1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Renesas RIIC driver 4 * 5 * Copyright (C) 2013 Wolfram Sang <wsa@sang-engineering.com> 6 * Copyright (C) 2013 Renesas Solutions Corp. 7 */ 8 9 /* 10 * This i2c core has a lot of interrupts, namely 8. We use their chaining as 11 * some kind of state machine. 12 * 13 * 1) The main xfer routine kicks off a transmission by putting the start bit 14 * (or repeated start) on the bus and enabling the transmit interrupt (TIE) 15 * since we need to send the slave address + RW bit in every case. 16 * 17 * 2) TIE sends slave address + RW bit and selects how to continue. 18 * 19 * 3a) Write case: We keep utilizing TIE as long as we have data to send. If we 20 * are done, we switch over to the transmission done interrupt (TEIE) and mark 21 * the message as completed (includes sending STOP) there. 22 * 23 * 3b) Read case: We switch over to receive interrupt (RIE). One dummy read is 24 * needed to start clocking, then we keep receiving until we are done. Note 25 * that we use the RDRFS mode all the time, i.e. we ACK/NACK every byte by 26 * writing to the ACKBT bit. I tried using the RDRFS mode only at the end of a 27 * message to create the final NACK as sketched in the datasheet. This caused 28 * some subtle races (when byte n was processed and byte n+1 was already 29 * waiting), though, and I started with the safe approach. 30 * 31 * 4) If we got a NACK somewhere, we flag the error and stop the transmission 32 * via NAKIE. 33 * 34 * Also check the comments in the interrupt routines for some gory details. 35 */ 36 37 #include <linux/clk.h> 38 #include <linux/completion.h> 39 #include <linux/err.h> 40 #include <linux/i2c.h> 41 #include <linux/interrupt.h> 42 #include <linux/io.h> 43 #include <linux/module.h> 44 #include <linux/of.h> 45 #include <linux/of_device.h> 46 #include <linux/platform_device.h> 47 #include <linux/pm_runtime.h> 48 #include <linux/reset.h> 49 50 #define RIIC_ICCR1 0x00 51 #define RIIC_ICCR2 0x04 52 #define RIIC_ICMR1 0x08 53 #define RIIC_ICMR3 0x10 54 #define RIIC_ICSER 0x18 55 #define RIIC_ICIER 0x1c 56 #define RIIC_ICSR2 0x24 57 #define RIIC_ICBRL 0x34 58 #define RIIC_ICBRH 0x38 59 #define RIIC_ICDRT 0x3c 60 #define RIIC_ICDRR 0x40 61 62 #define ICCR1_ICE 0x80 63 #define ICCR1_IICRST 0x40 64 #define ICCR1_SOWP 0x10 65 66 #define ICCR2_BBSY 0x80 67 #define ICCR2_SP 0x08 68 #define ICCR2_RS 0x04 69 #define ICCR2_ST 0x02 70 71 #define ICMR1_CKS_MASK 0x70 72 #define ICMR1_BCWP 0x08 73 #define ICMR1_CKS(_x) ((((_x) << 4) & ICMR1_CKS_MASK) | ICMR1_BCWP) 74 75 #define ICMR3_RDRFS 0x20 76 #define ICMR3_ACKWP 0x10 77 #define ICMR3_ACKBT 0x08 78 79 #define ICIER_TIE 0x80 80 #define ICIER_TEIE 0x40 81 #define ICIER_RIE 0x20 82 #define ICIER_NAKIE 0x10 83 #define ICIER_SPIE 0x08 84 85 #define ICSR2_NACKF 0x10 86 87 #define ICBR_RESERVED 0xe0 /* Should be 1 on