
1164 	u32 packet_header;
1165 	u32 int_mask;
1166 	unsigned long time_left;
1167 	size_t xfer_size;
1168 	u32 *buffer = NULL;
1169 	int err = 0;
1170 	bool dma;
1171 	u16 xfer_time = 100;
1172 
1173 	tegra_i2c_flush_fifos(i2c_dev);
1174 
1175 	i2c_dev->msg_buf = msg->buf;
1176 	i2c_dev->msg_buf_remaining = msg->len;
1177 	i2c_dev->msg_err = I2C_ERR_NONE;
1178 	i2c_dev->msg_read = (msg->flags & I2C_M_RD);
1179 	reinit_completion(&i2c_dev->msg_complete);
1180 
1181 	if (i2c_dev->msg_read)
1182 		xfer_size = msg->len;
1183 	else
1184 		xfer_size = msg->len + I2C_PACKET_HEADER_SIZE;
1185 
1186 	xfer_size = ALIGN(xfer_size, BYTES_PER_FIFO_WORD);
1187 	i2c_dev->is_curr_dma_xfer = (xfer_size > I2C_PIO_MODE_PREFERRED_LEN) &&
1188 				    i2c_dev->dma_buf &&
1189 				    !i2c_dev->is_curr_atomic_xfer;
1190 	tegra_i2c_config_fifo_trig(i2c_dev, xfer_size);
1191 	dma = i2c_dev->is_curr_dma_xfer;
1192 	/*
1193 	 * Transfer time in mSec = Total bits / transfer rate
1194 	 * Total bits = 9 bits per byte (including ACK bit) + Start & stop bits
1195 	 */
1196 	xfer_time += DIV_ROUND_CLOSEST(((xfer_size * 9) + 2) * MSEC_PER_SEC,
1197 					i2c_dev->bus_clk_rate);
1198 
1199 	int_mask = I2C_INT_NO_ACK | I2C_INT_ARBITRATION_LOST;
1200 	tegra_i2c_unmask_irq(i2c_dev, int_mask);
1201 	if (dma) {
1202 		if (i2c_dev->msg_read) {
1203 			dma_sync_single_for_device(i2c_dev->dev,
1204 						   i2c_dev->dma_phys,
1205 						   xfer_size,
1206 						   DMA_FROM_DEVICE);
1207 			err = tegra_i2c_dma_submit(i2c_dev, xfer_size);
1208 			if (err < 0) {
1209 				dev_err(i2c_dev->dev,
1210 					"starting RX DMA failed, err %d\n",
1211 					err);
1212 				return err;
1213 			}
1214 
1215 		} else {
1216 			dma_sync_single_for_cpu(i2c_dev->dev,
1217 						i2c_dev->dma_phys,
1218 						xfer_size,
1219 						DMA_TO_DEVICE);
1220 			buffer = i2c_dev->dma_buf;
1221 		}
1222 	}
1223 
1224 	packet_header = FIELD_PREP(PACKET_HEADER0_HEADER_SIZE, 0) |
1225 			FIELD_PREP(PACKET_HEADER0_PROTOCOL,
1226 				   PACKET_HEADER0_PROTOCOL_I2C) |
1227 			FIELD_PREP(PACKET_HEADER0_CONT_ID, i2c_dev->cont_id) |
1228 			FIELD_PREP(PACKET_HEADER0_PACKET_ID, 1);
1229 	if (dma && !i2c_dev->msg_read)
1230 		*buffer++ = packet_header;
1231 	else
1232 		i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
1233 
1234 	packet_header = msg->len - 1;
1235 	if (dma && !i2c_dev->msg_read)
1236 		*buffer++ = packet_header;
1237 	else
1238 		i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
1239 
1240 	packet_header = I2C_HEADER_IE_ENABLE;
1241 	if (end_state == MSG_END_CONTINUE)
1242 		packet_header |= I2C_HEADER_CONTINUE_XFER;
1243 	else if (end_state == MSG_END_REPEAT_START)
1244 		packet_header |= I2C_HEADER_REPEAT_START;
1245 	if (msg->flags & I2C_M_TEN) {
1246 		packet_header |= msg->addr;
1247 		packet_header |= I2C_HEADER_10BIT_ADDR;
1248 	} else {
1249 		packet_header |= msg->addr << I2C_HEADER_SLAVE_ADDR_SHIFT;
1250 	}
1251 	if (msg->flags & I2C_M_IGNORE_NAK)
1252 		packet_header |= I2C_HEADER_CONT_ON_NAK;
1253 	if (msg->flags & I2C_M_RD)
1254 		packet_header |= I2C_HEADER_READ;
1255 	if (dma && !i2c_dev->msg_read)
1256 		*buffer++ = packet_header;
1257 	else
1258 		i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
