xref: /linux/drivers/i2c/busses/i2c-octeon-core.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 /*
2  * (C) Copyright 2009-2010
3  * Nokia Siemens Networks, michael.lawnick.ext@nsn.com
4  *
5  * Portions Copyright (C) 2010 - 2016 Cavium, Inc.
6  *
7  * This file contains the shared part of the driver for the i2c adapter in
8  * Cavium Networks' OCTEON processors and ThunderX SOCs.
9  *
10  * This file is licensed under the terms of the GNU General Public
11  * License version 2. This program is licensed "as is" without any
12  * warranty of any kind, whether express or implied.
13  */
14 
15 #include <linux/delay.h>
16 #include <linux/i2c.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/pci.h>
21 
22 #include "i2c-octeon-core.h"
23 
24 #define INITIAL_DELTA_HZ		1000000
25 #define TWSI_MASTER_CLK_REG_DEF_VAL	0x18
26 #define TWSI_MASTER_CLK_REG_OTX2_VAL	0x3
27 
28 /* interrupt service routine */
29 irqreturn_t octeon_i2c_isr(int irq, void *dev_id)
30 {
31 	struct octeon_i2c *i2c = dev_id;
32 
33 	i2c->int_disable(i2c);
34 	wake_up(&i2c->queue);
35 
36 	return IRQ_HANDLED;
37 }
38 
39 static bool octeon_i2c_test_iflg(struct octeon_i2c *i2c)
40 {
41 	return (octeon_i2c_ctl_read(i2c) & TWSI_CTL_IFLG);
42 }
43 
44 /**
45  * octeon_i2c_wait - wait for the IFLG to be set
46  * @i2c: The struct octeon_i2c
47  *
48  * Returns 0 on success, otherwise a negative errno.
49  */
50 static int octeon_i2c_wait(struct octeon_i2c *i2c)
51 {
52 	long time_left;
53 
54 	/*
55 	 * Some chip revisions don't assert the irq in the interrupt
56 	 * controller. So we must poll for the IFLG change.
57 	 */
58 	if (i2c->broken_irq_mode) {
59 		u64 end = get_jiffies_64() + i2c->adap.timeout;
60 
61 		while (!octeon_i2c_test_iflg(i2c) &&
62 		       time_before64(get_jiffies_64(), end))
63 			usleep_range(I2C_OCTEON_EVENT_WAIT / 2, I2C_OCTEON_EVENT_WAIT);
64 
65 		return octeon_i2c_test_iflg(i2c) ? 0 : -ETIMEDOUT;
66 	}
67 
68 	i2c->int_enable(i2c);
69 	time_left = wait_event_timeout(i2c->queue, octeon_i2c_test_iflg(i2c),
70 				       i2c->adap.timeout);
71 	i2c->int_disable(i2c);
72 
73 	if (i2c->broken_irq_check && !time_left &&
74 	    octeon_i2c_test_iflg(i2c)) {
75 		dev_err(i2c->dev, "broken irq connection detected, switching to polling mode.\n");
76 		i2c->broken_irq_mode = true;
77 		return 0;
78 	}
79 
80 	if (!time_left)
81 		return -ETIMEDOUT;
82 
83 	return 0;
84 }
85 
86 static bool octeon_i2c_hlc_test_valid(struct octeon_i2c *i2c)
87 {
88 	return (__raw_readq(i2c->twsi_base + OCTEON_REG_SW_TWSI(i2c)) & SW_TWSI_V) == 0;
89 }
90 
91 static void octeon_i2c_hlc_int_clear(struct octeon_i2c *i2c)
92 {
93 	/* clear ST/TS events, listen for neither */
94 	octeon_i2c_write_int(i2c, TWSI_INT_ST_INT | TWSI_INT_TS_INT);
95 }
96 
97 /*
98  * Cleanup low-level state & enable high-level controller.