writes */ 88 89 #define RIIC_INIT_MSG -1 90 91 struct riic_dev { 92 void __iomem *base; 93 u8 *buf; 94 struct i2c_msg *msg; 95 int bytes_left; 96 int err; 97 int is_last; 98 struct completion msg_done; 99 struct i2c_adapter adapter; 100 struct clk *clk; 101 }; 102 103 struct riic_irq_desc { 104 int res_num; 105 irq_handler_t isr; 106 char *name; 107 }; 108 109 static inline void riic_clear_set_bit(struct riic_dev *riic, u8 clear, u8 set, u8 reg) 110 { 111 writeb((readb(riic->base + reg) & ~clear) | set, riic->base + reg); 112 } 113 114 static int riic_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num) 115 { 116 struct riic_dev *riic = i2c_get_adapdata(adap); 117 unsigned long time_left; 118 int i; 119 u8 start_bit; 120 121 pm_runtime_get_sync(adap->dev.parent); 122 123 if (readb(riic->base + RIIC_ICCR2) & ICCR2_BBSY) { 124 riic->err = -EBUSY; 125 goto out; 126 } 127 128 reinit_completion(&riic->msg_done); 129 riic->err = 0; 130 131 writeb(0, riic->base + RIIC_ICSR2); 132 133 for (i = 0, start_bit = ICCR2_ST; i < num; i++) { 134 riic->bytes_left = RIIC_INIT_MSG; 135 riic->buf = msgs[i].buf; 136 riic->msg = &msgs[i]; 137 riic->is_last = (i == num - 1); 138 139 writeb(ICIER_NAKIE | ICIER_TIE, riic->base + RIIC_ICIER); 140 141 writeb(start_bit, riic->base + RIIC_ICCR2); 142 143 time_left = wait_for_completion_timeout(&riic->msg_done, riic->adapter.timeout); 144 if (time_left == 0) 145 riic->err = -ETIMEDOUT; 146 147 if (riic->err) 148 break; 149 150 start_bit = ICCR2_RS; 151 } 152 153 out: 154 pm_runtime_put(adap->dev.parent); 155 156 return riic->err ?: num; 157 } 158 159 static irqreturn_t riic_tdre_isr(int irq, void *data) 160 { 161 struct riic_dev *riic = data; 162 u8 val; 163 164 if (!riic->bytes_left) 165 return IRQ_NONE; 166 167 if (riic->bytes_left == RIIC_INIT_MSG) { 168 if (riic->msg->flags & I2C_M_RD) 169 /* On read, switch over to receive interrupt */ 170 riic_clear_set_bit(riic, ICIER_TIE, ICIER_RIE, RIIC_ICIER); 171 else 172 /* On write, initialize length */ 173 riic->bytes_left = riic->msg->len; 174 175 val = i2c_8bit_addr_from_msg(riic->msg); 176 } else { 177 val = *riic->buf; 178 riic->buf++; 179 riic->bytes_left--; 180 } 181 182 /* 183 * Switch to transmission ended interrupt when done. Do check here 184 * after bytes_left was initialized to support SMBUS_QUICK (new msg has 185 * 0 length then) 186 */ 187 if (riic->bytes_left == 0) 188 riic_clear_set_bit(riic, ICIER_TIE, ICIER_TEIE, RIIC_ICIER); 189 190 /* 191 * This acks the TIE interrupt. We get another TIE immediately if our 192 * value could be moved to the shadow shift register right away. So 193 * this must be after updates to ICIER (where we want to disable TIE)! 