1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Renesas RIIC driver 4 * 5 * Copyright (C) 2013 Wolfram Sang <wsa@sang-engineering.com> 6 * Copyright (C) 2013 Renesas Solutions Corp. 7 */ 8 9 /* 10 * This i2c core has a lot of interrupts, namely 8. We use their chaining as 11 * some kind of state machine. 12 * 13 * 1) The main xfer routine kicks off a transmission by putting the start bit 14 * (or repeated start) on the bus and enabling the transmit interrupt (TIE) 15 * since we need to send the target address + RW bit in every case. 16 * 17 * 2) TIE sends target address + RW bit and selects how to continue. 18 * 19 * 3a) Write case: We keep utilizing TIE as long as we have data to send. If we 20 * are done, we switch over to the transmission done interrupt (TEIE) and mark 21 * the message as completed (includes sending STOP) there. 22 * 23 * 3b) Read case: We switch over to receive interrupt (RIE). One dummy read is 24 * needed to start clocking, then we keep receiving until we are done. Note 25 * that we use the RDRFS mode all the time, i.e. we ACK/NACK every byte by 26 * writing to the ACKBT bit. I tried using the RDRFS mode only at the end of a 27 * message to create the final NACK as sketched in the datasheet. This caused 28 * some subtle races (when byte n was processed and byte n+1 was already 29 * waiting), though, and I started with the safe approach. 30 * 31 * 4) If we got a NACK somewhere, we flag the error and stop the transmission 32 * via NAKIE. 33 * 34 * Also check the comments in the interrupt routines for some gory details. 35 */ 36 37 #include <linux/bits.h> 38 #include <linux/clk.h> 39 #include <linux/completion.h> 40 #include <linux/err.h> 41 #include <linux/i2c.h> 42 #include <linux/interrupt.h> 43 #include <linux/io.h> 44 #include <linux/iopoll.h> 45 #include <linux/module.h> 46 #include <linux/of.h> 47 #include <linux/platform_device.h> 48 #include <linux/pm_runtime.h> 49 #include <linux/reset.h> 50 #include <linux/time.h> 51 52 #define ICCR1_ICE BIT(7) 53 #define ICCR1_IICRST BIT(6) 54 #define ICCR1_SOWP BIT(4) 55 #define ICCR1_SCLI BIT(1) 56 #define ICCR1_SDAI BIT(0) 57 58 #define ICCR2_BBSY BIT(7) 59 #define ICCR2_SP BIT(3) 60 #define ICCR2_RS BIT(2) 61 #define ICCR2_ST BIT(1) 62 63 #define ICMR1_CKS_MASK GENMASK(6, 4) 64 #define ICMR1_BCWP BIT(3) 65 #define ICMR1_CKS(_x) ((((_x) << 4) & ICMR1_CKS_MASK) | ICMR1_BCWP) 66 67 #define ICMR3_RDRFS BIT(5) 68 #define ICMR3_ACKWP BIT(4) 69 #define ICMR3_ACKBT BIT(3) 70 71 #define ICFER_FMPE BIT(7) 72 73 #define ICIER_TIE BIT(7) 74 #define ICIER_TEIE BIT(6) 75 #define ICIER_RIE BIT(5) 76 #define ICIER_NAKIE BIT(4) 77 #define ICIER_SPIE BIT(3) 78 79 #define ICSR2_NACKF BIT(4) 80 81 #define ICBR_RESERVED GENMASK(7, 5) /* Should be 1 on writes */ 82 83 #define RIIC_INIT_MSG -1 84 85 enum riic_reg_list { 86 RIIC_ICCR1 = 0, 87 RIIC_ICCR2, 88 RIIC_ICMR1, 89 RIIC_ICMR3, 90 RIIC_ICFER, 91 RIIC_ICSER, 92 RIIC_ICIER, 93 RIIC_ICSR2, 94 RIIC_ICBRL, 95 RIIC_ICBRH, 96 RIIC_ICDRT, 97 RIIC_ICDRR, 98 RIIC_REG_END, 99 }; 100 101 struct riic_of_data { 102 const u8 *regs; 103 bool fast_mode_plus; 104 }; 105 106 struct riic_dev { 107 void __iomem *base; 108 u8 *buf; 109 struct i2c_msg *msg; 110 int bytes_left; 111 int err; 112 int is_last; 113 const struct riic_of_data *info; 114 struct completion msg_done; 115 struct i2c_adapter adapter; 116 struct clk *clk; 117 struct reset_control *rstc; 118 struct i2c_timings i2c_t; 119 }; 120 121 struct riic_irq_desc { 122 int res_num; 123 irq_handler_t isr; 124 char *name; 125 }; 126 127 static inline void riic_writeb(struct riic_dev *riic, u8 val, u8 offset) 128 { 129 writeb(val, riic->base + riic->info->regs[offset]); 130 } 131 132 static inline u8 riic_readb(struct riic_dev *riic, u8 offset) 133 { 134 return readb(riic->base + riic->info->regs[offset]); 135 } 136 137 static inline void riic_clear_set_bit(struct riic_dev *riic, u8 clear, u8 set, u8 reg) 138 { 139 riic_writeb(riic, (riic_readb(riic, reg) & ~clear) | set, reg); 140 } 141 142 static int riic_bus_barrier(struct riic_dev *riic) 143 { 144 int ret; 145 u8 val; 146 147 /* 148 * The SDA line can still be low even when BBSY = 0. Therefore, after checking 149 * the BBSY flag, also verify that the SDA and SCL lines are not being held low. 150 */ 151 ret = readb_poll_timeout(riic->base + riic->info->regs[RIIC_ICCR2], val, 152 !(val & ICCR2_BBSY), 10, riic->adapter.timeout); 153 if (ret) 154 return ret; 155 156 if ((riic_readb(riic, RIIC_ICCR1) & (ICCR1_SDAI | ICCR1_SCLI)) != 157 (ICCR1_SDAI | ICCR1_SCLI)) 158 return -EBUSY; 159 160 return 0; 161 } 162 163 static int riic_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num) 164 { 165 struct riic_dev *riic = i2c_get_adapdata(adap); 166 struct device *dev = adap->dev.parent; 167 unsigned long time_left; 168 int i, ret; 169 u8 start_bit; 170 171 ret = pm_runtime_resume_and_get(dev); 172 if (ret) 173 return ret; 174 175 riic->err = riic_bus_barrier(riic); 176 if (riic->err) 177 goto out; 178 179 reinit_completion(&riic->msg_done); 180 181 riic_writeb(riic, 0, RIIC_ICSR2); 182 183 for (i = 0, start_bit = ICCR2_ST; i < num; i++) { 184 riic->bytes_left = RIIC_INIT_MSG; 185 riic->buf = msgs[i].buf; 186 riic->msg = &msgs[i]; 187 riic->is_last = (i == num - 1); 188 189 riic_writeb(riic, ICIER_NAKIE | ICIER_TIE, RIIC_ICIER); 190 191 riic_writeb(riic, start_bit, RIIC_ICCR2); 192 193 time_left = wait_for_completion_timeout(&riic->msg_done, riic->adapter.timeout); 194 if (time_left == 0) 195 riic->err = -ETIMEDOUT; 196 197 if (riic->err) 198 break; 199 200 start_bit = ICCR2_RS; 201 } 202 203 out: 204 pm_runtime_mark_last_busy(dev); 205 pm_runtime_put_autosuspend(dev); 206 207 return riic->err ?: num; 208 } 209 210 static irqreturn_t riic_tdre_isr(int irq, void *data) 211 { 212 struct riic_dev *riic = data; 213 u8 val; 214 215 if (!riic->bytes_left) 216 return IRQ_NONE; 217 218 if (riic->bytes_left == RIIC_INIT_MSG) { 219 if (riic->msg->flags & I2C_M_RD) 220 /* On read, switch over to receive interrupt */ 221 riic_clear_set_bit(riic, ICIER_TIE, ICIER_RIE, RIIC_ICIER); 222 else 223 /* On write, initialize