1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Renesas RIIC driver 4 * 5 * Copyright (C) 2013 Wolfram Sang <wsa@sang-engineering.com> 6 * Copyright (C) 2013 Renesas Solutions Corp. 7 */ 8 9 /* 10 * This i2c core has a lot of interrupts, namely 8. We use their chaining as 11 * some kind of state machine. 12 * 13 * 1) The main xfer routine kicks off a transmission by putting the start bit 14 * (or repeated start) on the bus and enabling the transmit interrupt (TIE) 15 * since we need to send the slave address + RW bit in every case. 16 * 17 * 2) TIE sends slave address + RW bit and selects how to continue. 18 * 19 * 3a) Write case: We keep utilizing TIE as long as we have data to send. If we 20 * are done, we switch over to the transmission done interrupt (TEIE) and mark 21 * the message as completed (includes sending STOP) there. 22 * 23 * 3b) Read case: We switch over to receive interrupt (RIE). One dummy read is 24 * needed to start clocking, then we keep receiving until we are done. Note 25 * that we use the RDRFS mode all the time, i.e. we ACK/NACK every byte by 26 * writing to the ACKBT bit. I tried using the RDRFS mode only at the end of a 27 * message to create the final NACK as sketched in the datasheet. This caused 28 * some subtle races (when byte n was processed and byte n+1 was already 29 * waiting), though, and I started with the safe approach. 30 * 31 * 4) If we got a NACK somewhere, we flag the error and stop the transmission 32 * via NAKIE. 33 * 34 * Also check the comments in the interrupt routines for some gory details. 35 */ 36 37 #include <linux/clk.h> 38 #include <linux/completion.h> 39 #include <linux/err.h> 40 #include <linux/i2c.h> 41 #include <linux/interrupt.h> 42 #include <linux/io.h> 43 #include <linux/module.h> 44 #include <linux/of.h> 45 #include <linux/platform_device.h> 46 #include <linux/pm_runtime.h> 47 #include <linux/reset.h> 48 49 #define RIIC_ICCR1 0x00 50 #define RIIC_ICCR2 0x04 51 #define RIIC_ICMR1 0x08 52 #define RIIC_ICMR3 0x10 53 #define RIIC_ICSER 0x18 54 #define RIIC_ICIER 0x1c 55 #define RIIC_ICSR2 0x24 56 #define RIIC_ICBRL 0x34 57 #define RIIC_ICBRH 0x38 58 #define RIIC_ICDRT 0x3c 59 #define RIIC_ICDRR 0x40 60 61 #define ICCR1_ICE 0x80 62 #define ICCR1_IICRST 0x40 63 #define ICCR1_SOWP 0x10 64 65 #define ICCR2_BBSY 0x80 66 #define ICCR2_SP 0x08 67 #define ICCR2_RS 0x04 68 #define ICCR2_ST 0x02 69 70 #define ICMR1_CKS_MASK 0x70 71 #define ICMR1_BCWP 0x08 72 #define ICMR1_CKS(_x) ((((_x) << 4) & ICMR1_CKS_MASK) | ICMR1_BCWP) 73 74 #define ICMR3_RDRFS 0x20 75 #define ICMR3_ACKWP 0x10 76 #define ICMR3_ACKBT 0x08 77 78 #define ICIER_TIE 0x80 79 #define ICIER_TEIE 0x40 80 #define ICIER_RIE 0x20 81 #define ICIER_NAKIE 0x10 82 #define ICIER_SPIE 0x08 83 84 #define ICSR2_NACKF 0x10 85 86 #define ICBR_RESERVED 0xe0 /* Should be 1 on writes */ 87 88 #define