194 */ 195 writeb(val, riic->base + RIIC_ICDRT); 196 197 return IRQ_HANDLED; 198 } 199 200 static irqreturn_t riic_tend_isr(int irq, void *data) 201 { 202 struct riic_dev *riic = data; 203 204 if (readb(riic->base + RIIC_ICSR2) & ICSR2_NACKF) { 205 /* We got a NACKIE */ 206 readb(riic->base + RIIC_ICDRR); /* dummy read */ 207 riic_clear_set_bit(riic, ICSR2_NACKF, 0, RIIC_ICSR2); 208 riic->err = -ENXIO; 209 } else if (riic->bytes_left) { 210 return IRQ_NONE; 211 } 212 213 if (riic->is_last || riic->err) { 214 riic_clear_set_bit(riic, ICIER_TEIE, ICIER_SPIE, RIIC_ICIER); 215 writeb(ICCR2_SP, riic->base + RIIC_ICCR2); 216 } else { 217 /* Transfer is complete, but do not send STOP */ 218 riic_clear_set_bit(riic, ICIER_TEIE, 0, RIIC_ICIER); 219 complete(&riic->msg_done); 220 } 221 222 return IRQ_HANDLED; 223 } 224 225 static irqreturn_t riic_rdrf_isr(int irq, void *data) 226 { 227 struct riic_dev *riic = data; 228 229 if (!riic->bytes_left) 230 return IRQ_NONE; 231 232 if (riic->bytes_left == RIIC_INIT_MSG) { 233 riic->bytes_left = riic->msg->len; 234 readb(riic->base + RIIC_ICDRR); /* dummy read */ 235 return IRQ_HANDLED; 236 } 237 238 if (riic->bytes_left == 1) { 239 /* STOP must come before we set ACKBT! */ 240 if (riic->is_last) { 241 riic_clear_set_bit(riic, 0, ICIER_SPIE, RIIC_ICIER); 242 writeb(ICCR2_SP, riic->base + RIIC_ICCR2); 243 } 244 245 riic_clear_set_bit(riic, 0, ICMR3_ACKBT, RIIC_ICMR3); 246 247 } else { 248 riic_clear_set_bit(riic, ICMR3_ACKBT, 0, RIIC_ICMR3); 249 } 250 251 /* Reading acks the RIE interrupt */ 252 *riic->buf = readb(riic->base + RIIC_ICDRR); 253 riic->buf++; 254 riic->bytes_left--; 255 256 return IRQ_HANDLED; 257 } 258 259 static irqreturn_t riic_stop_isr(int irq, void *data) 260 { 261 struct riic_dev *riic = data; 262 263 /* read back registers to confirm writes have fully propagated */ 264 writeb(0, riic->base + RIIC_ICSR2); 265 readb(riic->base + RIIC_ICSR2); 266 writeb(0, riic->base + RIIC_ICIER); 267 readb(riic->base + RIIC_ICIER); 268 269 complete(&riic->msg_done); 270 271 return IRQ_HANDLED; 272 } 273 274 static u32 riic_func(struct i2c_adapter *adap) 275 { 276 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; 277 } 278 279 static const struct i2c_algorithm riic_algo = { 280 .master_xfer = riic_xfer, 281 .functionality = riic_func, 282 }; 283 284 static int riic_init_hw(struct riic_dev *riic, struct i2c_timings *t) 285 { 286 int ret = 0; 287 unsigned long rate; 288 int total_ticks, cks, brl, brh; 289 290 pm_runtime_get_sync(riic->adapter.dev.parent); 291 292 if (t->bus_freq_hz > I2C_MAX_FAST_MODE_FREQ) { 293 dev_err(&riic->adapter.dev, 294 "unsupported bus speed (%dHz). %d max\n", 295 t->bus_freq_hz, I2C_MAX_FAST_MODE_FREQ); 296 ret = -EINVAL; 297 goto out; 298 } 299 300 rate = clk_get_rate(riic->clk); 301 302 /* 303 * Assume the default register settings: 304 * FER.SCLE = 1 (SCL sync circuit enabled, adds 2 or 3 cycles) 305 * FER.NFE = 1 (noise circuit enabled) 306 * MR3.NF = 0 (1 cycle of noise filtered out) 307 * 308 * Freq (CKS=000) = (I2CCLK + tr + tf)/ (BRH + 3 + 1) + (BRL + 3 + 1) 309 * Freq (CKS!