99  */
100 static void octeon_i2c_hlc_enable(struct octeon_i2c *i2c)
101 {
102 	int try = 0;
103 	u64 val;
104 
105 	if (i2c->hlc_enabled)
106 		return;
107 	i2c->hlc_enabled = true;
108 
109 	while (1) {
110 		val = octeon_i2c_ctl_read(i2c);
111 		if (!(val & (TWSI_CTL_STA | TWSI_CTL_STP)))
112 			break;
113 
114 		/* clear IFLG event */
115 		if (val & TWSI_CTL_IFLG)
116 			octeon_i2c_ctl_write(i2c, TWSI_CTL_ENAB);
117 
118 		if (try++ > 100) {
119 			pr_err("%s: giving up\n", __func__);
120 			break;
121 		}
122 
123 		/* spin until any start/stop has finished */
124 		udelay(10);
125 	}
126 	octeon_i2c_ctl_write(i2c, TWSI_CTL_CE | TWSI_CTL_AAK | TWSI_CTL_ENAB);
127 }
128 
129 static void octeon_i2c_hlc_disable(struct octeon_i2c *i2c)
130 {
131 	if (!i2c->hlc_enabled)
132 		return;
133 
134 	i2c->hlc_enabled = false;
135 	octeon_i2c_ctl_write(i2c, TWSI_CTL_ENAB);
136 }
137 
138 /**
139  * octeon_i2c_hlc_wait - wait for an HLC operation to complete
140  * @i2c: The struct octeon_i2c
141  *
142  * Returns 0 on success, otherwise -ETIMEDOUT.
143  */
144 static int octeon_i2c_hlc_wait(struct octeon_i2c *i2c)
145 {
146 	int time_left;
147 
148 	/*
149 	 * Some cn38xx boards don't assert the irq in the interrupt
150 	 * controller. So we must poll for the valid bit change.
151 	 */
152 	if (i2c->broken_irq_mode) {
153 		u64 end = get_jiffies_64() + i2c->adap.timeout;
154 
155 		while (!octeon_i2c_hlc_test_valid(i2c) &&
156 		       time_before64(get_jiffies_64(), end))
157 			usleep_range(I2C_OCTEON_EVENT_WAIT / 2, I2C_OCTEON_EVENT_WAIT);
158 
159 		return octeon_i2c_hlc_test_valid(i2c) ? 0 : -ETIMEDOUT;
160 	}
161 
162 	i2c->hlc_int_enable(i2c);
163 	time_left = wait_event_timeout(i2c->queue,
164 				       octeon_i2c_hlc_test_valid(i2c),
165 				       i2c->adap.timeout);
166 	i2c->hlc_int_disable(i2c);
167 	if (!time_left)
168 		octeon_i2c_hlc_int_clear(i2c);
169 
170 	if (i2c->broken_irq_check && !time_left &&
171 	    octeon_i2c_hlc_test_valid(i2c)) {
172 		dev_err(i2c->dev, "broken irq connection detected, switching to polling mode.\n");
173 		i2c->broken_irq_mode = true;
174 		return 0;
175 	}
176 
177 	if (!time_left)
178 		return -ETIMEDOUT;
179 	return 0;
180 }
181 
182 static int octeon_i2c_check_status(struct octeon_i2c *i2c, int final_read)
183 {
184 	u8 stat;
185 	u64 mode;
186 
187 	/*
188 	 * This is ugly... in HLC mode the status is not in the status register
189 	 * but in the lower 8 bits of OCTEON_REG_SW_TWSI.
190 	 */
191 	if (i2c->hlc_enabled)
192 		stat = __raw_readq(i2c->twsi_base + OCTEON_REG_SW_TWSI(i2c));
193 	else
194 		stat = octeon_i2c_stat_read(i2c);
195 
196 	switch (stat) {
197 	/* Everything is fine */
198 	case STAT_IDLE:
199 	case STAT_AD2W_ACK:
200 	case STAT_RXADDR_ACK:
201 	case STAT_TXADDR_ACK:
202 	case STAT_TXDATA_ACK:
203 		return 0;
204 
205 	/* ACK allowed on pre-terminal bytes only */
206 	case STAT_RXDATA_ACK:
207 		if (!final_read)
208 			return 0;
209 		return -EIO;
210 
211 	/* NAK allowed on terminal byte only */
212 	case STAT_RXDATA_NAK:
213 		if (final_read)
214 			return 0;
215 		return -EIO;
216 
217 	/* Arbitration lost */
218 	case STAT_LOST_ARB_38:
219 	case STAT_LOST_ARB_68:
220 	case STAT_LOST_ARB_78:
221 	case STAT_LOST_ARB_B0:
222 		return -EAGAIN;
223 
224 	/* Being addressed as local target, should back off & listen */
