xref: /linux/drivers/i2c/busses/i2c-rk3x.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Driver for I2C adapter in Rockchip RK3xxx SoC
3  *
4  * Max Schwarz <max.schwarz@online.de>
5  * based on the patches by Rockchip Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/i2c.h>
15 #include <linux/interrupt.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/platform_device.h>
19 #include <linux/io.h>
20 #include <linux/of_address.h>
21 #include <linux/of_irq.h>
22 #include <linux/spinlock.h>
23 #include <linux/clk.h>
24 #include <linux/wait.h>
25 #include <linux/mfd/syscon.h>
26 #include <linux/regmap.h>
27 #include <linux/math64.h>
28 
29 
30 /* Register Map */
31 #define REG_CON        0x00 /* control register */
32 #define REG_CLKDIV     0x04 /* clock divisor register */
33 #define REG_MRXADDR    0x08 /* slave address for REGISTER_TX */
34 #define REG_MRXRADDR   0x0c /* slave register address for REGISTER_TX */
35 #define REG_MTXCNT     0x10 /* number of bytes to be transmitted */
36 #define REG_MRXCNT     0x14 /* number of bytes to be received */
37 #define REG_IEN        0x18 /* interrupt enable */
38 #define REG_IPD        0x1c /* interrupt pending */
39 #define REG_FCNT       0x20 /* finished count */
40 
41 /* Data buffer offsets */
42 #define TXBUFFER_BASE 0x100
43 #define RXBUFFER_BASE 0x200
44 
45 /* REG_CON bits */
46 #define REG_CON_EN        BIT(0)
47 enum {
48 	REG_CON_MOD_TX = 0,      /* transmit data */
49 	REG_CON_MOD_REGISTER_TX, /* select register and restart */
50 	REG_CON_MOD_RX,          /* receive data */
51 	REG_CON_MOD_REGISTER_RX, /* broken: transmits read addr AND writes
52 				  * register addr */
53 };
54 #define REG_CON_MOD(mod)  ((mod) << 1)
55 #define REG_CON_MOD_MASK  (BIT(1) | BIT(2))
56 #define REG_CON_START     BIT(3)
57 #define REG_CON_STOP      BIT(4)
58 #define REG_CON_LASTACK   BIT(5) /* 1: send NACK after last received byte */
59 #define REG_CON_ACTACK    BIT(6) /* 1: stop if NACK is received */
60 
61 /* REG_MRXADDR bits */
62 #define REG_MRXADDR_VALID(x) BIT(24 + (x)) /* [x*8+7:x*8] of MRX[R]ADDR valid */
63 
64 /* REG_IEN/REG_IPD bits */
65 #define REG_INT_BTF       BIT(0) /* a byte was transmitted */
66 #define REG_INT_BRF       BIT(1) /* a byte was received */
67 #define REG_INT_MBTF      BIT(2) /* master data transmit finished */
68 #define REG_INT_MBRF      BIT(3) /* master data receive finished */
69 #define REG_INT_START     BIT(4) /* START condition generated */
70 #define REG_INT_STOP      BIT(5) /* STOP condition generated */
71 #define REG_INT_NAKRCV    BIT(6) /* NACK received */
72 #define REG_INT_ALL       0x7f
73 
74 /* Constants */
75 #define WAIT_TIMEOUT      1000 /* ms */
76 #define DEFAULT_SCL_RATE  (100 * 1000) /* Hz */
77 
78 enum rk3x_i2c_state {
79 	STATE_IDLE,
80 	STATE_START,
81 	STATE_READ,
82 	STATE_WRITE,
83 	STATE_STOP
84 };
85 
86 /**
87  * @grf_offset: offset inside the grf regmap for setting the i2c type
88  */
89 struct rk3x_i2c_soc_data {
90 	int grf_offset;
91 };
92 
93 struct rk3x_i2c {
94 	struct i2c_adapter adap;
95 	struct device *dev;
96 	struct rk3x_i2c_soc_data *soc_data;
97 
98 	/* Hardware resources */
99 	void __iomem *regs;
100 	struct clk *clk;
101 	struct notifier_block clk_rate_nb;
102 
103 	/* Settings */
104 	struct i2c_timings t;
105 
106 	/* Synchronization & notification */
107 	spinlock_t lock;
108 	wait_queue_head_t wait;
109 	bool busy;
110 
111 	/* Current message */
112 	struct i2c_msg *msg;
113 	u8 addr;
114 	unsigned int mode;
115 	bool is_last_msg;
116 
117 	/* I2C state machine */
118 	enum rk3x_i2c_state state;
119 	unsigned int processed; /* sent/received bytes */
120 	int error;
121 };
122 
123 static inline void i2c_writel(struct rk3x_i2c *i2c, u32 value,
124 			      unsigned int offset)
125 {
126 	writel(value, i2c->regs + offset);
127 }
128 
129 static inline u32 i2c_readl(struct rk3x_i2c *i2c, unsigned int offset)
130 {
131 	return readl(i2c->regs + offset);
132 }
133 
134 /* Reset all interrupt pending bits */
135 static inline void rk3x_i2c_clean_ipd(struct rk3x_i2c *i2c)
136 {
137 	i2c_writel(i2c, REG_INT_ALL, REG_IPD);
138 }
139 
140 /**
141  * Generate a START condition, which triggers a REG_INT_START interrupt.
