1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Driver for the Renesas RZ/V2M I2C unit 4 * 5 * Copyright (C) 2016-2022 Renesas Electronics Corporation 6 */ 7 8 #include <linux/bits.h> 9 #include <linux/clk.h> 10 #include <linux/device.h> 11 #include <linux/err.h> 12 #include <linux/interrupt.h> 13 #include <linux/io.h> 14 #include <linux/iopoll.h> 15 #include <linux/i2c.h> 16 #include <linux/jiffies.h> 17 #include <linux/kernel.h> 18 #include <linux/math64.h> 19 #include <linux/module.h> 20 #include <linux/mod_devicetable.h> 21 #include <linux/platform_device.h> 22 #include <linux/pm_runtime.h> 23 #include <linux/reset.h> 24 25 /* Register offsets */ 26 #define IICB0DAT 0x00 /* Data Register */ 27 #define IICB0CTL0 0x08 /* Control Register 0 */ 28 #define IICB0TRG 0x0C /* Trigger Register */ 29 #define IICB0STR0 0x10 /* Status Register 0 */ 30 #define IICB0CTL1 0x20 /* Control Register 1 */ 31 #define IICB0WL 0x24 /* Low Level Width Setting Reg */ 32 #define IICB0WH 0x28 /* How Level Width Setting Reg */ 33 34 /* IICB0CTL0 */ 35 #define IICB0IICE BIT(7) /* I2C Enable */ 36 #define IICB0SLWT BIT(1) /* Interrupt Request Timing */ 37 #define IICB0SLAC BIT(0) /* Acknowledge */ 38 39 /* IICB0TRG */ 40 #define IICB0WRET BIT(2) /* Quit Wait Trigger */ 41 #define IICB0STT BIT(1) /* Create Start Condition Trigger */ 42 #define IICB0SPT BIT(0) /* Create Stop Condition Trigger */ 43 44 /* IICB0STR0 */ 45 #define IICB0SSAC BIT(8) /* Ack Flag */ 46 #define IICB0SSBS BIT(6) /* Bus Flag */ 47 #define IICB0SSSP BIT(4) /* Stop Condition Flag */ 48 49 /* IICB0CTL1 */ 50 #define IICB0MDSC BIT(7) /* Bus Mode */ 51 #define IICB0SLSE BIT(1) /* Start condition output */ 52 53 struct rzv2m_i2c_priv { 54 void __iomem *base; 55 struct i2c_adapter adap; 56 struct clk *clk; 57 int bus_mode; 58 struct completion msg_tia_done; 59 u32 iicb0wl; 60 u32 iicb0wh; 61 }; 62 63 enum bcr_index { 64 RZV2M_I2C_100K = 0, 65 RZV2M_I2C_400K, 66 }; 67 68 struct bitrate_config { 69 unsigned int percent_low; 70 unsigned int min_hold_time_ns; 71 }; 72 73 static const struct bitrate_config bitrate_configs[] = { 74 [RZV2M_I2C_100K] = { 47, 3450 }, 75 [RZV2M_I2C_400K] = { 52, 900 }, 76 }; 77 78 static inline void bit_setl(void __iomem *addr, u32 val) 79 { 80 writel(readl(addr) | val, addr); 81 } 82 83 static inline void bit_clrl(void __iomem *addr, u32 val) 84 { 85 writel(readl(addr) & ~val, addr); 86 } 87 88 static irqreturn_t rzv2m_i2c_tia_irq_handler(int this_irq, void *dev_id) 89 { 90 struct rzv2m_i2c_priv *priv = dev_id; 91 92 complete(&priv->msg_tia_done); 93 94 return IRQ_HANDLED; 95 } 96 97 /* Calculate IICB0WL and IICB0WH */ 98 static int rzv2m_i2c_clock_calculate(struct device *dev, 99 struct rzv2m_i2c_priv *priv) 100 { 101 const struct bitrate_config *config; 102 unsigned int hold_time_ns; 103 