xref: /linux/drivers/i2c/busses/i2c-npcm7xx.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Nuvoton NPCM7xx I2C Controller driver
4  *
5  * Copyright (C) 2020 Nuvoton Technologies tali.perry@nuvoton.com
6  */
7 #include <linux/bitfield.h>
8 #include <linux/clk.h>
9 #include <linux/debugfs.h>
10 #include <linux/errno.h>
11 #include <linux/i2c.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/irq.h>
15 #include <linux/jiffies.h>
16 #include <linux/kernel.h>
17 #include <linux/mfd/syscon.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/platform_device.h>
21 #include <linux/regmap.h>
22 
23 enum i2c_mode {
24 	I2C_MASTER,
25 	I2C_SLAVE,
26 };
27 
28 /*
29  * External I2C Interface driver xfer indication values, which indicate status
30  * of the bus.
31  */
32 enum i2c_state_ind {
33 	I2C_NO_STATUS_IND = 0,
34 	I2C_SLAVE_RCV_IND,
35 	I2C_SLAVE_XMIT_IND,
36 	I2C_SLAVE_XMIT_MISSING_DATA_IND,
37 	I2C_SLAVE_RESTART_IND,
38 	I2C_SLAVE_DONE_IND,
39 	I2C_MASTER_DONE_IND,
40 	I2C_NACK_IND,
41 	I2C_BUS_ERR_IND,
42 	I2C_WAKE_UP_IND,
43 	I2C_BLOCK_BYTES_ERR_IND,
44 	I2C_SLAVE_RCV_MISSING_DATA_IND,
45 };
46 
47 /*
48  * Operation type values (used to define the operation currently running)
49  * module is interrupt driven, on each interrupt the current operation is
50  * checked to see if the module is currently reading or writing.
51  */
52 enum i2c_oper {
53 	I2C_NO_OPER = 0,
54 	I2C_WRITE_OPER,
55 	I2C_READ_OPER,
56 };
57 
58 /* I2C Bank (module had 2 banks of registers) */
59 enum i2c_bank {
60 	I2C_BANK_0 = 0,
61 	I2C_BANK_1,
62 };
63 
64 /* Internal I2C states values (for the I2C module state machine). */
65 enum i2c_state {
66 	I2C_DISABLE = 0,
67 	I2C_IDLE,
68 	I2C_MASTER_START,
69 	I2C_SLAVE_MATCH,
70 	I2C_OPER_STARTED,
71 	I2C_STOP_PENDING,
72 };
73 
74 #if IS_ENABLED(CONFIG_I2C_SLAVE)
75 /* Module supports setting multiple own slave addresses */
76 enum i2c_addr {
77 	I2C_SLAVE_ADDR1 = 0,
78 	I2C_SLAVE_ADDR2,
79 	I2C_SLAVE_ADDR3,
80 	I2C_SLAVE_ADDR4,
81 	I2C_SLAVE_ADDR5,
82 	I2C_SLAVE_ADDR6,
83 	I2C_SLAVE_ADDR7,
84 	I2C_SLAVE_ADDR8,
85 	I2C_SLAVE_ADDR9,
86 	I2C_SLAVE_ADDR10,
87 	I2C_GC_ADDR,
88 	I2C_ARP_ADDR,
89 };
90 #endif
91 
92 /* init register and default value required to enable module */
93 #define NPCM_I2CSEGCTL			0xE4
94 
95 /* Common regs */
96 #define NPCM_I2CSDA			0x00
97 #define NPCM_I2CST			0x02
98 #define NPCM_I2CCST			0x04
99 #define NPCM_I2CCTL1			0x06
100 #define NPCM_I2CADDR1			0x08
101 #define NPCM_I2CCTL2			0x0A
102 #define NPCM_I2CADDR2			0x0C
103 #define NPCM_I2CCTL3			0x0E
104 #define NPCM_I2CCST2			0x18
105 #define NPCM_I2CCST3			0x19
106 #define I2C_VER				0x1F
107 
108 /* BANK 0 regs */
109 #define NPCM_I2CADDR3			0x10
110 #define NPCM_I2CADDR7			0x11
111 #define NPCM_I2CADDR4			0x12
112 #define NPCM_I2CADDR8			0x13
113 #define NPCM_I2CADDR5			0x14
114 #define NPCM_I2CADDR9			0x15
115 #define NPCM_I2CADDR6			0x16
116 #define NPCM_I2CADDR10			0x17
117 #define NPCM_I2CCTL4			0x1A
118 #define NPCM_I2CCTL5			0x1B
119 #define NPCM_I2CSCLLT			0x1C /* SCL Low Time */
120 #define NPCM_I2CFIF_CTL			0x1D /* FIFO Control */
121 #define NPCM_I2CSCLHT			0x1E /* SCL High Time */
122 
123 /* BANK 1 regs */
124 #define NPCM_I2CFIF_CTS			0x10 /* Both FIFOs Control and Status */
125 #define NPCM_I2CTXF_CTL			0x12 /* Tx-FIFO Control */
126 #define NPCM_I2CT_OUT			0x14 /* Bus T.O. */
127 #define NPCM_I2CPEC			0x16 /* PEC Data */
128 #define NPCM_I2CTXF_STS			0x1A /* Tx-FIFO Status */
129 #define NPCM_I2CRXF_STS			0x1C /* Rx-FIFO Status */
130 #define NPCM_I2CRXF_CTL			0x1E /* Rx-FIFO Control */
131 
132 #if IS_ENABLED(CONFIG_I2C_SLAVE)
133 /*
134  * npcm_i2caddr array:
135  * The module supports having multiple own slave addresses.
136  * Since the addr regs are sprinkled all over the address space,
137  * use this array to get the address or each register.
138  */
139 #define I2C_NUM_OWN_ADDR 10
140 #define I2C_NUM_OWN_ADDR_SUPPORTED 2
141 
142 static const int npcm_i2caddr[I2C_NUM_OWN_ADDR] = {
143 	NPCM_I2CADDR1, NPCM_I2CADDR2, NPCM_I2CADDR3, NPCM_I2CADDR4,
144 	NPCM_I2CADDR5, NPCM_I2CADDR6, NPCM_I2CADDR7, NPCM_I2CADDR8,
145 	NPCM_I2CADDR9, NPCM_I2CADDR10,
146 };
147 #endif
148 
149 /* NPCM_I2CST reg fields */
150 #define NPCM_I2CST_XMIT			BIT(0)	/* Transmit mode */
151 #define NPCM_I2CST_MASTER		BIT(1)	/* Master mode */
152 #define NPCM_I2CST_NMATCH		BIT(2)	/* New match */
153 #define NPCM_I2CST_STASTR		BIT(3)	/* Stall after start */
154 #define NPCM_I2CST_NEGACK		BIT(4)	/* Negative ACK */
155 #define NPCM_I2CST_BER			BIT(5)	/* Bus error */
156 #define NPCM_I2CST_SDAST		BIT(6)	/* SDA status */
157 #define NPCM_I2CST_SLVSTP		BIT(7)	/* Slave stop */
158 
159 /* NPCM_I2CCST reg fields */
160 #define NPCM_I2CCST_BUSY		BIT(0)	/* Busy */
161 #define NPCM_I2CCST_BB			BIT(1)	/* Bus busy */
162 #define NPCM_I2CCST_MATCH		BIT(2)	/* Address match */
163 #define NPCM_I2CCST_GCMATCH		BIT(3)	/* Global call match */
164 #define NPCM_I2CCST_TSDA		BIT(4)	/* Test SDA line */
165 #define NPCM_I2CCST_TGSCL		BIT(5)	/* Toggle SCL line */
166 #define NPCM_I2CCST_MATCHAF		BIT(6)	/* Match address field */
167 #define NPCM_I2CCST_ARPMATCH		BIT(7)	/* ARP address match */
168 
169 /* NPCM_I2CCTL1 reg fields */
170 #define NPCM_I2CCTL1_START		BIT(0)	/* Generate start condition */
171 #define NPCM_I2CCTL1_STOP		BIT(1)	/* Generate stop condition */
172 #define NPCM_I2CCTL1_INTEN		BIT(2)	/* Interrupt enable */