RIIC_INIT_MSG -1 89 90 struct riic_dev { 91 void __iomem *base; 92 u8 *buf; 93 struct i2c_msg *msg; 94 int bytes_left; 95 int err; 96 int is_last; 97 struct completion msg_done; 98 struct i2c_adapter adapter; 99 struct clk *clk; 100 }; 101 102 struct riic_irq_desc { 103 int res_num; 104 irq_handler_t isr; 105 char *name; 106 }; 107 108 static inline void riic_clear_set_bit(struct riic_dev *riic, u8 clear, u8 set, u8 reg) 109 { 110 writeb((readb(riic->base + reg) & ~clear) | set, riic->base + reg); 111 } 112 113 static int riic_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num) 114 { 115 struct riic_dev *riic = i2c_get_adapdata(adap); 116 unsigned long time_left; 117 int i; 118 u8 start_bit; 119 120 pm_runtime_get_sync(adap->dev.parent); 121 122 if (readb(riic->base + RIIC_ICCR2) & ICCR2_BBSY) { 123 riic->err = -EBUSY; 124 goto out; 125 } 126 127 reinit_completion(&riic->msg_done); 128 riic->err = 0; 129 130 writeb(0, riic->base + RIIC_ICSR2); 131 132 for (i = 0, start_bit = ICCR2_ST; i < num; i++) { 133 riic->bytes_left = RIIC_INIT_MSG; 134 riic->buf = msgs[i].buf; 135 riic->msg = &msgs[i]; 136 riic->is_last = (i == num - 1); 137 138 writeb(ICIER_NAKIE | ICIER_TIE, riic->base + RIIC_ICIER); 139 140 writeb(start_bit, riic->base + RIIC_ICCR2); 141 142 time_left = wait_for_completion_timeout(&riic->msg_done, riic->adapter.timeout); 143 if (time_left == 0) 144 riic->err = -ETIMEDOUT; 145 146 if (riic->err) 147 break; 148 149 start_bit = ICCR2_RS; 150 } 151 152 out: 153 pm_runtime_put(adap->dev.parent); 154 155 return riic->err ?: num; 156 } 157 158 static irqreturn_t riic_tdre_isr(int irq, void *data) 159 { 160 struct riic_dev *riic = data; 161 u8 val; 162 163 if (!riic->bytes_left) 164 return IRQ_NONE; 165 166 if (riic->bytes_left == RIIC_INIT_MSG) { 167 if (riic->msg->flags & I2C_M_RD) 168 /* On read, switch over to receive interrupt */ 169 riic_clear_set_bit(riic, ICIER_TIE, ICIER_RIE, RIIC_ICIER); 170 else 171 /* On write, initialize length */ 172 riic->bytes_left = riic->msg->len; 173 174 val = i2c_8bit_addr_from_msg(riic->msg); 175 } else { 176 val = *riic->buf; 177 riic->buf++; 178 riic->bytes_left--; 179 } 180 181 /* 182 * Switch to transmission ended interrupt when done. Do check here 183 * after bytes_left was initialized to support SMBUS_QUICK (new msg has 184 * 0 length then) 185 */ 186 if (riic->bytes_left == 0) 187 riic_clear_set_bit(riic, ICIER_TIE, ICIER_TEIE, RIIC_ICIER); 188 189 /* 190 * This acks the TIE interrupt. We get another TIE immediately if our 191 * value could be moved to the shadow shift register right away. So 192 * this must be after updates to ICIER (where we want to disable TIE)! 