1259 
1260 	if (!i2c_dev->msg_read) {
1261 		if (dma) {
1262 			memcpy(buffer, msg->buf, msg->len);
1263 			dma_sync_single_for_device(i2c_dev->dev,
1264 						   i2c_dev->dma_phys,
1265 						   xfer_size,
1266 						   DMA_TO_DEVICE);
1267 			err = tegra_i2c_dma_submit(i2c_dev, xfer_size);
1268 			if (err < 0) {
1269 				dev_err(i2c_dev->dev,
1270 					"starting TX DMA failed, err %d\n",
1271 					err);
1272 				return err;
1273 			}
1274 		} else {
1275 			tegra_i2c_fill_tx_fifo(i2c_dev);
1276 		}
1277 	}
1278 
1279 	if (i2c_dev->hw->has_per_pkt_xfer_complete_irq)
1280 		int_mask |= I2C_INT_PACKET_XFER_COMPLETE;
1281 	if (!dma) {
1282 		if (msg->flags & I2C_M_RD)
1283 			int_mask |= I2C_INT_RX_FIFO_DATA_REQ;
1284 		else if (i2c_dev->msg_buf_remaining)
1285 			int_mask |= I2C_INT_TX_FIFO_DATA_REQ;
1286 	}
1287 
1288 	tegra_i2c_unmask_irq(i2c_dev, int_mask);
1289 	dev_dbg(i2c_dev->dev, "unmasked irq: %02x\n",
1290 		i2c_readl(i2c_dev, I2C_INT_MASK));
1291 
1292 	if (dma) {
1293 		time_left = tegra_i2c_wait_completion_timeout(
1294 				i2c_dev, &i2c_dev->dma_complete, xfer_time);
1295 
1296 		/*
1297 		 * Synchronize DMA first, since dmaengine_terminate_sync()
1298 		 * performs synchronization after the transfer's termination
1299 		 * and we want to get a completion if transfer succeeded.
1300 		 */
1301 		dmaengine_synchronize(i2c_dev->msg_read ?
1302 				      i2c_dev->rx_dma_chan :
1303 				      i2c_dev->tx_dma_chan);
1304 
1305 		dmaengine_terminate_sync(i2c_dev->msg_read ?
1306 					 i2c_dev->rx_dma_chan :
1307 					 i2c_dev->tx_dma_chan);
1308 
1309 		if (!time_left && !completion_done(&i2c_dev->dma_complete)) {
1310 			dev_err(i2c_dev->dev, "DMA transfer timeout\n");
1311 			tegra_i2c_init(i2c_dev, true);
1312 			return -ETIMEDOUT;
1313 		}
1314 
1315 		if (i2c_dev->msg_read && i2c_dev->msg_err == I2C_ERR_NONE) {
1316 			dma_sync_single_for_cpu(i2c_dev->dev,
1317 						i2c_dev->dma_phys,
1318 						xfer_size,
1319 						DMA_FROM_DEVICE);
1320 			memcpy(i2c_dev->msg_buf, i2c_dev->dma_buf,
1321 			       msg->len);
1322 		}
1323 	}
1324 
1325 	time_left = tegra_i2c_wait_completion_timeout(
1326 			i2c_dev, &i2c_dev->msg_complete, xfer_time);
1327 
1328 	tegra_i2c_mask_irq(i2c_dev, int_mask);
1329 
1330 	if (time_left == 0) {
1331 		dev_err(i2c_dev->dev, "i2c transfer timed out\n");
1332 		tegra_i2c_init(i2c_dev, true);
1333 		return -ETIMEDOUT;
1334 	}
1335 
1336 	dev_dbg(i2c_dev->dev, "transfer complete: %lu %d %d\n",
1337 		time_left, completion_done(&i2c_dev->msg_complete),
1338 		i2c_dev->msg_err);
1339 
1340 	i2c_dev->is_curr_dma_xfer = false;
1341 	if (likely(i2c_dev->msg_err == I2C_ERR_NONE))
1342 		return 0;
1343 
1344 	tegra_i2c_init(i2c_dev, true);
1345 	/* start recovery upon arbitration loss in single master mode */
1346 	if (i2c_dev->msg_err == I2C_ERR_ARBITRATION_LOST) {
1347 		if (!i2c_dev->is_multimaster_mode)
1348 			return i2c_recover_bus(&i2c_dev->adapter);
1349 		return -EAGAIN;
1350 	}
1351 
1352 	if (i2c_dev->msg_err == I2C_ERR_NO_ACK) {
1353 		if (msg->flags & I2C_M_IGNORE_NAK)
1354 			return 0;
1355 		return -EREMOTEIO;
1356 	}
1357 
1358 	return -EIO;
1359 }
1360 
1361 static int tegra_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[],
