xref: /linux/drivers/i2c/busses/i2c-tegra.c (revision 0d5ec7919f3747193f051036b2301734a4b5e1d6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/i2c/busses/i2c-tegra.c
4  *
5  * Copyright (C) 2010 Google, Inc.
6  * Author: Colin Cross <ccross@android.com>
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/bitfield.h>
11 #include <linux/clk.h>
12 #include <linux/delay.h>
13 #include <linux/dmaengine.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/i2c.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/iopoll.h>
21 #include <linux/irq.h>
22 #include <linux/kernel.h>
23 #include <linux/ktime.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/pinctrl/consumer.h>
27 #include <linux/platform_device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/reset.h>
30 
31 #define BYTES_PER_FIFO_WORD 4
32 
33 #define I2C_CNFG				0x000
34 #define I2C_CNFG_DEBOUNCE_CNT			GENMASK(14, 12)
35 #define I2C_CNFG_PACKET_MODE_EN			BIT(10)
36 #define I2C_CNFG_NEW_MASTER_FSM			BIT(11)
37 #define I2C_CNFG_MULTI_MASTER_MODE		BIT(17)
38 #define I2C_STATUS				0x01c
39 #define I2C_SL_CNFG				0x020
40 #define I2C_SL_CNFG_NACK			BIT(1)
41 #define I2C_SL_CNFG_NEWSL			BIT(2)
42 #define I2C_SL_ADDR1				0x02c
43 #define I2C_SL_ADDR2				0x030
44 #define I2C_TLOW_SEXT				0x034
45 #define I2C_TX_FIFO				0x050
46 #define I2C_RX_FIFO				0x054
47 #define I2C_PACKET_TRANSFER_STATUS		0x058
48 #define I2C_FIFO_CONTROL			0x05c
49 #define I2C_FIFO_CONTROL_TX_FLUSH		BIT(1)
50 #define I2C_FIFO_CONTROL_RX_FLUSH		BIT(0)
51 #define I2C_FIFO_CONTROL_TX_TRIG(x)		(((x) - 1) << 5)
52 #define I2C_FIFO_CONTROL_RX_TRIG(x)		(((x) - 1) << 2)
53 #define I2C_FIFO_STATUS				0x060
54 #define I2C_FIFO_STATUS_TX			GENMASK(7, 4)
55 #define I2C_FIFO_STATUS_RX			GENMASK(3, 0)
56 #define I2C_INT_MASK				0x064
57 #define I2C_INT_STATUS				0x068
58 #define I2C_INT_BUS_CLR_DONE			BIT(11)
59 #define I2C_INT_PACKET_XFER_COMPLETE		BIT(7)
60 #define I2C_INT_NO_ACK				BIT(3)
61 #define I2C_INT_ARBITRATION_LOST		BIT(2)
62 #define I2C_INT_TX_FIFO_DATA_REQ		BIT(1)
63 #define I2C_INT_RX_FIFO_DATA_REQ		BIT(0)
64 #define I2C_CLK_DIVISOR				0x06c
65 #define I2C_CLK_DIVISOR_STD_FAST_MODE		GENMASK(31, 16)
66 #define I2C_CLK_DIVISOR_HSMODE			GENMASK(15, 0)
67 
68 #define DVC_CTRL_REG1				0x000
69 #define DVC_CTRL_REG1_INTR_EN			BIT(10)
70 #define DVC_CTRL_REG3				0x008
71 #define DVC_CTRL_REG3_SW_PROG			BIT(26)
72 #define DVC_CTRL_REG3_I2C_DONE_INTR_EN		BIT(30)
73 #define DVC_STATUS				0x00c
74 #define DVC_STATUS_I2C_DONE_INTR		BIT(30)
75 
76 #define I2C_ERR_NONE				0x00
77 #define I2C_ERR_NO_ACK				BIT(0)
78 #define I2C_ERR_ARBITRATION_LOST		BIT(1)
79 #define I2C_ERR_UNKNOWN_INTERRUPT		BIT(2)
80 #define I2C_ERR_RX_BUFFER_OVERFLOW		BIT(3)
81 
82 #define PACKET_HEADER0_HEADER_SIZE		GENMASK(29, 28)
83 #define PACKET_HEADER0_PACKET_ID		GENMASK(23, 16)
84 #define PACKET_HEADER0_CONT_ID			GENMASK(15, 12)
85 #define PACKET_HEADER0_PROTOCOL			GENMASK(7, 4)
86 #define PACKET_HEADER0_PROTOCOL_I2C		1
87 
88 #define I2C_HEADER_CONT_ON_NAK			BIT(21)
89 #define I2C_HEADER_READ				BIT(19)
90 #define I2C_HEADER_10BIT_ADDR			BIT(18)
91 #define I2C_HEADER_IE_ENABLE			BIT(17)
92 #define I2C_HEADER_REPEAT_START			BIT(16)
93 #define I2C_HEADER_CONTINUE_XFER		BIT(15)
94 #define I2C_HEADER_SLAVE_ADDR_SHIFT		1
95 
96 #define I2C_BUS_CLEAR_CNFG			0x084
97 #define I2C_BC_SCLK_THRESHOLD			GENMASK(23, 16)
98 #define I2C_BC_STOP_COND			BIT(2)
99 #define I2C_BC_TERMINATE			BIT(1)
100 #define I2C_BC_ENABLE				BIT(0)
101 #define I2C_BUS_CLEAR_STATUS			0x088
102 #define I2C_BC_STATUS				BIT(0)
103 
104 #define I2C_CONFIG_LOAD				0x08c
105 #define I2C_MSTR_CONFIG_LOAD			BIT(0)
106 
107 #define I2C_CLKEN_OVERRIDE			0x090
108 #define I2C_MST_CORE_CLKEN_OVR			BIT(0)
109 
110 #define I2C_INTERFACE_TIMING_0			0x094
111 #define  I2C_INTERFACE_TIMING_THIGH		GENMASK(13, 8)
112 #define  I2C_INTERFACE_TIMING_TLOW		GENMASK(5, 0)
113 #define I2C_INTERFACE_TIMING_1			0x098
114 #define  I2C_INTERFACE_TIMING_TBUF		GENMASK(29, 24)
115 #define  I2C_INTERFACE_TIMING_TSU_STO		GENMASK(21, 16)
116 #define  I2C_INTERFACE_TIMING_THD_STA		GENMASK(13, 8)
117 #define  I2C_INTERFACE_TIMING_TSU_STA		GENMASK(5, 0)
118 
119 #define I2C_HS_INTERFACE_TIMING_0		0x09c
120 #define  I2C_HS_INTERFACE_TIMING_THIGH		GENMASK(13, 8)
121 #define  I2C_HS_INTERFACE_TIMING_TLOW		GENMASK(5, 0)
122 #define I2C_HS_INTERFACE_TIMING_1		0x0a0
123 #define  I2C_HS_INTERFACE_TIMING_TSU_STO	GENMASK(21, 16)
124 #define  I2C_HS_INTERFACE_TIMING_THD_STA	GENMASK(13, 8)
125 #define  I2C_HS_INTERFACE_TIMING_TSU_STA	GENMASK(5, 0)
126 
127 #define I2C_MST_FIFO_CONTROL			0x0b4
128 #define I2C_MST_FIFO_CONTROL_RX_FLUSH		BIT(0)
129 #define I2C_MST_FIFO_CONTROL_TX_FLUSH		BIT(1)
130 #define I2C_MST_FIFO_CONTROL_RX_TRIG(x)		(((x) - 1) <<  4)
131 #define I2C_MST_FIFO_CONTROL_TX_TRIG(x)		(((x) - 1) << 16)
132 
133 #define I2C_MST_FIFO_STATUS			0x0b8
134 #define I2C_MST_FIFO_STATUS_TX			GENMASK(23, 16)
135 #define I2C_MST_FIFO_STATUS_RX			GENMASK(7, 0)
136 
137 /* configuration load timeout in microseconds */
138 #define I2C_CONFIG_LOAD_TIMEOUT			1000000
139 
140 /* packet header size in bytes */
141 #define I2C_PACKET_HEADER_SIZE			12
142 
143 /*
144  * I2C Controller will use PIO mode for transfers up to 32 bytes in order to
145  * avoid DMA overhead, otherwise external APB DMA controller will be used.
146  * Note that the actual MAX PIO length is 20 bytes because 32 bytes include
147  * I2C_PACKET_HEADER_SIZE.
148  */
149 #define I2C_PIO_MODE_PREFERRED_LEN		32
150 
151 /*
152  * msg_end_type: The bus control which needs to be sent at end of transfer.
153  * @MSG_END_STOP: Send stop pulse.
154  * @MSG_END_REPEAT_START: Send repeat-start.
155  * @MSG_END_CONTINUE: Don't send stop or repeat-start.
156  */
157 enum msg_end_type {
158 	MSG_END_STOP,
159 	MSG_END_REPEAT_START,
160 	MSG_END_CONTINUE,
161 };
162 
163 /**
164  * struct tegra_i2c_hw_feature : per hardware generation features
165  * @has_continue_xfer_support: continue-transfer supported
166  * @has_per_pkt_xfer_complete_irq: Has enable/disable capability for transfer
167  *		completion interrupt on per packet basis.
168  * @has_config_load_reg: Has the config load register to load the new
169  *		configuration.
170  * @clk_divisor_hs_mode: Clock divisor in HS mode.
171  * @clk_divisor_std_mode: Clock divisor in standard mode. It is
172  *		applicable if there is no fast clock source i.e. single clock
173  *		source.
174  * @clk_divisor_fast_mode: Clock divisor in fast mode. It is
175  *		applicable if there is no fast clock source i.e. single clock
176  *		source.
177  * @clk_divisor_fast_plus_mode: Clock divisor in fast mode plus. It is
178  *		applicable if there is no fast clock source (i.e. single
179  *		clock source).
180  * @has_multi_master_mode: The I2C controller supports running in single-master
181  *		or multi-master mode.
182  * @has_slcg_override_reg: The I2C controller supports a register that
183  *		overrides the second level clock gating.
184  * @has_mst_fifo: The I2C controller contains the new MST FIFO interface that
185  *		provides additional features and allows for longer messages to
186  *		be transferred in one go.
187  * @quirks: I2C adapter quirks for limiting write/read transfer size and not
188  *		allowing 0 length transfers.
189  * @supports_bus_clear: Bus Clear support to recover from bus hang during
190  *		SDA stuck low from device for some unknown reasons.
191  * @has_apb_dma: Support of APBDMA on corresponding Tegra chip.
192  * @tlow_std_mode: Low period of the clock in standard mode.
193  * @thigh_std_mode: High period of the clock in standard mode.
194  * @tlow_fast_fastplus_mode: Low period of the clock in fast/fast-plus modes.
195  * @thigh_fast_fastplus_mode: High period of the clock in fast/fast-plus modes.
196  * @setup_hold_time_std_mode: Setup and hold time for start and stop conditions
197  *		in standard mode.
198  * @setup_hold_time_fast_fast_plus_mode: Setup and hold time for start and stop
199  *		conditions in fast/fast-plus modes.
200  * @setup_hold_time_hs_mode: Setup and hold time for start and stop conditions
201  *		in HS mode.
202  * @has_interface_timing_reg: Has interface timing register to program the tuned
203  *		timing settings.