193 */ 194 writeb(val, riic->base + RIIC_ICDRT); 195 196 return IRQ_HANDLED; 197 } 198 199 static irqreturn_t riic_tend_isr(int irq, void *data) 200 { 201 struct riic_dev *riic = data; 202 203 if (readb(riic->base + RIIC_ICSR2) & ICSR2_NACKF) { 204 /* We got a NACKIE */ 205 readb(riic->base + RIIC_ICDRR); /* dummy read */ 206 riic_clear_set_bit(riic, ICSR2_NACKF, 0, RIIC_ICSR2); 207 riic->err = -ENXIO; 208 } else if (riic->bytes_left) { 209 return IRQ_NONE; 210 } 211 212 if (riic->is_last || riic->err) { 213 riic_clear_set_bit(riic, ICIER_TEIE, ICIER_SPIE, RIIC_ICIER); 214 writeb(ICCR2_SP, riic->base + RIIC_ICCR2); 215 } else { 216 /* Transfer is complete, but do not send STOP */ 217 riic_clear_set_bit(riic, ICIER_TEIE, 0, RIIC_ICIER); 218 complete(&riic->msg_done); 219 } 220 221 return IRQ_HANDLED; 222 } 223 224 static irqreturn_t riic_rdrf_isr(int irq, void *data) 225 { 226 struct riic_dev *riic = data; 227 228 if (!riic->bytes_left) 229 return IRQ_NONE; 230 231 if (riic->bytes_left == RIIC_INIT_MSG) { 232 riic->bytes_left = riic->msg->len; 233 readb(riic->base + RIIC_ICDRR); /* dummy read */ 234 return IRQ_HANDLED; 235 } 236 237 if (riic->bytes_left == 1) { 238 /* STOP must come before we set ACKBT! */ 239 if (riic->is_last) { 240 riic_clear_set_bit(riic, 0, ICIER_SPIE, RIIC_ICIER); 241 writeb(ICCR2_SP, riic->base + RIIC_ICCR2); 242 } 243 244 riic_clear_set_bit(riic, 0, ICMR3_ACKBT, RIIC_ICMR3); 245 246 } else { 247 riic_clear_set_bit(riic, ICMR3_ACKBT, 0, RIIC_ICMR3); 248 } 249 250 /* Reading acks the RIE interrupt */ 251 *riic->buf = readb(riic->base + RIIC_ICDRR); 252 riic->buf++; 253 riic->bytes_left--; 254 255 return IRQ_HANDLED; 256 } 257 258 static irqreturn_t riic_stop_isr(int irq, void *data) 259 { 260 struct riic_dev *riic = data; 261 262 /* read back registers to confirm writes have fully propagated */ 263 writeb(0, riic->base + RIIC_ICSR2); 264 readb(riic->base + RIIC_ICSR2); 265 writeb(0, riic->base + RIIC_ICIER); 266 readb(riic->base + RIIC_ICIER); 267 268 complete(&riic->msg_done); 269 270 return IRQ_HANDLED; 271 } 272 273 static u32 riic_func(struct i2c_adapter *adap) 274 { 275 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; 276 } 277 278 static const struct i2c_algorithm riic_algo = { 279 .master_xfer = riic_xfer, 280 .functionality = riic_func, 281 }; 282 283 static int riic_init_hw(struct riic_dev *riic, struct i2c_timings *t) 284 { 285 int ret = 0; 286 unsigned long rate; 287 int total_ticks, cks, brl, brh; 288 289 pm_runtime_get_sync(riic->adapter.dev.parent); 290 291 if (t->bus_freq_hz > I2C_MAX_FAST_MODE_FREQ) { 292 dev_err(&riic->adapter.dev, 293 "unsupported bus speed (%dHz). %d max\n", 294 t->bus_freq_hz, I2C_MAX_FAST_MODE_FREQ); 295 ret = -EINVAL; 296 goto out; 297 } 298 299 rate = clk_get_rate(riic->clk); 300 301 /* 302 * Assume the default register settings: 303 * FER.SCLE = 1 (SCL sync circuit enabled, adds 2 or 3 cycles) 304 * FER.NFE = 1 (noise circuit enabled) 305 * MR3.NF = 0 (1 cycle of noise filtered out) 306 * 307 * Freq (CKS=000) = (I2CCLK + tr + tf)/ (BRH + 3 + 1) + (BRL + 3 + 1) 308 * Freq (CKS!