173 #define NPCM_I2CCTL1_EOBINTE		BIT(3)
174 #define NPCM_I2CCTL1_ACK		BIT(4)
175 #define NPCM_I2CCTL1_GCMEN		BIT(5)	/* Global call match enable */
176 #define NPCM_I2CCTL1_NMINTE		BIT(6)	/* New match interrupt enable */
177 #define NPCM_I2CCTL1_STASTRE		BIT(7)	/* Stall after start enable */
178 
179 /* RW1S fields (inside a RW reg): */
180 #define NPCM_I2CCTL1_RWS   \
181 	(NPCM_I2CCTL1_START | NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_ACK)
182 
183 /* npcm_i2caddr reg fields */
184 #define NPCM_I2CADDR_A			GENMASK(6, 0)	/* Address */
185 #define NPCM_I2CADDR_SAEN		BIT(7)		/* Slave address enable */
186 
187 /* NPCM_I2CCTL2 reg fields */
188 #define I2CCTL2_ENABLE			BIT(0)		/* Module enable */
189 #define I2CCTL2_SCLFRQ6_0		GENMASK(7, 1)	/* Bits 0:6 of frequency divisor */
190 
191 /* NPCM_I2CCTL3 reg fields */
192 #define I2CCTL3_SCLFRQ8_7		GENMASK(1, 0)	/* Bits 7:8 of frequency divisor */
193 #define I2CCTL3_ARPMEN			BIT(2)	/* ARP match enable */
194 #define I2CCTL3_IDL_START		BIT(3)
195 #define I2CCTL3_400K_MODE		BIT(4)
196 #define I2CCTL3_BNK_SEL			BIT(5)
197 #define I2CCTL3_SDA_LVL			BIT(6)
198 #define I2CCTL3_SCL_LVL			BIT(7)
199 
200 /* NPCM_I2CCST2 reg fields */
201 #define NPCM_I2CCST2_MATCHA1F		BIT(0)
202 #define NPCM_I2CCST2_MATCHA2F		BIT(1)
203 #define NPCM_I2CCST2_MATCHA3F		BIT(2)
204 #define NPCM_I2CCST2_MATCHA4F		BIT(3)
205 #define NPCM_I2CCST2_MATCHA5F		BIT(4)
206 #define NPCM_I2CCST2_MATCHA6F		BIT(5)
207 #define NPCM_I2CCST2_MATCHA7F		BIT(5)
208 #define NPCM_I2CCST2_INTSTS		BIT(7)
209 
210 /* NPCM_I2CCST3 reg fields */
211 #define NPCM_I2CCST3_MATCHA8F		BIT(0)
212 #define NPCM_I2CCST3_MATCHA9F		BIT(1)
213 #define NPCM_I2CCST3_MATCHA10F		BIT(2)
214 #define NPCM_I2CCST3_EO_BUSY		BIT(7)
215 
216 /* NPCM_I2CCTL4 reg fields */
217 #define I2CCTL4_HLDT			GENMASK(5, 0)
218 #define I2CCTL4_LVL_WE			BIT(7)
219 
220 /* NPCM_I2CCTL5 reg fields */
221 #define I2CCTL5_DBNCT			GENMASK(3, 0)
222 
223 /* NPCM_I2CFIF_CTS reg fields */
224 #define NPCM_I2CFIF_CTS_RXF_TXE		BIT(1)
225 #define NPCM_I2CFIF_CTS_RFTE_IE		BIT(3)
226 #define NPCM_I2CFIF_CTS_CLR_FIFO	BIT(6)
227 #define NPCM_I2CFIF_CTS_SLVRSTR		BIT(7)
228 
229 /* NPCM_I2CTXF_CTL reg field */
230 #define NPCM_I2CTXF_CTL_THR_TXIE	BIT(6)
231 
232 /* NPCM_I2CT_OUT reg fields */
233 #define NPCM_I2CT_OUT_TO_CKDIV		GENMASK(5, 0)
234 #define NPCM_I2CT_OUT_T_OUTIE		BIT(6)
235 #define NPCM_I2CT_OUT_T_OUTST		BIT(7)
236 
237 /* NPCM_I2CTXF_STS reg fields */
238 #define NPCM_I2CTXF_STS_TX_THST		BIT(6)
239 
240 /* NPCM_I2CRXF_STS reg fields */
241 #define NPCM_I2CRXF_STS_RX_THST		BIT(6)
242 
243 /* NPCM_I2CFIF_CTL reg fields */
244 #define NPCM_I2CFIF_CTL_FIFO_EN		BIT(4)
245 
246 /* NPCM_I2CRXF_CTL reg fields */
247 #define NPCM_I2CRXF_CTL_THR_RXIE	BIT(6)
248 
249 #define MAX_I2C_HW_FIFO_SIZE		32
250 
251 /* I2C_VER reg fields */
252 #define I2C_VER_VERSION			GENMASK(6, 0)
253 #define I2C_VER_FIFO_EN			BIT(7)
254 
255 /* stall/stuck timeout in us */
256 #define DEFAULT_STALL_COUNT		25
257 
258 /* SCLFRQ field position */
259 #define SCLFRQ_0_TO_6			GENMASK(6, 0)
260 #define SCLFRQ_7_TO_8			GENMASK(8, 7)
261 
262 /* supported clk settings. values in Hz. */
263 #define I2C_FREQ_MIN_HZ			10000
264 #define I2C_FREQ_MAX_HZ			I2C_MAX_FAST_MODE_PLUS_FREQ
265 
266 struct npcm_i2c_data {
267 	u8 fifo_size;
268 	u32 segctl_init_val;
269 	u8 txf_sts_tx_bytes;
270 	u8 rxf_sts_rx_bytes;
271 	u8 rxf_ctl_last_pec;
272 };
273 
274 static const struct npcm_i2c_data npxm7xx_i2c_data = {
275 	.fifo_size = 16,
276 	.segctl_init_val = 0x0333F000,
277 	.txf_sts_tx_bytes = GENMASK(4, 0),
278 	.rxf_sts_rx_bytes = GENMASK(4, 0),
279 	.rxf_ctl_last_pec = BIT(5),
280 };
281 
282 static const struct npcm_i2c_data npxm8xx_i2c_data = {
283 	.fifo_size = 32,
284 	.segctl_init_val = 0x9333F000,
285 	.txf_sts_tx_bytes = GENMASK(5, 0),
286 	.rxf_sts_rx_bytes = GENMASK(5, 0),
287 	.rxf_ctl_last_pec = BIT(7),
288 };
289 
290 /* Status of one I2C module */
291 struct npcm_i2c {
292 	struct i2c_adapter adap;
293 	struct device *dev;
294 	unsigned char __iomem *reg;
295 	const struct npcm_i2c_data *data;
296 	spinlock_t lock;   /* IRQ synchronization */
297 	struct completion cmd_complete;
298 	int cmd_err;
299 	struct i2c_msg *msgs;
300 	int msgs_num;
301 	int num;
302 	u32 apb_clk;
303 	struct i2c_bus_recovery_info rinfo;
304 	enum i2c_state state;
305 	enum i2c_oper operation;
306 	enum i2c_mode master_or_slave;
307 	enum i2c_state_ind stop_ind;
308 	u8 dest_addr;
309 	u8 *rd_buf;
310 	u16 rd_size;
311 	u16 rd_ind;
312 	u8 *wr_buf;
313 	u16 wr_size;
314 	u16 wr_ind;
315 	bool fifo_use;
316 	u16 PEC_mask; /* PEC bit mask per slave address */
317 	bool PEC_use;
318 	bool read_block_use;
319 	unsigned long int_time_stamp;
320 	unsigned long bus_freq; /* in Hz */
321 #if IS_ENABLED(CONFIG_I2C_SLAVE)
322 	u8 own_slave_addr;
323 	struct i2c_client *slave;
324 	int slv_rd_size;
325 	int slv_rd_ind;
326 	int slv_wr_size;
327 	int slv_wr_ind;
328 	u8 slv_rd_buf[MAX_I2C_HW_FIFO_SIZE];
329 	u8 slv_wr_buf[MAX_I2C_HW_FIFO_SIZE];
330 #endif
331 	u64 ber_cnt;
332 	u64 rec_succ_cnt;
333 	u64 rec_fail_cnt;
334 	u64 nack_cnt;
335 	u64 timeout_cnt;
336 	u64 tx_complete_cnt;
337 	bool ber_state; /* Indicate the bus error state */
338 };
339 
340 static inline void npcm_i2c_select_bank(struct npcm_i2c *bus,
341 					enum i2c_bank bank)
342 {
343 	u8 i2cctl3 = ioread8(bus->reg + NPCM_I2CCTL3);
344 
345 	if (bank == I2C_BANK_0)