unsigned int total_pclks; 104 unsigned int trf_pclks; 105 unsigned long pclk_hz; 106 struct i2c_timings t; 107 u32 trf_ns; 108 109 i2c_parse_fw_timings(dev, &t, true); 110 111 pclk_hz = clk_get_rate(priv->clk); 112 total_pclks = pclk_hz / t.bus_freq_hz; 113 114 trf_ns = t.scl_rise_ns + t.scl_fall_ns; 115 trf_pclks = mul_u64_u32_div(pclk_hz, trf_ns, NSEC_PER_SEC); 116 117 /* Config setting */ 118 switch (t.bus_freq_hz) { 119 case I2C_MAX_FAST_MODE_FREQ: 120 priv->bus_mode = RZV2M_I2C_400K; 121 break; 122 case I2C_MAX_STANDARD_MODE_FREQ: 123 priv->bus_mode = RZV2M_I2C_100K; 124 break; 125 default: 126 dev_err(dev, "transfer speed is invalid\n"); 127 return -EINVAL; 128 } 129 config = &bitrate_configs[priv->bus_mode]; 130 131 /* IICB0WL = (percent_low / Transfer clock) x PCLK */ 132 priv->iicb0wl = total_pclks * config->percent_low / 100; 133 if (priv->iicb0wl > (BIT(10) - 1)) 134 return -EINVAL; 135 136 /* IICB0WH = ((percent_high / Transfer clock) x PCLK) - (tR + tF) */ 137 priv->iicb0wh = total_pclks - priv->iicb0wl - trf_pclks; 138 if (priv->iicb0wh > (BIT(10) - 1)) 139 return -EINVAL; 140 141 /* 142 * Data hold time must be less than 0.9us in fast mode and 143 * 3.45us in standard mode. 144 * Data hold time = IICB0WL[9:2] / PCLK 145 */ 146 hold_time_ns = div64_ul((u64)(priv->iicb0wl >> 2) * NSEC_PER_SEC, pclk_hz); 147 if (hold_time_ns > config->min_hold_time_ns) { 148 dev_err(dev, "data hold time %dns is over %dns\n", 149 hold_time_ns, config->min_hold_time_ns); 150 return -EINVAL; 151 } 152 153 return 0; 154 } 155 156 static void rzv2m_i2c_init(struct rzv2m_i2c_priv *priv) 157 { 158 u32 i2c_ctl0; 159 u32 i2c_ctl1; 160 161 /* i2c disable */ 162 writel(0, priv->base + IICB0CTL0); 163 164 /* IICB0CTL1 setting */ 165 i2c_ctl1 = IICB0SLSE; 166 if (priv->bus_mode == RZV2M_I2C_400K) 167 i2c_ctl1 |= IICB0MDSC; 168 writel(i2c_ctl1, priv->base + IICB0CTL1); 169 170 /* IICB0WL IICB0WH setting */ 171 writel(priv->iicb0wl, priv->base + IICB0WL); 172 writel(priv->iicb0wh, priv->base + IICB0WH); 173 174 /* i2c enable after setting */ 175 i2c_ctl0 = IICB0SLWT | IICB0SLAC | IICB0IICE; 176 writel(i2c_ctl0, priv->base + IICB0CTL0); 177 } 178 179 static int rzv2m_i2c_write_with_ack(struct rzv2m_i2c_priv *priv, u32 data) 180 { 181 unsigned long time_left; 182 183 reinit_completion(&priv->msg_tia_done); 184 185 writel(data, priv->base + IICB0DAT); 186 187 time_left = wait_for_completion_timeout(&priv->msg_tia_done, 188 priv->adap.timeout); 189 if (!time_left) 190 return -ETIMEDOUT; 191 192 /* Confirm ACK */ 193 if ((readl(priv->base + IICB0STR0) & IICB0SSAC) != IICB0SSAC) 194 return -ENXIO; 195 196 return 0; 197 } 198 199 static int rzv2m_i2c_read_with_ack(struct rzv2m_i2c_priv *priv, u8 *data, 200 bool last) 201 { 202 unsigned long time_left; 203 u32 data_tmp; 204 205 