1362 			  int num)
1363 {
1364 	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1365 	int i;
1366 	int ret;
1367 
1368 	ret = pm_runtime_get_sync(i2c_dev->dev);
1369 	if (ret < 0) {
1370 		dev_err(i2c_dev->dev, "runtime resume failed %d\n", ret);
1371 		return ret;
1372 	}
1373 
1374 	for (i = 0; i < num; i++) {
1375 		enum msg_end_type end_type = MSG_END_STOP;
1376 
1377 		if (i < (num - 1)) {
1378 			if (msgs[i + 1].flags & I2C_M_NOSTART)
1379 				end_type = MSG_END_CONTINUE;
1380 			else
1381 				end_type = MSG_END_REPEAT_START;
1382 		}
1383 		ret = tegra_i2c_xfer_msg(i2c_dev, &msgs[i], end_type);
1384 		if (ret)
1385 			break;
1386 	}
1387 
1388 	pm_runtime_put(i2c_dev->dev);
1389 
1390 	return ret ?: i;
1391 }
1392 
1393 static int tegra_i2c_xfer_atomic(struct i2c_adapter *adap,
1394 				 struct i2c_msg msgs[], int num)
1395 {
1396 	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1397 	int ret;
1398 
1399 	i2c_dev->is_curr_atomic_xfer = true;
1400 	ret = tegra_i2c_xfer(adap, msgs, num);
1401 	i2c_dev->is_curr_atomic_xfer = false;
1402 
1403 	return ret;
1404 }
1405 
1406 static u32 tegra_i2c_func(struct i2c_adapter *adap)
1407 {
1408 	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1409 	u32 ret = I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK) |
1410 		  I2C_FUNC_10BIT_ADDR |	I2C_FUNC_PROTOCOL_MANGLING;
1411 
1412 	if (i2c_dev->hw->has_continue_xfer_support)
1413 		ret |= I2C_FUNC_NOSTART;
1414 	return ret;
1415 }
1416 
1417 static void tegra_i2c_parse_dt(struct tegra_i2c_dev *i2c_dev)
1418 {
1419 	struct device_node *np = i2c_dev->dev->of_node;
1420 	int ret;
1421 	bool multi_mode;
1422 
1423 	ret = of_property_read_u32(np, "clock-frequency",
1424 				   &i2c_dev->bus_clk_rate);
1425 	if (ret)
1426 		i2c_dev->bus_clk_rate = I2C_MAX_STANDARD_MODE_FREQ; /* default clock rate */
1427 
1428 	multi_mode = of_property_read_bool(np, "multi-master");
1429 	i2c_dev->is_multimaster_mode = multi_mode;
1430 }
1431 
1432 static const struct i2c_algorithm tegra_i2c_algo = {
1433 	.master_xfer		= tegra_i2c_xfer,
1434 	.master_xfer_atomic	= tegra_i2c_xfer_atomic,
1435 	.functionality		= tegra_i2c_func,
1436 };
1437 
1438 /* payload size is only 12 bit */
1439 static const struct i2c_adapter_quirks tegra_i2c_quirks = {
1440 	.flags = I2C_AQ_NO_ZERO_LEN,
1441 	.max_read_len = SZ_4K,
1442 	.max_write_len = SZ_4K - I2C_PACKET_HEADER_SIZE,
1443 };
1444 
1445 static const struct i2c_adapter_quirks tegra194_i2c_quirks = {
1446 	.flags = I2C_AQ_NO_ZERO_LEN,
1447 	.max_write_len = SZ_64K - I2C_PACKET_HEADER_SIZE,
1448 };
1449 
1450 static struct i2c_bus_recovery_info tegra_i2c_recovery_info = {
1451 	.recover_bus = tegra_i2c_issue_bus_clear,
1452 };
1453 
1454 static const struct tegra_i2c_hw_feature tegra20_i2c_hw = {
1455 	.has_continue_xfer_support = false,
1456 	.has_per_pkt_xfer_complete_irq = false,
1457 	.has_single_clk_source = false,
1458 	.clk_divisor_hs_mode = 3,
1459 	.clk_divisor_std_mode = 0,
1460 	.clk_divisor_fast_mode = 0,
1461 	.clk_divisor_fast_plus_mode = 0,
1462 	.has_config_load_reg = false,
1463 	.has_multi_master_mode = false,
1464 	.has_slcg_override_reg = false,
1465 	.has_mst_fifo = false,