length */ 224 riic->bytes_left = riic->msg->len; 225 226 val = i2c_8bit_addr_from_msg(riic->msg); 227 } else { 228 val = *riic->buf; 229 riic->buf++; 230 riic->bytes_left--; 231 } 232 233 /* 234 * Switch to transmission ended interrupt when done. Do check here 235 * after bytes_left was initialized to support SMBUS_QUICK (new msg has 236 * 0 length then) 237 */ 238 if (riic->bytes_left == 0) 239 riic_clear_set_bit(riic, ICIER_TIE, ICIER_TEIE, RIIC_ICIER); 240 241 /* 242 * This acks the TIE interrupt. We get another TIE immediately if our 243 * value could be moved to the shadow shift register right away. So 244 * this must be after updates to ICIER (where we want to disable TIE)! 245 */ 246 riic_writeb(riic, val, RIIC_ICDRT); 247 248 return IRQ_HANDLED; 249 } 250 251 static irqreturn_t riic_tend_isr(int irq, void *data) 252 { 253 struct riic_dev *riic = data; 254 255 if (riic_readb(riic, RIIC_ICSR2) & ICSR2_NACKF) { 256 /* We got a NACKIE */ 257 riic_readb(riic, RIIC_ICDRR); /* dummy read */ 258 riic_clear_set_bit(riic, ICSR2_NACKF, 0, RIIC_ICSR2); 259 riic->err = -ENXIO; 260 } else if (riic->bytes_left) { 261 return IRQ_NONE; 262 } 263 264 if (riic->is_last || riic->err) { 265 riic_clear_set_bit(riic, ICIER_TEIE, ICIER_SPIE, RIIC_ICIER); 266 riic_writeb(riic, ICCR2_SP, RIIC_ICCR2); 267 } else { 268 /* Transfer is complete, but do not send STOP */ 269 riic_clear_set_bit(riic, ICIER_TEIE, 0, RIIC_ICIER); 270 complete(&riic->msg_done); 271 } 272 273 return IRQ_HANDLED; 274 } 275 276 static irqreturn_t riic_rdrf_isr(int irq, void *data) 277 { 278 struct riic_dev *riic = data; 279 280 if (!riic->bytes_left) 281 return IRQ_NONE; 282 283 if (riic->bytes_left == RIIC_INIT_MSG) { 284 riic->bytes_left = riic->msg->len; 285 riic_readb(riic, RIIC_ICDRR); /* dummy read */ 286 return IRQ_HANDLED; 287 } 288 289 if (riic->bytes_left == 1) { 290 /* STOP must come before we set ACKBT! */ 291 if (riic->is_last) { 292 riic_clear_set_bit(riic, 0, ICIER_SPIE, RIIC_ICIER); 293 riic_writeb(riic, ICCR2_SP, RIIC_ICCR2); 294 } 295 296 riic_clear_set_bit(riic, 0, ICMR3_ACKBT, RIIC_ICMR3); 297 298 } else { 299 riic_clear_set_bit(riic, ICMR3_ACKBT, 0, RIIC_ICMR3); 300 } 301 302 /* Reading acks the RIE interrupt */ 303 *riic->buf = riic_readb(riic, RIIC_ICDRR); 304 riic->buf++; 305 riic->bytes_left--; 306 307 return IRQ_HANDLED; 308 } 309 310 static irqreturn_t riic_stop_isr(int irq, void *data) 311 { 312 struct riic_dev *riic = data; 313 314 /* read back registers to confirm writes have fully propagated */ 315 riic_writeb(riic, 0, RIIC_ICSR2); 316 riic_readb(riic, RIIC_ICSR2); 317 riic_writeb(riic, 0, RIIC_ICIER); 318 riic_readb(riic, RIIC_ICIER); 319 320 complete(&riic->msg_done); 321 322 return IRQ_HANDLED; 323 } 324 325 static u32 riic_func(struct i2c_adapter *adap) 326 { 327 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; 328 } 329 330 static const struct i2c_algorithm riic_algo = { 331 .xfer = riic_xfer, 332 .functionality = riic_func, 333 }; 334 335 static int riic_init_hw(struct riic_dev *riic) 336 { 337 int ret; 