=000) = (I2CCLK + tr + tf)/ (BRH + 2 + 1) + (BRL + 2 + 1) 309 */ 310 311 /* 312 * Determine reference clock rate. We must be able to get the desired 313 * frequency with only 62 clock ticks max (31 high, 31 low). 314 * Aim for a duty of 60% LOW, 40% HIGH. 315 */ 316 total_ticks = DIV_ROUND_UP(rate, t->bus_freq_hz ?: 1); 317 318 for (cks = 0; cks < 7; cks++) { 319 /* 320 * 60% low time must be less than BRL + 2 + 1 321 * BRL max register value is 0x1F. 322 */ 323 brl = ((total_ticks * 6) / 10); 324 if (brl <= (0x1F + 3)) 325 break; 326 327 total_ticks /= 2; 328 rate /= 2; 329 } 330 331 if (brl > (0x1F + 3)) { 332 dev_err(&riic->adapter.dev, "invalid speed (%lu). Too slow.\n", 333 (unsigned long)t->bus_freq_hz); 334 ret = -EINVAL; 335 goto out; 336 } 337 338 brh = total_ticks - brl; 339 340 /* Remove automatic clock ticks for sync circuit and NF */ 341 if (cks == 0) { 342 brl -= 4; 343 brh -= 4; 344 } else { 345 brl -= 3; 346 brh -= 3; 347 } 348 349 /* 350 * Remove clock ticks for rise and fall times. Convert ns to clock 351 * ticks. 352 */ 353 brl -= t->scl_fall_ns / (1000000000 / rate); 354 brh -= t->scl_rise_ns / (1000000000 / rate); 355 356 /* Adjust for min register values for when SCLE=1 and NFE=1 */ 357 if (brl < 1) 358 brl = 1; 359 if (brh < 1) 360 brh = 1; 361 362 pr_debug("i2c-riic: freq=%lu, duty=%d, fall=%lu, rise=%lu, cks=%d, brl=%d, brh=%d\n", 363 rate / total_ticks, ((brl + 3) * 100) / (brl + brh + 6), 364 t->scl_fall_ns / (1000000000 / rate), 365 t->scl_rise_ns / (1000000000 / rate), cks, brl, brh); 366 367 /* Changing the order of accessing IICRST and ICE may break things! */ 368 writeb(ICCR1_IICRST | ICCR1_SOWP, riic->base + RIIC_ICCR1); 369 riic_clear_set_bit(riic, 0, ICCR1_ICE, RIIC_ICCR1); 370 371 writeb(ICMR1_CKS(cks), riic->base + RIIC_ICMR1); 372 writeb(brh | ICBR_RESERVED, riic->base + RIIC_ICBRH); 373 writeb(brl | ICBR_RESERVED, riic->base + RIIC_ICBRL); 374 375 writeb(0, riic->base + RIIC_ICSER); 376 writeb(ICMR3_ACKWP | ICMR3_RDRFS, riic->base + RIIC_ICMR3); 377 378 riic_clear_set_bit(riic, ICCR1_IICRST, 0, RIIC_ICCR1); 379 380 out: 381 pm_runtime_put(riic->adapter.dev.parent); 382 return ret; 383 } 384 385 static struct riic_irq_desc riic_irqs[] = { 386 { .res_num = 0, .isr = riic_tend_isr, .name = "riic-tend" }, 387 { .res_num = 1, .isr = riic_rdrf_isr, .name = "riic-rdrf" }, 388 { .res_num = 2, .isr = riic_tdre_isr, .name = "riic-tdre" }, 389 { .res_num = 3, .isr = riic_stop_isr, .name = "riic-stop" }, 390 { .res_num = 5, .isr = riic_tend_isr, .name = "riic-nack" }, 391 }; 392 393 static void riic_reset_control_assert(void *data) 394 { 395 reset_control_assert(data); 396 } 397 398 static int riic_i2c_probe(struct platform_device *pdev) 399 { 400 struct riic_dev *riic; 401 struct i2c_adapter *adap; 402 struct i2c_timings