225 	case STAT_SLAVE_60:
226 	case STAT_SLAVE_70:
227 	case STAT_GENDATA_ACK:
228 	case STAT_GENDATA_NAK:
229 		return -EOPNOTSUPP;
230 
231 	/* Core busy as local target */
232 	case STAT_SLAVE_80:
233 	case STAT_SLAVE_88:
234 	case STAT_SLAVE_A0:
235 	case STAT_SLAVE_A8:
236 	case STAT_SLAVE_LOST:
237 	case STAT_SLAVE_NAK:
238 	case STAT_SLAVE_ACK:
239 		return -EOPNOTSUPP;
240 
241 	case STAT_TXDATA_NAK:
242 	case STAT_BUS_ERROR:
243 		return -EIO;
244 	case STAT_TXADDR_NAK:
245 	case STAT_RXADDR_NAK:
246 	case STAT_AD2W_NAK:
247 		return -ENXIO;
248 
249 	case STAT_WDOG_TOUT:
250 		mode = __raw_readq(i2c->twsi_base + OCTEON_REG_MODE(i2c));
251 		/* Set BUS_MON_RST to reset bus monitor */
252 		mode |= BUS_MON_RST_MASK;
253 		octeon_i2c_writeq_flush(mode, i2c->twsi_base + OCTEON_REG_MODE(i2c));
254 		return -EIO;
255 	default:
256 		dev_err(i2c->dev, "unhandled state: %d\n", stat);
257 		return -EIO;
258 	}
259 }
260 
261 static int octeon_i2c_recovery(struct octeon_i2c *i2c)
262 {
263 	int ret;
264 
265 	ret = i2c_recover_bus(&i2c->adap);
266 	if (ret)
267 		/* recover failed, try hardware re-init */
268 		ret = octeon_i2c_init_lowlevel(i2c);
269 	return ret;
270 }
271 
272 /**
273  * octeon_i2c_start - send START to the bus
274  * @i2c: The struct octeon_i2c
275  *
276  * Returns 0 on success, otherwise a negative errno.
277  */
278 static int octeon_i2c_start(struct octeon_i2c *i2c)
279 {
280 	int ret;
281 	u8 stat;
282 
283 	octeon_i2c_hlc_disable(i2c);
284 
285 	octeon_i2c_ctl_write(i2c, TWSI_CTL_ENAB | TWSI_CTL_STA);
286 	ret = octeon_i2c_wait(i2c);
287 	if (ret)
288 		goto error;
289 
290 	stat = octeon_i2c_stat_read(i2c);
291 	if (stat == STAT_START || stat == STAT_REP_START)
292 		/* START successful, bail out */
293 		return 0;
294 
295 error:
296 	/* START failed, try to recover */
297 	ret = octeon_i2c_recovery(i2c);
298 	return (ret) ? ret : -EAGAIN;
299 }
300 
301 /* send STOP to the bus */
302 static void octeon_i2c_stop(struct octeon_i2c *i2c)
303 {
304 	octeon_i2c_ctl_write(i2c, TWSI_CTL_ENAB | TWSI_CTL_STP);
305 }
306 
307 /**
308  * octeon_i2c_read - receive data from the bus via low-level controller
309  * @i2c: The struct octeon_i2c
310  * @target: Target address
311  * @data: Pointer to the location to store the data
312  * @rlength: Length of the data
313  * @recv_len: flag for length byte
314  *
315  * The address is sent over the bus, then the data is read.
316  *
317  * Returns 0 on success, otherwise a negative errno.
318  */
319 static int octeon_i2c_read(struct octeon_i2c *i2c, int target,
320 			   u8 *data, u16 *rlength, bool recv_len)
321 {
322 	int i, result, length = *rlength;
323 	bool final_read = false;
324 
325 	octeon_i2c_data_write(i2c, (target << 1) | 1);
326 	octeon_i2c_ctl_write(i2c, TWSI_CTL_ENAB);
327 
328 	result = octeon_i2c_wait(i2c);
329 	if (result)
330 		return result;
331 
332 	/* address OK ? */
333 	result = octeon_i2c_check_status(i2c, false);
334 	if (result)
335 		return result;
336 
337 	for (i = 0; i < length; i++) {
338 		/*
339 		 * For the last byte to receive TWSI_CTL_AAK must not be set.
340 		 *
341 		 * A special case is I2C_M_RECV_LEN where we don't know the
342 		 * additional length yet. If recv_len is set we assume we're
343 		 * not reading the final byte and therefore need to set
344 		 * TWSI_CTL_AAK.