346 		i2cctl3 = i2cctl3 & ~I2CCTL3_BNK_SEL;
347 	else
348 		i2cctl3 = i2cctl3 | I2CCTL3_BNK_SEL;
349 	iowrite8(i2cctl3, bus->reg + NPCM_I2CCTL3);
350 }
351 
352 static void npcm_i2c_init_params(struct npcm_i2c *bus)
353 {
354 	bus->stop_ind = I2C_NO_STATUS_IND;
355 	bus->rd_size = 0;
356 	bus->wr_size = 0;
357 	bus->rd_ind = 0;
358 	bus->wr_ind = 0;
359 	bus->read_block_use = false;
360 	bus->int_time_stamp = 0;
361 	bus->PEC_use = false;
362 	bus->PEC_mask = 0;
363 #if IS_ENABLED(CONFIG_I2C_SLAVE)
364 	if (bus->slave)
365 		bus->master_or_slave = I2C_SLAVE;
366 #endif
367 }
368 
369 static inline void npcm_i2c_wr_byte(struct npcm_i2c *bus, u8 data)
370 {
371 	iowrite8(data, bus->reg + NPCM_I2CSDA);
372 }
373 
374 static inline u8 npcm_i2c_rd_byte(struct npcm_i2c *bus)
375 {
376 	return ioread8(bus->reg + NPCM_I2CSDA);
377 }
378 
379 static int npcm_i2c_get_SCL(struct i2c_adapter *_adap)
380 {
381 	struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
382 
383 	return !!(I2CCTL3_SCL_LVL & ioread8(bus->reg + NPCM_I2CCTL3));
384 }
385 
386 static int npcm_i2c_get_SDA(struct i2c_adapter *_adap)
387 {
388 	struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
389 
390 	return !!(I2CCTL3_SDA_LVL & ioread8(bus->reg + NPCM_I2CCTL3));
391 }
392 
393 static inline u16 npcm_i2c_get_index(struct npcm_i2c *bus)
394 {
395 	if (bus->operation == I2C_READ_OPER)
396 		return bus->rd_ind;
397 	if (bus->operation == I2C_WRITE_OPER)
398 		return bus->wr_ind;
399 	return 0;
400 }
401 
402 /* quick protocol (just address) */
403 static inline bool npcm_i2c_is_quick(struct npcm_i2c *bus)
404 {
405 	return bus->wr_size == 0 && bus->rd_size == 0;
406 }
407 
408 static void npcm_i2c_disable(struct npcm_i2c *bus)
409 {
410 	u8 i2cctl2;
411 
412 #if IS_ENABLED(CONFIG_I2C_SLAVE)
413 	int i;
414 
415 	/* Slave addresses removal */
416 	for (i = I2C_SLAVE_ADDR1; i < I2C_NUM_OWN_ADDR_SUPPORTED; i++)
417 		iowrite8(0, bus->reg + npcm_i2caddr[i]);
418 
419 #endif
420 	/* Disable module */
421 	i2cctl2 = ioread8(bus->reg + NPCM_I2CCTL2);
422 	i2cctl2 = i2cctl2 & ~I2CCTL2_ENABLE;
423 	iowrite8(i2cctl2, bus->reg + NPCM_I2CCTL2);
424 
425 	bus->state = I2C_DISABLE;
426 }
427 
428 static void npcm_i2c_enable(struct npcm_i2c *bus)
429 {
430 	u8 i2cctl2 = ioread8(bus->reg + NPCM_I2CCTL2);
431 
432 	i2cctl2 = i2cctl2 | I2CCTL2_ENABLE;
433 	iowrite8(i2cctl2, bus->reg + NPCM_I2CCTL2);
434 	bus->state = I2C_IDLE;
435 }
436 
437 /* enable\disable end of busy (EOB) interrupts */
438 static inline void npcm_i2c_eob_int(struct npcm_i2c *bus, bool enable)
439 {
440 	u8 val;
441 
442 	/* Clear EO_BUSY pending bit: */
443 	val = ioread8(bus->reg + NPCM_I2CCST3);
444 	val = val | NPCM_I2CCST3_EO_BUSY;
445 	iowrite8(val, bus->reg + NPCM_I2CCST3);
446 
447 	val = ioread8(bus->reg + NPCM_I2CCTL1);
448 	val &= ~NPCM_I2CCTL1_RWS;
449 	if (enable)
450 		val |= NPCM_I2CCTL1_EOBINTE;
451 	else
452 		val &= ~NPCM_I2CCTL1_EOBINTE;
453 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
454 }
455 
456 static inline bool npcm_i2c_tx_fifo_empty(struct npcm_i2c *bus)
457 {
458 	u8 tx_fifo_sts;
459 
460 	tx_fifo_sts = ioread8(bus->reg + NPCM_I2CTXF_STS);
461 	/* check if TX FIFO is not empty */
462 	if ((tx_fifo_sts & bus->data->txf_sts_tx_bytes) == 0)
463 		return false;
464 
465 	/* check if TX FIFO status bit is set: */
466 	return !!FIELD_GET(NPCM_I2CTXF_STS_TX_THST, tx_fifo_sts);
467 }
468 
469 static inline bool npcm_i2c_rx_fifo_full(struct npcm_i2c *bus)
470 {
471 	u8 rx_fifo_sts;
472 
473 	rx_fifo_sts = ioread8(bus->reg + NPCM_I2CRXF_STS);
474 	/* check if RX FIFO is not empty: */
475 	if ((rx_fifo_sts & bus->data->rxf_sts_rx_bytes) == 0)
476 		return false;
477 
478 	/* check if rx fifo full status is set: */
479 	return !!FIELD_GET(NPCM_I2CRXF_STS_RX_THST, rx_fifo_sts);
480 }
481 
482 static inline void npcm_i2c_clear_fifo_int(struct npcm_i2c *bus)
483 {
484 	u8 val;
485 
486 	val = ioread8(bus->reg + NPCM_I2CFIF_CTS);
487 	val = (val & NPCM_I2CFIF_CTS_SLVRSTR) | NPCM_I2CFIF_CTS_RXF_TXE;
488 	iowrite8(val, bus->reg + NPCM_I2CFIF_CTS);
489 }
490 
491 static inline void npcm_i2c_clear_tx_fifo(struct npcm_i2c *bus)
492 {
493 	u8 val;
494 
495 	val = ioread8(bus->reg + NPCM_I2CTXF_STS);
496 	val = val | NPCM_I2CTXF_STS_TX_THST;
497 	iowrite8(val, bus->reg + NPCM_I2CTXF_STS);
498 }
499 
500 static inline void npcm_i2c_clear_rx_fifo(struct npcm_i2c *bus)
501 {
502 	u8 val;
503 
504 	val = ioread8(bus->reg + NPCM_I2CRXF_STS);
505 	val = val | NPCM_I2CRXF_STS_RX_THST;
506 	iowrite8(val, bus->reg + NPCM_I2CRXF_STS);
507 }
508 
509 static void npcm_i2c_int_enable(struct npcm_i2c *bus, bool enable)
510 {
511 	u8 val;
512 
513 	val = ioread8(bus->reg + NPCM_I2CCTL1);
514 	val &= ~NPCM_I2CCTL1_RWS;
515 	if (enable)
516 		val |= NPCM_I2CCTL1_INTEN;
517 	else
518 		val &= ~NPCM_I2CCTL1_INTEN;
519 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
520 }
521 
522 static inline void npcm_i2c_master_start(struct npcm_i2c *bus)
523 {
524 	u8 val;
525 
526 	val = ioread8(bus->reg + NPCM_I2CCTL1);
527 	val &= ~(NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_ACK);
528 	val |= NPCM_I2CCTL1_START;
529 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
530 }
531 
532 static inline void npcm_i2c_master_stop(struct npcm_i2c *bus)
533 {
534 	u8 val;
535 
536 	/*
537 	 * override HW issue: I2C may fail to supply stop condition in Master
538 	 * Write operation.