204  */
205 struct tegra_i2c_hw_feature {
206 	bool has_continue_xfer_support;
207 	bool has_per_pkt_xfer_complete_irq;
208 	bool has_config_load_reg;
209 	u32 clk_divisor_hs_mode;
210 	u32 clk_divisor_std_mode;
211 	u32 clk_divisor_fast_mode;
212 	u32 clk_divisor_fast_plus_mode;
213 	bool has_multi_master_mode;
214 	bool has_slcg_override_reg;
215 	bool has_mst_fifo;
216 	const struct i2c_adapter_quirks *quirks;
217 	bool supports_bus_clear;
218 	bool has_apb_dma;
219 	u32 tlow_std_mode;
220 	u32 thigh_std_mode;
221 	u32 tlow_fast_fastplus_mode;
222 	u32 thigh_fast_fastplus_mode;
223 	u32 setup_hold_time_std_mode;
224 	u32 setup_hold_time_fast_fast_plus_mode;
225 	u32 setup_hold_time_hs_mode;
226 	bool has_interface_timing_reg;
227 };
228 
229 /**
230  * struct tegra_i2c_dev - per device I2C context
231  * @dev: device reference for power management
232  * @hw: Tegra I2C HW feature
233  * @adapter: core I2C layer adapter information
234  * @div_clk: clock reference for div clock of I2C controller
235  * @clocks: array of I2C controller clocks
236  * @nclocks: number of clocks in the array
237  * @rst: reset control for the I2C controller
238  * @base: ioremapped registers cookie
239  * @base_phys: physical base address of the I2C controller
240  * @cont_id: I2C controller ID, used for packet header
241  * @irq: IRQ number of transfer complete interrupt
242  * @is_dvc: identifies the DVC I2C controller, has a different register layout
243  * @is_vi: identifies the VI I2C controller, has a different register layout
244  * @msg_complete: transfer completion notifier
245  * @msg_buf_remaining: size of unsent data in the message buffer
246  * @msg_len: length of message in current transfer
247  * @msg_err: error code for completed message
248  * @msg_buf: pointer to current message data
249  * @msg_read: indicates that the transfer is a read access
250  * @timings: i2c timings information like bus frequency
251  * @multimaster_mode: indicates that I2C controller is in multi-master mode
252  * @dma_chan: DMA channel
253  * @dma_phys: handle to DMA resources
254  * @dma_buf: pointer to allocated DMA buffer
255  * @dma_buf_size: DMA buffer size
256  * @dma_mode: indicates active DMA transfer
257  * @dma_complete: DMA completion notifier
258  * @atomic_mode: indicates active atomic transfer
259  */
260 struct tegra_i2c_dev {
261 	struct device *dev;
262 	struct i2c_adapter adapter;
263 
264 	const struct tegra_i2c_hw_feature *hw;
265 	struct reset_control *rst;
266 	unsigned int cont_id;
267 	unsigned int irq;
268 
269 	phys_addr_t base_phys;
270 	void __iomem *base;
271 
272 	struct clk_bulk_data clocks[2];
273 	unsigned int nclocks;
274 
275 	struct clk *div_clk;
276 	struct i2c_timings timings;
277 
278 	struct completion msg_complete;
279 	size_t msg_buf_remaining;
280 	unsigned int msg_len;
281 	int msg_err;
282 	u8 *msg_buf;
283 
284 	struct completion dma_complete;
285 	struct dma_chan *dma_chan;
286 	unsigned int dma_buf_size;
287 	struct device *dma_dev;
288 	dma_addr_t dma_phys;
289 	void *dma_buf;
290 
291 	bool multimaster_mode;
292 	bool atomic_mode;
293 	bool dma_mode;
294 	bool msg_read;
295 	bool is_dvc;
296 	bool is_vi;
297 };
298 
299 #define IS_DVC(dev) (IS_ENABLED(CONFIG_ARCH_TEGRA_2x_SOC) && (dev)->is_dvc)
300 #define IS_VI(dev)  (IS_ENABLED(CONFIG_ARCH_TEGRA_210_SOC) && (dev)->is_vi)
301 
302 static void dvc_writel(struct tegra_i2c_dev *i2c_dev, u32 val,
303 		       unsigned int reg)
304 {
305 	writel_relaxed(val, i2c_dev->base + reg);
306 }
307 
308 static u32 dvc_readl(struct tegra_i2c_dev *i2c_dev, unsigned int reg)
309 {
310 	return readl_relaxed(i2c_dev->base + reg);
311 }
312 
313 /*
314  * If necessary, i2c_writel() and i2c_readl() will offset the register
315  * in order to talk to the I2C block inside the DVC block.
316  */
317 static u32 tegra_i2c_reg_addr(struct tegra_i2c_dev *i2c_dev, unsigned int reg)
318 {
319 	if (IS_DVC(i2c_dev))
320 		reg += (reg >= I2C_TX_FIFO) ? 0x10 : 0x40;
321 	else if (IS_VI(i2c_dev))
322 		reg = 0xc00 + (reg << 2);
323 
324 	return reg;
325 }
326 
327 static void i2c_writel(struct tegra_i2c_dev *i2c_dev, u32 val, unsigned int reg)
328 {
329 	writel_relaxed(val, i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
330 
331 	/* read back register to make sure that register writes completed */
332 	if (reg != I2C_TX_FIFO)
333 		readl_relaxed(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
334 	else if (IS_VI(i2c_dev))
335 		readl_relaxed(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, I2C_INT_STATUS));
336 }
337 
338 static u32 i2c_readl(struct tegra_i2c_dev *i2c_dev, unsigned int reg)
339 {
340 	return readl_relaxed(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
341 }
342 
343 static void i2c_writesl(struct tegra_i2c_dev *i2c_dev, void *data,
344 			unsigned int reg, unsigned int len)
345 {
346 	writesl(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg), data, len);
347 }
348 
349 static void i2c_writesl_vi(struct tegra_i2c_dev *i2c_dev, void *data,
350 			   unsigned int reg, unsigned int len)
351 {
352 	u32 *data32 = data;
353 
354 	/*
355 	 * VI I2C controller has known hardware bug where writes get stuck
356 	 * when immediate multiple writes happen to TX_FIFO register.
357 	 * Recommended software work around is to read I2C register after
358 	 * each write to TX_FIFO register to flush out the data.
359 	 */
360 	while (len--)
361 		i2c_writel(i2c_dev, *data32++, reg);
362 }
363 
364 static void i2c_readsl(struct tegra_i2c_dev *i2c_dev, void *data,
365 		       unsigned int reg, unsigned int len)
366 {
367 	readsl(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg), data, len);
368 }
369 
370 static void tegra_i2c_mask_irq(struct tegra_i2c_dev *i2c_dev, u32 mask)
371 {
372 	u32 int_mask;
373 
374 	int_mask = i2c_readl(i2c_dev, I2C_INT_MASK) & ~mask;
375 	i2c_writel(i2c_dev, int_mask, I2C_INT_MASK);
376 }
377 
378 static void tegra_i2c_unmask_irq(struct tegra_i2c_dev *i2c_dev, u32 mask)
379 {
380 	u32 int_mask;
381 
382 	int_mask = i2c_readl(i2c_dev, I2C_INT_MASK) | mask;
383 	i2c_writel(i2c_dev, int_mask, I2C_INT_MASK);
384 }
385 
386 static void tegra_i2c_dma_complete(void *args)
387 {
388 	struct tegra_i2c_dev *i2c_dev = args;
389 
390 	complete(&i2c_dev->dma_complete);
391 }
392 
393 static int tegra_i2c_dma_submit(struct tegra_i2c_dev *i2c_dev, size_t len)
394 {
395 	struct dma_async_tx_descriptor *dma_desc;
396 	enum dma_transfer_direction dir;
397 
398 	dev_dbg(i2c_dev->dev, "starting DMA for length: %zu\n", len);
399 
400 	reinit_completion(&i2c_dev->dma_complete);
401 
402 	dir = i2c_dev->msg_read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
403 
404 	dma_desc = dmaengine_prep_slave_single(i2c_dev->dma_chan, i2c_dev->dma_phys,
405 					       len, dir, DMA_PREP_INTERRUPT |
406 					       DMA_CTRL_ACK);
407 	if (!dma_desc) {
408 		dev_err(i2c_dev->dev, "failed to get %s DMA descriptor\n",
409 			i2c_dev->msg_read ? "RX" : "TX");
410 		return -EINVAL;
411 	}
412 
413 	dma_desc->callback = tegra_i2c_dma_complete;
414 	dma_desc->callback_param = i2c_dev;
415 
416 	dmaengine_submit(dma_desc);
417 	dma_async_issue_pending(i2c_dev->dma_chan);
418 
419 	return 0;
420 }
421 
422 static void tegra_i2c_release_dma(struct tegra_i2c_dev *i2c_dev)
423 {
424 	if (i2c_dev->dma_buf) {
425 		dma_free_coherent(i2c_dev->dma_dev, i2c_dev->dma_buf_size,
426 				  i2c_dev->dma_buf, i2c_dev->dma_phys);
427 		i2c_dev->dma_buf = NULL;
428 	}
429 
430 	if (i2c_dev->dma_chan) {
431 		dma_release_channel(i2c_dev->dma_chan);
432 		i2c_dev->dma_chan = NULL;
433 	}
434 }
435 
436 static int tegra_i2c_init_dma(struct tegra_i2c_dev *i2c_dev)
437 {
438 	dma_addr_t dma_phys;
439 	u32 *dma_buf;
440 	int err;
441 
442 	if (IS_VI(i2c_dev))
443 		return 0;
444 
445 	if (i2c_dev->hw->has_apb_dma) {
446 		if (!IS_ENABLED(CONFIG_TEGRA20_APB_DMA)) {
447 			dev_dbg(i2c_dev->dev, "APB DMA support not enabled\n");
448 			return 0;
449 		}
450 	} else if (!IS_ENABLED(CONFIG_TEGRA186_GPC_DMA)) {
451 		dev_dbg(i2c_dev->dev, "GPC DMA support not enabled\n");
452 		return 0;
453 	}
454 
455 	/*
456 	 * The same channel will be used for both RX and TX.
457 	 * Keeping the name as "tx" for backward compatibility
458 	 * with existing devicetrees.
459 	 */
460 	i2c_dev->dma_chan = dma_request_chan(i2c_dev->dev, "tx");
461 	if (IS_ERR(i2c_dev->dma_chan)) {
462 		err = PTR_ERR(i2c_dev->dma_chan);
463 		i2c_dev->dma_chan = NULL;
464 		goto err_out;
465 	}
466 
467 	i2c_dev->dma_dev = i2c_dev->dma_chan->device->dev;
468 	i2c_dev->dma_buf_size = i2c_dev->hw->quirks->max_write_len +
469 				I2C_PACKET_HEADER_SIZE;
470 
471 	dma_buf = dma_alloc_coherent(i2c_dev->dma_dev, i2c_dev->dma_buf_size,
472 				     &dma_phys, GFP_KERNEL | __GFP_NOWARN);
473 	if (!dma_buf) {
474 		dev_err(i2c_dev->dev, "failed to allocate DMA buffer\n");
475 		err = -ENOMEM;
476 		goto err_out;
477 	}
478 
479 	i2c_dev->dma_buf = dma_buf;
480 	i2c_dev->dma_phys = dma_phys;
481 
482 	return 0;
483 
484 err_out:
485 	tegra_i2c_release_dma(i2c_dev);
486 	if (err != -EPROBE_DEFER) {
487 		dev_err(i2c_dev->dev, "cannot use DMA: %d\n", err);
488 		dev_err(i2c_dev->dev, "falling back to PIO\n");
489 		return 0;
490 	}
491 
492 	return err;
493 }
494 
495 /*
496  * One of the Tegra I2C blocks is inside the DVC (Digital Voltage Controller)
497  * block.  This block is identical to the rest of the I2C blocks, except that
498  * it only supports master mode, it has registers moved around, and it needs
499  * some extra init to get it into I2C mode.  The register moves are handled
500  * by i2c_readl() and i2c_writel().