345 		 */
346 		if ((i + 1 == length) && !(recv_len && i == 0))
347 			final_read = true;
348 
349 		/* clear iflg to allow next event */
350 		if (final_read)
351 			octeon_i2c_ctl_write(i2c, TWSI_CTL_ENAB);
352 		else
353 			octeon_i2c_ctl_write(i2c, TWSI_CTL_ENAB | TWSI_CTL_AAK);
354 
355 		result = octeon_i2c_wait(i2c);
356 		if (result)
357 			return result;
358 
359 		data[i] = octeon_i2c_data_read(i2c, &result);
360 		if (result)
361 			return result;
362 		if (recv_len && i == 0) {
363 			if (data[i] > I2C_SMBUS_BLOCK_MAX)
364 				return -EPROTO;
365 			length += data[i];
366 		}
367 
368 		result = octeon_i2c_check_status(i2c, final_read);
369 		if (result)
370 			return result;
371 	}
372 	*rlength = length;
373 	return 0;
374 }
375 
376 /**
377  * octeon_i2c_write - send data to the bus via low-level controller
378  * @i2c: The struct octeon_i2c
379  * @target: Target address
380  * @data: Pointer to the data to be sent
381  * @length: Length of the data
382  *
383  * The address is sent over the bus, then the data.
384  *
385  * Returns 0 on success, otherwise a negative errno.
386  */
387 static int octeon_i2c_write(struct octeon_i2c *i2c, int target,
388 			    const u8 *data, int length)
389 {
390 	int i, result;
391 
392 	octeon_i2c_data_write(i2c, target << 1);
393 	octeon_i2c_ctl_write(i2c, TWSI_CTL_ENAB);
394 
395 	result = octeon_i2c_wait(i2c);
396 	if (result)
397 		return result;
398 
399 	for (i = 0; i < length; i++) {
400 		result = octeon_i2c_check_status(i2c, false);
401 		if (result)
402 			return result;
403 
404 		octeon_i2c_data_write(i2c, data[i]);
405 		octeon_i2c_ctl_write(i2c, TWSI_CTL_ENAB);
406 
407 		result = octeon_i2c_wait(i2c);
408 		if (result)
409 			return result;
410 	}
411 
412 	return 0;
413 }
414 
415 /* high-level-controller pure read of up to 8 bytes */
416 static int octeon_i2c_hlc_read(struct octeon_i2c *i2c, struct i2c_msg *msgs)
417 {
418 	int i, j, ret = 0;
419 	u64 cmd;
420 
421 	octeon_i2c_hlc_enable(i2c);
422 	octeon_i2c_hlc_int_clear(i2c);
423 
424 	cmd = SW_TWSI_V | SW_TWSI_R | SW_TWSI_SOVR;
425 	/* SIZE */
426 	cmd |= (u64)(msgs[0].len - 1) << SW_TWSI_SIZE_SHIFT;
427 	/* A */
428 	cmd |= (u64)(msgs[0].addr & 0x7full) << SW_TWSI_ADDR_SHIFT;
429 
430 	if (msgs[0].flags & I2C_M_TEN)
431 		cmd |= SW_TWSI_OP_10;
432 	else
433 		cmd |= SW_TWSI_OP_7;
434 
435 	octeon_i2c_writeq_flush(cmd, i2c->twsi_base + OCTEON_REG_SW_TWSI(i2c));
436 	ret = octeon_i2c_hlc_wait(i2c);
437 	if (ret)
438 		goto err;
439 
440 	cmd = __raw_readq(i2c->twsi_base + OCTEON_REG_SW_TWSI(i2c));
441 	if ((cmd & SW_TWSI_R) == 0)
442 		return octeon_i2c_check_status(i2c, false);