539 	 * Need to delay at least 5 us from the last int, before issueing a stop
540 	 */
541 	udelay(10); /* function called from interrupt, can't sleep */
542 	val = ioread8(bus->reg + NPCM_I2CCTL1);
543 	val &= ~(NPCM_I2CCTL1_START | NPCM_I2CCTL1_ACK);
544 	val |= NPCM_I2CCTL1_STOP;
545 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
546 
547 	if (!bus->fifo_use)
548 		return;
549 
550 	npcm_i2c_select_bank(bus, I2C_BANK_1);
551 
552 	if (bus->operation == I2C_READ_OPER)
553 		npcm_i2c_clear_rx_fifo(bus);
554 	else
555 		npcm_i2c_clear_tx_fifo(bus);
556 	npcm_i2c_clear_fifo_int(bus);
557 	iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
558 }
559 
560 static inline void npcm_i2c_stall_after_start(struct npcm_i2c *bus, bool stall)
561 {
562 	u8 val;
563 
564 	val = ioread8(bus->reg + NPCM_I2CCTL1);
565 	val &= ~NPCM_I2CCTL1_RWS;
566 	if (stall)
567 		val |= NPCM_I2CCTL1_STASTRE;
568 	else
569 		val &= ~NPCM_I2CCTL1_STASTRE;
570 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
571 }
572 
573 static inline void npcm_i2c_nack(struct npcm_i2c *bus)
574 {
575 	u8 val;
576 
577 	val = ioread8(bus->reg + NPCM_I2CCTL1);
578 	val &= ~(NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_START);
579 	val |= NPCM_I2CCTL1_ACK;
580 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
581 }
582 
583 static inline void npcm_i2c_clear_master_status(struct npcm_i2c *bus)
584 {
585 	u8 val;
586 
587 	/* Clear NEGACK, STASTR and BER bits */
588 	val = NPCM_I2CST_BER | NPCM_I2CST_NEGACK | NPCM_I2CST_STASTR;
589 	iowrite8(val, bus->reg + NPCM_I2CST);
590 }
591 
592 #if IS_ENABLED(CONFIG_I2C_SLAVE)
593 static void npcm_i2c_slave_int_enable(struct npcm_i2c *bus, bool enable)
594 {
595 	u8 i2cctl1;
596 
597 	/* enable interrupt on slave match: */
598 	i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
599 	i2cctl1 &= ~NPCM_I2CCTL1_RWS;
600 	if (enable)
601 		i2cctl1 |= NPCM_I2CCTL1_NMINTE;
602 	else
603 		i2cctl1 &= ~NPCM_I2CCTL1_NMINTE;
604 	iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
605 }
606 
607 static int npcm_i2c_slave_enable(struct npcm_i2c *bus, enum i2c_addr addr_type,
608 				 u8 addr, bool enable)
609 {
610 	u8 i2cctl1;
611 	u8 i2cctl3;
612 	u8 sa_reg;
613 
614 	sa_reg = (addr & 0x7F) | FIELD_PREP(NPCM_I2CADDR_SAEN, enable);
615 	if (addr_type == I2C_GC_ADDR) {
616 		i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
617 		if (enable)
618 			i2cctl1 |= NPCM_I2CCTL1_GCMEN;
619 		else
620 			i2cctl1 &= ~NPCM_I2CCTL1_GCMEN;
621 		iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
622 		return 0;
623 	} else if (addr_type == I2C_ARP_ADDR) {
624 		i2cctl3 = ioread8(bus->reg + NPCM_I2CCTL3);
625 		if (enable)
626 			i2cctl3 |= I2CCTL3_ARPMEN;
627 		else
628 			i2cctl3 &= ~I2CCTL3_ARPMEN;
629 		iowrite8(i2cctl3, bus->reg + NPCM_I2CCTL3);
630 		return 0;
631 	}
632 	if (addr_type > I2C_SLAVE_ADDR2 && addr_type <= I2C_SLAVE_ADDR10)
633 		dev_err(bus->dev, "try to enable more than 2 SA not supported\n");
634 
635 	if (addr_type >= I2C_ARP_ADDR)
636 		return -EFAULT;
637 
638 	/* Set and enable the address */
639 	iowrite8(sa_reg, bus->reg + npcm_i2caddr[addr_type]);
640 	npcm_i2c_slave_int_enable(bus, enable);
641 
642 	return 0;
643 }
644 #endif
645 
646 static void npcm_i2c_reset(struct npcm_i2c *bus)
647 {
648 	/*
649 	 * Save I2CCTL1 relevant bits. It is being cleared when the module
650 	 *  is disabled.
651 	 */
652 	u8 i2cctl1;
653 #if IS_ENABLED(CONFIG_I2C_SLAVE)
654 	u8 addr;
655 #endif
656 
657 	i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
658 
659 	npcm_i2c_disable(bus);
660 	npcm_i2c_enable(bus);
661 
662 	/* Restore NPCM_I2CCTL1 Status */
663 	i2cctl1 &= ~NPCM_I2CCTL1_RWS;
664 	iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
665 
666 	/* Clear BB (BUS BUSY) bit */
667 	iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
668 	iowrite8(0xFF, bus->reg + NPCM_I2CST);
669 
670 	/* Clear and disable EOB */
671 	npcm_i2c_eob_int(bus, false);
672 
673 	/* Clear all fifo bits: */
674 	iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
675 
676 #if IS_ENABLED(CONFIG_I2C_SLAVE)
677 	if (bus->slave) {
678 		addr = bus->slave->addr;
679 		npcm_i2c_slave_enable(bus, I2C_SLAVE_ADDR1, addr, true);
680 	}
681 #endif
682 
683 	/* Clear status bits for spurious interrupts */
684 	npcm_i2c_clear_master_status(bus);
685 
686 	bus->state = I2C_IDLE;
687 }
688 
689 static inline bool npcm_i2c_is_master(struct npcm_i2c *bus)
690 {
691 	return !!FIELD_GET(NPCM_I2CST_MASTER, ioread8(bus->reg + NPCM_I2CST));
692 }
693 
694 static void npcm_i2c_callback(struct npcm_i2c *bus,
695 			      enum i2c_state_ind op_status, u16 info)
696 {
697 	struct i2c_msg *msgs;
698 	int msgs_num;
699 	bool do_complete = false;
700 
701 	msgs = bus->msgs;
702 	msgs_num = bus->msgs_num;
703 	/*
704 	 * check that transaction was not timed-out, and msgs still
705 	 * holds a valid value.
706 	 */
707 	if (!msgs)
708 		return;
709 
710 	if (completion_done(&bus->cmd_complete))
711 		return;
712 
713 	switch (op_status) {
714 	case I2C_MASTER_DONE_IND:
715 		bus->cmd_err = bus->msgs_num;
716 		if (bus->tx_complete_cnt < ULLONG_MAX)
717 			bus->tx_complete_cnt++;
718 		fallthrough;
719 	case I2C_BLOCK_BYTES_ERR_IND:
720 		/* Master tx finished and all transmit bytes were sent */
721 		if (bus->msgs) {
722 			if (msgs[0].flags & I2C_M_RD)
723 				msgs[0].len = info;
724 			else if (msgs_num == 2 &&
725 				 msgs[1].flags & I2C_M_RD)
726 				msgs[1].len = info;
727 		}
728 		do_complete = true;
729 		break;
730 	case I2C_NACK_IND:
731 		/* MASTER transmit got a NACK before tx all bytes */
732 		bus->cmd_err = -ENXIO;
733 		do_complete = true;
734 		break;
735 	case I2C_BUS_ERR_IND:
736 		/* Bus error */
737 		bus->cmd_err = -EAGAIN;
738 		do_complete = true;
739 		break;
740 	case I2C_WAKE_UP_IND:
741 		/* I2C wake up */
742 		break;
743 	default:
744 		break;
745 	}
746 
747 	bus->operation = I2C_NO_OPER;
748 #if IS_ENABLED(CONFIG_I2C_SLAVE)
749 	if (bus->slave)
750 		bus->master_or_slave = I2C_SLAVE;
751 #endif
752 	if (do_complete)
753 		complete(&bus->cmd_complete);
754 }
755 
756 static u8 npcm_i2c_fifo_usage(struct npcm_i2c *bus)
757 {
758 	if (bus->operation == I2C_WRITE_OPER)
759 		return (bus->data->txf_sts_tx_bytes &
760 			ioread8(bus->reg + NPCM_I2CTXF_STS));
761 	if (bus->operation == I2C_READ_OPER)
762 		return (bus->data->rxf_sts_rx_bytes &
763 			ioread8(bus->reg + NPCM_I2CRXF_STS));
764 	return 0;
765 }
766 
767 static void npcm_i2c_write_to_fifo_master(struct npcm_i2c *bus, u16 max_bytes)
768 {
769 	u8 size_free_fifo;
770 
771 	/*
772 	 * Fill the FIFO, while the FIFO is not full and there are more bytes
773 	 * to write
774 	 */
775 	size_free_fifo = bus->data->fifo_size - npcm_i2c_fifo_usage(bus);
776 	while (max_bytes-- && size_free_fifo) {
777 		if (bus->wr_ind < bus->wr_size)
778 			npcm_i2c_wr_byte(bus, bus->wr_buf[bus->wr_ind++]);
779 		else
780 			npcm_i2c_wr_byte(bus, 0xFF);
781 		size_free_fifo = bus->data->fifo_size - npcm_i2c_fifo_usage(bus);
782 	}
783 }
784 
785 /*
786  * npcm_i2c_set_fifo:
787  * configure the FIFO before using it. If nread is -1 RX FIFO will not be
788  * configured. same for nwrite
789  */
790 static void npcm_i2c_set_fifo(struct npcm_i2c *bus, int nread, int nwrite)
791 {
792 	u8 rxf_ctl = 0;
793 
794 	if (!bus->fifo_use)
795 		return;
796 	npcm_i2c_select_bank(bus, I2C_BANK_1);
797 	npcm_i2c_clear_tx_fifo(bus);
798 	npcm_i2c_clear_rx_fifo(bus);
799 
800 	/* configure RX FIFO */
801 	if (nread > 0) {
802 		rxf_ctl = min_t(int, nread, bus->data->fifo_size);
803 
804 		/* set LAST bit. if LAST is set next FIFO packet is nacked */
805 		if (nread <= bus->data->fifo_size)
806 			rxf_ctl |= bus->data->rxf_ctl_last_pec;
807 
808 		/*
809 		 * if we are about to read the first byte in blk rd mode,
810 		 * don't NACK it. If slave returns zero size HW can't NACK
811 		 * it immediately, it will read extra byte and then NACK.