338 unsigned long rate; 339 unsigned long ns_per_tick; 340 int total_ticks, cks, brl, brh; 341 struct i2c_timings *t = &riic->i2c_t; 342 struct device *dev = riic->adapter.dev.parent; 343 bool fast_mode_plus = riic->info->fast_mode_plus; 344 u32 max_freq = fast_mode_plus ? I2C_MAX_FAST_MODE_PLUS_FREQ 345 : I2C_MAX_FAST_MODE_FREQ; 346 347 if (t->bus_freq_hz > max_freq) 348 return dev_err_probe(dev, -EINVAL, 349 "unsupported bus speed %uHz (%u max)\n", 350 t->bus_freq_hz, max_freq); 351 352 rate = clk_get_rate(riic->clk); 353 354 /* 355 * Assume the default register settings: 356 * FER.SCLE = 1 (SCL sync circuit enabled, adds 2 or 3 cycles) 357 * FER.NFE = 1 (noise circuit enabled) 358 * MR3.NF = 0 (1 cycle of noise filtered out) 359 * 360 * Freq (CKS=000) = (I2CCLK + tr + tf)/ (BRH + 3 + 1) + (BRL + 3 + 1) 361 * Freq (CKS!=000) = (I2CCLK + tr + tf)/ (BRH + 2 + 1) + (BRL + 2 + 1) 362 */ 363 364 /* 365 * Determine reference clock rate. We must be able to get the desired 366 * frequency with only 62 clock ticks max (31 high, 31 low). 367 * Aim for a duty of 60% LOW, 40% HIGH. 368 */ 369 total_ticks = DIV_ROUND_UP(rate, t->bus_freq_hz ?: 1); 370 371 for (cks = 0; cks < 7; cks++) { 372 /* 373 * 60% low time must be less than BRL + 2 + 1 374 * BRL max register value is 0x1F. 375 */ 376 brl = ((total_ticks * 6) / 10); 377 if (brl <= (0x1F + 3)) 378 break; 379 380 total_ticks = DIV_ROUND_UP(total_ticks, 2); 381 rate /= 2; 382 } 383 384 if (brl > (0x1F + 3)) 385 return dev_err_probe(dev, -EINVAL, "invalid speed (%uHz). Too slow.\n", 386 t->bus_freq_hz); 387 388 brh = total_ticks - brl; 389 390 /* Remove automatic clock ticks for sync circuit and NF */ 391 if (cks == 0) { 392 brl -= 4; 393 brh -= 4; 394 } else { 395 brl -= 3; 396 brh -= 3; 397 } 398 399 /* 400 * Remove clock ticks for rise and fall times. Convert ns to clock 401 * ticks. 402 */ 403 ns_per_tick = NSEC_PER_SEC / rate; 404 brl -= t->scl_fall_ns / ns_per_tick; 405 brh -= t->scl_rise_ns / ns_per_tick; 406 407 /* Adjust for min register values for when SCLE=1 and NFE=1 */ 408 if (brl < 1) 409 brl = 1; 410 if (brh < 1) 411 brh = 1; 412 413 pr_debug("i2c-riic: freq=%lu, duty=%d, fall=%lu, rise=%lu, cks=%d, brl=%d, brh=%d\n", 414 rate / total_ticks, ((brl + 3) * 100) / (brl + brh + 6), 415 t->scl_fall_ns / ns_per_tick, t->scl_rise_ns / ns_per_tick, cks, brl, brh); 416 417 ret = pm_runtime_resume_and_get(dev); 418 if (ret) 419 return ret; 420 421 /* Changing the order of accessing IICRST and ICE may break things! */ 422 riic_writeb(riic, ICCR1_IICRST | ICCR1_SOWP, RIIC_ICCR1); 423 riic_clear_set_bit(riic, 0, ICCR1_ICE, RIIC_ICCR1); 424 425 riic_writeb(riic, ICMR1_CKS(cks), RIIC_ICMR1); 426 riic_writeb(riic, brh | ICBR_RESERVED, RIIC_ICBRH); 427 riic_writeb(riic, brl | ICBR_RESERVED, RIIC_ICBRL); 428 429 riic_writeb(riic, 0, RIIC_ICSER); 430 riic_writeb(riic, ICMR3_ACKWP | ICMR3_RDRFS, RIIC_ICMR3); 431 432 if (fast_mode_plus && t->bus_freq_hz > I2C_MAX_FAST_MODE_FREQ) 433 riic_clear_set_bit(riic, 0, ICFER_FMPE, RIIC_ICFER); 434 435 riic_clear_set_bit(riic, ICCR1_IICRST, 