443 
444 	for (i = 0, j = msgs[0].len - 1; i  < msgs[0].len && i < 4; i++, j--)
445 		msgs[0].buf[j] = (cmd >> (8 * i)) & 0xff;
446 
447 	if (msgs[0].len > 4) {
448 		cmd = __raw_readq(i2c->twsi_base + OCTEON_REG_SW_TWSI_EXT(i2c));
449 		for (i = 0; i  < msgs[0].len - 4 && i < 4; i++, j--)
450 			msgs[0].buf[j] = (cmd >> (8 * i)) & 0xff;
451 	}
452 
453 err:
454 	return ret;
455 }
456 
457 /* high-level-controller pure write of up to 8 bytes */
458 static int octeon_i2c_hlc_write(struct octeon_i2c *i2c, struct i2c_msg *msgs)
459 {
460 	int i, j, ret = 0;
461 	u64 cmd;
462 
463 	octeon_i2c_hlc_enable(i2c);
464 	octeon_i2c_hlc_int_clear(i2c);
465 
466 	cmd = SW_TWSI_V | SW_TWSI_SOVR;
467 	/* SIZE */
468 	cmd |= (u64)(msgs[0].len - 1) << SW_TWSI_SIZE_SHIFT;
469 	/* A */
470 	cmd |= (u64)(msgs[0].addr & 0x7full) << SW_TWSI_ADDR_SHIFT;
471 
472 	if (msgs[0].flags & I2C_M_TEN)
473 		cmd |= SW_TWSI_OP_10;
474 	else
475 		cmd |= SW_TWSI_OP_7;
476 
477 	for (i = 0, j = msgs[0].len - 1; i  < msgs[0].len && i < 4; i++, j--)
478 		cmd |= (u64)msgs[0].buf[j] << (8 * i);
479 
480 	if (msgs[0].len > 4) {
481 		u64 ext = 0;
482 
483 		for (i = 0; i < msgs[0].len - 4 && i < 4; i++, j--)
484 			ext |= (u64)msgs[0].buf[j] << (8 * i);
485 		octeon_i2c_writeq_flush(ext, i2c->twsi_base + OCTEON_REG_SW_TWSI_EXT(i2c));
486 	}
487 
488 	octeon_i2c_writeq_flush(cmd, i2c->twsi_base + OCTEON_REG_SW_TWSI(i2c));
489 	ret = octeon_i2c_hlc_wait(i2c);
490 	if (ret)
491 		goto err;
492 
493 	cmd = __raw_readq(i2c->twsi_base + OCTEON_REG_SW_TWSI(i2c));
494 	if ((cmd & SW_TWSI_R) == 0)
495 		return octeon_i2c_check_status(i2c, false);
496 
497 err:
498 	return ret;
499 }
500 
501 /* high-level-controller composite write+read, msg0=addr, msg1=data */
502 static int octeon_i2c_hlc_comp_read(struct octeon_i2c *i2c, struct i2c_msg *msgs)
503 {
504 	int i, j, ret = 0;
505 	u64 cmd;
506 
507 	octeon_i2c_hlc_enable(i2c);
508 
509 	cmd = SW_TWSI_V | SW_TWSI_R | SW_TWSI_SOVR;
510 	/* SIZE */
511 	cmd |= (u64)(msgs[1].len - 1) << SW_TWSI_SIZE_SHIFT;
512 	/* A */
513 	cmd |= (u64)(msgs[0].addr & 0x7full) << SW_TWSI_ADDR_SHIFT;
514 
515 	if (msgs[0].flags & I2C_M_TEN)
516 		cmd |= SW_TWSI_OP_10_IA;
517 	else
518 		cmd |= SW_TWSI_OP_7_IA;
519 
520 	if (msgs[0].len == 2) {
521 		u64 ext = 0;
522 
523 		cmd |= SW_TWSI_EIA;
524 		ext = (u64)msgs[0].buf[0] << SW_TWSI_IA_SHIFT;
525 		cmd |= (u64)msgs[0].buf[1] << SW_TWSI_IA_SHIFT;
526 		octeon_i2c_writeq_flush(ext, i2c->twsi_base + OCTEON_REG_SW_TWSI_EXT(i2c));
527 	} else {
528 		cmd |= (u64)msgs[0].buf[0] << SW_TWSI_IA_SHIFT;
529 	}
530 
531 	octeon_i2c_hlc_int_clear(i2c);