812 		 */
813 		if (bus->rd_ind == 0 && bus->read_block_use) {
814 			/* set fifo to read one byte, no last: */
815 			rxf_ctl = 1;
816 		}
817 
818 		/* set fifo size: */
819 		iowrite8(rxf_ctl, bus->reg + NPCM_I2CRXF_CTL);
820 	}
821 
822 	/* configure TX FIFO */
823 	if (nwrite > 0) {
824 		if (nwrite > bus->data->fifo_size)
825 			/* data to send is more then FIFO size. */
826 			iowrite8(bus->data->fifo_size, bus->reg + NPCM_I2CTXF_CTL);
827 		else
828 			iowrite8(nwrite, bus->reg + NPCM_I2CTXF_CTL);
829 
830 		npcm_i2c_clear_tx_fifo(bus);
831 	}
832 }
833 
834 static void npcm_i2c_read_fifo(struct npcm_i2c *bus, u8 bytes_in_fifo)
835 {
836 	u8 data;
837 
838 	while (bytes_in_fifo--) {
839 		data = npcm_i2c_rd_byte(bus);
840 		if (bus->rd_ind < bus->rd_size)
841 			bus->rd_buf[bus->rd_ind++] = data;
842 	}
843 }
844 
845 static void npcm_i2c_master_abort(struct npcm_i2c *bus)
846 {
847 	/* Only current master is allowed to issue a stop condition */
848 	if (!npcm_i2c_is_master(bus))
849 		return;
850 
851 	npcm_i2c_eob_int(bus, true);
852 	npcm_i2c_master_stop(bus);
853 	npcm_i2c_clear_master_status(bus);
854 }
855 
856 #if IS_ENABLED(CONFIG_I2C_SLAVE)
857 static u8 npcm_i2c_get_slave_addr(struct npcm_i2c *bus, enum i2c_addr addr_type)
858 {
859 	u8 slave_add;
860 
861 	if (addr_type > I2C_SLAVE_ADDR2 && addr_type <= I2C_SLAVE_ADDR10)
862 		dev_err(bus->dev, "get slave: try to use more than 2 SA not supported\n");
863 
864 	slave_add = ioread8(bus->reg + npcm_i2caddr[(int)addr_type]);
865 
866 	return slave_add;
867 }
868 
869 static int npcm_i2c_remove_slave_addr(struct npcm_i2c *bus, u8 slave_add)
870 {
871 	int i;
872 
873 	/* Set the enable bit */
874 	slave_add |= 0x80;
875 
876 	for (i = I2C_SLAVE_ADDR1; i < I2C_NUM_OWN_ADDR_SUPPORTED; i++) {
877 		if (ioread8(bus->reg + npcm_i2caddr[i]) == slave_add)
878 			iowrite8(0, bus->reg + npcm_i2caddr[i]);
879 	}
880 
881 	return 0;
882 }
883 
884 static void npcm_i2c_write_fifo_slave(struct npcm_i2c *bus, u16 max_bytes)
885 {
886 	/*
887 	 * Fill the FIFO, while the FIFO is not full and there are more bytes
888 	 * to write
889 	 */
890 	npcm_i2c_clear_fifo_int(bus);
891 	npcm_i2c_clear_tx_fifo(bus);
892 	iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
893 	while (max_bytes-- && bus->data->fifo_size != npcm_i2c_fifo_usage(bus)) {
894 		if (bus->slv_wr_size <= 0)
895 			break;
896 		bus->slv_wr_ind = bus->slv_wr_ind & (bus->data->fifo_size - 1);
897 		npcm_i2c_wr_byte(bus, bus->slv_wr_buf[bus->slv_wr_ind]);
898 		bus->slv_wr_ind++;
899 		bus->slv_wr_ind = bus->slv_wr_ind & (bus->data->fifo_size - 1);
900 		bus->slv_wr_size--;
901 	}
902 }
903 
904 static void npcm_i2c_read_fifo_slave(struct npcm_i2c *bus, u8 bytes_in_fifo)
905 {
906 	u8 data;
907 
908 	if (!bus->slave)
909 		return;
910 
911 	while (bytes_in_fifo--) {
912 		data = npcm_i2c_rd_byte(bus);
913 
914 		bus->slv_rd_ind = bus->slv_rd_ind & (bus->data->fifo_size - 1);
915 		bus->slv_rd_buf[bus->slv_rd_ind] = data;
916 		bus->slv_rd_ind++;
917 
918 		/* 1st byte is length in block protocol: */
919 		if (bus->slv_rd_ind == 1 && bus->read_block_use)
920 			bus->slv_rd_size = data + bus->PEC_use + 1;
921 	}
922 }
923 
924 static int npcm_i2c_slave_get_wr_buf(struct npcm_i2c *bus)
925 {
926 	int i;
927 	u8 value;
928 	int ind;
929 	int ret = bus->slv_wr_ind;
930 
931 	/* fill a cyclic buffer */
932 	for (i = 0; i < bus->data->fifo_size; i++) {
933 		if (bus->slv_wr_size >= bus->data->fifo_size)
934 			break;
935 		if (bus->state == I2C_SLAVE_MATCH) {
936 			i2c_slave_event(bus->slave, I2C_SLAVE_READ_REQUESTED, &value);
937 			bus->state = I2C_OPER_STARTED;
938 		} else {
939 			i2c_slave_event(bus->slave, I2C_SLAVE_READ_PROCESSED, &value);
940 		}
941 		ind = (bus->slv_wr_ind + bus->slv_wr_size) & (bus->data->fifo_size - 1);
942 		bus->slv_wr_buf[ind] = value;
943 		bus->slv_wr_size++;
944 	}
945 	return bus->data->fifo_size - ret;
946 }
947 
948 static void npcm_i2c_slave_send_rd_buf(struct npcm_i2c *bus)
949 {
950 	int i;
951 
952 	for (i = 0; i < bus->slv_rd_ind; i++)
953 		i2c_slave_event(bus->slave, I2C_SLAVE_WRITE_RECEIVED,
954 				&bus->slv_rd_buf[i]);
955 	/*
956 	 * once we send bytes up, need to reset the counter of the wr buf
957 	 * got data from master (new offset in device), ignore wr fifo:
958 	 */
959 	if (bus->slv_rd_ind) {
960 		bus->slv_wr_size = 0;
961 		bus->slv_wr_ind = 0;
962 	}
963 
964 	bus->slv_rd_ind = 0;
965 	bus->slv_rd_size = bus->adap.quirks->max_read_len;
966 
967 	npcm_i2c_clear_fifo_int(bus);
968 	npcm_i2c_clear_rx_fifo(bus);
969 }
970 
971 static void npcm_i2c_slave_receive(struct npcm_i2c *bus, u16 nread,
972 				   u8 *read_data)
973 {
974 	bus->state = I2C_OPER_STARTED;
975 	bus->operation = I2C_READ_OPER;
976 	bus->slv_rd_size = nread;
977 	bus->slv_rd_ind = 0;
978 
979 	iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
980 	iowrite8(bus->data->fifo_size, bus->reg + NPCM_I2CRXF_CTL);
981 	npcm_i2c_clear_tx_fifo(bus);
982 	npcm_i2c_clear_rx_fifo(bus);
983 }
984 
985 static void npcm_i2c_slave_xmit(struct npcm_i2c *bus, u16 nwrite,
986 				u8 *write_data)
987 {
988 	if (nwrite == 0)
989 		return;
990 
991 	bus->operation = I2C_WRITE_OPER;
992 
993 	/* get the next buffer */
994 	npcm_i2c_slave_get_wr_buf(bus);
995 	npcm_i2c_write_fifo_slave(bus, nwrite);
996 }
997 
998 /*
999  * npcm_i2c_slave_wr_buf_sync:
1000  * currently slave IF only supports single byte operations.