reinit_completion(&priv->msg_tia_done); 206 207 /* Interrupt request timing : 8th clock */ 208 bit_clrl(priv->base + IICB0CTL0, IICB0SLWT); 209 210 /* Exit the wait state */ 211 writel(IICB0WRET, priv->base + IICB0TRG); 212 213 /* Wait for transaction */ 214 time_left = wait_for_completion_timeout(&priv->msg_tia_done, 215 priv->adap.timeout); 216 if (!time_left) 217 return -ETIMEDOUT; 218 219 if (last) { 220 /* Disable ACK */ 221 bit_clrl(priv->base + IICB0CTL0, IICB0SLAC); 222 223 /* Read data*/ 224 data_tmp = readl(priv->base + IICB0DAT); 225 226 /* Interrupt request timing : 9th clock */ 227 bit_setl(priv->base + IICB0CTL0, IICB0SLWT); 228 229 /* Exit the wait state */ 230 writel(IICB0WRET, priv->base + IICB0TRG); 231 232 /* Wait for transaction */ 233 time_left = wait_for_completion_timeout(&priv->msg_tia_done, 234 priv->adap.timeout); 235 if (!time_left) 236 return -ETIMEDOUT; 237 238 /* Enable ACK */ 239 bit_setl(priv->base + IICB0CTL0, IICB0SLAC); 240 } else { 241 /* Read data */ 242 data_tmp = readl(priv->base + IICB0DAT); 243 } 244 245 *data = data_tmp; 246 247 return 0; 248 } 249 250 static int rzv2m_i2c_send(struct rzv2m_i2c_priv *priv, struct i2c_msg *msg, 251 unsigned int *count) 252 { 253 unsigned int i; 254 int ret; 255 256 for (i = 0; i < msg->len; i++) { 257 ret = rzv2m_i2c_write_with_ack(priv, msg->buf[i]); 258 if (ret < 0) 259 return ret; 260 } 261 *count = i; 262 263 return 0; 264 } 265 266 static int rzv2m_i2c_receive(struct rzv2m_i2c_priv *priv, struct i2c_msg *msg, 267 unsigned int *count) 268 { 269 unsigned int i; 270 int ret; 271 272 for (i = 0; i < msg->len; i++) { 273 ret = rzv2m_i2c_read_with_ack(priv, &msg->buf[i], 274 (msg->len - 1) == i); 275 if (ret < 0) 276 return ret; 277 } 278 *count = i; 279 280 return 0; 281 } 282 283 static int rzv2m_i2c_send_address(struct rzv2m_i2c_priv *priv, 284 struct i2c_msg *msg) 285 { 286 u32 addr; 287 int ret; 288 289 if (msg->flags & I2C_M_TEN) { 290 /* 291 * 10-bit address 292 * addr_1: 5'b11110 | addr[9:8] | (R/nW) 293 * addr_2: addr[7:0] 294 */ 295 addr = 0xf0 | ((msg->addr & GENMASK(9, 8)) >> 7); 296 addr |= !!(msg->flags & I2C_M_RD); 297 /* Send 1st address(extend code) */ 298 ret = rzv2m_i2c_write_with_ack(priv, addr); 299 if (ret) 300 return ret; 301 302 /* Send 2nd address */ 303 ret = rzv2m_i2c_write_with_ack(priv, msg->addr & 0xff); 304 } else { 305 /* 7-bit address */ 306 addr = i2c_8bit_addr_from_msg(msg); 307 ret = rzv2m_i2c_write_with_ack(priv, addr); 308 } 309 310 return ret; 311 } 312 313 static int rzv2m_i2c_stop_condition(struct rzv2m_i2c_priv *priv) 314 { 315 u32 value; 316 317 /* Send stop condition */ 318 writel(IICB0SPT, priv->base + IICB0TRG); 319 return readl_poll_timeout(priv->base + IICB0STR0, 320 value, value & IICB0SSSP, 321 100, jiffies_to_usecs(priv->adap.timeout)); 322 } 323 324 static int rzv2m_i2c_xfer_msg(struct rzv2m_i2c_priv *priv, 325 struct i2c_msg *msg, int stop) 326 { 327 unsigned int count = 0; 328 int ret, read = !!