501  */
502 static void tegra_dvc_init(struct tegra_i2c_dev *i2c_dev)
503 {
504 	u32 val;
505 
506 	val = dvc_readl(i2c_dev, DVC_CTRL_REG3);
507 	val |= DVC_CTRL_REG3_SW_PROG;
508 	val |= DVC_CTRL_REG3_I2C_DONE_INTR_EN;
509 	dvc_writel(i2c_dev, val, DVC_CTRL_REG3);
510 
511 	val = dvc_readl(i2c_dev, DVC_CTRL_REG1);
512 	val |= DVC_CTRL_REG1_INTR_EN;
513 	dvc_writel(i2c_dev, val, DVC_CTRL_REG1);
514 }
515 
516 static void tegra_i2c_vi_init(struct tegra_i2c_dev *i2c_dev)
517 {
518 	u32 value;
519 
520 	value = FIELD_PREP(I2C_INTERFACE_TIMING_THIGH, 2) |
521 		FIELD_PREP(I2C_INTERFACE_TIMING_TLOW, 4);
522 	i2c_writel(i2c_dev, value, I2C_INTERFACE_TIMING_0);
523 
524 	value = FIELD_PREP(I2C_INTERFACE_TIMING_TBUF, 4) |
525 		FIELD_PREP(I2C_INTERFACE_TIMING_TSU_STO, 7) |
526 		FIELD_PREP(I2C_INTERFACE_TIMING_THD_STA, 4) |
527 		FIELD_PREP(I2C_INTERFACE_TIMING_TSU_STA, 4);
528 	i2c_writel(i2c_dev, value, I2C_INTERFACE_TIMING_1);
529 
530 	value = FIELD_PREP(I2C_HS_INTERFACE_TIMING_THIGH, 3) |
531 		FIELD_PREP(I2C_HS_INTERFACE_TIMING_TLOW, 8);
532 	i2c_writel(i2c_dev, value, I2C_HS_INTERFACE_TIMING_0);
533 
534 	value = FIELD_PREP(I2C_HS_INTERFACE_TIMING_TSU_STO, 11) |
535 		FIELD_PREP(I2C_HS_INTERFACE_TIMING_THD_STA, 11) |
536 		FIELD_PREP(I2C_HS_INTERFACE_TIMING_TSU_STA, 11);
537 	i2c_writel(i2c_dev, value, I2C_HS_INTERFACE_TIMING_1);
538 
539 	value = FIELD_PREP(I2C_BC_SCLK_THRESHOLD, 9) | I2C_BC_STOP_COND;
540 	i2c_writel(i2c_dev, value, I2C_BUS_CLEAR_CNFG);
541 
542 	i2c_writel(i2c_dev, 0x0, I2C_TLOW_SEXT);
543 }
544 
545 static int tegra_i2c_poll_register(struct tegra_i2c_dev *i2c_dev,
546 				   u32 reg, u32 mask, u32 delay_us,
547 				   u32 timeout_us)
548 {
549 	void __iomem *addr = i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg);
550 	u32 val;
551 
552 	if (!i2c_dev->atomic_mode)
553 		return readl_relaxed_poll_timeout(addr, val, !(val & mask),
554 						  delay_us, timeout_us);
555 
556 	return readl_relaxed_poll_timeout_atomic(addr, val, !(val & mask),
557 						 delay_us, timeout_us);
558 }
559 
560 static int tegra_i2c_flush_fifos(struct tegra_i2c_dev *i2c_dev)
561 {
562 	u32 mask, val, offset;
563 	int err;
564 
565 	if (i2c_dev->hw->has_mst_fifo) {
566 		mask = I2C_MST_FIFO_CONTROL_TX_FLUSH |
567 		       I2C_MST_FIFO_CONTROL_RX_FLUSH;
568 		offset = I2C_MST_FIFO_CONTROL;
569 	} else {
570 		mask = I2C_FIFO_CONTROL_TX_FLUSH |
571 		       I2C_FIFO_CONTROL_RX_FLUSH;
572 		offset = I2C_FIFO_CONTROL;
573 	}
574 
575 	val = i2c_readl(i2c_dev, offset);
576 	val |= mask;
577 	i2c_writel(i2c_dev, val, offset);
578 
579 	err = tegra_i2c_poll_register(i2c_dev, offset, mask, 1000, 1000000);
580 	if (err) {
581 		dev_err(i2c_dev->dev, "failed to flush FIFO\n");
582 		return err;
583 	}
584 
585 	return 0;
586 }
587 
588 static int tegra_i2c_wait_for_config_load(struct tegra_i2c_dev *i2c_dev)
589 {
590 	int err;
591 
592 	if (!i2c_dev->hw->has_config_load_reg)
593 		return 0;
594 
595 	i2c_writel(i2c_dev, I2C_MSTR_CONFIG_LOAD, I2C_CONFIG_LOAD);
596 
597 	err = tegra_i2c_poll_register(i2c_dev, I2C_CONFIG_LOAD, 0xffffffff,
598 				      1000, I2C_CONFIG_LOAD_TIMEOUT);
599 	if (err) {
600 		dev_err(i2c_dev->dev, "failed to load config\n");
601 		return err;
602 	}
603 
604 	return 0;
605 }
606 
607 static int tegra_i2c_init(struct tegra_i2c_dev *i2c_dev)
608 {
609 	u32 val, clk_divisor, clk_multiplier, tsu_thd, tlow, thigh, non_hs_mode;
610 	struct i2c_timings *t = &i2c_dev->timings;
611 	int err;
612 
613 	/*
614 	 * The reset shouldn't ever fail in practice. The failure will be a
615 	 * sign of a severe problem that needs to be resolved. Still we don't
616 	 * want to fail the initialization completely because this may break
617 	 * kernel boot up since voltage regulators use I2C. Hence, we will
618 	 * emit a noisy warning on error, which won't stay unnoticed and
619 	 * won't hose machine entirely.
620 	 */
621 	err = device_reset(i2c_dev->dev);
622 	WARN_ON_ONCE(err);
623 
624 	if (IS_DVC(i2c_dev))
625 		tegra_dvc_init(i2c_dev);
626 
627 	val = I2C_CNFG_NEW_MASTER_FSM | I2C_CNFG_PACKET_MODE_EN |
628 	      FIELD_PREP(I2C_CNFG_DEBOUNCE_CNT, 2);
629 
630 	if (i2c_dev->hw->has_multi_master_mode)
631 		val |= I2C_CNFG_MULTI_MASTER_MODE;
632 
633 	i2c_writel(i2c_dev, val, I2C_CNFG);
634 	i2c_writel(i2c_dev, 0, I2C_INT_MASK);
635 
636 	if (IS_VI(i2c_dev))
637 		tegra_i2c_vi_init(i2c_dev);
638 
639 	switch (t->bus_freq_hz) {
640 	case I2C_MAX_STANDARD_MODE_FREQ + 1 ... I2C_MAX_FAST_MODE_PLUS_FREQ:
641 	default:
642 		tlow = i2c_dev->hw->tlow_fast_fastplus_mode;
643 		thigh = i2c_dev->hw->thigh_fast_fastplus_mode;
644 		tsu_thd = i2c_dev->hw->setup_hold_time_fast_fast_plus_mode;
645 
646 		if (t->bus_freq_hz > I2C_MAX_FAST_MODE_FREQ)
647 			non_hs_mode = i2c_dev->hw->clk_divisor_fast_plus_mode;
648 		else
649 			non_hs_mode = i2c_dev->hw->clk_divisor_fast_mode;
650 		break;
651 
652 	case 0 ... I2C_MAX_STANDARD_MODE_FREQ:
653 		tlow = i2c_dev->hw->tlow_std_mode;
654 		thigh = i2c_dev->hw->thigh_std_mode;
655 		tsu_thd = i2c_dev->hw->setup_hold_time_std_mode;
656 		non_hs_mode = i2c_dev->hw->clk_divisor_std_mode;
657 		break;
658 	}
659 
660 	/* make sure clock divisor programmed correctly */
661 	clk_divisor = FIELD_PREP(I2C_CLK_DIVISOR_HSMODE,
662 				 i2c_dev->hw->clk_divisor_hs_mode) |
663 		      FIELD_PREP(I2C_CLK_DIVISOR_STD_FAST_MODE, non_hs_mode);
664 	i2c_writel(i2c_dev, clk_divisor, I2C_CLK_DIVISOR);
665 
666 	if (i2c_dev->hw->has_interface_timing_reg) {
667 		val = FIELD_PREP(I2C_INTERFACE_TIMING_THIGH, thigh) |
668 		      FIELD_PREP(I2C_INTERFACE_TIMING_TLOW, tlow);
669 		i2c_writel(i2c_dev, val, I2C_INTERFACE_TIMING_0);
670 	}
671 
672 	/*
673 	 * Configure setup and hold times only when tsu_thd is non-zero.
674 	 * Otherwise, preserve the chip default values.
675 	 */
676 	if (i2c_dev->hw->has_interface_timing_reg && tsu_thd)
677 		i2c_writel(i2c_dev, tsu_thd, I2C_INTERFACE_TIMING_1);
678 
679 	clk_multiplier = (tlow + thigh + 2) * (non_hs_mode + 1);
680 
681 	err = clk_set_rate(i2c_dev->div_clk,
682 			   t->bus_freq_hz * clk_multiplier);
683 	if (err) {
684 		dev_err(i2c_dev->dev, "failed to set div-clk rate: %d\n", err);
685 		return err;
686 	}
687 
688 	if (!IS_DVC(i2c_dev) && !IS_VI(i2c_dev)) {
689 		u32 sl_cfg = i2c_readl(i2c_dev, I2C_SL_CNFG);
690 
691 		sl_cfg |= I2C_SL_CNFG_NACK | I2C_SL_CNFG_NEWSL;
692 		i2c_writel(i2c_dev, sl_cfg, I2C_SL_CNFG);
693 		i2c_writel(i2c_dev, 0xfc, I2C_SL_ADDR1);
694 		i2c_writel(i2c_dev, 0x00, I2C_SL_ADDR2);
695 	}
696 
697 	err = tegra_i2c_flush_fifos(i2c_dev);
698 	if (err)
699 		return err;
700 
701 	if (i2c_dev->multimaster_mode && i2c_dev->hw->has_slcg_override_reg)
702 		i2c_writel(i2c_dev, I2C_MST_CORE_CLKEN_OVR, I2C_CLKEN_OVERRIDE);
703 
704 	err = tegra_i2c_wait_for_config_load(i2c_dev);
705 	if (err)
706 		return err;
707 
708 	return 0;
709 }
710 
711 static int tegra_i2c_disable_packet_mode(struct tegra_i2c_dev *i2c_dev)
712 {
713 	u32 cnfg;
714 
715 	/*
716 	 * NACK interrupt is generated before the I2C controller generates
717 	 * the STOP condition on the bus.  So, wait for 2 clock periods
718 	 * before disabling the controller so that the STOP condition has
719 	 * been delivered properly.