532 	octeon_i2c_writeq_flush(cmd, i2c->twsi_base + OCTEON_REG_SW_TWSI(i2c));
533 
534 	ret = octeon_i2c_hlc_wait(i2c);
535 	if (ret)
536 		goto err;
537 
538 	cmd = __raw_readq(i2c->twsi_base + OCTEON_REG_SW_TWSI(i2c));
539 	if ((cmd & SW_TWSI_R) == 0)
540 		return octeon_i2c_check_status(i2c, false);
541 
542 	for (i = 0, j = msgs[1].len - 1; i  < msgs[1].len && i < 4; i++, j--)
543 		msgs[1].buf[j] = (cmd >> (8 * i)) & 0xff;
544 
545 	if (msgs[1].len > 4) {
546 		cmd = __raw_readq(i2c->twsi_base + OCTEON_REG_SW_TWSI_EXT(i2c));
547 		for (i = 0; i  < msgs[1].len - 4 && i < 4; i++, j--)
548 			msgs[1].buf[j] = (cmd >> (8 * i)) & 0xff;
549 	}
550 
551 err:
552 	return ret;
553 }
554 
555 /* high-level-controller composite write+write, m[0]len<=2, m[1]len<=8 */
556 static int octeon_i2c_hlc_comp_write(struct octeon_i2c *i2c, struct i2c_msg *msgs)
557 {
558 	bool set_ext = false;
559 	int i, j, ret = 0;
560 	u64 cmd, ext = 0;
561 
562 	octeon_i2c_hlc_enable(i2c);
563 
564 	cmd = SW_TWSI_V | SW_TWSI_SOVR;
565 	/* SIZE */
566 	cmd |= (u64)(msgs[1].len - 1) << SW_TWSI_SIZE_SHIFT;
567 	/* A */
568 	cmd |= (u64)(msgs[0].addr & 0x7full) << SW_TWSI_ADDR_SHIFT;
569 
570 	if (msgs[0].flags & I2C_M_TEN)
571 		cmd |= SW_TWSI_OP_10_IA;
572 	else
573 		cmd |= SW_TWSI_OP_7_IA;
574 
575 	if (msgs[0].len == 2) {
576 		cmd |= SW_TWSI_EIA;
577 		ext |= (u64)msgs[0].buf[0] << SW_TWSI_IA_SHIFT;
578 		set_ext = true;
579 		cmd |= (u64)msgs[0].buf[1] << SW_TWSI_IA_SHIFT;
580 	} else {
581 		cmd |= (u64)msgs[0].buf[0] << SW_TWSI_IA_SHIFT;
582 	}
583 
584 	for (i = 0, j = msgs[1].len - 1; i  < msgs[1].len && i < 4; i++, j--)
585 		cmd |= (u64)msgs[1].buf[j] << (8 * i);
586 
587 	if (msgs[1].len > 4) {
588 		for (i = 0; i < msgs[1].len - 4 && i < 4; i++, j--)
589 			ext |= (u64)msgs[1].buf[j] << (8 * i);
590 		set_ext = true;
591 	}
592 	if (set_ext)
593 		octeon_i2c_writeq_flush(ext, i2c->twsi_base + OCTEON_REG_SW_TWSI_EXT(i2c));
594 
595 	octeon_i2c_hlc_int_clear(i2c);
596 	octeon_i2c_writeq_flush(cmd, i2c->twsi_base + OCTEON_REG_SW_TWSI(i2c));
597 
598 	ret = octeon_i2c_hlc_wait(i2c);
599 	if (ret)
600 		goto err;
601 
602 	cmd = __raw_readq(i2c->twsi_base + OCTEON_REG_SW_TWSI(i2c));
603 	if ((cmd & SW_TWSI_R) == 0)
604 		return octeon_i2c_check_status(i2c, false);
605 
606 err:
607 	return ret;
608 }
609 
610 /**
611  * octeon_i2c_xfer - The driver's xfer function
612  * @adap: Pointer to the i2c_adapter structure
613  * @msgs: Pointer to the messages to be processed
614  * @num: Length of the MSGS array
615  *
616  * Returns the number of messages processed, or a negative errno on failure.