(msg->flags & I2C_M_RD); 329 330 /* Send start condition */ 331 writel(IICB0STT, priv->base + IICB0TRG); 332 333 ret = rzv2m_i2c_send_address(priv, msg); 334 if (!ret) { 335 if (read) 336 ret = rzv2m_i2c_receive(priv, msg, &count); 337 else 338 ret = rzv2m_i2c_send(priv, msg, &count); 339 340 if (!ret && stop) 341 ret = rzv2m_i2c_stop_condition(priv); 342 } 343 344 if (ret == -ENXIO) 345 rzv2m_i2c_stop_condition(priv); 346 else if (ret < 0) 347 rzv2m_i2c_init(priv); 348 else 349 ret = count; 350 351 return ret; 352 } 353 354 static int rzv2m_i2c_xfer(struct i2c_adapter *adap, 355 struct i2c_msg *msgs, int num) 356 { 357 struct rzv2m_i2c_priv *priv = i2c_get_adapdata(adap); 358 struct device *dev = priv->adap.dev.parent; 359 unsigned int i; 360 int ret; 361 362 ret = pm_runtime_resume_and_get(dev); 363 if (ret < 0) 364 return ret; 365 366 if (readl(priv->base + IICB0STR0) & IICB0SSBS) { 367 ret = -EAGAIN; 368 goto out; 369 } 370 371 /* I2C main transfer */ 372 for (i = 0; i < num; i++) { 373 ret = rzv2m_i2c_xfer_msg(priv, &msgs[i], i == (num - 1)); 374 if (ret < 0) 375 goto out; 376 } 377 ret = num; 378 379 out: 380 pm_runtime_mark_last_busy(dev); 381 pm_runtime_put_autosuspend(dev); 382 383 return ret; 384 } 385 386 static u32 rzv2m_i2c_func(struct i2c_adapter *adap) 387 { 388 return I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK) | 389 I2C_FUNC_10BIT_ADDR; 390 } 391 392 static int rzv2m_i2c_disable(struct device *dev, struct rzv2m_i2c_priv *priv) 393 { 394 int ret; 395 396 ret = pm_runtime_resume_and_get(dev); 397 if (ret < 0) 398 return ret; 399 400 bit_clrl(priv->base + IICB0CTL0, IICB0IICE); 401 pm_runtime_put(dev); 402 403 return 0; 404 } 405 406 static const struct i2c_adapter_quirks rzv2m_i2c_quirks = { 407 .flags = I2C_AQ_NO_ZERO_LEN, 408 }; 409 410 static struct i2c_algorithm rzv2m_i2c_algo = { 411 .xfer = rzv2m_i2c_xfer, 412 .functionality = rzv2m_i2c_func, 413 }; 414 415 static int rzv2m_i2c_probe(struct platform_device *pdev) 416 { 417 struct device *dev = &pdev->dev; 418 struct rzv2m_i2c_priv *priv; 419 struct reset_control *rstc; 420 struct i2c_adapter *adap; 421 struct resource *res; 422 int irq, ret; 423 424 priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); 425 if (!priv) 426 return -ENOMEM; 427 428 priv->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); 429 if (IS_ERR(priv->base)) 430 return PTR_ERR(priv->base); 431 432 priv->clk = devm_clk_get(dev, NULL); 433 if (IS_ERR(priv->clk)) 434 return dev_err_probe(dev, PTR_ERR(priv->clk), "Can't get clock\n"); 435 436 rstc = devm_reset_control_get_shared(dev, NULL); 437 if (IS_ERR(rstc)) 438 return dev_err_probe(dev, PTR_ERR(rstc), "Missing reset ctrl\n"); 439 /* 440 * The reset also affects other HW that is not under the control 441 * of Linux. Therefore, all we can do is deassert the reset. 