720 	 */
721 	udelay(DIV_ROUND_UP(2 * 1000000, i2c_dev->timings.bus_freq_hz));
722 
723 	cnfg = i2c_readl(i2c_dev, I2C_CNFG);
724 	if (cnfg & I2C_CNFG_PACKET_MODE_EN)
725 		i2c_writel(i2c_dev, cnfg & ~I2C_CNFG_PACKET_MODE_EN, I2C_CNFG);
726 
727 	return tegra_i2c_wait_for_config_load(i2c_dev);
728 }
729 
730 static int tegra_i2c_empty_rx_fifo(struct tegra_i2c_dev *i2c_dev)
731 {
732 	size_t buf_remaining = i2c_dev->msg_buf_remaining;
733 	unsigned int words_to_transfer, rx_fifo_avail;
734 	u8 *buf = i2c_dev->msg_buf;
735 	u32 val;
736 
737 	/*
738 	 * Catch overflow due to message fully sent before the check for
739 	 * RX FIFO availability.
740 	 */
741 	if (WARN_ON_ONCE(!(i2c_dev->msg_buf_remaining)))
742 		return -EINVAL;
743 
744 	if (i2c_dev->hw->has_mst_fifo) {
745 		val = i2c_readl(i2c_dev, I2C_MST_FIFO_STATUS);
746 		rx_fifo_avail = FIELD_GET(I2C_MST_FIFO_STATUS_RX, val);
747 	} else {
748 		val = i2c_readl(i2c_dev, I2C_FIFO_STATUS);
749 		rx_fifo_avail = FIELD_GET(I2C_FIFO_STATUS_RX, val);
750 	}
751 
752 	/* round down to exclude partial word at the end of buffer */
753 	words_to_transfer = buf_remaining / BYTES_PER_FIFO_WORD;
754 	if (words_to_transfer > rx_fifo_avail)
755 		words_to_transfer = rx_fifo_avail;
756 
757 	i2c_readsl(i2c_dev, buf, I2C_RX_FIFO, words_to_transfer);
758 
759 	buf += words_to_transfer * BYTES_PER_FIFO_WORD;
760 	buf_remaining -= words_to_transfer * BYTES_PER_FIFO_WORD;
761 	rx_fifo_avail -= words_to_transfer;
762 
763 	/*
764 	 * If there is a partial word at the end of buffer, handle it
765 	 * manually to prevent overwriting past the end of buffer.
766 	 */
767 	if (rx_fifo_avail > 0 && buf_remaining > 0) {
768 		/*
769 		 * buf_remaining > 3 check not needed as rx_fifo_avail == 0
770 		 * when (words_to_transfer was > rx_fifo_avail) earlier
771 		 * in this function.
772 		 */
773 		val = i2c_readl(i2c_dev, I2C_RX_FIFO);
774 		val = cpu_to_le32(val);
775 		memcpy(buf, &val, buf_remaining);
776 		buf_remaining = 0;
777 		rx_fifo_avail--;
778 	}
779 
780 	/* RX FIFO must be drained, otherwise it's an Overflow case. */
781 	if (WARN_ON_ONCE(rx_fifo_avail))
782 		return -EINVAL;
783 
784 	i2c_dev->msg_buf_remaining = buf_remaining;
785 	i2c_dev->msg_buf = buf;
786 
787 	return 0;
788 }
789 
790 static int tegra_i2c_fill_tx_fifo(struct tegra_i2c_dev *i2c_dev)
791 {
792 	size_t buf_remaining = i2c_dev->msg_buf_remaining;
793 	unsigned int words_to_transfer, tx_fifo_avail;
794 	u8 *buf = i2c_dev->msg_buf;
795 	u32 val;
796 
797 	if (i2c_dev->hw->has_mst_fifo) {
798 		val = i2c_readl(i2c_dev, I2C_MST_FIFO_STATUS);
799 		tx_fifo_avail = FIELD_GET(I2C_MST_FIFO_STATUS_TX, val);
800 	} else {
801 		val = i2c_readl(i2c_dev, I2C_FIFO_STATUS);
802 		tx_fifo_avail = FIELD_GET(I2C_FIFO_STATUS_TX, val);
803 	}
804 
805 	/* round down to exclude partial word at the end of buffer */
806 	words_to_transfer = buf_remaining / BYTES_PER_FIFO_WORD;
807 
808 	/*
809 	 * This hunk pushes 4 bytes at a time into the TX FIFO.
810 	 *
811 	 * It's very common to have < 4 bytes, hence there is no word
812 	 * to push if we have less than 4 bytes to transfer.
813 	 */
814 	if (words_to_transfer) {
815 		if (words_to_transfer > tx_fifo_avail)
816 			words_to_transfer = tx_fifo_avail;
817 
818 		/*
819 		 * Update state before writing to FIFO.  Note that this may
820 		 * cause us to finish writing all bytes (AKA buf_remaining
821 		 * goes to 0), hence we have a potential for an interrupt
822 		 * (PACKET_XFER_COMPLETE is not maskable), but GIC interrupt
823 		 * is disabled at this point.
824 		 */
825 		buf_remaining -= words_to_transfer * BYTES_PER_FIFO_WORD;
826 		tx_fifo_avail -= words_to_transfer;
827 
828 		i2c_dev->msg_buf_remaining = buf_remaining;
829 		i2c_dev->msg_buf = buf + words_to_transfer * BYTES_PER_FIFO_WORD;
830 
831 		if (IS_VI(i2c_dev))
832 			i2c_writesl_vi(i2c_dev, buf, I2C_TX_FIFO, words_to_transfer);
833 		else
834 			i2c_writesl(i2c_dev, buf, I2C_TX_FIFO, words_to_transfer);
835 
836 		buf += words_to_transfer * BYTES_PER_FIFO_WORD;
837 	}
838 
839 	/*
840 	 * If there is a partial word at the end of buffer, handle it manually
841 	 * to prevent reading past the end of buffer, which could cross a page
842 	 * boundary and fault.
843 	 */
844 	if (tx_fifo_avail > 0 && buf_remaining > 0) {
845 		/*
846 		 * buf_remaining > 3 check not needed as tx_fifo_avail == 0
847 		 * when (words_to_transfer was > tx_fifo_avail) earlier
848 		 * in this function for non-zero words_to_transfer.
849 		 */
850 		memcpy(&val, buf, buf_remaining);
851 		val = le32_to_cpu(val);
852 
853 		i2c_dev->msg_buf_remaining = 0;
854 		i2c_dev->msg_buf = NULL;
855 
856 		i2c_writel(i2c_dev, val, I2C_TX_FIFO);
857 	}
858 
859 	return 0;
860 }
861 
862 static irqreturn_t tegra_i2c_isr(int irq, void *dev_id)
863 {
864 	const u32 status_err = I2C_INT_NO_ACK | I2C_INT_ARBITRATION_LOST;
865 	struct tegra_i2c_dev *i2c_dev = dev_id;
866 	u32 status;
867 
868 	status = i2c_readl(i2c_dev, I2C_INT_STATUS);
869 
870 	if (status == 0) {
871 		dev_warn(i2c_dev->dev, "IRQ status 0 %08x %08x %08x\n",
872 			 i2c_readl(i2c_dev, I2C_PACKET_TRANSFER_STATUS),
873 			 i2c_readl(i2c_dev, I2C_STATUS),
874 			 i2c_readl(i2c_dev, I2C_CNFG));
875 		i2c_dev->msg_err |= I2C_ERR_UNKNOWN_INTERRUPT;
876 		goto err;
877 	}
878 
879 	if (status & status_err) {
880 		tegra_i2c_disable_packet_mode(i2c_dev);
881 		if (status & I2C_INT_NO_ACK)
882 			i2c_dev->msg_err |= I2C_ERR_NO_ACK;
883 		if (status & I2C_INT_ARBITRATION_LOST)
884 			i2c_dev->msg_err |= I2C_ERR_ARBITRATION_LOST;
885 		goto err;
886 	}
887 
888 	/*
889 	 * I2C transfer is terminated during the bus clear, so skip
890 	 * processing the other interrupts.
891 	 */
892 	if (i2c_dev->hw->supports_bus_clear && (status & I2C_INT_BUS_CLR_DONE))
893 		goto err;
894 
895 	if (!i2c_dev->dma_mode) {
896 		if (i2c_dev->msg_read && (status & I2C_INT_RX_FIFO_DATA_REQ)) {
897 			if (tegra_i2c_empty_rx_fifo(i2c_dev)) {
898 				/*
899 				 * Overflow error condition: message fully sent,
900 				 * with no XFER_COMPLETE interrupt but hardware
901 				 * asks to transfer more.
902 				 */
903 				i2c_dev->msg_err |= I2C_ERR_RX_BUFFER_OVERFLOW;
904 				goto err;
905 			}
906 		}
907 
908 		if (!i2c_dev->msg_read && (status & I2C_INT_TX_FIFO_DATA_REQ)) {
909 			if (i2c_dev->msg_buf_remaining)
910 				tegra_i2c_fill_tx_fifo(i2c_dev);
911 			else
912 				tegra_i2c_mask_irq(i2c_dev,
913 						   I2C_INT_TX_FIFO_DATA_REQ);
914 		}
915 	}
916 
917 	i2c_writel(i2c_dev, status, I2C_INT_STATUS);
918 	if (IS_DVC(i2c_dev))
919 		dvc_writel(i2c_dev, DVC_STATUS_I2C_DONE_INTR, DVC_STATUS);
920 
921 	/*
922 	 * During message read XFER_COMPLETE interrupt is triggered prior to
923 	 * DMA completion and during message write XFER_COMPLETE interrupt is
924 	 * triggered after DMA completion.
925 	 *
926 	 * PACKETS_XFER_COMPLETE indicates completion of all bytes of transfer,
927 	 * so forcing msg_buf_remaining to 0 in DMA mode.
928 	 */
929 	if (status & I2C_INT_PACKET_XFER_COMPLETE) {
930 		if (i2c_dev->dma_mode)
931 			i2c_dev->msg_buf_remaining = 0;
932 		/*
933 		 * Underflow error condition: XFER_COMPLETE before message
934 		 * fully sent.
