1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Renesas RIIC driver 4 * 5 * Copyright (C) 2013 Wolfram Sang <wsa@sang-engineering.com> 6 * Copyright (C) 2013 Renesas Solutions Corp. 7 */ 8 9 /* 10 * This i2c core has a lot of interrupts, namely 8. We use their chaining as 11 * some kind of state machine. 12 * 13 * 1) The main xfer routine kicks off a transmission by putting the start bit 14 * (or repeated start) on the bus and enabling the transmit interrupt (TIE) 15 * since we need to send the target address + RW bit in every case. 16 * 17 * 2) TIE sends target address + RW bit and selects how to continue. 18 * 19 * 3a) Write case: We keep utilizing TIE as long as we have data to send. If we 20 * are done, we switch over to the transmission done interrupt (TEIE) and mark 21 * the message as completed (includes sending STOP) there. 22 * 23 * 3b) Read case: We switch over to receive interrupt (RIE). One dummy read is 24 * needed to start clocking, then we keep receiving until we are done. Note 25 * that we use the RDRFS mode all the time, i.e. we ACK/NACK every byte by 26 * writing to the ACKBT bit. I tried using the RDRFS mode only at the end of a 27 * message to create the final NACK as sketched in the datasheet. This caused 28 * some subtle races (when byte n was processed and byte n+1 was already 29 * waiting), though, and I started with the safe approach. 30 * 31 * 4) If we got a NACK somewhere, we flag the error and stop the transmission 32 * via NAKIE. 33 * 34 * Also check the comments in the interrupt routines for some gory details. 35 */ 36 37 #include <linux/clk.h> 38 #include <linux/completion.h> 39 #include <linux/err.h> 40 #include <linux/i2c.h> 41 #include <linux/interrupt.h> 42 #include <linux/io.h> 43 #include <linux/module.h> 44 #include <linux/of.h> 45 #include <linux/platform_device.h> 46 #include <linux/pm_runtime.h> 47 #include <linux/reset.h> 48 49 #define ICCR1_ICE 0x80 50 #define ICCR1_IICRST 0x40 51 #define ICCR1_SOWP 0x10 52 53 #define ICCR2_BBSY 0x80 54 #define ICCR2_SP 0x08 55 #define ICCR2_RS 0x04 56 #define ICCR2_ST 0x02 57 58 #define ICMR1_CKS_MASK 0x70 59 #define ICMR1_BCWP 0x08 60 #define ICMR1_CKS(_x) ((((_x) << 4) & ICMR1_CKS_MASK) | ICMR1_BCWP) 61 62 #define ICMR3_RDRFS 0x20 63 #define ICMR3_ACKWP 0x10 64 #define ICMR3_ACKBT 0x08 65 66 #define ICFER_FMPE 0x80 67 68 #define ICIER_TIE 0x80 69 #define ICIER_TEIE 0x40 70 #define ICIER_RIE 0x20 71 #define ICIER_NAKIE 0x10 72 #define ICIER_SPIE 0x08 73 74 #define ICSR2_NACKF 0x10 75 76 #define ICBR_RESERVED 0xe0 /* Should be 1 on writes */ 77 78 #define RIIC_INIT_MSG -1 79 80 enum riic_reg_list { 81 RIIC_ICCR1 = 0, 82 RIIC_ICCR2, 83 RIIC_ICMR1, 84 RIIC_ICMR3, 85 RIIC_ICFER, 86 RIIC_ICSER, 87 RIIC_ICIER, 88 RIIC_ICSR2, 89 RIIC_ICBRL, 90 RIIC_ICBRH, 91 RIIC_ICDRT, 92 RIIC_ICDRR, 93 RIIC_REG_END, 94 }; 95 96 struct riic_of_data { 97 const u8 *regs; 98 bool fast_mode_plus; 99 }; 100 101 struct riic_dev { 102 void __iomem *base; 103 u8 *buf; 104 struct i2c_msg *msg; 105 int bytes_left; 106 int err; 107 int is_last; 108 const struct riic_of_data *info; 109 struct completion msg_done; 110 struct i2c_adapter adapter; 111 struct clk *clk; 112 struct reset_control *rstc; 113 struct i2c_timings i2c_t; 114 }; 115 116 struct riic_irq_desc { 117 int res_num; 118 irq_handler_t isr; 119 char *name; 120 }; 121 122 static inline void riic_writeb(struct riic_dev *riic, u8 val, u8 offset) 123 { 124 writeb(val, riic->base + riic->info->regs[offset]); 125 } 126 127 static inline u8 riic_readb(struct riic_dev *riic, u8 offset) 128 { 129 return readb(riic->base + riic->info->regs[offset]); 130 } 131 132 static inline void riic_clear_set_bit(struct riic_dev *riic, u8 clear, u8 set, u8 reg) 133 { 134 riic_writeb(riic, (riic_readb(riic, reg) & ~clear) | set, reg); 135 } 136 137 static int riic_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num) 138 { 139 struct riic_dev *riic = i2c_get_adapdata(adap); 140 struct device *dev = adap->dev.parent; 141 unsigned long time_left; 142 int i, ret; 143 u8 start_bit; 144 145 ret = pm_runtime_resume_and_get(dev); 146 if (ret) 147 return ret; 148 149 if (riic_readb(riic, RIIC_ICCR2) & ICCR2_BBSY) { 150 riic->err = -EBUSY; 151 goto out; 152 } 153 154 reinit_completion(&riic->msg_done); 155 riic->err = 0; 156 157 riic_writeb(riic, 0, RIIC_ICSR2); 158 159 for (i = 0, start_bit = ICCR2_ST; i < num; i++) { 160 riic->bytes_left = RIIC_INIT_MSG; 161 riic->buf = msgs[i].buf; 162 riic->msg = &msgs[i]; 163 riic->is_last = (i == num - 1); 164 165 riic_writeb(riic, ICIER_NAKIE | ICIER_TIE, RIIC_ICIER); 166 167 riic_writeb(riic, start_bit, RIIC_ICCR2); 168 169 time_left = wait_for_completion_timeout(&riic->msg_done, riic->adapter.timeout); 170 if (time_left == 0) 171 riic->err = -ETIMEDOUT; 172 173 if (riic->err) 174 break; 175 176 start_bit = ICCR2_RS; 177 } 178 179 out: 180 pm_runtime_mark_last_busy(dev); 181 pm_runtime_put_autosuspend(dev); 182 183 return riic->err ?: num; 184 } 185 186 static irqreturn_t riic_tdre_isr(int irq, void *data) 187 { 188 struct riic_dev *riic = data; 189 u8 val; 190 191 if (!riic->bytes_left) 192 return IRQ_NONE; 193 194 if (riic->bytes_left == RIIC_INIT_MSG) { 195 if (riic->msg->flags & I2C_M_RD) 196 /* On read, switch over to receive interrupt */ 197 riic_clear_set_bit(riic, ICIER_TIE, ICIER_RIE, RIIC_ICIER); 198 else 199 /* On write, initialize length */ 200 riic->bytes_left = riic->msg->len; 201 202 val = i2c_8bit_addr_from_msg(riic->msg); 203 } else { 204 val = *riic->buf; 205 riic->buf++; 206 riic->bytes_left--; 207 } 208 209 /* 210 * Switch to transmission ended interrupt when done. Do check here 211 * after bytes_left was initialized to support SMBUS_QUICK (new msg has 212 * 0 length then) 213 */ 214 if (riic->bytes_left == 0) 215 riic_clear_set_bit(riic, ICIER_TIE, ICIER_TEIE, RIIC_ICIER); 216 217 /* 218 * This acks the TIE interrupt. We get another TIE immediately if our 219 * value could be moved to the shadow shift register right away. So 220 * this must be after updates to ICIER (where we want to disable TIE)! 