142  */
143 static void rk3x_i2c_start(struct rk3x_i2c *i2c)
144 {
145 	u32 val;
146 
147 	rk3x_i2c_clean_ipd(i2c);
148 	i2c_writel(i2c, REG_INT_START, REG_IEN);
149 
150 	/* enable adapter with correct mode, send START condition */
151 	val = REG_CON_EN | REG_CON_MOD(i2c->mode) | REG_CON_START;
152 
153 	/* if we want to react to NACK, set ACTACK bit */
154 	if (!(i2c->msg->flags & I2C_M_IGNORE_NAK))
155 		val |= REG_CON_ACTACK;
156 
157 	i2c_writel(i2c, val, REG_CON);
158 }
159 
160 /**
161  * Generate a STOP condition, which triggers a REG_INT_STOP interrupt.
162  *
163  * @error: Error code to return in rk3x_i2c_xfer
164  */
165 static void rk3x_i2c_stop(struct rk3x_i2c *i2c, int error)
166 {
167 	unsigned int ctrl;
168 
169 	i2c->processed = 0;
170 	i2c->msg = NULL;
171 	i2c->error = error;
172 
173 	if (i2c->is_last_msg) {
174 		/* Enable stop interrupt */
175 		i2c_writel(i2c, REG_INT_STOP, REG_IEN);
176 
177 		i2c->state = STATE_STOP;
178 
179 		ctrl = i2c_readl(i2c, REG_CON);
180 		ctrl |= REG_CON_STOP;
181 		i2c_writel(i2c, ctrl, REG_CON);
182 	} else {
183 		/* Signal rk3x_i2c_xfer to start the next message. */
184 		i2c->busy = false;
185 		i2c->state = STATE_IDLE;
186 
187 		/*
188 		 * The HW is actually not capable of REPEATED START. But we can
189 		 * get the intended effect by resetting its internal state
190 		 * and issuing an ordinary START.
191 		 */
192 		i2c_writel(i2c, 0, REG_CON);
193 
194 		/* signal that we are finished with the current msg */
195 		wake_up(&i2c->wait);
196 	}
197 }
198 
199 /**
200  * Setup a read according to i2c->msg
201  */
202 static void rk3x_i2c_prepare_read(struct rk3x_i2c *i2c)
203 {
204 	unsigned int len = i2c->msg->len - i2c->processed;
205 	u32 con;
206 
207 	con = i2c_readl(i2c, REG_CON);
208 
209 	/*
210 	 * The hw can read up to 32 bytes at a time. If we need more than one
211 	 * chunk, send an ACK after the last byte of the current chunk.
212 	 */
213 	if (len > 32) {
214 		len = 32;
215 		con &= ~REG_CON_LASTACK;
216 	} else {
217 		con |= REG_CON_LASTACK;
218 	}
219 
220 	/* make sure we are in plain RX mode if we read a second chunk */
221 	if (i2c->processed != 0) {
222 		con &= ~REG_CON_MOD_MASK;
223 		con |= REG_CON_MOD(REG_CON_MOD_RX);
224 	}
225 
226 	i2c_writel(i2c, con, REG_CON);
227 	i2c_writel(i2c, len, REG_MRXCNT);
228 }
229 
230 /**
231  * Fill the transmit buffer with data from i2c->msg
232  */
233 static void rk3x_i2c_fill_transmit_buf(struct rk3x_i2c *i2c)
234 {
235 	unsigned int i, j;
236 	u32 cnt = 0;
237 	u32 val;
238 	u8 byte;
239 
240 	for (i = 0; i < 8; ++i) {
241 		val = 0;
242 		for (j = 0; j < 4; ++j) {
243 			if ((i2c->processed == i2c->msg->len) && (cnt != 0))
244 				break;
245 
246 			if (i2c->processed == 0 && cnt == 0)
247 				byte = (i2c->addr & 0x7f) << 1;
248 			else
249 				byte = i2c->msg->buf[i2c->processed++];
250 
251 			val |= byte << (j * 8);
252 			cnt++;
253 		}
254 
255 		i2c_writel(i2c, val, TXBUFFER_BASE + 4 * i);
256 
257 		if (i2c->processed == i2c->msg->len)
258 			break;
259 	}
260 
261 	i2c_writel(i2c, cnt, REG_MTXCNT);
262 }
263 
264 
265 /* IRQ handlers for individual states */
266 
267 static void rk3x_i2c_handle_start(struct rk3x_i2c *i2c, unsigned int ipd)
268 {
269 	if (!(ipd & REG_INT_START)) {
270 		rk3x_i2c_stop(i2c, -EIO);
271 		dev_warn(i2c->dev, "unexpected irq in START: 0x%x\n", ipd);
272 		rk3x_i2c_clean_ipd(i2c);
273 		return;
274 	}
275 