0, RIIC_ICCR1); 436 437 pm_runtime_mark_last_busy(dev); 438 pm_runtime_put_autosuspend(dev); 439 return 0; 440 } 441 442 static const struct riic_irq_desc riic_irqs[] = { 443 { .res_num = 0, .isr = riic_tend_isr, .name = "riic-tend" }, 444 { .res_num = 1, .isr = riic_rdrf_isr, .name = "riic-rdrf" }, 445 { .res_num = 2, .isr = riic_tdre_isr, .name = "riic-tdre" }, 446 { .res_num = 3, .isr = riic_stop_isr, .name = "riic-stop" }, 447 { .res_num = 5, .isr = riic_tend_isr, .name = "riic-nack" }, 448 }; 449 450 static int riic_i2c_probe(struct platform_device *pdev) 451 { 452 struct device *dev = &pdev->dev; 453 struct riic_dev *riic; 454 struct i2c_adapter *adap; 455 int i, ret; 456 457 riic = devm_kzalloc(dev, sizeof(*riic), GFP_KERNEL); 458 if (!riic) 459 return -ENOMEM; 460 461 riic->base = devm_platform_ioremap_resource(pdev, 0); 462 if (IS_ERR(riic->base)) 463 return PTR_ERR(riic->base); 464 465 riic->clk = devm_clk_get(dev, NULL); 466 if (IS_ERR(riic->clk)) 467 return dev_err_probe(dev, PTR_ERR(riic->clk), 468 "missing controller clock"); 469 470 riic->rstc = devm_reset_control_get_optional_exclusive_deasserted(dev, NULL); 471 if (IS_ERR(riic->rstc)) 472 return dev_err_probe(dev, PTR_ERR(riic->rstc), 473 "failed to acquire deasserted reset\n"); 474 475 for (i = 0; i < ARRAY_SIZE(riic_irqs); i++) { 476 int irq; 477 478 irq = platform_get_irq(pdev, riic_irqs[i].res_num); 479 if (irq < 0) 480 return irq; 481 482 ret = devm_request_irq(dev, irq, riic_irqs[i].isr, 483 0, riic_irqs[i].name, riic); 484 if (ret) 485 return dev_err_probe(dev, ret, "failed to request irq %s\n", 486 riic_irqs[i].name); 487 } 488 489 riic->info = of_device_get_match_data(dev); 490 491 adap = &riic->adapter; 492 i2c_set_adapdata(adap, riic); 493 strscpy(adap->name, "Renesas RIIC adapter", sizeof(adap->name)); 494 adap->owner = THIS_MODULE; 495 adap->algo = &riic_algo; 496 adap->dev.parent = dev; 497 adap->dev.of_node = dev->of_node; 498 499 init_completion(&riic->msg_done); 500 501 i2c_parse_fw_timings(dev, &riic->i2c_t, true); 502 503 /* Default 0 to save power. Can be overridden via sysfs for lower latency. */ 504 pm_runtime_set_autosuspend_delay(dev, 0); 505 pm_runtime_use_autosuspend(dev); 506 pm_runtime_enable(dev); 507 508 ret = riic_init_hw(riic); 509 if (ret) 510 goto out; 511 512 ret = i2c_add_adapter(adap); 513 if (ret) 514 goto out; 515 516 platform_set_drvdata(pdev, riic); 517 518 dev_info(dev, "registered with %dHz bus speed\n", riic->i2c_t.bus_freq_hz); 519 return 0; 520 521 out: 522 pm_runtime_disable(dev); 523 pm_runtime_dont_use_autosuspend(dev); 524 return ret; 525 } 526 527 static void riic_i2c_remove(struct platform_device *pdev) 528 { 529 struct riic_dev *riic = platform_get_drvdata(pdev); 530 struct device *dev = &pdev->dev; 531 int ret; 532 533 ret = pm_runtime_resume_and_get(dev); 534 if (!ret) { 535 riic_writeb(riic, 0, RIIC_ICIER); 536 pm_runtime_put(dev); 537 } 538 i2c_del_adapter(&riic->adapter); 539 pm_runtime_disable(dev); 540 pm_runtime_dont_use_autosuspend(dev); 541 } 542 543 