935 		 */
936 		if (WARN_ON_ONCE(i2c_dev->msg_buf_remaining)) {
937 			i2c_dev->msg_err |= I2C_ERR_UNKNOWN_INTERRUPT;
938 			goto err;
939 		}
940 		complete(&i2c_dev->msg_complete);
941 	}
942 	goto done;
943 err:
944 	/* mask all interrupts on error */
945 	tegra_i2c_mask_irq(i2c_dev,
946 			   I2C_INT_NO_ACK |
947 			   I2C_INT_ARBITRATION_LOST |
948 			   I2C_INT_PACKET_XFER_COMPLETE |
949 			   I2C_INT_TX_FIFO_DATA_REQ |
950 			   I2C_INT_RX_FIFO_DATA_REQ);
951 
952 	if (i2c_dev->hw->supports_bus_clear)
953 		tegra_i2c_mask_irq(i2c_dev, I2C_INT_BUS_CLR_DONE);
954 
955 	i2c_writel(i2c_dev, status, I2C_INT_STATUS);
956 
957 	if (IS_DVC(i2c_dev))
958 		dvc_writel(i2c_dev, DVC_STATUS_I2C_DONE_INTR, DVC_STATUS);
959 
960 	if (i2c_dev->dma_mode) {
961 		dmaengine_terminate_async(i2c_dev->dma_chan);
962 		complete(&i2c_dev->dma_complete);
963 	}
964 
965 	complete(&i2c_dev->msg_complete);
966 done:
967 	return IRQ_HANDLED;
968 }
969 
970 static void tegra_i2c_config_fifo_trig(struct tegra_i2c_dev *i2c_dev,
971 				       size_t len)
972 {
973 	struct dma_slave_config slv_config = {0};
974 	u32 val, reg, dma_burst, reg_offset;
975 	int err;
976 
977 	if (i2c_dev->hw->has_mst_fifo)
978 		reg = I2C_MST_FIFO_CONTROL;
979 	else
980 		reg = I2C_FIFO_CONTROL;
981 
982 	if (i2c_dev->dma_mode) {
983 		if (len & 0xF)
984 			dma_burst = 1;
985 		else if (len & 0x10)
986 			dma_burst = 4;
987 		else
988 			dma_burst = 8;
989 
990 		if (i2c_dev->msg_read) {
991 			reg_offset = tegra_i2c_reg_addr(i2c_dev, I2C_RX_FIFO);
992 
993 			slv_config.src_addr = i2c_dev->base_phys + reg_offset;
994 			slv_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
995 			slv_config.src_maxburst = dma_burst;
996 
997 			if (i2c_dev->hw->has_mst_fifo)
998 				val = I2C_MST_FIFO_CONTROL_RX_TRIG(dma_burst);
999 			else
1000 				val = I2C_FIFO_CONTROL_RX_TRIG(dma_burst);
1001 		} else {
1002 			reg_offset = tegra_i2c_reg_addr(i2c_dev, I2C_TX_FIFO);
1003 
1004 			slv_config.dst_addr = i2c_dev->base_phys + reg_offset;
1005 			slv_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1006 			slv_config.dst_maxburst = dma_burst;
1007 
1008 			if (i2c_dev->hw->has_mst_fifo)
1009 				val = I2C_MST_FIFO_CONTROL_TX_TRIG(dma_burst);
1010 			else
1011 				val = I2C_FIFO_CONTROL_TX_TRIG(dma_burst);
1012 		}
1013 
1014 		slv_config.device_fc = true;
1015 		err = dmaengine_slave_config(i2c_dev->dma_chan, &slv_config);
1016 		if (err) {
1017 			dev_err(i2c_dev->dev, "DMA config failed: %d\n", err);
1018 			dev_err(i2c_dev->dev, "falling back to PIO\n");
1019 
1020 			tegra_i2c_release_dma(i2c_dev);
1021 			i2c_dev->dma_mode = false;
1022 		} else {
1023 			goto out;
1024 		}
1025 	}
1026 
1027 	if (i2c_dev->hw->has_mst_fifo)
1028 		val = I2C_MST_FIFO_CONTROL_TX_TRIG(8) |
1029 		      I2C_MST_FIFO_CONTROL_RX_TRIG(1);
1030 	else
1031 		val = I2C_FIFO_CONTROL_TX_TRIG(8) |
1032 		      I2C_FIFO_CONTROL_RX_TRIG(1);
1033 out:
1034 	i2c_writel(i2c_dev, val, reg);
1035 }
1036 
1037 static unsigned long tegra_i2c_poll_completion(struct tegra_i2c_dev *i2c_dev,
1038 					       struct completion *complete,
1039 					       unsigned int timeout_ms)
1040 {
1041 	ktime_t ktime = ktime_get();
1042 	ktime_t ktimeout = ktime_add_ms(ktime, timeout_ms);
1043 
1044 	do {
1045 		u32 status = i2c_readl(i2c_dev, I2C_INT_STATUS);
1046 
1047 		if (status)
1048 			tegra_i2c_isr(i2c_dev->irq, i2c_dev);
1049 
1050 		if (completion_done(complete)) {
1051 			s64 delta = ktime_ms_delta(ktimeout, ktime);
1052 
1053 			return msecs_to_jiffies(delta) ?: 1;
1054 		}
1055 
1056 		ktime = ktime_get();
1057 
1058 	} while (ktime_before(ktime, ktimeout));
1059 
1060 	return 0;
1061 }
1062 
1063 static unsigned long tegra_i2c_wait_completion(struct tegra_i2c_dev *i2c_dev,
1064 					       struct completion *complete,
1065 					       unsigned int timeout_ms)
1066 {
1067 	unsigned long ret;
1068 
1069 	if (i2c_dev->atomic_mode) {
1070 		ret = tegra_i2c_poll_completion(i2c_dev, complete, timeout_ms);
1071 	} else {
1072 		enable_irq(i2c_dev->irq);
1073 		ret = wait_for_completion_timeout(complete,
1074 						  msecs_to_jiffies(timeout_ms));
1075 		disable_irq(i2c_dev->irq);
1076 
1077 		/*
1078 		 * Under some rare circumstances (like running KASAN +
1079 		 * NFS root) CPU, which handles interrupt, may stuck in
1080 		 * uninterruptible state for a significant time.  In this
1081 		 * case we will get timeout if I2C transfer is running on
1082 		 * a sibling CPU, despite of IRQ being raised.
1083 		 *
1084 		 * In order to handle this rare condition, the IRQ status
1085 		 * needs to be checked after timeout.
1086 		 */
1087 		if (ret == 0)
1088 			ret = tegra_i2c_poll_completion(i2c_dev, complete, 0);
1089 	}
1090 
1091 	return ret;
1092 }
1093 
1094 static int tegra_i2c_issue_bus_clear(struct i2c_adapter *adap)
1095 {
1096 	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1097 	u32 val, time_left;
1098 	int err;
1099 
1100 	reinit_completion(&i2c_dev->msg_complete);
1101 
1102 	val = FIELD_PREP(I2C_BC_SCLK_THRESHOLD, 9) | I2C_BC_STOP_COND |
1103 	      I2C_BC_TERMINATE;
1104 	i2c_writel(i2c_dev, val, I2C_BUS_CLEAR_CNFG);
1105 
1106 	err = tegra_i2c_wait_for_config_load(i2c_dev);
1107 	if (err)
1108 		return err;
1109 
1110 	val |= I2C_BC_ENABLE;
1111 	i2c_writel(i2c_dev, val, I2C_BUS_CLEAR_CNFG);
1112 	tegra_i2c_unmask_irq(i2c_dev, I2C_INT_BUS_CLR_DONE);
1113 
1114 	time_left = tegra_i2c_wait_completion(i2c_dev, &i2c_dev->msg_complete, 50);
1115 	tegra_i2c_mask_irq(i2c_dev, I2C_INT_BUS_CLR_DONE);
1116 
1117 	if (time_left == 0) {
1118 		dev_err(i2c_dev->dev, "failed to clear bus\n");
1119 		return -ETIMEDOUT;
1120 	}
1121 
1122 	val = i2c_readl(i2c_dev, I2C_BUS_CLEAR_STATUS);
1123 	if (!(val & I2C_BC_STATUS)) {
1124 		dev_err(i2c_dev->dev, "un-recovered arbitration lost\n");
1125 		return -EIO;
1126 	}
1127 
1128 	return -EAGAIN;
1129 }
1130 
1131 static void tegra_i2c_push_packet_header(struct tegra_i2c_dev *i2c_dev,
1132 					 struct i2c_msg *msg,
1133 					 enum msg_end_type end_state)
1134 {
1135 	u32 *dma_buf = i2c_dev->dma_buf;
1136 	u32 packet_header;
1137 
1138 	packet_header = FIELD_PREP(PACKET_HEADER0_HEADER_SIZE, 0) |
1139 			FIELD_PREP(PACKET_HEADER0_PROTOCOL,
1140 				   PACKET_HEADER0_PROTOCOL_I2C) |
1141 			FIELD_PREP(PACKET_HEADER0_CONT_ID, i2c_dev->cont_id) |
1142 			FIELD_PREP(PACKET_HEADER0_PACKET_ID, 1);
1143 
1144 	if (i2c_dev->dma_mode && !i2c_dev->msg_read)
1145 		*dma_buf++ = packet_header;
1146 	else
1147 		i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
1148 
1149 	packet_header = i2c_dev->msg_len - 1;
1150 
1151 	if (i2c_dev->dma_mode && !i2c_dev->msg_read)
1152 		*dma_buf++ = packet_header;
1153 	else
1154 		i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
1155 
1156 	packet_header = I2C_HEADER_IE_ENABLE;
1157 
1158 	if (end_state == MSG_END_CONTINUE)
1159 		packet_header |= I2C_HEADER_CONTINUE_XFER;
1160 	else if (end_state == MSG_END_REPEAT_START)
1161 		packet_header |= I2C_HEADER_REPEAT_START;
1162 
1163 	if (msg->flags & I2C_M_TEN) {
1164 		packet_header |= msg->addr;
1165 		packet_header |= I2C_HEADER_10BIT_ADDR;
1166 	} else {
1167 		packet_header |= msg->addr << I2C_HEADER_SLAVE_ADDR_SHIFT;
1168 	}
1169 
1170 	if (msg->flags & I2C_M_IGNORE_NAK)
1171 		packet_header |= I2C_HEADER_CONT_ON_NAK;
1172 
1173 	if (msg->flags & I2C_M_RD)
1174 		packet_header |= I2C_HEADER_READ;
1175 
1176 	if (i2c_dev->dma_mode && !i2c_dev->msg_read)
1177 		*dma_buf++ = packet_header;
1178 	else
1179 		i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
1180 }
1181 
1182 static int tegra_i2c_error_recover(struct tegra_i2c_dev *i2c_dev,
1183 				   struct i2c_msg *msg)
1184 {
1185 	if (i2c_dev->msg_err == I2C_ERR_NONE)
1186 		return 0;
1187 
1188 	tegra_i2c_init(i2c_dev);
1189 
1190 	/* start recovery upon arbitration loss in single master mode */
1191 	if (i2c_dev->msg_err == I2C_ERR_ARBITRATION_LOST) {
1192 		if (!i2c_dev->multimaster_mode)
1193 			return i2c_recover_bus(&i2c_dev->adapter);
1194 
1195 		return -EAGAIN;
1196 	}
1197 
1198 	if (i2c_dev->msg_err == I2C_ERR_NO_ACK) {
1199 		if (msg->flags & I2C_M_IGNORE_NAK)
1200 			return 0;
1201 
1202 		return -EREMOTEIO;
1203 	}
1204 
1205 	return -EIO;
1206 }
1207 
1208 static int tegra_i2c_xfer_msg(struct tegra_i2c_dev *i2c_dev,
1209 			      struct i2c_msg *msg,
1210 			      enum msg_end_type end_state)
1211 {
1212 	unsigned long time_left, xfer_time = 100;
1213 	size_t xfer_size;
1214 	u32 int_mask;
1215 	int err;
1216 
1217 	err = tegra_i2c_flush_fifos(i2c_dev);
1218 	if (err)
1219 		return err;
1220 
1221 	i2c_dev->msg_buf = msg->buf;
1222 	i2c_dev->msg_len = msg->len;
1223 
1224 	i2c_dev->msg_err = I2C_ERR_NONE;
1225 	i2c_dev->msg_read = !!(msg->flags & I2C_M_RD);
1226 	reinit_completion(&i2c_dev->msg_complete);
1227 
1228 	/*
1229 	 * For SMBUS block read command, read only 1 byte in the first transfer.