221 */ 222 riic_writeb(riic, val, RIIC_ICDRT); 223 224 return IRQ_HANDLED; 225 } 226 227 static irqreturn_t riic_tend_isr(int irq, void *data) 228 { 229 struct riic_dev *riic = data; 230 231 if (riic_readb(riic, RIIC_ICSR2) & ICSR2_NACKF) { 232 /* We got a NACKIE */ 233 riic_readb(riic, RIIC_ICDRR); /* dummy read */ 234 riic_clear_set_bit(riic, ICSR2_NACKF, 0, RIIC_ICSR2); 235 riic->err = -ENXIO; 236 } else if (riic->bytes_left) { 237 return IRQ_NONE; 238 } 239 240 if (riic->is_last || riic->err) { 241 riic_clear_set_bit(riic, ICIER_TEIE, ICIER_SPIE, RIIC_ICIER); 242 riic_writeb(riic, ICCR2_SP, RIIC_ICCR2); 243 } else { 244 /* Transfer is complete, but do not send STOP */ 245 riic_clear_set_bit(riic, ICIER_TEIE, 0, RIIC_ICIER); 246 complete(&riic->msg_done); 247 } 248 249 return IRQ_HANDLED; 250 } 251 252 static irqreturn_t riic_rdrf_isr(int irq, void *data) 253 { 254 struct riic_dev *riic = data; 255 256 if (!riic->bytes_left) 257 return IRQ_NONE; 258 259 if (riic->bytes_left == RIIC_INIT_MSG) { 260 riic->bytes_left = riic->msg->len; 261 riic_readb(riic, RIIC_ICDRR); /* dummy read */ 262 return IRQ_HANDLED; 263 } 264 265 if (riic->bytes_left == 1) { 266 /* STOP must come before we set ACKBT! */ 267 if (riic->is_last) { 268 riic_clear_set_bit(riic, 0, ICIER_SPIE, RIIC_ICIER); 269 riic_writeb(riic, ICCR2_SP, RIIC_ICCR2); 270 } 271 272 riic_clear_set_bit(riic, 0, ICMR3_ACKBT, RIIC_ICMR3); 273 274 } else { 275 riic_clear_set_bit(riic, ICMR3_ACKBT, 0, RIIC_ICMR3); 276 } 277 278 /* Reading acks the RIE interrupt */ 279 *riic->buf = riic_readb(riic, RIIC_ICDRR); 280 riic->buf++; 281 riic->bytes_left--; 282 283 return IRQ_HANDLED; 284 } 285 286 static irqreturn_t riic_stop_isr(int irq, void *data) 287 { 288 struct riic_dev *riic = data; 289 290 /* read back registers to confirm writes have fully propagated */ 291 riic_writeb(riic, 0, RIIC_ICSR2); 292 riic_readb(riic, RIIC_ICSR2); 293 riic_writeb(riic, 0, RIIC_ICIER); 294 riic_readb(riic, RIIC_ICIER); 295 296 complete(&riic->msg_done); 297 298 return IRQ_HANDLED; 299 } 300 301 static u32 riic_func(struct i2c_adapter *adap) 302 { 303 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; 304 } 305 306 static const struct i2c_algorithm riic_algo = { 307 .xfer = riic_xfer, 308 .functionality = riic_func, 309 }; 310 311 static int riic_init_hw(struct riic_dev *riic) 312 { 313 int ret; 314 unsigned long rate; 315 int total_ticks, cks, brl, brh; 316 struct i2c_timings *t = &riic->i2c_t; 317 struct device *dev = riic->adapter.dev.parent; 318 bool fast_mode_plus = riic->info->fast_mode_plus; 319 u32 max_freq = fast_mode_plus ? I2C_MAX_FAST_MODE_PLUS_FREQ 320 : I2C_MAX_FAST_MODE_FREQ; 321 322 if (t->bus_freq_hz > max_freq) 323 return dev_err_probe(&riic->adapter.dev, -EINVAL, 324 "unsupported bus speed %uHz (%u max)\n", 325 t->bus_freq_hz, max_freq); 326 327 rate = clk_get_rate(riic->clk); 328 329 /* 330 * Assume the default register settings: 331 * FER.SCLE = 1 (SCL sync circuit enabled, adds 2 or 3 cycles) 332 * FER.NFE = 1 (noise circuit enabled) 333 * MR3.NF = 0 (1 cycle of noise filtered out) 334 * 335 * Freq (CKS=000) = (I2CCLK + tr + tf)/ (BRH + 3 + 1) + (BRL + 3 + 1) 336 * Freq (CKS!