1466 	.quirks = &tegra_i2c_quirks,
1467 	.supports_bus_clear = false,
1468 	.has_apb_dma = true,
1469 	.tlow_std_mode = 0x4,
1470 	.thigh_std_mode = 0x2,
1471 	.tlow_fast_fastplus_mode = 0x4,
1472 	.thigh_fast_fastplus_mode = 0x2,
1473 	.setup_hold_time_std_mode = 0x0,
1474 	.setup_hold_time_fast_fast_plus_mode = 0x0,
1475 	.setup_hold_time_hs_mode = 0x0,
1476 	.has_interface_timing_reg = false,
1477 };
1478 
1479 static const struct tegra_i2c_hw_feature tegra30_i2c_hw = {
1480 	.has_continue_xfer_support = true,
1481 	.has_per_pkt_xfer_complete_irq = false,
1482 	.has_single_clk_source = false,
1483 	.clk_divisor_hs_mode = 3,
1484 	.clk_divisor_std_mode = 0,
1485 	.clk_divisor_fast_mode = 0,
1486 	.clk_divisor_fast_plus_mode = 0,
1487 	.has_config_load_reg = false,
1488 	.has_multi_master_mode = false,
1489 	.has_slcg_override_reg = false,
1490 	.has_mst_fifo = false,
1491 	.quirks = &tegra_i2c_quirks,
1492 	.supports_bus_clear = false,
1493 	.has_apb_dma = true,
1494 	.tlow_std_mode = 0x4,
1495 	.thigh_std_mode = 0x2,
1496 	.tlow_fast_fastplus_mode = 0x4,
1497 	.thigh_fast_fastplus_mode = 0x2,
1498 	.setup_hold_time_std_mode = 0x0,
1499 	.setup_hold_time_fast_fast_plus_mode = 0x0,
1500 	.setup_hold_time_hs_mode = 0x0,
1501 	.has_interface_timing_reg = false,
1502 };
1503 
1504 static const struct tegra_i2c_hw_feature tegra114_i2c_hw = {
1505 	.has_continue_xfer_support = true,
1506 	.has_per_pkt_xfer_complete_irq = true,
1507 	.has_single_clk_source = true,
1508 	.clk_divisor_hs_mode = 1,
1509 	.clk_divisor_std_mode = 0x19,
1510 	.clk_divisor_fast_mode = 0x19,
1511 	.clk_divisor_fast_plus_mode = 0x10,
1512 	.has_config_load_reg = false,
1513 	.has_multi_master_mode = false,
1514 	.has_slcg_override_reg = false,
1515 	.has_mst_fifo = false,
1516 	.quirks = &tegra_i2c_quirks,
1517 	.supports_bus_clear = true,
1518 	.has_apb_dma = true,
1519 	.tlow_std_mode = 0x4,
1520 	.thigh_std_mode = 0x2,
1521 	.tlow_fast_fastplus_mode = 0x4,
1522 	.thigh_fast_fastplus_mode = 0x2,
1523 	.setup_hold_time_std_mode = 0x0,
1524 	.setup_hold_time_fast_fast_plus_mode = 0x0,
1525 	.setup_hold_time_hs_mode = 0x0,
1526 	.has_interface_timing_reg = false,
1527 };
1528 
1529 static const struct tegra_i2c_hw_feature tegra124_i2c_hw = {
1530 	.has_continue_xfer_support = true,
1531 	.has_per_pkt_xfer_complete_irq = true,
1532 	.has_single_clk_source = true,
1533 	.clk_divisor_hs_mode = 1,
1534 	.clk_divisor_std_mode = 0x19,
1535 	.clk_divisor_fast_mode = 0x19,
1536 	.clk_divisor_fast_plus_mode = 0x10,
1537 	.has_config_load_reg = true,
1538 	.has_multi_master_mode = false,
1539 	.has_slcg_override_reg = true,
1540 	.has_mst_fifo = false,
1541 	.quirks = &tegra_i2c_quirks,
1542 	.supports_bus_clear = true,
1543 	.has_apb_dma = true,
1544 	.tlow_std_mode = 0x4,
1545 	.thigh_std_mode = 0x2,
1546 	.tlow_fast_fastplus_mode = 0x4,
1547 	.thigh_fast_fastplus_mode = 0x2,
1548 	.setup_hold_time_std_mode = 0x0,
1549 	.setup_hold_time_fast_fast_plus_mode = 0x0,
1550 	.setup_hold_time_hs_mode = 0x0,
1551 	.has_interface_timing_reg = true,
1552 };
1553 
1554 static const struct tegra_i2c_hw_feature tegra210_i2c_hw = {
1555 	.has_continue_xfer_support = true,
1556 	.has_per_pkt_xfer_complete_irq = true,