1230 	 * Adjust that 1 byte for the next transfer in the msg buffer and msg
1231 	 * length.
1232 	 */
1233 	if (msg->flags & I2C_M_RECV_LEN) {
1234 		if (end_state == MSG_END_CONTINUE) {
1235 			i2c_dev->msg_len = 1;
1236 		} else {
1237 			i2c_dev->msg_buf += 1;
1238 			i2c_dev->msg_len -= 1;
1239 		}
1240 	}
1241 
1242 	i2c_dev->msg_buf_remaining = i2c_dev->msg_len;
1243 
1244 	if (i2c_dev->msg_read)
1245 		xfer_size = i2c_dev->msg_len;
1246 	else
1247 		xfer_size = i2c_dev->msg_len + I2C_PACKET_HEADER_SIZE;
1248 
1249 	xfer_size = ALIGN(xfer_size, BYTES_PER_FIFO_WORD);
1250 
1251 	i2c_dev->dma_mode = xfer_size > I2C_PIO_MODE_PREFERRED_LEN &&
1252 			    i2c_dev->dma_buf && !i2c_dev->atomic_mode;
1253 
1254 	tegra_i2c_config_fifo_trig(i2c_dev, xfer_size);
1255 
1256 	/*
1257 	 * Transfer time in mSec = Total bits / transfer rate
1258 	 * Total bits = 9 bits per byte (including ACK bit) + Start & stop bits
1259 	 */
1260 	xfer_time += DIV_ROUND_CLOSEST(((xfer_size * 9) + 2) * MSEC_PER_SEC,
1261 				       i2c_dev->timings.bus_freq_hz);
1262 
1263 	int_mask = I2C_INT_NO_ACK | I2C_INT_ARBITRATION_LOST;
1264 	tegra_i2c_unmask_irq(i2c_dev, int_mask);
1265 
1266 	if (i2c_dev->dma_mode) {
1267 		if (i2c_dev->msg_read) {
1268 			dma_sync_single_for_device(i2c_dev->dma_dev,
1269 						   i2c_dev->dma_phys,
1270 						   xfer_size, DMA_FROM_DEVICE);
1271 
1272 			err = tegra_i2c_dma_submit(i2c_dev, xfer_size);
1273 			if (err)
1274 				return err;
1275 		} else {
1276 			dma_sync_single_for_cpu(i2c_dev->dma_dev,
1277 						i2c_dev->dma_phys,
1278 						xfer_size, DMA_TO_DEVICE);
1279 		}
1280 	}
1281 
1282 	tegra_i2c_push_packet_header(i2c_dev, msg, end_state);
1283 
1284 	if (!i2c_dev->msg_read) {
1285 		if (i2c_dev->dma_mode) {
1286 			memcpy(i2c_dev->dma_buf + I2C_PACKET_HEADER_SIZE,
1287 			       msg->buf, i2c_dev->msg_len);
1288 
1289 			dma_sync_single_for_device(i2c_dev->dma_dev,
1290 						   i2c_dev->dma_phys,
1291 						   xfer_size, DMA_TO_DEVICE);
1292 
1293 			err = tegra_i2c_dma_submit(i2c_dev, xfer_size);
1294 			if (err)
1295 				return err;
1296 		} else {
1297 			tegra_i2c_fill_tx_fifo(i2c_dev);
1298 		}
1299 	}
1300 
1301 	if (i2c_dev->hw->has_per_pkt_xfer_complete_irq)
1302 		int_mask |= I2C_INT_PACKET_XFER_COMPLETE;
1303 
1304 	if (!i2c_dev->dma_mode) {
1305 		if (msg->flags & I2C_M_RD)
1306 			int_mask |= I2C_INT_RX_FIFO_DATA_REQ;
1307 		else if (i2c_dev->msg_buf_remaining)
1308 			int_mask |= I2C_INT_TX_FIFO_DATA_REQ;
1309 	}
1310 
1311 	tegra_i2c_unmask_irq(i2c_dev, int_mask);
1312 	dev_dbg(i2c_dev->dev, "unmasked IRQ: %02x\n",
1313 		i2c_readl(i2c_dev, I2C_INT_MASK));
1314 
1315 	if (i2c_dev->dma_mode) {
1316 		time_left = tegra_i2c_wait_completion(i2c_dev,
1317 						      &i2c_dev->dma_complete,
1318 						      xfer_time);
1319 
1320 		/*
1321 		 * Synchronize DMA first, since dmaengine_terminate_sync()
1322 		 * performs synchronization after the transfer's termination
1323 		 * and we want to get a completion if transfer succeeded.
1324 		 */
1325 		dmaengine_synchronize(i2c_dev->dma_chan);
1326 		dmaengine_terminate_sync(i2c_dev->dma_chan);
1327 
1328 		if (!time_left && !completion_done(&i2c_dev->dma_complete)) {
1329 			tegra_i2c_init(i2c_dev);
1330 			return -ETIMEDOUT;
1331 		}
1332 
1333 		if (i2c_dev->msg_read && i2c_dev->msg_err == I2C_ERR_NONE) {
1334 			dma_sync_single_for_cpu(i2c_dev->dma_dev,
1335 						i2c_dev->dma_phys,
1336 						xfer_size, DMA_FROM_DEVICE);
1337 
1338 			memcpy(i2c_dev->msg_buf, i2c_dev->dma_buf, i2c_dev->msg_len);
1339 		}
1340 	}
1341 
1342 	time_left = tegra_i2c_wait_completion(i2c_dev, &i2c_dev->msg_complete,
1343 					      xfer_time);
1344 
1345 	tegra_i2c_mask_irq(i2c_dev, int_mask);
1346 
1347 	if (time_left == 0) {
1348 		tegra_i2c_init(i2c_dev);
1349 		return -ETIMEDOUT;
1350 	}
1351 
1352 	dev_dbg(i2c_dev->dev, "transfer complete: %lu %d %d\n",
1353 		time_left, completion_done(&i2c_dev->msg_complete),
1354 		i2c_dev->msg_err);
1355 
1356 	i2c_dev->dma_mode = false;
1357 
1358 	err = tegra_i2c_error_recover(i2c_dev, msg);
1359 	if (err)
1360 		return err;
1361 
1362 	return 0;
1363 }
1364 
1365 static int tegra_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[],
1366 			  int num)
1367 {
1368 	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1369 	int i, ret;
1370 
1371 	ret = pm_runtime_get_sync(i2c_dev->dev);
1372 	if (ret < 0) {
1373 		dev_err(i2c_dev->dev, "runtime resume failed %d\n", ret);
1374 		pm_runtime_put_noidle(i2c_dev->dev);
1375 		return ret;
1376 	}
1377 
1378 	for (i = 0; i < num; i++) {
1379 		enum msg_end_type end_type = MSG_END_STOP;
1380 
1381 		if (i < (num - 1)) {
1382 			/* check whether follow up message is coming */
1383 			if (msgs[i + 1].flags & I2C_M_NOSTART)
1384 				end_type = MSG_END_CONTINUE;
1385 			else
1386 				end_type = MSG_END_REPEAT_START;
1387 		}
1388 		/* If M_RECV_LEN use ContinueXfer to read the first byte */
1389 		if (msgs[i].flags & I2C_M_RECV_LEN) {
1390 			ret = tegra_i2c_xfer_msg(i2c_dev, &msgs[i], MSG_END_CONTINUE);
1391 			if (ret)
1392 				break;
1393 
1394 			/* Validate message length before proceeding */
1395 			if (msgs[i].buf[0] == 0 || msgs[i].buf[0] > I2C_SMBUS_BLOCK_MAX)
1396 				break;
1397 
1398 			/* Set the msg length from first byte */
1399 			msgs[i].len += msgs[i].buf[0];
1400 			dev_dbg(i2c_dev->dev, "reading %d bytes\n", msgs[i].len);
1401 		}
1402 		ret = tegra_i2c_xfer_msg(i2c_dev, &msgs[i], end_type);
1403 		if (ret)
1404 			break;
1405 	}
1406 
1407 	pm_runtime_put(i2c_dev->dev);
1408 
1409 	return ret ?: i;
1410 }
1411 
1412 static int tegra_i2c_xfer_atomic(struct i2c_adapter *adap,
1413 				 struct i2c_msg msgs[], int num)
1414 {
1415 	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1416 	int ret;
1417 
1418 	i2c_dev->atomic_mode = true;
1419 	ret = tegra_i2c_xfer(adap, msgs, num);
1420 	i2c_dev->atomic_mode = false;
1421 
1422 	return ret;
1423 }
1424 
1425 static u32 tegra_i2c_func(struct i2c_adapter *adap)
1426 {
1427 	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1428 	u32 ret = I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK) |
1429 		  I2C_FUNC_10BIT_ADDR | I2C_FUNC_PROTOCOL_MANGLING;
1430 
1431 	if (i2c_dev->hw->has_continue_xfer_support)
1432 		ret |= I2C_FUNC_NOSTART | I2C_FUNC_SMBUS_READ_BLOCK_DATA;
1433 
1434 	return ret;
1435 }
1436 
1437 static const struct i2c_algorithm tegra_i2c_algo = {
1438 	.xfer = tegra_i2c_xfer,
1439 	.xfer_atomic = tegra_i2c_xfer_atomic,
1440 	.functionality = tegra_i2c_func,
1441 };
1442 
1443 /* payload size is only 12 bit */
1444 static const struct i2c_adapter_quirks tegra_i2c_quirks = {
1445 	.flags = I2C_AQ_NO_ZERO_LEN,
1446 	.max_read_len = SZ_4K,
1447 	.max_write_len = SZ_4K - I2C_PACKET_HEADER_SIZE,
1448 };
1449 
1450 static const struct i2c_adapter_quirks tegra194_i2c_quirks = {
1451 	.flags = I2C_AQ_NO_ZERO_LEN,
1452 	.max_write_len = SZ_64K - I2C_PACKET_HEADER_SIZE,
1453 };
1454 
1455 static struct i2c_bus_recovery_info tegra_i2c_recovery_info = {
1456 	.recover_bus = tegra_i2c_issue_bus_clear,
1457 };
1458 
1459 static const struct tegra_i2c_hw_feature tegra20_i2c_hw = {
1460 	.has_continue_xfer_support = false,
1461 	.has_per_pkt_xfer_complete_irq = false,
1462 	.clk_divisor_hs_mode = 3,
1463 	.clk_divisor_std_mode = 0,
1464 	.clk_divisor_fast_mode = 0,
1465 	.clk_divisor_fast_plus_mode = 0,
1466 	.has_config_load_reg = false,
1467 	.has_multi_master_mode = false,
1468 	.has_slcg_override_reg = false,
1469 	.has_mst_fifo = false,
1470 	.quirks = &tegra_i2c_quirks,
1471 	.supports_bus_clear = false,
1472 	.has_apb_dma = true,
1473 	.tlow_std_mode = 0x4,
1474 	.thigh_std_mode = 0x2,
1475 	.tlow_fast_fastplus_mode = 0x4,
1476 	.thigh_fast_fastplus_mode = 0x2,
1477 	.setup_hold_time_std_mode = 0x0,