442 */ 443 reset_control_deassert(rstc); 444 445 irq = platform_get_irq(pdev, 0); 446 if (irq < 0) 447 return irq; 448 449 ret = devm_request_irq(dev, irq, rzv2m_i2c_tia_irq_handler, 0, 450 dev_name(dev), priv); 451 if (ret < 0) 452 return dev_err_probe(dev, ret, "Unable to request irq %d\n", irq); 453 454 adap = &priv->adap; 455 adap->nr = pdev->id; 456 adap->algo = &rzv2m_i2c_algo; 457 adap->quirks = &rzv2m_i2c_quirks; 458 adap->dev.parent = dev; 459 adap->owner = THIS_MODULE; 460 device_set_node(&adap->dev, dev_fwnode(dev)); 461 i2c_set_adapdata(adap, priv); 462 strscpy(adap->name, pdev->name, sizeof(adap->name)); 463 init_completion(&priv->msg_tia_done); 464 465 ret = rzv2m_i2c_clock_calculate(dev, priv); 466 if (ret < 0) 467 return ret; 468 469 pm_runtime_enable(dev); 470 471 pm_runtime_get_sync(dev); 472 rzv2m_i2c_init(priv); 473 pm_runtime_put(dev); 474 475 platform_set_drvdata(pdev, priv); 476 477 ret = i2c_add_numbered_adapter(adap); 478 if (ret < 0) { 479 rzv2m_i2c_disable(dev, priv); 480 pm_runtime_disable(dev); 481 } 482 483 return ret; 484 } 485 486 static void rzv2m_i2c_remove(struct platform_device *pdev) 487 { 488 struct rzv2m_i2c_priv *priv = platform_get_drvdata(pdev); 489 struct device *dev = priv->adap.dev.parent; 490 491 i2c_del_adapter(&priv->adap); 492 rzv2m_i2c_disable(dev, priv); 493 pm_runtime_disable(dev); 494 } 495 496 static int rzv2m_i2c_suspend(struct device *dev) 497 { 498 struct rzv2m_i2c_priv *priv = dev_get_drvdata(dev); 499 500 return rzv2m_i2c_disable(dev, priv); 501 } 502 503 static int rzv2m_i2c_resume(struct device *dev) 504 { 505 struct rzv2m_i2c_priv *priv = dev_get_drvdata(dev); 506 int ret; 507 508 ret = rzv2m_i2c_clock_calculate(dev, priv); 509 if (ret < 0) 510 return ret; 511 512 ret = pm_runtime_resume_and_get(dev); 513 if (ret < 0) 514 return ret; 515 516 rzv2m_i2c_init(priv); 517 pm_runtime_put(dev); 518 519 return 0; 520 } 521 522 static const struct of_device_id rzv2m_i2c_ids[] = { 523 { .compatible = "renesas,rzv2m-i2c" }, 524 { } 525 }; 526 MODULE_DEVICE_TABLE(of, rzv2m_i2c_ids); 527 528 static const struct dev_pm_ops rzv2m_i2c_pm_ops = { 529 SYSTEM_SLEEP_PM_OPS(rzv2m_i2c_suspend, rzv2m_i2c_resume) 530 }; 531 532 static struct platform_driver rzv2m_i2c_driver = { 533 .driver = { 534 .name = "rzv2m-i2c", 535 .of_match_table = rzv2m_i2c_ids, 536 .pm = pm_sleep_ptr(&rzv2m_i2c_pm_ops), 537 }, 538 .probe = rzv2m_i2c_probe, 539 .remove_new = rzv2m_i2c_remove, 540 }; 541 module_platform_driver(rzv2m_i2c_driver); 542 543 MODULE_DESCRIPTION("RZ/V2M I2C bus driver"); 544 MODULE_AUTHOR("Renesas Electronics Corporation"); 545 MODULE_LICENSE("GPL"); 546