1001  * in order to utilize the npcm HW FIFO, the driver will ask for 16 bytes
1002  * at a time, pack them in buffer, and then transmit them all together
1003  * to the FIFO and onward to the bus.
1004  * NACK on read will be once reached to bus->adap->quirks->max_read_len.
1005  * sending a NACK wherever the backend requests for it is not supported.
1006  * the next two functions allow reading to local buffer before writing it all
1007  * to the HW FIFO.
1008  */
1009 static void npcm_i2c_slave_wr_buf_sync(struct npcm_i2c *bus)
1010 {
1011 	int left_in_fifo;
1012 
1013 	left_in_fifo = bus->data->txf_sts_tx_bytes &
1014 			ioread8(bus->reg + NPCM_I2CTXF_STS);
1015 
1016 	/* fifo already full: */
1017 	if (left_in_fifo >= bus->data->fifo_size ||
1018 	    bus->slv_wr_size >= bus->data->fifo_size)
1019 		return;
1020 
1021 	/* update the wr fifo index back to the untransmitted bytes: */
1022 	bus->slv_wr_ind = bus->slv_wr_ind - left_in_fifo;
1023 	bus->slv_wr_size = bus->slv_wr_size + left_in_fifo;
1024 
1025 	if (bus->slv_wr_ind < 0)
1026 		bus->slv_wr_ind += bus->data->fifo_size;
1027 }
1028 
1029 static void npcm_i2c_slave_rd_wr(struct npcm_i2c *bus)
1030 {
1031 	if (NPCM_I2CST_XMIT & ioread8(bus->reg + NPCM_I2CST)) {
1032 		/*
1033 		 * Slave got an address match with direction bit 1 so it should
1034 		 * transmit data. Write till the master will NACK
1035 		 */
1036 		bus->operation = I2C_WRITE_OPER;
1037 		npcm_i2c_slave_xmit(bus, bus->adap.quirks->max_write_len,
1038 				    bus->slv_wr_buf);
1039 	} else {
1040 		/*
1041 		 * Slave got an address match with direction bit 0 so it should
1042 		 * receive data.
1043 		 * this module does not support saying no to bytes.
1044 		 * it will always ACK.
1045 		 */
1046 		bus->operation = I2C_READ_OPER;
1047 		npcm_i2c_read_fifo_slave(bus, npcm_i2c_fifo_usage(bus));
1048 		bus->stop_ind = I2C_SLAVE_RCV_IND;
1049 		npcm_i2c_slave_send_rd_buf(bus);
1050 		npcm_i2c_slave_receive(bus, bus->adap.quirks->max_read_len,
1051 				       bus->slv_rd_buf);
1052 	}
1053 }
1054 
1055 static irqreturn_t npcm_i2c_int_slave_handler(struct npcm_i2c *bus)
1056 {
1057 	u8 val;
1058 	irqreturn_t ret = IRQ_NONE;
1059 	u8 i2cst = ioread8(bus->reg + NPCM_I2CST);
1060 
1061 	/* Slave: A NACK has occurred */
1062 	if (NPCM_I2CST_NEGACK & i2cst) {
1063 		bus->stop_ind = I2C_NACK_IND;
1064 		npcm_i2c_slave_wr_buf_sync(bus);
1065 		if (bus->fifo_use)
1066 			/* clear the FIFO */
1067 			iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO,
1068 				 bus->reg + NPCM_I2CFIF_CTS);
1069 
1070 		/* In slave write, NACK is OK, otherwise it is a problem */
1071 		bus->stop_ind = I2C_NO_STATUS_IND;
1072 		bus->operation = I2C_NO_OPER;
1073 		bus->own_slave_addr = 0xFF;
1074 
1075 		/*
1076 		 * Slave has to wait for STOP to decide this is the end
1077 		 * of the transaction. tx is not yet considered as done
1078 		 */
1079 		iowrite8(NPCM_I2CST_NEGACK, bus->reg + NPCM_I2CST);
1080 
1081 		ret = IRQ_HANDLED;
1082 	}
1083 
1084 	/* Slave mode: a Bus Error (BER) has been identified */
1085 	if (NPCM_I2CST_BER & i2cst) {
1086 		/*
1087 		 * Check whether bus arbitration or Start or Stop during data
1088 		 * xfer bus arbitration problem should not result in recovery
1089 		 */
1090 		bus->stop_ind = I2C_BUS_ERR_IND;
1091 
1092 		/* wait for bus busy before clear fifo */
1093 		iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
1094 
1095 		bus->state = I2C_IDLE;
1096 
1097 		/*
1098 		 * in BER case we might get 2 interrupts: one for slave one for
1099 		 * master ( for a channel which is master\slave switching)
1100 		 */
1101 		if (completion_done(&bus->cmd_complete) == false) {
1102 			bus->cmd_err = -EIO;
1103 			complete(&bus->cmd_complete);
1104 		}
1105 		bus->own_slave_addr = 0xFF;
1106 		iowrite8(NPCM_I2CST_BER, bus->reg + NPCM_I2CST);
1107 		ret = IRQ_HANDLED;
1108 	}
1109 
1110 	/* A Slave Stop Condition has been identified */
1111 	if (NPCM_I2CST_SLVSTP & i2cst) {
1112 		u8 bytes_in_fifo = npcm_i2c_fifo_usage(bus);
1113 
1114 		bus->stop_ind = I2C_SLAVE_DONE_IND;
1115 
1116 		if (bus->operation == I2C_READ_OPER)
1117 			npcm_i2c_read_fifo_slave(bus, bytes_in_fifo);
1118 
1119 		/* if the buffer is empty nothing will be sent */
1120 		npcm_i2c_slave_send_rd_buf(bus);
1121 
1122 		/* Slave done transmitting or receiving */
1123 		bus->stop_ind = I2C_NO_STATUS_IND;
1124 
1125 		/*
1126 		 * Note, just because we got here, it doesn't mean we through
1127 		 * away the wr buffer.
1128 		 * we keep it until the next received offset.
1129 		 */
1130 		bus->operation = I2C_NO_OPER;
1131 		bus->own_slave_addr = 0xFF;
1132 		i2c_slave_event(bus->slave, I2C_SLAVE_STOP, 0);
1133 		iowrite8(NPCM_I2CST_SLVSTP, bus->reg + NPCM_I2CST);
1134 		if (bus->fifo_use) {
1135 			npcm_i2c_clear_fifo_int(bus);
1136 			npcm_i2c_clear_rx_fifo(bus);
1137 			npcm_i2c_clear_tx_fifo(bus);
1138 
1139 			iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO,
1140 				 bus->reg + NPCM_I2CFIF_CTS);
1141 		}
1142 		bus->state = I2C_IDLE;
1143 		ret = IRQ_HANDLED;
1144 	}
1145 
1146 	/* restart condition occurred and Rx-FIFO was not empty */
1147 	if (bus->fifo_use && FIELD_GET(NPCM_I2CFIF_CTS_SLVRSTR,
1148 				       ioread8(bus->reg + NPCM_I2CFIF_CTS))) {
1149 		bus->stop_ind = I2C_SLAVE_RESTART_IND;
1150 		bus->master_or_slave = I2C_SLAVE;
1151 		if (bus->operation == I2C_READ_OPER)
1152 			npcm_i2c_read_fifo_slave(bus, npcm_i2c_fifo_usage(bus));
1153 		bus->operation = I2C_WRITE_OPER;
1154 		iowrite8(0, bus->reg + NPCM_I2CRXF_CTL);
1155 		val = NPCM_I2CFIF_CTS_CLR_FIFO | NPCM_I2CFIF_CTS_SLVRSTR |
1156 		      NPCM_I2CFIF_CTS_RXF_TXE;
1157 		iowrite8(val, bus->reg + NPCM_I2CFIF_CTS);
1158 		npcm_i2c_slave_rd_wr(bus);
1159 		ret = IRQ_HANDLED;
1160 	}
1161 
1162 	/* A Slave Address Match has been identified */
1163 	if (NPCM_I2CST_NMATCH & i2cst) {
1164 		u8 info = 0;
1165 
1166 		/* Address match automatically implies slave mode */
1167 		bus->master_or_slave = I2C_SLAVE;
1168 		npcm_i2c_clear_fifo_int(bus);
1169 		npcm_i2c_clear_rx_fifo(bus);
1170 		npcm_i2c_clear_tx_fifo(bus);
1171 		iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
1172 		iowrite8(bus->data->fifo_size, bus->reg + NPCM_I2CRXF_CTL);
1173 		if (NPCM_I2CST_XMIT & i2cst) {
1174 			bus->operation = I2C_WRITE_OPER;
1175 		} else {
1176 			i2c_slave_event(bus->slave, I2C_SLAVE_WRITE_REQUESTED,
1177 					&info);
1178 			bus->operation = I2C_READ_OPER;
1179 		}
1180 		if (bus->own_slave_addr == 0xFF) {
1181 			/* Check which type of address match */
1182 			val = ioread8(bus->reg + NPCM_I2CCST);
1183 			if (NPCM_I2CCST_MATCH & val) {
1184 				u16 addr;
1185 				enum i2c_addr eaddr;
1186 				u8 i2ccst2;
1187 				u8 i2ccst3;
1188 
1189 				i2ccst3 = ioread8(bus->reg + NPCM_I2CCST3);
1190 				i2ccst2 = ioread8(bus->reg + NPCM_I2CCST2);
1191 
1192 				/*
1193 				 * the i2c module can response to 10 own SA.