1478 	.setup_hold_time_fast_fast_plus_mode = 0x0,
1479 	.setup_hold_time_hs_mode = 0x0,
1480 	.has_interface_timing_reg = false,
1481 };
1482 
1483 static const struct tegra_i2c_hw_feature tegra30_i2c_hw = {
1484 	.has_continue_xfer_support = true,
1485 	.has_per_pkt_xfer_complete_irq = false,
1486 	.clk_divisor_hs_mode = 3,
1487 	.clk_divisor_std_mode = 0,
1488 	.clk_divisor_fast_mode = 0,
1489 	.clk_divisor_fast_plus_mode = 0,
1490 	.has_config_load_reg = false,
1491 	.has_multi_master_mode = false,
1492 	.has_slcg_override_reg = false,
1493 	.has_mst_fifo = false,
1494 	.quirks = &tegra_i2c_quirks,
1495 	.supports_bus_clear = false,
1496 	.has_apb_dma = true,
1497 	.tlow_std_mode = 0x4,
1498 	.thigh_std_mode = 0x2,
1499 	.tlow_fast_fastplus_mode = 0x4,
1500 	.thigh_fast_fastplus_mode = 0x2,
1501 	.setup_hold_time_std_mode = 0x0,
1502 	.setup_hold_time_fast_fast_plus_mode = 0x0,
1503 	.setup_hold_time_hs_mode = 0x0,
1504 	.has_interface_timing_reg = false,
1505 };
1506 
1507 static const struct tegra_i2c_hw_feature tegra114_i2c_hw = {
1508 	.has_continue_xfer_support = true,
1509 	.has_per_pkt_xfer_complete_irq = true,
1510 	.clk_divisor_hs_mode = 1,
1511 	.clk_divisor_std_mode = 0x19,
1512 	.clk_divisor_fast_mode = 0x19,
1513 	.clk_divisor_fast_plus_mode = 0x10,
1514 	.has_config_load_reg = false,
1515 	.has_multi_master_mode = false,
1516 	.has_slcg_override_reg = false,
1517 	.has_mst_fifo = false,
1518 	.quirks = &tegra_i2c_quirks,
1519 	.supports_bus_clear = true,
1520 	.has_apb_dma = true,
1521 	.tlow_std_mode = 0x4,
1522 	.thigh_std_mode = 0x2,
1523 	.tlow_fast_fastplus_mode = 0x4,
1524 	.thigh_fast_fastplus_mode = 0x2,
1525 	.setup_hold_time_std_mode = 0x0,
1526 	.setup_hold_time_fast_fast_plus_mode = 0x0,
1527 	.setup_hold_time_hs_mode = 0x0,
1528 	.has_interface_timing_reg = false,
1529 };
1530 
1531 static const struct tegra_i2c_hw_feature tegra124_i2c_hw = {
1532 	.has_continue_xfer_support = true,
1533 	.has_per_pkt_xfer_complete_irq = true,
1534 	.clk_divisor_hs_mode = 1,
1535 	.clk_divisor_std_mode = 0x19,
1536 	.clk_divisor_fast_mode = 0x19,
1537 	.clk_divisor_fast_plus_mode = 0x10,
1538 	.has_config_load_reg = true,
1539 	.has_multi_master_mode = false,
1540 	.has_slcg_override_reg = true,
1541 	.has_mst_fifo = false,
1542 	.quirks = &tegra_i2c_quirks,
1543 	.supports_bus_clear = true,
1544 	.has_apb_dma = true,
1545 	.tlow_std_mode = 0x4,
1546 	.thigh_std_mode = 0x2,
1547 	.tlow_fast_fastplus_mode = 0x4,
1548 	.thigh_fast_fastplus_mode = 0x2,
1549 	.setup_hold_time_std_mode = 0x0,
1550 	.setup_hold_time_fast_fast_plus_mode = 0x0,
1551 	.setup_hold_time_hs_mode = 0x0,
1552 	.has_interface_timing_reg = true,
1553 };
1554 
1555 static const struct tegra_i2c_hw_feature tegra210_i2c_hw = {
1556 	.has_continue_xfer_support = true,
1557 	.has_per_pkt_xfer_complete_irq = true,
1558 	.clk_divisor_hs_mode = 1,
1559 	.clk_divisor_std_mode = 0x19,
1560 	.clk_divisor_fast_mode = 0x19,
1561 	.clk_divisor_fast_plus_mode = 0x10,
1562 	.has_config_load_reg = true,
1563 	.has_multi_master_mode = false,
1564 	.has_slcg_override_reg = true,
1565 	.has_mst_fifo = false,
1566 	.quirks = &tegra_i2c_quirks,
1567 	.supports_bus_clear = true,
1568 	.has_apb_dma = true,
1569 	.tlow_std_mode = 0x4,
1570 	.thigh_std_mode = 0x2,
1571 	.tlow_fast_fastplus_mode = 0x4,
1572 	.thigh_fast_fastplus_mode = 0x2,
1573 	.setup_hold_time_std_mode = 0,
1574 	.setup_hold_time_fast_fast_plus_mode = 0,
1575 	.setup_hold_time_hs_mode = 0,
1576 	.has_interface_timing_reg = true,
1577 };
1578 
1579 static const struct tegra_i2c_hw_feature tegra186_i2c_hw = {
1580 	.has_continue_xfer_support = true,
1581 	.has_per_pkt_xfer_complete_irq = true,
1582 	.clk_divisor_hs_mode = 1,
1583 	.clk_divisor_std_mode = 0x16,
1584 	.clk_divisor_fast_mode = 0x19,
1585 	.clk_divisor_fast_plus_mode = 0x10,
1586 	.has_config_load_reg = true,
1587 	.has_multi_master_mode = false,
1588 	.has_slcg_override_reg = true,
1589 	.has_mst_fifo = false,
1590 	.quirks = &tegra_i2c_quirks,
1591 	.supports_bus_clear = true,
1592 	.has_apb_dma = false,
1593 	.tlow_std_mode = 0x4,
1594 	.thigh_std_mode = 0x3,
1595 	.tlow_fast_fastplus_mode = 0x4,
1596 	.thigh_fast_fastplus_mode = 0x2,
1597 	.setup_hold_time_std_mode = 0,
1598 	.setup_hold_time_fast_fast_plus_mode = 0,
1599 	.setup_hold_time_hs_mode = 0,
1600 	.has_interface_timing_reg = true,
1601 };
1602 
1603 static const struct tegra_i2c_hw_feature tegra194_i2c_hw = {
1604 	.has_continue_xfer_support = true,
1605 	.has_per_pkt_xfer_complete_irq = true,
1606 	.clk_divisor_hs_mode = 1,
1607 	.clk_divisor_std_mode = 0x4f,
1608 	.clk_divisor_fast_mode = 0x3c,
1609 	.clk_divisor_fast_plus_mode = 0x16,
1610 	.has_config_load_reg = true,
1611 	.has_multi_master_mode = true,
1612 	.has_slcg_override_reg = true,
1613 	.has_mst_fifo = true,
1614 	.quirks = &tegra194_i2c_quirks,
1615 	.supports_bus_clear = true,
1616 	.has_apb_dma = false,
1617 	.tlow_std_mode = 0x8,
1618 	.thigh_std_mode = 0x7,
1619 	.tlow_fast_fastplus_mode = 0x2,
1620 	.thigh_fast_fastplus_mode = 0x2,
1621 	.setup_hold_time_std_mode = 0x08080808,
1622 	.setup_hold_time_fast_fast_plus_mode = 0x02020202,
1623 	.setup_hold_time_hs_mode = 0x090909,
1624 	.has_interface_timing_reg = true,
1625 };
1626 
1627 static const struct of_device_id tegra_i2c_of_match[] = {
1628 	{ .compatible = "nvidia,tegra194-i2c", .data = &tegra194_i2c_hw, },
1629 	{ .compatible = "nvidia,tegra186-i2c", .data = &tegra186_i2c_hw, },
1630 #if IS_ENABLED(CONFIG_ARCH_TEGRA_210_SOC)
1631 	{ .compatible = "nvidia,tegra210-i2c-vi", .data = &tegra210_i2c_hw, },
1632 #endif
1633 	{ .compatible = "nvidia,tegra210-i2c", .data = &tegra210_i2c_hw, },
1634 	{ .compatible = "nvidia,tegra124-i2c", .data = &tegra124_i2c_hw, },
1635 	{ .compatible = "nvidia,tegra114-i2c", .data = &tegra114_i2c_hw, },
1636 	{ .compatible = "nvidia,tegra30-i2c", .data = &tegra30_i2c_hw, },
1637 	{ .compatible = "nvidia,tegra20-i2c", .data = &tegra20_i2c_hw, },
1638 #if IS_ENABLED(CONFIG_ARCH_TEGRA_2x_SOC)
1639 	{ .compatible = "nvidia,tegra20-i2c-dvc", .data = &tegra20_i2c_hw, },
1640 #endif
1641 	{},
1642 };
1643 MODULE_DEVICE_TABLE(of, tegra_i2c_of_match);
1644 
1645 static void tegra_i2c_parse_dt(struct tegra_i2c_dev *i2c_dev)
1646 {
1647 	struct device_node *np = i2c_dev->dev->of_node;
1648 	bool multi_mode;
1649 
1650 	i2c_parse_fw_timings(i2c_dev->dev, &i2c_dev->timings, true);
1651 
1652 	multi_mode = device_property_read_bool(i2c_dev->dev, "multi-master");
1653 	i2c_dev->multimaster_mode = multi_mode;
1654 
1655 	if (IS_ENABLED(CONFIG_ARCH_TEGRA_2x_SOC) &&
1656 	    of_device_is_compatible(np, "nvidia,tegra20-i2c-dvc"))
1657 		i2c_dev->is_dvc = true;
1658 
1659 	if (IS_ENABLED(CONFIG_ARCH_TEGRA_210_SOC) &&
1660 	    of_device_is_compatible(np, "nvidia,tegra210-i2c-vi"))
1661 		i2c_dev->is_vi = true;
1662 }
1663 
1664 static int tegra_i2c_init_clocks(struct tegra_i2c_dev *i2c_dev)
1665 {
1666 	int err;
1667 
1668 	if (ACPI_HANDLE(i2c_dev->dev))
1669 		return 0;
1670 
1671 	i2c_dev->clocks[i2c_dev->nclocks++].id = "div-clk";
1672 
1673 	if (i2c_dev->hw == &tegra20_i2c_hw || i2c_dev->hw == &tegra30_i2c_hw)
1674 		i2c_dev->clocks[i2c_dev->nclocks++].id = "fast-clk";
1675 
1676 	if (IS_VI(i2c_dev))
1677 		i2c_dev->clocks[i2c_dev->nclocks++].id = "slow";
1678 
1679 	err = devm_clk_bulk_get(i2c_dev->dev, i2c_dev->nclocks,
1680 				i2c_dev->clocks);
1681 	if (err)
1682 		return err;
1683 
1684 	err = clk_bulk_prepare(i2c_dev->nclocks, i2c_dev->clocks);
1685 	if (err)
1686 		return err;
1687 
1688 	i2c_dev->div_clk = i2c_dev->clocks[0].clk;
1689 
1690 	if (!i2c_dev->multimaster_mode)
1691 		return 0;
1692 
1693 	err = clk_enable(i2c_dev->div_clk);
1694 	if (err) {
1695 		dev_err(i2c_dev->dev, "failed to enable div-clk: %d\n", err);
1696 		goto unprepare_clocks;