=000) = (I2CCLK + tr + tf)/ (BRH + 2 + 1) + (BRL + 2 + 1) 310 */ 311 312 /* 313 * Determine reference clock rate. We must be able to get the desired 314 * frequency with only 62 clock ticks max (31 high, 31 low). 315 * Aim for a duty of 60% LOW, 40% HIGH. 316 */ 317 total_ticks = DIV_ROUND_UP(rate, t->bus_freq_hz); 318 319 for (cks = 0; cks < 7; cks++) { 320 /* 321 * 60% low time must be less than BRL + 2 + 1 322 * BRL max register value is 0x1F. 323 */ 324 brl = ((total_ticks * 6) / 10); 325 if (brl <= (0x1F + 3)) 326 break; 327 328 total_ticks /= 2; 329 rate /= 2; 330 } 331 332 if (brl > (0x1F + 3)) { 333 dev_err(&riic->adapter.dev, "invalid speed (%lu). Too slow.\n", 334 (unsigned long)t->bus_freq_hz); 335 ret = -EINVAL; 336 goto out; 337 } 338 339 brh = total_ticks - brl; 340 341 /* Remove automatic clock ticks for sync circuit and NF */ 342 if (cks == 0) { 343 brl -= 4; 344 brh -= 4; 345 } else { 346 brl -= 3; 347 brh -= 3; 348 } 349 350 /* 351 * Remove clock ticks for rise and fall times. Convert ns to clock 352 * ticks. 353 */ 354 brl -= t->scl_fall_ns / (1000000000 / rate); 355 brh -= t->scl_rise_ns / (1000000000 / rate); 356 357 /* Adjust for min register values for when SCLE=1 and NFE=1 */ 358 if (brl < 1) 359 brl = 1; 360 if (brh < 1) 361 brh = 1; 362 363 pr_debug("i2c-riic: freq=%lu, duty=%d, fall=%lu, rise=%lu, cks=%d, brl=%d, brh=%d\n", 364 rate / total_ticks, ((brl + 3) * 100) / (brl + brh + 6), 365 t->scl_fall_ns / (1000000000 / rate), 366 t->scl_rise_ns / (1000000000 / rate), cks, brl, brh); 367 368 /* Changing the order of accessing IICRST and ICE may break things! */ 369 writeb(ICCR1_IICRST | ICCR1_SOWP, riic->base + RIIC_ICCR1); 370 riic_clear_set_bit(riic, 0, ICCR1_ICE, RIIC_ICCR1); 371 372 writeb(ICMR1_CKS(cks), riic->base + RIIC_ICMR1); 373 writeb(brh | ICBR_RESERVED, riic->base + RIIC_ICBRH); 374 writeb(brl | ICBR_RESERVED, riic->base + RIIC_ICBRL); 375 376 writeb(0, riic->base + RIIC_ICSER); 377 writeb(ICMR3_ACKWP | ICMR3_RDRFS, riic->base + RIIC_ICMR3); 378 379 riic_clear_set_bit(riic, ICCR1_IICRST, 0, RIIC_ICCR1); 380 381 out: 382 pm_runtime_put(riic->adapter.dev.parent); 383 return ret; 384 } 385 386 static struct riic_irq_desc riic_irqs[] = { 387 { .res_num = 0, .isr = riic_tend_isr, .name = "riic-tend" }, 388 { .res_num = 1, .isr = riic_rdrf_isr, .name = "riic-rdrf" }, 389 { .res_num = 2, .isr = riic_tdre_isr, .name = "riic-tdre" }, 390 { .res_num = 3, .isr = riic_stop_isr, .name = "riic-stop" }, 391 { .res_num = 5, .isr = riic_tend_isr, .name = "riic-nack" }, 392 }; 393 394 static void riic_reset_control_assert(void *data) 395 { 396 reset_control_assert(data); 397 } 398 399 static int riic_i2c_probe(struct platform_device *pdev) 400 { 401 struct riic_dev *riic; 402 struct i2c_adapter *adap; 403 struct i2c_timings