1194 				 * check which one was addressed by the master.
1195 				 * respond to the first one.
1196 				 */
1197 				addr = ((i2ccst3 & 0x07) << 7) |
1198 					(i2ccst2 & 0x7F);
1199 				info = ffs(addr);
1200 				eaddr = (enum i2c_addr)info;
1201 				addr = npcm_i2c_get_slave_addr(bus, eaddr);
1202 				addr &= 0x7F;
1203 				bus->own_slave_addr = addr;
1204 				if (bus->PEC_mask & BIT(info))
1205 					bus->PEC_use = true;
1206 				else
1207 					bus->PEC_use = false;
1208 			} else {
1209 				if (NPCM_I2CCST_GCMATCH & val)
1210 					bus->own_slave_addr = 0;
1211 				if (NPCM_I2CCST_ARPMATCH & val)
1212 					bus->own_slave_addr = 0x61;
1213 			}
1214 		} else {
1215 			/*
1216 			 *  Slave match can happen in two options:
1217 			 *  1. Start, SA, read (slave read without further ado)
1218 			 *  2. Start, SA, read, data, restart, SA, read,  ...
1219 			 *     (slave read in fragmented mode)
1220 			 *  3. Start, SA, write, data, restart, SA, read, ..
1221 			 *     (regular write-read mode)
1222 			 */
1223 			if ((bus->state == I2C_OPER_STARTED &&
1224 			     bus->operation == I2C_READ_OPER &&
1225 			     bus->stop_ind == I2C_SLAVE_XMIT_IND) ||
1226 			     bus->stop_ind == I2C_SLAVE_RCV_IND) {
1227 				/* slave tx after slave rx w/o STOP */
1228 				bus->stop_ind = I2C_SLAVE_RESTART_IND;
1229 			}
1230 		}
1231 
1232 		if (NPCM_I2CST_XMIT & i2cst)
1233 			bus->stop_ind = I2C_SLAVE_XMIT_IND;
1234 		else
1235 			bus->stop_ind = I2C_SLAVE_RCV_IND;
1236 		bus->state = I2C_SLAVE_MATCH;
1237 		npcm_i2c_slave_rd_wr(bus);
1238 		iowrite8(NPCM_I2CST_NMATCH, bus->reg + NPCM_I2CST);
1239 		ret = IRQ_HANDLED;
1240 	}
1241 
1242 	/* Slave SDA status is set - tx or rx */
1243 	if ((NPCM_I2CST_SDAST & i2cst) ||
1244 	    (bus->fifo_use &&
1245 	    (npcm_i2c_tx_fifo_empty(bus) || npcm_i2c_rx_fifo_full(bus)))) {
1246 		npcm_i2c_slave_rd_wr(bus);
1247 		iowrite8(NPCM_I2CST_SDAST, bus->reg + NPCM_I2CST);
1248 		ret = IRQ_HANDLED;
1249 	} /* SDAST */
1250 
1251 	/*
1252 	 * If irq is not one of the above, make sure EOB is disabled and all
1253 	 * status bits are cleared.
1254 	 */
1255 	if (ret == IRQ_NONE) {
1256 		npcm_i2c_eob_int(bus, false);
1257 		npcm_i2c_clear_master_status(bus);
1258 	}
1259 
1260 	return IRQ_HANDLED;
1261 }
1262 
1263 static int npcm_i2c_reg_slave(struct i2c_client *client)
1264 {
1265 	unsigned long lock_flags;
1266 	struct npcm_i2c *bus = i2c_get_adapdata(client->adapter);
1267 
1268 	bus->slave = client;
1269 
1270 	if (client->flags & I2C_CLIENT_TEN)
1271 		return -EAFNOSUPPORT;
1272 
1273 	spin_lock_irqsave(&bus->lock, lock_flags);
1274 
1275 	npcm_i2c_init_params(bus);
1276 	bus->slv_rd_size = 0;
1277 	bus->slv_wr_size = 0;
1278 	bus->slv_rd_ind = 0;
1279 	bus->slv_wr_ind = 0;
1280 	if (client->flags & I2C_CLIENT_PEC)
1281 		bus->PEC_use = true;
1282 
1283 	dev_info(bus->dev, "i2c%d register slave SA=0x%x, PEC=%d\n", bus->num,
1284 		 client->addr, bus->PEC_use);
1285 
1286 	npcm_i2c_slave_enable(bus, I2C_SLAVE_ADDR1, client->addr, true);
1287 	npcm_i2c_clear_fifo_int(bus);
1288 	npcm_i2c_clear_rx_fifo(bus);
1289 	npcm_i2c_clear_tx_fifo(bus);
1290 	npcm_i2c_slave_int_enable(bus, true);
1291 
1292 	spin_unlock_irqrestore(&bus->lock, lock_flags);
1293 	return 0;
1294 }
1295 
1296 static int npcm_i2c_unreg_slave(struct i2c_client *client)
1297 {
1298 	struct npcm_i2c *bus = client->adapter->algo_data;
1299 	unsigned long lock_flags;
1300 
1301 	spin_lock_irqsave(&bus->lock, lock_flags);
1302 	if (!bus->slave) {
1303 		spin_unlock_irqrestore(&bus->lock, lock_flags);
1304 		return -EINVAL;
1305 	}
1306 	npcm_i2c_slave_int_enable(bus, false);
1307 	npcm_i2c_remove_slave_addr(bus, client->addr);
1308 	bus->slave = NULL;
1309 	spin_unlock_irqrestore(&bus->lock, lock_flags);
1310 	return 0;
1311 }
1312 #endif /* CONFIG_I2C_SLAVE */
1313 
1314 static void npcm_i2c_master_fifo_read(struct npcm_i2c *bus)
1315 {
1316 	int rcount;
1317 	int fifo_bytes;
1318 	enum i2c_state_ind ind = I2C_MASTER_DONE_IND;
1319 
1320 	fifo_bytes = npcm_i2c_fifo_usage(bus);
1321 	rcount = bus->rd_size - bus->rd_ind;
1322 
1323 	/*
1324 	 * In order not to change the RX_TRH during transaction (we found that
1325 	 * this might be problematic if it takes too much time to read the FIFO)
1326 	 * we read the data in the following way. If the number of bytes to
1327 	 * read == FIFO Size + C (where C < FIFO Size)then first read C bytes
1328 	 * and in the next int we read rest of the data.
1329 	 */
1330 	if (rcount < (2 * bus->data->fifo_size) && rcount > bus->data->fifo_size)
1331 		fifo_bytes = rcount - bus->data->fifo_size;
1332 
1333 	if (rcount <= fifo_bytes) {
1334 		/* last bytes are about to be read - end of tx */
1335 		bus->state = I2C_STOP_PENDING;
1336 		bus->stop_ind = ind;
1337 		npcm_i2c_eob_int(bus, true);
1338 		/* Stop should be set before reading last byte. */
1339 		npcm_i2c_master_stop(bus);
1340 		npcm_i2c_read_fifo(bus, fifo_bytes);
1341 	} else {
1342 		npcm_i2c_read_fifo(bus, fifo_bytes);
1343 		rcount = bus->rd_size - bus->rd_ind;
1344 		npcm_i2c_set_fifo(bus, rcount, -1);
1345 	}
1346 }
1347 
1348 static void npcm_i2c_irq_master_handler_write(struct npcm_i2c *bus)
1349 {
1350 	u16 wcount;
1351 
1352 	if (bus->fifo_use)
1353 		npcm_i2c_clear_tx_fifo(bus); /* clear the TX fifo status bit */
1354 
1355 	/* Master write operation - last byte handling */
1356 	if (bus->wr_ind == bus->wr_size) {
1357 		if (bus->fifo_use && npcm_i2c_fifo_usage(bus) > 0)
1358 			/*
1359 			 * No more bytes to send (to add to the FIFO),
1360 			 * however the FIFO is not empty yet. It is
1361 			 * still in the middle of tx. Currently there's nothing
1362 			 * to do except for waiting to the end of the tx
1363 			 * We will get an int when the FIFO will get empty.