1697 	}
1698 
1699 	return 0;
1700 
1701 unprepare_clocks:
1702 	clk_bulk_unprepare(i2c_dev->nclocks, i2c_dev->clocks);
1703 
1704 	return err;
1705 }
1706 
1707 static void tegra_i2c_release_clocks(struct tegra_i2c_dev *i2c_dev)
1708 {
1709 	if (i2c_dev->multimaster_mode)
1710 		clk_disable(i2c_dev->div_clk);
1711 
1712 	clk_bulk_unprepare(i2c_dev->nclocks, i2c_dev->clocks);
1713 }
1714 
1715 static int tegra_i2c_init_hardware(struct tegra_i2c_dev *i2c_dev)
1716 {
1717 	int ret;
1718 
1719 	ret = pm_runtime_get_sync(i2c_dev->dev);
1720 	if (ret < 0)
1721 		dev_err(i2c_dev->dev, "runtime resume failed: %d\n", ret);
1722 	else
1723 		ret = tegra_i2c_init(i2c_dev);
1724 
1725 	pm_runtime_put_sync(i2c_dev->dev);
1726 
1727 	return ret;
1728 }
1729 
1730 static int tegra_i2c_probe(struct platform_device *pdev)
1731 {
1732 	struct tegra_i2c_dev *i2c_dev;
1733 	struct resource *res;
1734 	int err;
1735 
1736 	i2c_dev = devm_kzalloc(&pdev->dev, sizeof(*i2c_dev), GFP_KERNEL);
1737 	if (!i2c_dev)
1738 		return -ENOMEM;
1739 
1740 	platform_set_drvdata(pdev, i2c_dev);
1741 
1742 	init_completion(&i2c_dev->msg_complete);
1743 	init_completion(&i2c_dev->dma_complete);
1744 
1745 	i2c_dev->hw = device_get_match_data(&pdev->dev);
1746 	i2c_dev->cont_id = pdev->id;
1747 	i2c_dev->dev = &pdev->dev;
1748 
1749 	i2c_dev->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1750 	if (IS_ERR(i2c_dev->base))
1751 		return PTR_ERR(i2c_dev->base);
1752 
1753 	i2c_dev->base_phys = res->start;
1754 
1755 	err = platform_get_irq(pdev, 0);
1756 	if (err < 0)
1757 		return err;
1758 
1759 	i2c_dev->irq = err;
1760 
1761 	/* interrupt will be enabled during of transfer time */
1762 	irq_set_status_flags(i2c_dev->irq, IRQ_NOAUTOEN);
1763 
1764 	err = devm_request_threaded_irq(i2c_dev->dev, i2c_dev->irq,
1765 					NULL, tegra_i2c_isr,
1766 					IRQF_NO_SUSPEND | IRQF_ONESHOT,
1767 					dev_name(i2c_dev->dev), i2c_dev);
1768 	if (err)
1769 		return err;
1770 
1771 	tegra_i2c_parse_dt(i2c_dev);
1772 
1773 	err = tegra_i2c_init_clocks(i2c_dev);
1774 	if (err)
1775 		return err;
1776 
1777 	err = tegra_i2c_init_dma(i2c_dev);
1778 	if (err)
1779 		goto release_clocks;
1780 
1781 	/*
1782 	 * VI I2C is in VE power domain which is not always ON and not
1783 	 * IRQ-safe.  Thus, IRQ-safe device shouldn't be attached to a
1784 	 * non IRQ-safe domain because this prevents powering off the power
1785 	 * domain.
1786 	 *
1787 	 * VI I2C device shouldn't be marked as IRQ-safe because VI I2C won't
1788 	 * be used for atomic transfers. ACPI device is not IRQ safe also.
1789 	 */
1790 	if (!IS_VI(i2c_dev) && !has_acpi_companion(i2c_dev->dev))
1791 		pm_runtime_irq_safe(i2c_dev->dev);
1792 
1793 	pm_runtime_enable(i2c_dev->dev);
1794 
1795 	err = tegra_i2c_init_hardware(i2c_dev);
1796 	if (err)
1797 		goto release_rpm;
1798 
1799 	i2c_set_adapdata(&i2c_dev->adapter, i2c_dev);
1800 	i2c_dev->adapter.dev.of_node = i2c_dev->dev->of_node;
1801 	i2c_dev->adapter.dev.parent = i2c_dev->dev;
1802 	i2c_dev->adapter.retries = 1;
1803 	i2c_dev->adapter.timeout = 6 * HZ;
1804 	i2c_dev->adapter.quirks = i2c_dev->hw->quirks;
1805 	i2c_dev->adapter.owner = THIS_MODULE;
1806 	i2c_dev->adapter.class = I2C_CLASS_DEPRECATED;
1807 	i2c_dev->adapter.algo = &tegra_i2c_algo;
1808 	i2c_dev->adapter.nr = pdev->id;
1809 	ACPI_COMPANION_SET(&i2c_dev->adapter.dev, ACPI_COMPANION(&pdev->dev));
1810 
1811 	if (i2c_dev->hw->supports_bus_clear)
1812 		i2c_dev->adapter.bus_recovery_info = &tegra_i2c_recovery_info;
1813 
1814 	strscpy(i2c_dev->adapter.name, dev_name(i2c_dev->dev),
1815 		sizeof(i2c_dev->adapter.name));
1816 
1817 	err = i2c_add_numbered_adapter(&i2c_dev->adapter);
1818 	if (err)
1819 		goto release_rpm;
1820 
1821 	return 0;
1822 
1823 release_rpm:
1824 	pm_runtime_disable(i2c_dev->dev);
1825 
1826 	tegra_i2c_release_dma(i2c_dev);
1827 release_clocks:
1828 	tegra_i2c_release_clocks(i2c_dev);
1829 
1830 	return err;
1831 }
1832 
1833 static void tegra_i2c_remove(struct platform_device *pdev)
1834 {
1835 	struct tegra_i2c_dev *i2c_dev = platform_get_drvdata(pdev);
1836 
1837 	i2c_del_adapter(&i2c_dev->adapter);
1838 	pm_runtime_force_suspend(i2c_dev->dev);
1839 
1840 	tegra_i2c_release_dma(i2c_dev);
1841 	tegra_i2c_release_clocks(i2c_dev);
1842 }
1843 
1844 static int __maybe_unused tegra_i2c_runtime_resume(struct device *dev)
1845 {
1846 	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1847 	int err;
1848 
1849 	err = pinctrl_pm_select_default_state(dev);
1850 	if (err)
1851 		return err;
1852 
1853 	err = clk_bulk_enable(i2c_dev->nclocks, i2c_dev->clocks);
1854 	if (err)
1855 		return err;
1856 
1857 	/*
1858 	 * VI I2C device is attached to VE power domain which goes through
1859 	 * power ON/OFF during runtime PM resume/suspend, meaning that
1860 	 * controller needs to be re-initialized after power ON.
1861 	 */
1862 	if (IS_VI(i2c_dev)) {
1863 		err = tegra_i2c_init(i2c_dev);
1864 		if (err)
1865 			goto disable_clocks;
1866 	}
1867 
1868 	return 0;
1869 
1870 disable_clocks:
1871 	clk_bulk_disable(i2c_dev->nclocks, i2c_dev->clocks);
1872 
1873 	return err;
1874 }
1875 
1876 static int __maybe_unused tegra_i2c_runtime_suspend(struct device *dev)
1877 {
1878 	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1879 
1880 	clk_bulk_disable(i2c_dev->nclocks, i2c_dev->clocks);
1881 
1882 	return pinctrl_pm_select_idle_state(dev);
1883 }
1884 
1885 static int __maybe_unused tegra_i2c_suspend(struct device *dev)
1886 {
1887 	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1888 	int err;
1889 
1890 	i2c_mark_adapter_suspended(&i2c_dev->adapter);
1891 
1892 	if (!pm_runtime_status_suspended(dev)) {
1893 		err = tegra_i2c_runtime_suspend(dev);
1894 		if (err)
1895 			return err;
1896 	}
1897 
1898 	return 0;
1899 }
1900 
1901 static int __maybe_unused tegra_i2c_resume(struct device *dev)
1902 {
1903 	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1904 	int err;
1905 
1906 	/*
1907 	 * We need to ensure that clocks are enabled so that registers can be
1908 	 * restored in tegra_i2c_init().
1909 	 */
1910 	err = tegra_i2c_runtime_resume(dev);
1911 	if (err)
1912 		return err;
1913 
1914 	err = tegra_i2c_init(i2c_dev);
1915 	if (err)
1916 		return err;
1917 
1918 	/*
1919 	 * In case we are runtime suspended, disable clocks again so that we
1920 	 * don't unbalance the clock reference counts during the next runtime
1921 	 * resume transition.
1922 	 */
1923 	if (pm_runtime_status_suspended(dev)) {
1924 		err = tegra_i2c_runtime_suspend(dev);
1925 		if (err)
1926 			return err;
1927 	}
1928 
1929 	i2c_mark_adapter_resumed(&i2c_dev->adapter);
1930 
1931 	return 0;
1932 }
1933 
1934 static const struct dev_pm_ops tegra_i2c_pm = {
1935 	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(tegra_i2c_suspend, tegra_i2c_resume)
1936 	SET_RUNTIME_PM_OPS(tegra_i2c_runtime_suspend, tegra_i2c_runtime_resume,
1937 			   NULL)
1938 };
1939 
1940 static const struct acpi_device_id tegra_i2c_acpi_match[] = {
1941 	{.id = "NVDA0101", .driver_data = (kernel_ulong_t)&tegra210_i2c_hw},
1942 	{.id = "NVDA0201", .driver_data = (kernel_ulong_t)&tegra186_i2c_hw},
1943 	{.id = "NVDA0301", .driver_data = (kernel_ulong_t)&tegra194_i2c_hw},
1944 	{ }
1945 };
1946 MODULE_DEVICE_TABLE(acpi, tegra_i2c_acpi_match);
1947 
1948 static struct platform_driver tegra_i2c_driver = {
1949 	.probe = tegra_i2c_probe,
1950 	.remove = tegra_i2c_remove,
1951 	.driver = {
1952 		.name = "tegra-i2c",
1953 		.of_match_table = tegra_i2c_of_match,
1954 		.acpi_match_table = tegra_i2c_acpi_match,
1955 		.pm = &tegra_i2c_pm,
1956 	},
1957 };
1958 module_platform_driver(tegra_i2c_driver);
1959 
1960 MODULE_DESCRIPTION("NVIDIA Tegra I2C Bus Controller driver");
1961 MODULE_AUTHOR("Colin Cross");
1962 MODULE_LICENSE("GPL v2");
1963