1557 	.has_single_clk_source = true,
1558 	.clk_divisor_hs_mode = 1,
1559 	.clk_divisor_std_mode = 0x19,
1560 	.clk_divisor_fast_mode = 0x19,
1561 	.clk_divisor_fast_plus_mode = 0x10,
1562 	.has_config_load_reg = true,
1563 	.has_multi_master_mode = false,
1564 	.has_slcg_override_reg = true,
1565 	.has_mst_fifo = false,
1566 	.quirks = &tegra_i2c_quirks,
1567 	.supports_bus_clear = true,
1568 	.has_apb_dma = true,
1569 	.tlow_std_mode = 0x4,
1570 	.thigh_std_mode = 0x2,
1571 	.tlow_fast_fastplus_mode = 0x4,
1572 	.thigh_fast_fastplus_mode = 0x2,
1573 	.setup_hold_time_std_mode = 0,
1574 	.setup_hold_time_fast_fast_plus_mode = 0,
1575 	.setup_hold_time_hs_mode = 0,
1576 	.has_interface_timing_reg = true,
1577 };
1578 
1579 static const struct tegra_i2c_hw_feature tegra186_i2c_hw = {
1580 	.has_continue_xfer_support = true,
1581 	.has_per_pkt_xfer_complete_irq = true,
1582 	.has_single_clk_source = true,
1583 	.clk_divisor_hs_mode = 1,
1584 	.clk_divisor_std_mode = 0x16,
1585 	.clk_divisor_fast_mode = 0x19,
1586 	.clk_divisor_fast_plus_mode = 0x10,
1587 	.has_config_load_reg = true,
1588 	.has_multi_master_mode = false,
1589 	.has_slcg_override_reg = true,
1590 	.has_mst_fifo = false,
1591 	.quirks = &tegra_i2c_quirks,
1592 	.supports_bus_clear = true,
1593 	.has_apb_dma = false,
1594 	.tlow_std_mode = 0x4,
1595 	.thigh_std_mode = 0x3,
1596 	.tlow_fast_fastplus_mode = 0x4,
1597 	.thigh_fast_fastplus_mode = 0x2,
1598 	.setup_hold_time_std_mode = 0,
1599 	.setup_hold_time_fast_fast_plus_mode = 0,
1600 	.setup_hold_time_hs_mode = 0,
1601 	.has_interface_timing_reg = true,
1602 };
1603 
1604 static const struct tegra_i2c_hw_feature tegra194_i2c_hw = {
1605 	.has_continue_xfer_support = true,
1606 	.has_per_pkt_xfer_complete_irq = true,
1607 	.has_single_clk_source = true,
1608 	.clk_divisor_hs_mode = 1,
1609 	.clk_divisor_std_mode = 0x4f,
1610 	.clk_divisor_fast_mode = 0x3c,
1611 	.clk_divisor_fast_plus_mode = 0x16,
1612 	.has_config_load_reg = true,
1613 	.has_multi_master_mode = true,
1614 	.has_slcg_override_reg = true,
1615 	.has_mst_fifo = true,
1616 	.quirks = &tegra194_i2c_quirks,
1617 	.supports_bus_clear = true,
1618 	.has_apb_dma = false,
1619 	.tlow_std_mode = 0x8,
1620 	.thigh_std_mode = 0x7,
1621 	.tlow_fast_fastplus_mode = 0x2,
1622 	.thigh_fast_fastplus_mode = 0x2,
1623 	.setup_hold_time_std_mode = 0x08080808,
1624 	.setup_hold_time_fast_fast_plus_mode = 0x02020202,
1625 	.setup_hold_time_hs_mode = 0x090909,
1626 	.has_interface_timing_reg = true,
1627 };
1628 
1629 /* Match table for of_platform binding */
1630 static const struct of_device_id tegra_i2c_of_match[] = {
1631 	{ .compatible = "nvidia,tegra194-i2c", .data = &tegra194_i2c_hw, },
1632 	{ .compatible = "nvidia,tegra186-i2c", .data = &tegra186_i2c_hw, },
1633 	{ .compatible = "nvidia,tegra210-i2c-vi", .data = &tegra210_i2c_hw, },
1634 	{ .compatible = "nvidia,tegra210-i2c", .data = &tegra210_i2c_hw, },
1635 	{ .compatible = "nvidia,tegra124-i2c", .data = &tegra124_i2c_hw, },
1636 	{ .compatible = "nvidia,tegra114-i2c", .data = &tegra114_i2c_hw, },
1637 	{ .compatible = "nvidia,tegra30-i2c", .data = &tegra30_i2c_hw, },
1638 	{ .compatible = "nvidia,tegra20-i2c", .data = &tegra20_i2c_hw, },