276 	/* ack interrupt */
277 	i2c_writel(i2c, REG_INT_START, REG_IPD);
278 
279 	/* disable start bit */
280 	i2c_writel(i2c, i2c_readl(i2c, REG_CON) & ~REG_CON_START, REG_CON);
281 
282 	/* enable appropriate interrupts and transition */
283 	if (i2c->mode == REG_CON_MOD_TX) {
284 		i2c_writel(i2c, REG_INT_MBTF | REG_INT_NAKRCV, REG_IEN);
285 		i2c->state = STATE_WRITE;
286 		rk3x_i2c_fill_transmit_buf(i2c);
287 	} else {
288 		/* in any other case, we are going to be reading. */
289 		i2c_writel(i2c, REG_INT_MBRF | REG_INT_NAKRCV, REG_IEN);
290 		i2c->state = STATE_READ;
291 		rk3x_i2c_prepare_read(i2c);
292 	}
293 }
294 
295 static void rk3x_i2c_handle_write(struct rk3x_i2c *i2c, unsigned int ipd)
296 {
297 	if (!(ipd & REG_INT_MBTF)) {
298 		rk3x_i2c_stop(i2c, -EIO);
299 		dev_err(i2c->dev, "unexpected irq in WRITE: 0x%x\n", ipd);
300 		rk3x_i2c_clean_ipd(i2c);
301 		return;
302 	}
303 
304 	/* ack interrupt */
305 	i2c_writel(i2c, REG_INT_MBTF, REG_IPD);
306 
307 	/* are we finished? */
308 	if (i2c->processed == i2c->msg->len)
309 		rk3x_i2c_stop(i2c, i2c->error);
310 	else
311 		rk3x_i2c_fill_transmit_buf(i2c);
312 }
313 
314 static void rk3x_i2c_handle_read(struct rk3x_i2c *i2c, unsigned int ipd)
315 {
316 	unsigned int i;
317 	unsigned int len = i2c->msg->len - i2c->processed;
318 	u32 uninitialized_var(val);
319 	u8 byte;
320 
321 	/* we only care for MBRF here. */
322 	if (!(ipd & REG_INT_MBRF))
323 		return;
324 
325 	/* ack interrupt */
326 	i2c_writel(i2c, REG_INT_MBRF, REG_IPD);
327 
328 	/* Can only handle a maximum of 32 bytes at a time */
329 	if (len > 32)
330 		len = 32;
331 
332 	/* read the data from receive buffer */
333 	for (i = 0; i < len; ++i) {
334 		if (i % 4 == 0)
335 			val = i2c_readl(i2c, RXBUFFER_BASE + (i / 4) * 4);
336 
337 		byte = (val >> ((i % 4) * 8)) & 0xff;
338 		i2c->msg->buf[i2c->processed++] = byte;
339 	}
340 
341 	/* are we finished? */
342 	if (i2c->processed == i2c->msg->len)
343 		rk3x_i2c_stop(i2c, i2c->error);
344 	else
345 		rk3x_i2c_prepare_read(i2c);
346 }
347 
348 static void rk3x_i2c_handle_stop(struct rk3x_i2c *i2c, unsigned int ipd)
349 {
350 	unsigned int con;
351 
352 	if (!(ipd & REG_INT_STOP)) {
353 		rk3x_i2c_stop(i2c, -EIO);
354 		dev_err(i2c->dev, "unexpected irq in STOP: 0x%x\n", ipd);
355 		rk3x_i2c_clean_ipd(i2c);
356 		return;
357 	}
358 
359 	/* ack interrupt */
360 	i2c_writel(i2c, REG_INT_STOP, REG_IPD);
361 
362 	/* disable STOP bit */
363 	con = i2c_readl(i2c, REG_CON);
364 	con &= ~REG_CON_STOP;
365 	i2c_writel(i2c, con, REG_CON);
366 
367 	i2c->busy = false;
368 	i2c->state = STATE_IDLE;
369 
370 	/* signal rk3x_i2c_xfer that we are finished */
371 	wake_up(&i2c->wait);
372 }
373 
374 static irqreturn_t rk3x_i2c_irq(int irqno, void *dev_id)
375 {
376 	struct rk3x_i2c *i2c = dev_id;
377 	unsigned int ipd;
378 
379 	spin_lock(&i2c->lock);
380 
381 	ipd = i2c_readl(i2c, REG_IPD);
382 	if (i2c->state == STATE_IDLE) {
383 		dev_warn(i2c->dev, "irq in STATE_IDLE, ipd = 0x%x\n", ipd);
384 		rk3x_i2c_clean_ipd(i2c);
385 		goto out;
386 	}
387 
388 	dev_dbg(i2c->dev, "IRQ: state %d, ipd: %x\n", i2c->state, ipd);
389 
390 	/* Clean interrupt bits we don't care about */
391 	ipd &= ~(REG_INT_BRF | REG_INT_BTF);
392 
393 	if (ipd & REG_INT_NAKRCV) {
394 		/*
395 		 * We got a NACK in the last operation. Depending on whether
396 		 * IGNORE_NAK is set, we have to stop the operation and report
397 		 * an error.