617  */
618 int octeon_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
619 {
620 	struct octeon_i2c *i2c = i2c_get_adapdata(adap);
621 	int i, ret = 0;
622 
623 	if (IS_LS_FREQ(i2c->twsi_freq)) {
624 		if (num == 1) {
625 			if (msgs[0].len > 0 && msgs[0].len <= 8) {
626 				if (msgs[0].flags & I2C_M_RD)
627 					ret = octeon_i2c_hlc_read(i2c, msgs);
628 				else
629 					ret = octeon_i2c_hlc_write(i2c, msgs);
630 				goto out;
631 			}
632 		} else if (num == 2) {
633 			if ((msgs[0].flags & I2C_M_RD) == 0 &&
634 			    (msgs[1].flags & I2C_M_RECV_LEN) == 0 &&
635 			    msgs[0].len > 0 && msgs[0].len <= 2 &&
636 			    msgs[1].len > 0 && msgs[1].len <= 8 &&
637 			    msgs[0].addr == msgs[1].addr) {
638 				if (msgs[1].flags & I2C_M_RD)
639 					ret = octeon_i2c_hlc_comp_read(i2c, msgs);
640 				else
641 					ret = octeon_i2c_hlc_comp_write(i2c, msgs);
642 				goto out;
643 			}
644 		}
645 	}
646 
647 	for (i = 0; ret == 0 && i < num; i++) {
648 		struct i2c_msg *pmsg = &msgs[i];
649 
650 		/* zero-length messages are not supported */
651 		if (!pmsg->len) {
652 			ret = -EOPNOTSUPP;
653 			break;
654 		}
655 
656 		ret = octeon_i2c_start(i2c);
657 		if (ret)
658 			return ret;
659 
660 		if (pmsg->flags & I2C_M_RD)
661 			ret = octeon_i2c_read(i2c, pmsg->addr, pmsg->buf,
662 					      &pmsg->len, pmsg->flags & I2C_M_RECV_LEN);
663 		else
664 			ret = octeon_i2c_write(i2c, pmsg->addr, pmsg->buf,
665 					       pmsg->len);
666 	}
667 	octeon_i2c_stop(i2c);
668 out:
669 	return (ret != 0) ? ret : num;
670 }
671 
672 /* calculate and set clock divisors */
673 void octeon_i2c_set_clock(struct octeon_i2c *i2c)
674 {
675 	int tclk, thp_base, inc, thp_idx, mdiv_idx, ndiv_idx, foscl, diff;
676 	bool is_plat_otx2;
677 	/*
678 	 * Find divisors to produce target frequency, start with large delta
679 	 * to cover wider range of divisors, note thp = TCLK half period and
680 	 * ds is OSCL output frequency divisor.
681 	 */
682 	unsigned int thp, mdiv_min, mdiv = 2, ndiv = 0, ds = 10;
683 	unsigned int delta_hz = INITIAL_DELTA_HZ;
684 
685 	is_plat_otx2 = octeon_i2c_is_otx2(to_pci_dev(i2c->dev));
686 
687 	if (is_plat_otx2) {
688 		thp = TWSI_MASTER_CLK_REG_OTX2_VAL;
689 		mdiv_min = 0;
690 		if (!IS_LS_FREQ(i2c->twsi_freq))
691 			ds = 15;
692 	} else {
693 		thp = TWSI_MASTER_CLK_REG_DEF_VAL;
694 		mdiv_min = 2;
695 	}
696 
697 	for (ndiv_idx = 0; ndiv_idx < 8 && delta_hz != 0; ndiv_idx++) {
698 		/*
699 		 * An mdiv value of less than 2 seems to not work well
700 		 * with ds1337 RTCs, so we constrain it to larger values.
701 		 */
702 		for (mdiv_idx = 15; mdiv_idx >= mdiv_min && delta_hz != 0; mdiv_idx--) {
703 			/*
704 			 * For given ndiv and mdiv values check the
705 			 * two closest thp values.
706 			 */
707 			tclk = i2c->twsi_freq * (mdiv_idx + 1) * ds;
708 			tclk *= (1 << ndiv_idx);
709 			if (is_plat_otx2)
710 				thp_base = (i2c->sys_freq / tclk) - 2;
711 			else
712 				thp_base = (i2c->sys_freq / (tclk * 2)) - 1;
713 
714 			for (inc = 0; inc <= 1; inc++) {
715 				thp_idx = thp_base + inc;
716 				if (thp_idx < 5 || thp_idx > 0xff)
717 					continue;
718 
719 				if (is_plat_otx2)
720 					foscl = i2c->sys_freq / (thp_idx + 2);
721 				else
722 					foscl = i2c->sys_freq /
723 						(2 * (thp_idx + 1));
724 				foscl = foscl / (1 << ndiv_idx);
725 				foscl = foscl / (mdiv_idx + 1) / ds;
726 				if (foscl > i2c->twsi_freq)
727 					continue;
728 				diff = abs(foscl - i2c->twsi_freq);
729 				/*
730 				 * Diff holds difference between calculated frequency
731 				 * value vs desired frequency.
732 				 * Delta_hz is updated with last minimum diff.