1639 	{ .compatible = "nvidia,tegra20-i2c-dvc", .data = &tegra20_i2c_hw, },
1640 	{},
1641 };
1642 MODULE_DEVICE_TABLE(of, tegra_i2c_of_match);
1643 
1644 static int tegra_i2c_probe(struct platform_device *pdev)
1645 {
1646 	struct device *dev = &pdev->dev;
1647 	struct tegra_i2c_dev *i2c_dev;
1648 	struct resource *res;
1649 	struct clk *div_clk;
1650 	struct clk *fast_clk;
1651 	void __iomem *base;
1652 	phys_addr_t base_phys;
1653 	int irq;
1654 	int ret;
1655 
1656 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1657 	base_phys = res->start;
1658 	base = devm_ioremap_resource(&pdev->dev, res);
1659 	if (IS_ERR(base))
1660 		return PTR_ERR(base);
1661 
1662 	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1663 	if (!res) {
1664 		dev_err(&pdev->dev, "no irq resource\n");
1665 		return -EINVAL;
1666 	}
1667 	irq = res->start;
1668 
1669 	div_clk = devm_clk_get(&pdev->dev, "div-clk");
1670 	if (IS_ERR(div_clk)) {
1671 		if (PTR_ERR(div_clk) != -EPROBE_DEFER)
1672 			dev_err(&pdev->dev, "missing controller clock\n");
1673 
1674 		return PTR_ERR(div_clk);
1675 	}
1676 
1677 	i2c_dev = devm_kzalloc(&pdev->dev, sizeof(*i2c_dev), GFP_KERNEL);
1678 	if (!i2c_dev)
1679 		return -ENOMEM;
1680 
1681 	i2c_dev->base = base;
1682 	i2c_dev->base_phys = base_phys;
1683 	i2c_dev->div_clk = div_clk;
1684 	i2c_dev->adapter.algo = &tegra_i2c_algo;
1685 	i2c_dev->adapter.retries = 1;
1686 	i2c_dev->adapter.timeout = 6 * HZ;
1687 	i2c_dev->irq = irq;
1688 	i2c_dev->cont_id = pdev->id;
1689 	i2c_dev->dev = &pdev->dev;
1690 
1691 	i2c_dev->rst = devm_reset_control_get_exclusive(&pdev->dev, "i2c");
1692 	if (IS_ERR(i2c_dev->rst)) {
1693 		dev_err(&pdev->dev, "missing controller reset\n");
1694 		return PTR_ERR(i2c_dev->rst);
1695 	}
1696 
1697 	tegra_i2c_parse_dt(i2c_dev);
1698 
1699 	i2c_dev->hw = of_device_get_match_data(&pdev->dev);
1700 	i2c_dev->is_dvc = of_device_is_compatible(pdev->dev.of_node,
1701 						  "nvidia,tegra20-i2c-dvc");
1702 	i2c_dev->is_vi = of_device_is_compatible(dev->of_node,
1703 						 "nvidia,tegra210-i2c-vi");
1704 	i2c_dev->adapter.quirks = i2c_dev->hw->quirks;
1705 	i2c_dev->dma_buf_size = i2c_dev->adapter.quirks->max_write_len +
1706 				I2C_PACKET_HEADER_SIZE;
1707 	init_completion(&i2c_dev->msg_complete);
1708 	init_completion(&i2c_dev->dma_complete);
1709 
1710 	if (!i2c_dev->hw->has_single_clk_source) {
1711 		fast_clk = devm_clk_get(&pdev->dev, "fast-clk");
1712 		if (IS_ERR(fast_clk)) {
1713 			dev_err(&pdev->dev, "missing fast clock\n");
1714 			return PTR_ERR(fast_clk);
1715 		}
1716 		i2c_dev->fast_clk = fast_clk;
1717 	}
1718 
1719 	if (i2c_dev->is_vi) {
1720 		i2c_dev->slow_clk = devm_clk_get(dev, "slow");
1721 		if (IS_ERR(i2c_dev->slow_clk)) {
1722 			if (PTR_ERR(i2c_dev->slow_clk) != -EPROBE_DEFER)
1723 				dev_err(dev, "failed to get slow clock: %ld\n",
1724 					PTR_ERR(i2c_dev->slow_clk));
1725 
1726 			return PTR_ERR(i2c_dev->slow_clk);
1727 		}
1728 	}
1729 
1730 	platform_set_drvdata(pdev, i2c_dev);
1731 
1732 	ret = clk_prepare(i2c_dev->fast_clk);
1733 	if (ret < 0) {
1734 		dev_err(i2c_dev->dev, "Clock prepare failed %d\n", ret);
1735 		return ret;
1736 	}
1737 
1738 	ret = clk_prepare(i2c_dev->slow_clk);