=000) = (I2CCLK + tr + tf)/ (BRH + 2 + 1) + (BRL + 2 + 1) 337 */ 338 339 /* 340 * Determine reference clock rate. We must be able to get the desired 341 * frequency with only 62 clock ticks max (31 high, 31 low). 342 * Aim for a duty of 60% LOW, 40% HIGH. 343 */ 344 total_ticks = DIV_ROUND_UP(rate, t->bus_freq_hz ?: 1); 345 346 for (cks = 0; cks < 7; cks++) { 347 /* 348 * 60% low time must be less than BRL + 2 + 1 349 * BRL max register value is 0x1F. 350 */ 351 brl = ((total_ticks * 6) / 10); 352 if (brl <= (0x1F + 3)) 353 break; 354 355 total_ticks /= 2; 356 rate /= 2; 357 } 358 359 if (brl > (0x1F + 3)) { 360 dev_err(&riic->adapter.dev, "invalid speed (%lu). Too slow.\n", 361 (unsigned long)t->bus_freq_hz); 362 return -EINVAL; 363 } 364 365 brh = total_ticks - brl; 366 367 /* Remove automatic clock ticks for sync circuit and NF */ 368 if (cks == 0) { 369 brl -= 4; 370 brh -= 4; 371 } else { 372 brl -= 3; 373 brh -= 3; 374 } 375 376 /* 377 * Remove clock ticks for rise and fall times. Convert ns to clock 378 * ticks. 379 */ 380 brl -= t->scl_fall_ns / (1000000000 / rate); 381 brh -= t->scl_rise_ns / (1000000000 / rate); 382 383 /* Adjust for min register values for when SCLE=1 and NFE=1 */ 384 if (brl < 1) 385 brl = 1; 386 if (brh < 1) 387 brh = 1; 388 389 pr_debug("i2c-riic: freq=%lu, duty=%d, fall=%lu, rise=%lu, cks=%d, brl=%d, brh=%d\n", 390 rate / total_ticks, ((brl + 3) * 100) / (brl + brh + 6), 391 t->scl_fall_ns / (1000000000 / rate), 392 t->scl_rise_ns / (1000000000 / rate), cks, brl, brh); 393 394 ret = pm_runtime_resume_and_get(dev); 395 if (ret) 396 return ret; 397 398 /* Changing the order of accessing IICRST and ICE may break things! */ 399 riic_writeb(riic, ICCR1_IICRST | ICCR1_SOWP, RIIC_ICCR1); 400 riic_clear_set_bit(riic, 0, ICCR1_ICE, RIIC_ICCR1); 401 402 riic_writeb(riic, ICMR1_CKS(cks), RIIC_ICMR1); 403 riic_writeb(riic, brh | ICBR_RESERVED, RIIC_ICBRH); 404 riic_writeb(riic, brl | ICBR_RESERVED, RIIC_ICBRL); 405 406 riic_writeb(riic, 0, RIIC_ICSER); 407 riic_writeb(riic, ICMR3_ACKWP | ICMR3_RDRFS, RIIC_ICMR3); 408 409 if (fast_mode_plus && t->bus_freq_hz > I2C_MAX_FAST_MODE_FREQ) 410 riic_clear_set_bit(riic, 0, ICFER_FMPE, RIIC_ICFER); 411 412 riic_clear_set_bit(riic, ICCR1_IICRST, 0, RIIC_ICCR1); 413 414 pm_runtime_mark_last_busy(dev); 415 pm_runtime_put_autosuspend(dev); 416 return 0; 417 } 418 419 static struct riic_irq_desc riic_irqs[] = { 420 { .res_num = 0, .isr = riic_tend_isr, .name = "riic-tend" }, 421 { .res_num = 1, .isr = riic_rdrf_isr, .name = "riic-rdrf" }, 422 { .res_num = 2, .isr = riic_tdre_isr, .name = "riic-tdre" }, 423 { .res_num = 3, .isr = riic_stop_isr, .name = "riic-stop" }, 424 { .res_num = 5, .isr = riic_tend_isr, .name = "riic-nack" }, 425 }; 426 427 static void riic_reset_control_assert(void *data) 428 { 429 reset_control_assert(data); 430 } 431 432 static int riic_i2c_probe(struct platform_device *pdev) 433 { 434 struct device *dev = &pdev->dev; 435 struct riic_dev *riic; 436 struct i2c_adapter *adap; 437 int i, ret; 438 439 riic = devm_kzalloc(dev, sizeof(*riic), GFP_KERNEL); 440 if (!riic) 441 return -ENOMEM; 442 443 riic->base = devm_platform_ioremap_resource(pdev, 0); 444 if (IS_ERR(riic->base)) 445 return PTR_ERR(riic->base); 446 447 riic->clk = devm_clk_get(dev, NULL); 448 if (IS_ERR(riic->clk)) { 449 dev_err(dev, "missing controller clock"); 450 return PTR_ERR(riic->clk); 451 } 452 453 riic->rstc = devm_reset_control_get_optional_exclusive(dev, NULL); 454 if (IS_ERR(riic->rstc)) 455 return dev_err_probe(dev, PTR_ERR(riic->rstc), 456 "Error: missing reset ctrl\n"); 457 458 ret = reset_control_deassert(riic->rstc); 459 if (ret) 460 return ret; 461 462 ret = devm_add_action_or_reset(dev, riic_reset_control_assert, riic->rstc); 463 if (ret) 464 return ret; 465 466 for (i = 0; i < ARRAY_SIZE(riic_irqs); i++) { 467 ret = platform_get_irq(pdev, riic_irqs[i].res_num); 468 if (ret < 0) 469 return ret; 470 471 ret = devm_request_irq(dev, ret, riic_irqs[i].isr, 472 0, riic_irqs[i].name, riic); 473 if (ret) { 474 dev_err(dev, "failed to request irq %s\n", riic_irqs[i].name); 475 return ret; 476 } 477 } 478 479 riic->info = of_device_get_match_data(dev); 480 481 adap = &riic->adapter; 482 i2c_set_adapdata(adap, riic); 483 strscpy(adap->name, "Renesas RIIC adapter", sizeof(adap->name)); 484 adap->owner = THIS_MODULE; 485 adap->algo = &riic_algo; 486 adap->dev.parent = dev; 487 adap->dev.of_node = dev->of_node; 488 489 init_completion(&riic->msg_done); 490 491 i2c_parse_fw_timings(dev, &riic->i2c_t, true); 492 493 /* Default 0 to save power. Can be overridden via sysfs for lower latency. */ 494 pm_runtime_set_autosuspend_delay(dev, 0); 495 pm_runtime_use_autosuspend(dev); 496 pm_runtime_enable(dev); 497 498 ret = riic_init_hw(riic); 499 if (ret) 500 goto out; 501 502 ret = i2c_add_adapter(adap); 503 if (ret) 504 goto out; 505 506 platform_set_drvdata(pdev, riic); 507 508 dev_info(dev, "registered with %dHz bus speed\n", riic->i2c_t.bus_freq_hz); 509 return 0; 510 511 out: 512 pm_runtime_disable(dev); 513 pm_runtime_dont_use_autosuspend(dev); 514 return ret; 515 } 516 517 static void riic_i2c_remove(struct platform_device *pdev) 518 { 519 struct riic_dev *riic = platform_get_drvdata(pdev); 520 struct device *dev = &pdev->dev; 521 int ret; 522 523 ret = pm_runtime_resume_and_get(dev); 524 if (!ret) { 525 riic_writeb(riic, 0, RIIC_ICIER); 526 pm_runtime_put(dev); 527 } 528 i2c_del_adapter(&riic->adapter); 529 pm_runtime_disable(dev); 530 pm_runtime_dont_use_autosuspend(dev); 531 } 532 533 static const u8 riic_rz_a_regs[RIIC_REG_END] = { 534 [RIIC_ICCR1] = 0x00, 535 [RIIC_ICCR2] = 0x04, 536 [RIIC_ICMR1] = 0x08, 537 [RIIC_ICMR3] = 0x10, 538 [RIIC_ICFER] = 0x14, 539 [RIIC_ICSER] = 0x18, 540 [RIIC_ICIER] = 0x1c, 541 [RIIC_ICSR2] = 0x24, 542 [RIIC_ICBRL] = 0x34, 543 [RIIC_ICBRH] = 0x38, 544 [RIIC_ICDRT] = 0x3c, 545 [RIIC_ICDRR] = 0x40, 546 }; 547 548 static const struct riic_of_data riic_rz_a_info = { 549 .regs = riic_rz_a_regs, 550 .fast_mode_plus = true, 551 }; 552 553 static const struct riic_of_data riic_rz_a1h_info = { 554 .regs = riic_rz_a_regs, 555 }; 556 557 static const u8 riic_rz_v2h_regs[RIIC_REG_END] = { 558 [RIIC_ICCR1] = 0x00, 559 [RIIC_ICCR2] = 0x01, 560 [RIIC_ICMR1] = 0x02, 561 [RIIC_ICMR3] = 0x04, 562 [RIIC_ICFER] = 0x05, 563 [RIIC_ICSER] = 0x06, 564 [RIIC_ICIER] = 0x07, 565 [RIIC_ICSR2] = 0x09, 566 [RIIC_ICBRL] = 0x10, 567 [RIIC_ICBRH] = 0x11, 568 [RIIC_ICDRT] = 0x12, 569 [RIIC_ICDRR] = 0x13, 570 }; 571 572 static const struct riic_of_data riic_rz_v2h_info = { 573 .regs = riic_rz_v2h_regs, 574 .fast_mode_plus = true, 575 }; 576 577 static int riic_i2c_suspend(struct device *dev) 578 { 579 struct riic_dev *riic = dev_get_drvdata(dev); 580 int ret; 581 582 ret = pm_runtime_resume_and_get(dev); 583 if (ret) 584 return ret; 585 586 i2c_mark_adapter_suspended(&riic->adapter); 587 588 /* Disable output on SDA, SCL pins. */ 589 riic_clear_set_bit(riic, ICCR1_ICE, 0, RIIC_ICCR1); 590 591 pm_runtime_mark_last_busy(dev); 592 pm_runtime_put_sync(dev); 593 594 return reset_control_assert(riic->rstc); 595 } 596 597 static int riic_i2c_resume(struct device *dev) 598 { 599 struct riic_dev *riic = dev_get_drvdata(dev); 600 int ret; 601 602 ret = reset_control_deassert(riic->rstc); 603 if (ret) 604 return ret; 605 606 ret = riic_init_hw(riic); 607 if (ret) { 608 /* 609 * In case this happens there is no way to recover from this 610 * state. The driver will remain loaded. We want to avoid 611 * keeping the reset line de-asserted for no reason. 612 */ 613 reset_control_assert(riic->rstc); 614 return ret; 615 } 616 617 i2c_mark_adapter_resumed(&riic->adapter); 618 619 return 0; 620 } 621 622 static const struct dev_pm_ops riic_i2c_pm_ops = { 623 SYSTEM_SLEEP_PM_OPS(riic_i2c_suspend, riic_i2c_resume) 624 }; 625 626 static const struct of_device_id riic_i2c_dt_ids[] = { 627 { .compatible = "renesas,riic-rz", .data = &riic_rz_a_info }, 628 { .compatible = "renesas,riic-r7s72100", .data = &riic_rz_a1h_info, }, 629 { .compatible = "renesas,riic-r9a09g057", .data = &riic_rz_v2h_info }, 630 { /* Sentinel */ }, 631 }; 632 633 static struct platform_driver riic_i2c_driver = { 634 .probe = riic_i2c_probe, 635 .remove = riic_i2c_remove, 636 .driver = { 637 .name = "i2c-riic", 638 .of_match_table = riic_i2c_dt_ids, 639 .pm = pm_ptr(&riic_i2c_pm_ops), 640 }, 641 }; 642 643 module_platform_driver(riic_i2c_driver); 644 645 MODULE_DESCRIPTION("Renesas RIIC adapter"); 646 MODULE_AUTHOR("Wolfram Sang <wsa@sang-engineering.com>"); 647 MODULE_LICENSE("GPL v2"); 648 MODULE_DEVICE_TABLE(of, riic_i2c_dt_ids); 649