733 				 */
734 				if (diff < delta_hz) {
735 					delta_hz = diff;
736 					thp = thp_idx;
737 					mdiv = mdiv_idx;
738 					ndiv = ndiv_idx;
739 				}
740 			}
741 		}
742 	}
743 	octeon_i2c_reg_write(i2c, SW_TWSI_OP_TWSI_CLK, thp);
744 	octeon_i2c_reg_write(i2c, SW_TWSI_EOP_TWSI_CLKCTL, (mdiv << 3) | ndiv);
745 	if (is_plat_otx2) {
746 		u64 mode;
747 
748 		mode = __raw_readq(i2c->twsi_base + OCTEON_REG_MODE(i2c));
749 		/* Set REFCLK_SRC and HS_MODE in TWSX_MODE register */
750 		if (!IS_LS_FREQ(i2c->twsi_freq))
751 			mode |= TWSX_MODE_HS_MASK;
752 		else
753 			mode &= ~TWSX_MODE_HS_MASK;
754 		octeon_i2c_writeq_flush(mode, i2c->twsi_base + OCTEON_REG_MODE(i2c));
755 	}
756 }
757 
758 int octeon_i2c_init_lowlevel(struct octeon_i2c *i2c)
759 {
760 	u8 status = 0;
761 	int tries;
762 
763 	/* reset controller */
764 	octeon_i2c_reg_write(i2c, SW_TWSI_EOP_TWSI_RST, 0);
765 
766 	for (tries = 10; tries && status != STAT_IDLE; tries--) {
767 		udelay(1);
768 		status = octeon_i2c_stat_read(i2c);
769 		if (status == STAT_IDLE)
770 			break;
771 	}
772 
773 	if (status != STAT_IDLE) {
774 		dev_err(i2c->dev, "%s: TWSI_RST failed! (0x%x)\n",
775 			__func__, status);
776 		return -EIO;
777 	}
778 
779 	/* toggle twice to force both teardowns */
780 	octeon_i2c_hlc_enable(i2c);
781 	octeon_i2c_hlc_disable(i2c);
782 	return 0;
783 }
784 
785 static int octeon_i2c_get_scl(struct i2c_adapter *adap)
786 {
787 	struct octeon_i2c *i2c = i2c_get_adapdata(adap);
788 	u64 state;
789 
790 	state = octeon_i2c_read_int(i2c);
791 	return state & TWSI_INT_SCL;
792 }
793 
794 static void octeon_i2c_set_scl(struct i2c_adapter *adap, int val)
795 {
796 	struct octeon_i2c *i2c = i2c_get_adapdata(adap);
797 
798 	octeon_i2c_write_int(i2c, val ? 0 : TWSI_INT_SCL_OVR);
799 }
800 
801 static int octeon_i2c_get_sda(struct i2c_adapter *adap)
802 {
803 	struct octeon_i2c *i2c = i2c_get_adapdata(adap);
804 	u64 state;
805 
806 	state = octeon_i2c_read_int(i2c);
807 	return state & TWSI_INT_SDA;
808 }
809 
810 static void octeon_i2c_prepare_recovery(struct i2c_adapter *adap)
811 {
812 	struct octeon_i2c *i2c = i2c_get_adapdata(adap);
813 
814 	octeon_i2c_hlc_disable(i2c);
815 	octeon_i2c_reg_write(i2c, SW_TWSI_EOP_TWSI_RST, 0);
816 	/* wait for software reset to settle */
817 	udelay(5);
818 
819 	/*
820 	 * Bring control register to a good state regardless
821 	 * of HLC state.
822 	 */
823 	octeon_i2c_ctl_write(i2c, TWSI_CTL_ENAB);
824 
825 	octeon_i2c_write_int(i2c, 0);
826 }
827 
828 static void octeon_i2c_unprepare_recovery(struct i2c_adapter *adap)
829 {
830 	struct octeon_i2c *i2c = i2c_get_adapdata(adap);
831 
832 	/*
833 	 * Generate STOP to finish the unfinished transaction.
834 	 * Can't generate STOP via the TWSI CTL register
835 	 * since it could bring the TWSI controller into an inoperable state.
836 	 */
837 	octeon_i2c_write_int(i2c, TWSI_INT_SDA_OVR | TWSI_INT_SCL_OVR);
838 	udelay(5);
839 	octeon_i2c_write_int(i2c, TWSI_INT_SDA_OVR);
840 	udelay(5);
841 	octeon_i2c_write_int(i2c, 0);
842 }
843 
844 struct i2c_bus_recovery_info octeon_i2c_recovery_info = {
845 	.recover_bus = i2c_generic_scl_recovery,
846 	.get_scl = octeon_i2c_get_scl,
847 	.set_scl = octeon_i2c_set_scl,
848 	.get_sda = octeon_i2c_get_sda,
849 	.prepare_recovery = octeon_i2c_prepare_recovery,
850 	.unprepare_recovery = octeon_i2c_unprepare_recovery,
851 };
852