i2c_t; 403 struct reset_control *rstc; 404 int i, ret; 405 406 riic = devm_kzalloc(&pdev->dev, sizeof(*riic), GFP_KERNEL); 407 if (!riic) 408 return -ENOMEM; 409 410 riic->base = devm_platform_ioremap_resource(pdev, 0); 411 if (IS_ERR(riic->base)) 412 return PTR_ERR(riic->base); 413 414 riic->clk = devm_clk_get(&pdev->dev, NULL); 415 if (IS_ERR(riic->clk)) { 416 dev_err(&pdev->dev, "missing controller clock"); 417 return PTR_ERR(riic->clk); 418 } 419 420 rstc = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL); 421 if (IS_ERR(rstc)) 422 return dev_err_probe(&pdev->dev, PTR_ERR(rstc), 423 "Error: missing reset ctrl\n"); 424 425 ret = reset_control_deassert(rstc); 426 if (ret) 427 return ret; 428 429 ret = devm_add_action_or_reset(&pdev->dev, riic_reset_control_assert, rstc); 430 if (ret) 431 return ret; 432 433 for (i = 0; i < ARRAY_SIZE(riic_irqs); i++) { 434 ret = platform_get_irq(pdev, riic_irqs[i].res_num); 435 if (ret < 0) 436 return ret; 437 438 ret = devm_request_irq(&pdev->dev, ret, riic_irqs[i].isr, 439 0, riic_irqs[i].name, riic); 440 if (ret) { 441 dev_err(&pdev->dev, "failed to request irq %s\n", riic_irqs[i].name); 442 return ret; 443 } 444 } 445 446 adap = &riic->adapter; 447 i2c_set_adapdata(adap, riic); 448 strscpy(adap->name, "Renesas RIIC adapter", sizeof(adap->name)); 449 adap->owner = THIS_MODULE; 450 adap->algo = &riic_algo; 451 adap->dev.parent = &pdev->dev; 452 adap->dev.of_node = pdev->dev.of_node; 453 454 init_completion(&riic->msg_done); 455 456 i2c_parse_fw_timings(&pdev->dev, &i2c_t, true); 457 458 pm_runtime_enable(&pdev->dev); 459 460 ret = riic_init_hw(riic, &i2c_t); 461 if (ret) 462 goto out; 463 464 ret = i2c_add_adapter(adap); 465 if (ret) 466 goto out; 467 468 platform_set_drvdata(pdev, riic); 469 470 dev_info(&pdev->dev, "registered with %dHz bus speed\n", 471 i2c_t.bus_freq_hz); 472 return 0; 473 474 out: 475 pm_runtime_disable(&pdev->dev); 476 return ret; 477 } 478 479 static void riic_i2c_remove(struct platform_device *pdev) 480 { 481 struct riic_dev *riic = platform_get_drvdata(pdev); 482 483 pm_runtime_get_sync(&pdev->dev); 484 writeb(0, riic->base + RIIC_ICIER); 485 pm_runtime_put(&pdev->dev); 486 i2c_del_adapter(&riic->adapter); 487 pm_runtime_disable(&pdev->dev); 488 } 489 490 static const struct of_device_id riic_i2c_dt_ids[] = { 491 { .compatible = "renesas,riic-rz", }, 492 { /* Sentinel */ }, 493 }; 494 495 static struct platform_driver riic_i2c_driver = { 496 .probe = riic_i2c_probe, 497 .remove_new = riic_i2c_remove, 498 .driver = { 499 .name = "i2c-riic", 500 .of_match_table = riic_i2c_dt_ids, 501 }, 502 }; 503 504 module_platform_driver(riic_i2c_driver); 505 506 MODULE_DESCRIPTION("Renesas RIIC adapter"); 507 MODULE_AUTHOR("Wolfram Sang <wsa@sang-engineering.com>"); 508 MODULE_LICENSE("GPL v2"); 509 MODULE_DEVICE_TABLE(of, riic_i2c_dt_ids); 510