1739 	if (ret < 0) {
1740 		dev_err(dev, "failed to prepare slow clock: %d\n", ret);
1741 		goto unprepare_fast_clk;
1742 	}
1743 
1744 	if (i2c_dev->bus_clk_rate > I2C_MAX_FAST_MODE_FREQ &&
1745 	    i2c_dev->bus_clk_rate <= I2C_MAX_FAST_MODE_PLUS_FREQ)
1746 		i2c_dev->clk_divisor_non_hs_mode =
1747 				i2c_dev->hw->clk_divisor_fast_plus_mode;
1748 	else if (i2c_dev->bus_clk_rate > I2C_MAX_STANDARD_MODE_FREQ &&
1749 		 i2c_dev->bus_clk_rate <= I2C_MAX_FAST_MODE_FREQ)
1750 		i2c_dev->clk_divisor_non_hs_mode =
1751 				i2c_dev->hw->clk_divisor_fast_mode;
1752 	else
1753 		i2c_dev->clk_divisor_non_hs_mode =
1754 				i2c_dev->hw->clk_divisor_std_mode;
1755 
1756 	ret = clk_prepare(i2c_dev->div_clk);
1757 	if (ret < 0) {
1758 		dev_err(i2c_dev->dev, "Clock prepare failed %d\n", ret);
1759 		goto unprepare_slow_clk;
1760 	}
1761 
1762 	/*
1763 	 * VI I2C is in VE power domain which is not always on and not
1764 	 * an IRQ safe. So, IRQ safe device can't be attached to a non-IRQ
1765 	 * safe domain as it prevents powering off the PM domain.
1766 	 * Also, VI I2C device don't need to use runtime IRQ safe as it will
1767 	 * not be used for atomic transfers.
1768 	 */
1769 	if (!i2c_dev->is_vi)
1770 		pm_runtime_irq_safe(&pdev->dev);
1771 	pm_runtime_enable(&pdev->dev);
1772 	if (!pm_runtime_enabled(&pdev->dev)) {
1773 		ret = tegra_i2c_runtime_resume(&pdev->dev);
1774 		if (ret < 0) {
1775 			dev_err(&pdev->dev, "runtime resume failed\n");
1776 			goto unprepare_div_clk;
1777 		}
1778 	} else {
1779 		ret = pm_runtime_get_sync(i2c_dev->dev);
1780 		if (ret < 0) {
1781 			dev_err(&pdev->dev, "runtime resume failed\n");
1782 			goto disable_rpm;
1783 		}
1784 	}
1785 
1786 	if (i2c_dev->is_multimaster_mode) {
1787 		ret = clk_enable(i2c_dev->div_clk);
1788 		if (ret < 0) {
1789 			dev_err(i2c_dev->dev, "div_clk enable failed %d\n",
1790 				ret);
1791 			goto put_rpm;
1792 		}
1793 	}
1794 
1795 	if (i2c_dev->hw->supports_bus_clear)
1796 		i2c_dev->adapter.bus_recovery_info = &tegra_i2c_recovery_info;
1797 
1798 	ret = tegra_i2c_init_dma(i2c_dev);
1799 	if (ret < 0)
1800 		goto disable_div_clk;
1801 
1802 	ret = tegra_i2c_init(i2c_dev, false);
1803 	if (ret) {
1804 		dev_err(&pdev->dev, "Failed to initialize i2c controller\n");
1805 		goto release_dma;
1806 	}
1807 
1808 	irq_set_status_flags(i2c_dev->irq, IRQ_NOAUTOEN);
1809 
1810 	ret = devm_request_irq(&pdev->dev, i2c_dev->irq, tegra_i2c_isr,
1811 			       IRQF_NO_SUSPEND, dev_name(&pdev->dev), i2c_dev);
1812 	if (ret) {
1813 		dev_err(&pdev->dev, "Failed to request irq %i\n", i2c_dev->irq);
1814 		goto release_dma;
1815 	}
1816 
1817 	i2c_set_adapdata(&i2c_dev->adapter, i2c_dev);
1818 	i2c_dev->adapter.owner = THIS_MODULE;
1819 	i2c_dev->adapter.class = I2C_CLASS_DEPRECATED;
1820 	strlcpy(i2c_dev->adapter.name, dev_name(&pdev->dev),
1821 		sizeof(i2c_dev->adapter.name));
1822 	i2c_dev->adapter.dev.parent = &pdev->dev;
1823 	i2c_dev->adapter.nr = pdev->id;
1824 	i2c_dev->adapter.dev.of_node = pdev->dev.of_node;
1825 
1826 	ret = i2c_add_numbered_adapter(&i2c_dev->adapter);
1827 	if (ret)
1828 		goto release_dma;
1829 
1830 	pm_runtime_put(&pdev->dev);
1831 
1832 	return 0;
1833 
1834 release_dma:
1835 	tegra_i2c_release_dma(i2c_dev);
1836 
1837 disable_div_clk:
1838 	if (i2c_dev->is_multimaster_mode)
1839 		clk_disable(i2c_dev->div_clk);
1840 
1841 put_rpm:
1842 	if (pm_runtime_enabled(&pdev->dev))
1843 		pm_runtime_put_sync(&pdev->dev);
1844 	else
1845 		tegra_i2c_runtime_suspend(&pdev->dev);
1846 
1847 disable_rpm:
1848 	if (pm_runtime_enabled(&pdev->dev))
1849 		pm_runtime_disable(&pdev->dev);
1850 
1851 unprepare_div_clk:
1852 	clk_unprepare(i2c_dev->div_clk);
1853 
1854 unprepare_slow_clk:
1855 	clk_unprepare(i2c_dev->slow_clk);
1856 
1857 unprepare_fast_clk:
1858 	clk_unprepare(i2c_dev->fast_clk);
1859 
1860 	return ret;
1861 }
1862 
1863 static int tegra_i2c_remove(struct platform_device *pdev)
1864 {
1865 	struct tegra_i2c_dev *i2c_dev = platform_get_drvdata(pdev);
1866 
1867 	i2c_del_adapter(&i2c_dev->adapter);
1868 
1869 	if (i2c_dev->is_multimaster_mode)
1870 		clk_disable(i2c_dev->div_clk);
1871 
1872 	pm_runtime_disable(&pdev->dev);
1873 	if (!pm_runtime_status_suspended(&pdev->dev))
1874 		tegra_i2c_runtime_suspend(&pdev->dev);
1875 
1876 	clk_unprepare(i2c_dev->div_clk);
1877 	clk_unprepare(i2c_dev->slow_clk);
1878 	clk_unprepare(i2c_dev->fast_clk);
1879 
1880 	tegra_i2c_release_dma(i2c_dev);
1881 	return 0;
1882 }
1883 
1884 static int __maybe_unused tegra_i2c_suspend(struct device *dev)
1885 {
1886 	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1887 	int err = 0;
1888 
1889 	i2c_mark_adapter_suspended(&i2c_dev->adapter);
1890 
1891 	if (!pm_runtime_status_suspended(dev))
1892 		err = tegra_i2c_runtime_suspend(dev);
1893 
1894 	return err;
1895 }
1896 
1897 static int __maybe_unused tegra_i2c_resume(struct device *dev)
1898 {
1899 	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1900 	int err;
1901 
1902 	/*
1903 	 * We need to ensure that clocks are enabled so that registers can be
1904 	 * restored in tegra_i2c_init().
1905 	 */
1906 	err = tegra_i2c_runtime_resume(dev);
1907 	if (err)
1908 		return err;
1909 
1910 	err = tegra_i2c_init(i2c_dev, false);
1911 	if (err)
1912 		return err;
1913 
1914 	/*
1915 	 * In case we are runtime suspended, disable clocks again so that we
1916 	 * don't unbalance the clock reference counts during the next runtime
1917 	 * resume transition.
1918 	 */
1919 	if (pm_runtime_status_suspended(dev)) {
1920 		err = tegra_i2c_runtime_suspend(dev);
1921 		if (err)
1922 			return err;
1923 	}
1924 
1925 	i2c_mark_adapter_resumed(&i2c_dev->adapter);
1926 
1927 	return 0;
1928 }
1929 
1930 static const struct dev_pm_ops tegra_i2c_pm = {
1931 	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(tegra_i2c_suspend, tegra_i2c_resume)
1932 	SET_RUNTIME_PM_OPS(tegra_i2c_runtime_suspend, tegra_i2c_runtime_resume,
1933 			   NULL)
1934 };
1935 
1936 static struct platform_driver tegra_i2c_driver = {
1937 	.probe   = tegra_i2c_probe,
1938 	.remove  = tegra_i2c_remove,
1939 	.driver  = {
1940 		.name  = "tegra-i2c",
1941 		.of_match_table = tegra_i2c_of_match,
1942 		.pm    = &tegra_i2c_pm,
1943 	},
1944 };
1945 
1946 module_platform_driver(tegra_i2c_driver);
1947 
1948 MODULE_DESCRIPTION("nVidia Tegra2 I2C Bus Controller driver");
1949 MODULE_AUTHOR("Colin Cross");
1950 MODULE_LICENSE("GPL v2");
1951