398 		 */
399 		i2c_writel(i2c, REG_INT_NAKRCV, REG_IPD);
400 
401 		ipd &= ~REG_INT_NAKRCV;
402 
403 		if (!(i2c->msg->flags & I2C_M_IGNORE_NAK))
404 			rk3x_i2c_stop(i2c, -ENXIO);
405 	}
406 
407 	/* is there anything left to handle? */
408 	if ((ipd & REG_INT_ALL) == 0)
409 		goto out;
410 
411 	switch (i2c->state) {
412 	case STATE_START:
413 		rk3x_i2c_handle_start(i2c, ipd);
414 		break;
415 	case STATE_WRITE:
416 		rk3x_i2c_handle_write(i2c, ipd);
417 		break;
418 	case STATE_READ:
419 		rk3x_i2c_handle_read(i2c, ipd);
420 		break;
421 	case STATE_STOP:
422 		rk3x_i2c_handle_stop(i2c, ipd);
423 		break;
424 	case STATE_IDLE:
425 		break;
426 	}
427 
428 out:
429 	spin_unlock(&i2c->lock);
430 	return IRQ_HANDLED;
431 }
432 
433 /**
434  * Calculate divider values for desired SCL frequency
435  *
436  * @clk_rate: I2C input clock rate
437  * @t: Known I2C timing information.
438  * @div_low: Divider output for low
439  * @div_high: Divider output for high
440  *
441  * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case
442  * a best-effort divider value is returned in divs. If the target rate is
443  * too high, we silently use the highest possible rate.
444  */
445 static int rk3x_i2c_calc_divs(unsigned long clk_rate,
446 			      struct i2c_timings *t,
447 			      unsigned long *div_low,
448 			      unsigned long *div_high)
449 {
450 	unsigned long spec_min_low_ns, spec_min_high_ns;
451 	unsigned long spec_setup_start, spec_max_data_hold_ns;
452 	unsigned long data_hold_buffer_ns;
453 
454 	unsigned long min_low_ns, min_high_ns;
455 	unsigned long max_low_ns, min_total_ns;
456 
457 	unsigned long clk_rate_khz, scl_rate_khz;
458 
459 	unsigned long min_low_div, min_high_div;
460 	unsigned long max_low_div;
461 
462 	unsigned long min_div_for_hold, min_total_div;
463 	unsigned long extra_div, extra_low_div, ideal_low_div;
464 
465 	int ret = 0;
466 
467 	/* Only support standard-mode and fast-mode */
468 	if (WARN_ON(t->bus_freq_hz > 400000))
469 		t->bus_freq_hz = 400000;
470 
471 	/* prevent scl_rate_khz from becoming 0 */
472 	if (WARN_ON(t->bus_freq_hz < 1000))
473 		t->bus_freq_hz = 1000;
474 
475 	/*
476 	 * min_low_ns:  The minimum number of ns we need to hold low to
477 	 *		meet I2C specification, should include fall time.
478 	 * min_high_ns: The minimum number of ns we need to hold high to
479 	 *		meet I2C specification, should include rise time.
480 	 * max_low_ns:  The maximum number of ns we can hold low to meet
481 	 *		I2C specification.
482 	 *
483 	 * Note: max_low_ns should be (maximum data hold time * 2 - buffer)
484 	 *	 This is because the i2c host on Rockchip holds the data line
485 	 *	 for half the low time.
486 	 */
487 	if (t->bus_freq_hz <= 100000) {
488 		/* Standard-mode */
489 		spec_min_low_ns = 4700;
490 		spec_setup_start = 4700;
491 		spec_min_high_ns = 4000;
492 		spec_max_data_hold_ns = 3450;
493 		data_hold_buffer_ns = 50;
494 	} else {
495 		/* Fast-mode */
496 		spec_min_low_ns = 1300;
497 		spec_setup_start = 600;
498 		spec_min_high_ns = 600;
499 		spec_max_data_hold_ns = 900;
500 		data_hold_buffer_ns = 50;
501 	}
502 	min_high_ns = t->scl_rise_ns + spec_min_high_ns;
503 
504 	/*
505 	 * Timings for repeated start:
506 	 * - controller appears to drop SDA at .875x (7/8) programmed clk high.
507 	 * - controller appears to keep SCL high for 2x programmed clk high.
508 	 *
509 	 * We need to account for those rules in picking our "high" time so
510 	 * we meet tSU;STA and tHD;STA times.