i2c_t; 404 struct reset_control *rstc; 405 int i, ret; 406 407 riic = devm_kzalloc(&pdev->dev, sizeof(*riic), GFP_KERNEL); 408 if (!riic) 409 return -ENOMEM; 410 411 riic->base = devm_platform_ioremap_resource(pdev, 0); 412 if (IS_ERR(riic->base)) 413 return PTR_ERR(riic->base); 414 415 riic->clk = devm_clk_get(&pdev->dev, NULL); 416 if (IS_ERR(riic->clk)) { 417 dev_err(&pdev->dev, "missing controller clock"); 418 return PTR_ERR(riic->clk); 419 } 420 421 rstc = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL); 422 if (IS_ERR(rstc)) 423 return dev_err_probe(&pdev->dev, PTR_ERR(rstc), 424 "Error: missing reset ctrl\n"); 425 426 ret = reset_control_deassert(rstc); 427 if (ret) 428 return ret; 429 430 ret = devm_add_action_or_reset(&pdev->dev, riic_reset_control_assert, rstc); 431 if (ret) 432 return ret; 433 434 for (i = 0; i < ARRAY_SIZE(riic_irqs); i++) { 435 ret = platform_get_irq(pdev, riic_irqs[i].res_num); 436 if (ret < 0) 437 return ret; 438 439 ret = devm_request_irq(&pdev->dev, ret, riic_irqs[i].isr, 440 0, riic_irqs[i].name, riic); 441 if (ret) { 442 dev_err(&pdev->dev, "failed to request irq %s\n", riic_irqs[i].name); 443 return ret; 444 } 445 } 446 447 adap = &riic->adapter; 448 i2c_set_adapdata(adap, riic); 449 strscpy(adap->name, "Renesas RIIC adapter", sizeof(adap->name)); 450 adap->owner = THIS_MODULE; 451 adap->algo = &riic_algo; 452 adap->dev.parent = &pdev->dev; 453 adap->dev.of_node = pdev->dev.of_node; 454 455 init_completion(&riic->msg_done); 456 457 i2c_parse_fw_timings(&pdev->dev, &i2c_t, true); 458 459 pm_runtime_enable(&pdev->dev); 460 461 ret = riic_init_hw(riic, &i2c_t); 462 if (ret) 463 goto out; 464 465 ret = i2c_add_adapter(adap); 466 if (ret) 467 goto out; 468 469 platform_set_drvdata(pdev, riic); 470 471 dev_info(&pdev->dev, "registered with %dHz bus speed\n", 472 i2c_t.bus_freq_hz); 473 return 0; 474 475 out: 476 pm_runtime_disable(&pdev->dev); 477 return ret; 478 } 479 480 static int riic_i2c_remove(struct platform_device *pdev) 481 { 482 struct riic_dev *riic = platform_get_drvdata(pdev); 483 484 pm_runtime_get_sync(&pdev->dev); 485 writeb(0, riic->base + RIIC_ICIER); 486 pm_runtime_put(&pdev->dev); 487 i2c_del_adapter(&riic->adapter); 488 pm_runtime_disable(&pdev->dev); 489 490 return 0; 491 } 492 493 static const struct of_device_id riic_i2c_dt_ids[] = { 494 { .compatible = "renesas,riic-rz", }, 495 { /* Sentinel */ }, 496 }; 497 498 static struct platform_driver riic_i2c_driver = { 499 .probe = riic_i2c_probe, 500 .remove = riic_i2c_remove, 501 .driver = { 502 .name = "i2c-riic", 503 .of_match_table = riic_i2c_dt_ids, 504 }, 505 }; 506 507 module_platform_driver(riic_i2c_driver); 508 509 MODULE_DESCRIPTION("Renesas RIIC adapter"); 510 MODULE_AUTHOR("Wolfram Sang <wsa@sang-engineering.com>"); 511 MODULE_LICENSE("GPL v2"); 512 MODULE_DEVICE_TABLE(of, riic_i2c_dt_ids); 513