static const u8 riic_rz_a_regs[RIIC_REG_END] = { 544 [RIIC_ICCR1] = 0x00, 545 [RIIC_ICCR2] = 0x04, 546 [RIIC_ICMR1] = 0x08, 547 [RIIC_ICMR3] = 0x10, 548 [RIIC_ICFER] = 0x14, 549 [RIIC_ICSER] = 0x18, 550 [RIIC_ICIER] = 0x1c, 551 [RIIC_ICSR2] = 0x24, 552 [RIIC_ICBRL] = 0x34, 553 [RIIC_ICBRH] = 0x38, 554 [RIIC_ICDRT] = 0x3c, 555 [RIIC_ICDRR] = 0x40, 556 }; 557 558 static const struct riic_of_data riic_rz_a_info = { 559 .regs = riic_rz_a_regs, 560 .fast_mode_plus = true, 561 }; 562 563 static const struct riic_of_data riic_rz_a1h_info = { 564 .regs = riic_rz_a_regs, 565 }; 566 567 static const u8 riic_rz_v2h_regs[RIIC_REG_END] = { 568 [RIIC_ICCR1] = 0x00, 569 [RIIC_ICCR2] = 0x01, 570 [RIIC_ICMR1] = 0x02, 571 [RIIC_ICMR3] = 0x04, 572 [RIIC_ICFER] = 0x05, 573 [RIIC_ICSER] = 0x06, 574 [RIIC_ICIER] = 0x07, 575 [RIIC_ICSR2] = 0x09, 576 [RIIC_ICBRL] = 0x10, 577 [RIIC_ICBRH] = 0x11, 578 [RIIC_ICDRT] = 0x12, 579 [RIIC_ICDRR] = 0x13, 580 }; 581 582 static const struct riic_of_data riic_rz_v2h_info = { 583 .regs = riic_rz_v2h_regs, 584 .fast_mode_plus = true, 585 }; 586 587 static int riic_i2c_suspend(struct device *dev) 588 { 589 struct riic_dev *riic = dev_get_drvdata(dev); 590 int ret; 591 592 ret = pm_runtime_resume_and_get(dev); 593 if (ret) 594 return ret; 595 596 i2c_mark_adapter_suspended(&riic->adapter); 597 598 /* Disable output on SDA, SCL pins. */ 599 riic_clear_set_bit(riic, ICCR1_ICE, 0, RIIC_ICCR1); 600 601 pm_runtime_mark_last_busy(dev); 602 pm_runtime_put_sync(dev); 603 604 return reset_control_assert(riic->rstc); 605 } 606 607 static int riic_i2c_resume(struct device *dev) 608 { 609 struct riic_dev *riic = dev_get_drvdata(dev); 610 int ret; 611 612 ret = reset_control_deassert(riic->rstc); 613 if (ret) 614 return ret; 615 616 ret = riic_init_hw(riic); 617 if (ret) { 618 /* 619 * In case this happens there is no way to recover from this 620 * state. The driver will remain loaded. We want to avoid 621 * keeping the reset line de-asserted for no reason. 622 */ 623 reset_control_assert(riic->rstc); 624 return ret; 625 } 626 627 i2c_mark_adapter_resumed(&riic->adapter); 628 629 return 0; 630 } 631 632 static const struct dev_pm_ops riic_i2c_pm_ops = { 633 SYSTEM_SLEEP_PM_OPS(riic_i2c_suspend, riic_i2c_resume) 634 }; 635 636 static const struct of_device_id riic_i2c_dt_ids[] = { 637 { .compatible = "renesas,riic-rz", .data = &riic_rz_a_info }, 638 { .compatible = "renesas,riic-r7s72100", .data = &riic_rz_a1h_info, }, 639 { .compatible = "renesas,riic-r9a09g057", .data = &riic_rz_v2h_info }, 640 { /* Sentinel */ }, 641 }; 642 643 static struct platform_driver riic_i2c_driver = { 644 .probe = riic_i2c_probe, 645 .remove = riic_i2c_remove, 646 .driver = { 647 .name = "i2c-riic", 648 .of_match_table = riic_i2c_dt_ids, 649 .pm = pm_ptr(&riic_i2c_pm_ops), 650 }, 651 }; 652 653 module_platform_driver(riic_i2c_driver); 654 655 MODULE_DESCRIPTION("Renesas RIIC adapter"); 656 MODULE_AUTHOR("Wolfram Sang <wsa@sang-engineering.com>"); 657 MODULE_LICENSE("GPL v2"); 658 MODULE_DEVICE_TABLE(of, riic_i2c_dt_ids); 659