511 	 */
512 	min_high_ns = max(min_high_ns,
513 		DIV_ROUND_UP((t->scl_rise_ns + spec_setup_start) * 1000, 875));
514 	min_high_ns = max(min_high_ns,
515 		DIV_ROUND_UP((t->scl_rise_ns + spec_setup_start +
516 			      t->sda_fall_ns + spec_min_high_ns), 2));
517 
518 	min_low_ns = t->scl_fall_ns + spec_min_low_ns;
519 	max_low_ns = spec_max_data_hold_ns * 2 - data_hold_buffer_ns;
520 	min_total_ns = min_low_ns + min_high_ns;
521 
522 	/* Adjust to avoid overflow */
523 	clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000);
524 	scl_rate_khz = t->bus_freq_hz / 1000;
525 
526 	/*
527 	 * We need the total div to be >= this number
528 	 * so we don't clock too fast.
529 	 */
530 	min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8);
531 
532 	/* These are the min dividers needed for min hold times. */
533 	min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000);
534 	min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000);
535 	min_div_for_hold = (min_low_div + min_high_div);
536 
537 	/*
538 	 * This is the maximum divider so we don't go over the maximum.
539 	 * We don't round up here (we round down) since this is a maximum.
540 	 */
541 	max_low_div = clk_rate_khz * max_low_ns / (8 * 1000000);
542 
543 	if (min_low_div > max_low_div) {
544 		WARN_ONCE(true,
545 			  "Conflicting, min_low_div %lu, max_low_div %lu\n",
546 			  min_low_div, max_low_div);
547 		max_low_div = min_low_div;
548 	}
549 
550 	if (min_div_for_hold > min_total_div) {
551 		/*
552 		 * Time needed to meet hold requirements is important.
553 		 * Just use that.
554 		 */
555 		*div_low = min_low_div;
556 		*div_high = min_high_div;
557 	} else {
558 		/*
559 		 * We've got to distribute some time among the low and high
560 		 * so we don't run too fast.
561 		 */
562 		extra_div = min_total_div - min_div_for_hold;
563 
564 		/*
565 		 * We'll try to split things up perfectly evenly,
566 		 * biasing slightly towards having a higher div
567 		 * for low (spend more time low).
568 		 */
569 		ideal_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns,
570 					     scl_rate_khz * 8 * min_total_ns);
571 
572 		/* Don't allow it to go over the maximum */
573 		if (ideal_low_div > max_low_div)
574 			ideal_low_div = max_low_div;
575 
576 		/*
577 		 * Handle when the ideal low div is going to take up
578 		 * more than we have.
579 		 */
580 		if (ideal_low_div > min_low_div + extra_div)
581 			ideal_low_div = min_low_div + extra_div;
582 
583 		/* Give low the "ideal" and give high whatever extra is left */
584 		extra_low_div = ideal_low_div - min_low_div;
585 		*div_low = ideal_low_div;
586 		*div_high = min_high_div + (extra_div - extra_low_div);
587 	}
588 
589 	/*
590 	 * Adjust to the fact that the hardware has an implicit "+1".
591 	 * NOTE: Above calculations always produce div_low > 0 and div_high > 0.
592 	 */
593 	*div_low = *div_low - 1;
594 	*div_high = *div_high - 1;
595 
596 	/* Maximum divider supported by hw is 0xffff */
597 	if (*div_low > 0xffff) {
598 		*div_low = 0xffff;
599 		ret = -EINVAL;
600 	}
601 
602 	if (*div_high > 0xffff) {
603 		*div_high = 0xffff;
604 		ret = -EINVAL;
605 	}
606 
607 	return ret;
608 }
609 
610 static void rk3x_i2c_adapt_div(struct rk3x_i2c *i2c, unsigned long clk_rate)
611 {
612 	struct i2c_timings *t = &i2c->t;
613 	unsigned long div_low, div_high;
614 	u64 t_low_ns, t_high_ns;
615 	int ret;
616 
617 	ret = rk3x_i2c_calc_divs(clk_rate, t, &div_low, &div_high);
618 	WARN_ONCE(ret != 0, "Could not reach SCL freq %u", t->bus_freq_hz);
619 
620 	clk_enable(i2c->clk);
621 	i2c_writel(i2c, (div_high << 16) | (div_low & 0xffff), REG_CLKDIV);
622 	clk_disable(i2c->clk);
623 
624 	t_low_ns = div_u64(((u64)div_low + 1) * 8 * 1000000000, clk_rate);
625 	t_high_ns = div_u64(((u64)div_high + 1) * 8 * 1000000000, clk_rate);
626 	dev_dbg(i2c->dev,
627 		"CLK %lukhz, Req %uns, Act low %lluns high %lluns\n",
628 		clk_rate / 1000,
629 		1000000000 / t->bus_freq_hz,
630 		t_low_ns, t_high_ns);
631 }
632 
633 /**
634  * rk3x_i2c_clk_notifier_cb - Clock rate change callback
635  * @nb:		Pointer to notifier block
636  * @event:	Notification reason
637  * @data:	Pointer to notification data object
638  *
639  * The callback checks whether a valid bus frequency can be generated after the
640  * change. If so, the change is acknowledged, otherwise the change is aborted.
641  * New dividers are written to the HW in the pre- or post change notification
642  * depending on the scaling direction.
643  *
644  * Code adapted from i2c-cadence.c.
645  *
646  * Return:	NOTIFY_STOP if the rate change should be aborted, NOTIFY_OK
647  *		to acknowedge the change, NOTIFY_DONE if the notification is
648  *		considered irrelevant.
649  */
650 static int rk3x_i2c_clk_notifier_cb(struct notifier_block *nb, unsigned long
651 				    event, void *data)
652 {
653 	struct clk_notifier_data *ndata = data;
654 	struct rk3x_i2c *i2c = container_of(nb, struct rk3x_i2c, clk_rate_nb);
655 	unsigned long div_low, div_high;
656 
657 	switch (event) {
658 	case PRE_RATE_CHANGE:
659 		if (rk3x_i2c_calc_divs(ndata->new_rate, &i2c->t,
660 				       &div_low, &div_high) != 0)
661 			return NOTIFY_STOP;
662 
663 		/* scale up */
664 		if (ndata->new_rate > ndata->old_rate)
665 			rk3x_i2c_adapt_div(i2c, ndata->new_rate);
666 
667 		return NOTIFY_OK;
668 	case POST_RATE_CHANGE:
669 		/* scale down */
670 		if (ndata->new_rate < ndata->old_rate)
671 			rk3x_i2c_adapt_div(i2c, ndata->new_rate);
672 		return NOTIFY_OK;
673 	case ABORT_RATE_CHANGE:
674 		/* scale up */
675 		if (ndata->new_rate > ndata->old_rate)
676 			rk3x_i2c_adapt_div(i2c, ndata->old_rate);
677 		return NOTIFY_OK;
678 	default:
679 		return NOTIFY_DONE;
680 	}
681 }
682 
683 /**
684  * Setup I2C registers for an I2C operation specified by msgs, num.
685  *
686  * Must be called with i2c->lock held.
687  *
688  * @msgs: I2C msgs to process
689  * @num: Number of msgs
690  *
691  * returns: Number of I2C msgs processed or negative in case of error
692  */
693 static int rk3x_i2c_setup(struct rk3x_i2c *i2c, struct i2c_msg *msgs, int num)
694 {
695 	u32 addr = (msgs[0].addr & 0x7f) << 1;
696 	int ret = 0;
697 
698 	/*
699 	 * The I2C adapter can issue a small (len < 4) write packet before
700 	 * reading. This speeds up SMBus-style register reads.
701 	 * The MRXADDR/MRXRADDR hold the slave address and the slave register
702 	 * address in this case.
703 	 */
704 
705 	if (num >= 2 && msgs[0].len < 4 &&
706 	    !(msgs[0].flags & I2C_M_RD) && (msgs[1].flags & I2C_M_RD)) {
707 		u32 reg_addr = 0;
708 		int i;
709 
710 		dev_dbg(i2c->dev, "Combined write/read from addr 0x%x\n",
711 			addr >> 1);
712 
713 		/* Fill MRXRADDR with the register address(es) */
714 		for (i = 0; i < msgs[0].len; ++i) {
715 			reg_addr |= msgs[0].buf[i] << (i * 8);
716 			reg_addr |= REG_MRXADDR_VALID(i);
717 		}
718 
719 		/* msgs[0] is handled by hw. */
720 		i2c->msg = &msgs[1];
721 
722 		i2c->mode = REG_CON_MOD_REGISTER_TX;
723 
724 		i2c_writel(i2c, addr | REG_MRXADDR_VALID(0), REG_MRXADDR);
725 		i2c_writel(i2c, reg_addr, REG_MRXRADDR);
726 
727 		ret = 2;
728 	} else {
729 		/*
730 		 * We'll have to do it the boring way and process the msgs
731 		 * one-by-one.
732 		 */
733 
734 		if (msgs[0].flags & I2C_M_RD) {
735 			addr |= 1; /* set read bit */
736 
737 			/*
738 			 * We have to transmit the slave addr first. Use
739 			 * MOD_REGISTER_TX for that purpose.
740 			 */
741 			i2c->mode = REG_CON_MOD_REGISTER_TX;
742 			i2c_writel(i2c, addr | REG_MRXADDR_VALID(0),
743 				   REG_MRXADDR);
744 			i2c_writel(i2c, 0, REG_MRXRADDR);
745 		} else {
746 			i2c->mode = REG_CON_MOD_TX;
747 		}
748 
749 		i2c->msg = &msgs[0];
750 
751 		ret = 1;
752 	}
753 
754 	i2c->addr = msgs[0].addr;
755 	i2c->busy = true;
756 	i2c->state = STATE_START;
757 	i2c->processed = 0;
758 	i2c->error = 0;
759 
760 	rk3x_i2c_clean_ipd(i2c);
761 
762 	return ret;
763 }
764 
765 static int rk3x_i2c_xfer(struct i2c_adapter *adap,
766 			 struct i2c_msg *msgs, int num)
767 {
768 	struct rk3x_i2c *i2c = (struct rk3x_i2c *)adap->algo_data;
769 	unsigned long timeout, flags;
770 	int ret = 0;
771 	int i;
772 
773 	spin_lock_irqsave(&i2c->lock, flags);
774 
775 	clk_enable(i2c->clk);
776 
777 	i2c->is_last_msg = false;
778 
779 	/*
780 	 * Process msgs. We can handle more than one message at once (see
781 	 * rk3x_i2c_setup()).
782 	 */
783 	for (i = 0; i < num; i += ret) {
784 		ret = rk3x_i2c_setup(i2c, msgs + i, num - i);
785 
786 		if (ret < 0) {
787 			dev_err(i2c->dev, "rk3x_i2c_setup() failed\n");
788 			break;
789 		}
790 
791 		if (i + ret >= num)
792 			i2c->is_last_msg = true;
793 
794 		spin_unlock_irqrestore(&i2c->lock, flags);
795 
796 		rk3x_i2c_start(i2c);
797 
798 		timeout = wait_event_timeout(i2c->wait, !i2c->busy,
799 					     msecs_to_jiffies(WAIT_TIMEOUT));
800 
801 		spin_lock_irqsave(&i2c->lock, flags);
802 
803 		if (timeout == 0) {
804 			dev_err(i2c->dev, "timeout, ipd: 0x%02x, state: %d\n",
805 				i2c_readl(i2c, REG_IPD), i2c->state);
806 
807 			/* Force a STOP condition without interrupt */
808 			i2c_writel(i2c, 0, REG_IEN);
809 			i2c_writel(i2c, REG_CON_EN | REG_CON_STOP, REG_CON);
810 
811 			i2c->state = STATE_IDLE;
812 
813 			ret = -ETIMEDOUT;
814 			break;
815 		}
816 
817 		if (i2c->error) {
818 			ret = i2c->error;
819 			break;
820 		}
821 	}
822 
823 	clk_disable(i2c->clk);
824 	spin_unlock_irqrestore(&i2c->lock, flags);
825 
826 	return ret < 0 ? ret : num;
827 }
828 
829 static u32 rk3x_i2c_func(struct i2c_adapter *adap)
830 {
831 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_PROTOCOL_MANGLING;
832 }
833 
834 static const struct i2c_algorithm rk3x_i2c_algorithm = {
835 	.master_xfer		= rk3x_i2c_xfer,
836 	.functionality		= rk3x_i2c_func,
837 };
838 
839 static struct rk3x_i2c_soc_data soc_data[3] = {
840 	{ .grf_offset = 0x154 }, /* rk3066 */
841 	{ .grf_offset = 0x0a4 }, /* rk3188 */
842 	{ .grf_offset = -1 },    /* no I2C switching needed */
843 };
844 
845 static const struct of_device_id rk3x_i2c_match[] = {
846 	{ .compatible = "rockchip,rk3066-i2c", .data = (void *)&soc_data[0] },
847 	{ .compatible = "rockchip,rk3188-i2c", .data = (void *)&soc_data[1] },
848 	{ .compatible = "rockchip,rk3228-i2c", .data = (void *)&soc_data[2] },
849 	{ .compatible = "rockchip,rk3288-i2c", .data = (void *)&soc_data[2] },
850 	{},
851 };
852 MODULE_DEVICE_TABLE(of, rk3x_i2c_match);
853 
854 static int rk3x_i2c_probe(struct platform_device *pdev)
855 {
856 	struct device_node *np = pdev->dev.of_node;
857 	const struct of_device_id *match;
858 	struct rk3x_i2c *i2c;
859 	struct resource *mem;
860 	int ret = 0;
861 	int bus_nr;
862 	u32 value;
863 	int irq;
864 	unsigned long clk_rate;
865 
866 	i2c = devm_kzalloc(&pdev->dev, sizeof(struct rk3x_i2c), GFP_KERNEL);
867 	if (!i2c)
868 		return -ENOMEM;
869 
870 	match = of_match_node(rk3x_i2c_match, np);
871 	i2c->soc_data = (struct rk3x_i2c_soc_data *)match->data;
872 
873 	/* use common interface to get I2C timing properties */
874 	i2c_parse_fw_timings(&pdev->dev, &i2c->t, true);
875 
876 	strlcpy(i2c->adap.name, "rk3x-i2c", sizeof(i2c->adap.name));
877 	i2c->adap.owner = THIS_MODULE;
878 	i2c->adap.algo = &rk3x_i2c_algorithm;
879 	i2c->adap.retries = 3;
880 	i2c->adap.dev.of_node = np;
881 	i2c->adap.algo_data = i2c;
882 	i2c->adap.dev.parent = &pdev->dev;
883 
884 	i2c->dev = &pdev->dev;
885 
886 	spin_lock_init(&i2c->lock);
887 	init_waitqueue_head(&i2c->wait);
888 
889 	i2c->clk = devm_clk_get(&pdev->dev, NULL);
890 	if (IS_ERR(i2c->clk)) {
891 		dev_err(&pdev->dev, "cannot get clock\n");
892 		return PTR_ERR(i2c->clk);
893 	}
894 
895 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
896 	i2c->regs = devm_ioremap_resource(&pdev->dev, mem);
897 	if (IS_ERR(i2c->regs))
898 		return PTR_ERR(i2c->regs);
899 
900 	/* Try to set the I2C adapter number from dt */
901 	bus_nr = of_alias_get_id(np, "i2c");
902 
903 	/*
904 	 * Switch to new interface if the SoC also offers the old one.
905 	 * The control bit is located in the GRF register space.
906 	 */
907 	if (i2c->soc_data->grf_offset >= 0) {
908 		struct regmap *grf;
909 
910 		grf = syscon_regmap_lookup_by_phandle(np, "rockchip,grf");
911 		if (IS_ERR(grf)) {
912 			dev_err(&pdev->dev,
913 				"rk3x-i2c needs 'rockchip,grf' property\n");
914 			return PTR_ERR(grf);
915 		}
916 
917 		if (bus_nr < 0) {
918 			dev_err(&pdev->dev, "rk3x-i2c needs i2cX alias");
919 			return -EINVAL;
920 		}
921 
922 		/* 27+i: write mask, 11+i: value */
923 		value = BIT(27 + bus_nr) | BIT(11 + bus_nr);
924 
925 		ret = regmap_write(grf, i2c->soc_data->grf_offset, value);
926 		if (ret != 0) {
927 			dev_err(i2c->dev, "Could not write to GRF: %d\n", ret);
928 			return ret;
929 		}
930 	}
931 
932 	/* IRQ setup */
933 	irq = platform_get_irq(pdev, 0);
934 	if (irq < 0) {
935 		dev_err(&pdev->dev, "cannot find rk3x IRQ\n");
936 		return irq;
937 	}
938 
939 	ret = devm_request_irq(&pdev->dev, irq, rk3x_i2c_irq,
940 			       0, dev_name(&pdev->dev), i2c);
941 	if (ret < 0) {
942 		dev_err(&pdev->dev, "cannot request IRQ\n");
943 		return ret;
944 	}
945 
946 	platform_set_drvdata(pdev, i2c);
947 
948 	ret = clk_prepare(i2c->clk);
949 	if (ret < 0) {
950 		dev_err(&pdev->dev, "Could not prepare clock\n");
951 		return ret;
952 	}
953 
954 	i2c->clk_rate_nb.notifier_call = rk3x_i2c_clk_notifier_cb;
955 	ret = clk_notifier_register(i2c->clk, &i2c->clk_rate_nb);
956 	if (ret != 0) {
957 		dev_err(&pdev->dev, "Unable to register clock notifier\n");
958 		goto err_clk;
959 	}
960 
961 	clk_rate = clk_get_rate(i2c->clk);
962 	rk3x_i2c_adapt_div(i2c, clk_rate);
963 
964 	ret = i2c_add_adapter(&i2c->adap);
965 	if (ret < 0) {
966 		dev_err(&pdev->dev, "Could not register adapter\n");
967 		goto err_clk_notifier;
968 	}
969 
970 	dev_info(&pdev->dev, "Initialized RK3xxx I2C bus at %p\n", i2c->regs);
971 
972 	return 0;
973 
974 err_clk_notifier:
975 	clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
976 err_clk:
977 	clk_unprepare(i2c->clk);
978 	return ret;
979 }
980 
981 static int rk3x_i2c_remove(struct platform_device *pdev)
982 {
983 	struct rk3x_i2c *i2c = platform_get_drvdata(pdev);
984 
985 	i2c_del_adapter(&i2c->adap);
986 
987 	clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
988 	clk_unprepare(i2c->clk);
989 
990 	return 0;
991 }
992 
993 static struct platform_driver rk3x_i2c_driver = {
994 	.probe   = rk3x_i2c_probe,
995 	.remove  = rk3x_i2c_remove,
996 	.driver  = {
997 		.name  = "rk3x-i2c",
998 		.of_match_table = rk3x_i2c_match,
999 	},
1000 };
1001 
1002 module_platform_driver(rk3x_i2c_driver);
1003 
1004 MODULE_DESCRIPTION("Rockchip RK3xxx I2C Bus driver");
1005 MODULE_AUTHOR("Max Schwarz <max.schwarz@online.de>");
1006 MODULE_LICENSE("GPL v2");
1007