1364 			 */
1365 			return;
1366 
1367 		if (bus->rd_size == 0) {
1368 			/* all bytes have been written, in wr only operation */
1369 			npcm_i2c_eob_int(bus, true);
1370 			bus->state = I2C_STOP_PENDING;
1371 			bus->stop_ind = I2C_MASTER_DONE_IND;
1372 			npcm_i2c_master_stop(bus);
1373 			/* Clear SDA Status bit (by writing dummy byte) */
1374 			npcm_i2c_wr_byte(bus, 0xFF);
1375 
1376 		} else {
1377 			/* last write-byte written on previous int - restart */
1378 			npcm_i2c_set_fifo(bus, bus->rd_size, -1);
1379 			/* Generate repeated start upon next write to SDA */
1380 			npcm_i2c_master_start(bus);
1381 
1382 			/*
1383 			 * Receiving one byte only - stall after successful
1384 			 * completion of send address byte. If we NACK here, and
1385 			 * slave doesn't ACK the address, we might
1386 			 * unintentionally NACK the next multi-byte read.
1387 			 */
1388 			if (bus->rd_size == 1)
1389 				npcm_i2c_stall_after_start(bus, true);
1390 
1391 			/* Next int will occur on read */
1392 			bus->operation = I2C_READ_OPER;
1393 			/* send the slave address in read direction */
1394 			npcm_i2c_wr_byte(bus, bus->dest_addr | 0x1);
1395 		}
1396 	} else {
1397 		/* write next byte not last byte and not slave address */
1398 		if (!bus->fifo_use || bus->wr_size == 1) {
1399 			npcm_i2c_wr_byte(bus, bus->wr_buf[bus->wr_ind++]);
1400 		} else {
1401 			wcount = bus->wr_size - bus->wr_ind;
1402 			npcm_i2c_set_fifo(bus, -1, wcount);
1403 			if (wcount)
1404 				npcm_i2c_write_to_fifo_master(bus, wcount);
1405 		}
1406 	}
1407 }
1408 
1409 static void npcm_i2c_irq_master_handler_read(struct npcm_i2c *bus)
1410 {
1411 	u16 block_extra_bytes_size;
1412 	u8 data;
1413 
1414 	/* added bytes to the packet: */
1415 	block_extra_bytes_size = bus->read_block_use + bus->PEC_use;
1416 
1417 	/*
1418 	 * Perform master read, distinguishing between last byte and the rest of
1419 	 * the bytes. The last byte should be read when the clock is stopped
1420 	 */
1421 	if (bus->rd_ind == 0) { /* first byte handling: */
1422 		if (bus->read_block_use) {
1423 			/* first byte in block protocol is the size: */
1424 			data = npcm_i2c_rd_byte(bus);
1425 			data = clamp_val(data, 1, I2C_SMBUS_BLOCK_MAX);
1426 			bus->rd_size = data + block_extra_bytes_size;
1427 			bus->rd_buf[bus->rd_ind++] = data;
1428 
1429 			/* clear RX FIFO interrupt status: */
1430 			if (bus->fifo_use) {
1431 				data = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1432 				data = data | NPCM_I2CFIF_CTS_RXF_TXE;
1433 				iowrite8(data, bus->reg + NPCM_I2CFIF_CTS);
1434 			}
1435 
1436 			npcm_i2c_set_fifo(bus, bus->rd_size - 1, -1);
1437 			npcm_i2c_stall_after_start(bus, false);
1438 		} else {
1439 			npcm_i2c_clear_tx_fifo(bus);
1440 			npcm_i2c_master_fifo_read(bus);
1441 		}
1442 	} else {
1443 		if (bus->rd_size == block_extra_bytes_size &&
1444 		    bus->read_block_use) {
1445 			bus->state = I2C_STOP_PENDING;
1446 			bus->stop_ind = I2C_BLOCK_BYTES_ERR_IND;
1447 			bus->cmd_err = -EIO;
1448 			npcm_i2c_eob_int(bus, true);
1449 			npcm_i2c_master_stop(bus);
1450 			npcm_i2c_read_fifo(bus, npcm_i2c_fifo_usage(bus));
1451 		} else {
1452 			npcm_i2c_master_fifo_read(bus);
1453 		}
1454 	}
1455 }
1456 
1457 static void npcm_i2c_irq_handle_nmatch(struct npcm_i2c *bus)
1458 {
1459 	iowrite8(NPCM_I2CST_NMATCH, bus->reg + NPCM_I2CST);
1460 	npcm_i2c_nack(bus);
1461 	bus->stop_ind = I2C_BUS_ERR_IND;
1462 	npcm_i2c_callback(bus, bus->stop_ind, npcm_i2c_get_index(bus));
1463 }
1464 
1465 /* A NACK has occurred */
1466 static void npcm_i2c_irq_handle_nack(struct npcm_i2c *bus)
1467 {
1468 	u8 val;
1469 
1470 	if (bus->nack_cnt < ULLONG_MAX)
1471 		bus->nack_cnt++;
1472 
1473 	if (bus->fifo_use) {
1474 		/*
1475 		 * if there are still untransmitted bytes in TX FIFO
1476 		 * reduce them from wr_ind
1477 		 */
1478 		if (bus->operation == I2C_WRITE_OPER)
1479 			bus->wr_ind -= npcm_i2c_fifo_usage(bus);
1480 
1481 		/* clear the FIFO */
1482 		iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
1483 	}
1484 
1485 	/* In master write operation, got unexpected NACK */
1486 	bus->stop_ind = I2C_NACK_IND;
1487 	/* Only current master is allowed to issue Stop Condition */
1488 	if (npcm_i2c_is_master(bus)) {
1489 		/* stopping in the middle */
1490 		npcm_i2c_eob_int(bus, false);
1491 		npcm_i2c_master_stop(bus);
1492 
1493 		/* Clear SDA Status bit (by reading dummy byte) */
1494 		npcm_i2c_rd_byte(bus);
1495 
1496 		/*
1497 		 * The bus is released from stall only after the SW clears
1498 		 * NEGACK bit. Then a Stop condition is sent.
1499 		 */
1500 		npcm_i2c_clear_master_status(bus);
1501 		readx_poll_timeout_atomic(ioread8, bus->reg + NPCM_I2CCST, val,
1502 					  !(val & NPCM_I2CCST_BUSY), 10, 200);
1503 		/* Verify no status bits are still set after bus is released */
1504 		npcm_i2c_clear_master_status(bus);
1505 	}
1506 	bus->state = I2C_IDLE;
1507 
1508 	/*
1509 	 * In Master mode, NACK should be cleared only after STOP.
1510 	 * In such case, the bus is released from stall only after the
1511 	 * software clears NACK bit. Then a Stop condition is sent.
1512 	 */
1513 	npcm_i2c_callback(bus, bus->stop_ind, bus->wr_ind);
1514 }
1515 
1516 	/* Master mode: a Bus Error has been identified */
1517 static void npcm_i2c_irq_handle_ber(struct npcm_i2c *bus)
1518 {
1519 	if (bus->ber_cnt < ULLONG_MAX)
1520 		bus->ber_cnt++;
1521 	bus->stop_ind = I2C_BUS_ERR_IND;
1522 	if (npcm_i2c_is_master(bus)) {
1523 		npcm_i2c_master_abort(bus);
1524 	} else {
1525 		bus->ber_state = true;
1526 		npcm_i2c_clear_master_status(bus);
1527 
1528 		/* Clear BB (BUS BUSY) bit */
1529 		iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
1530 
1531 		bus->cmd_err = -EAGAIN;
1532 		npcm_i2c_callback(bus, bus->stop_ind, npcm_i2c_get_index(bus));
1533 	}
1534 	bus->state = I2C_IDLE;
1535 }
1536 
1537 	/* EOB: a master End Of Busy (meaning STOP completed) */
1538 static void npcm_i2c_irq_handle_eob(struct npcm_i2c *bus)
1539 {
1540 	npcm_i2c_eob_int(bus, false);
1541 	bus->state = I2C_IDLE;
1542 	npcm_i2c_callback(bus, bus->stop_ind, bus->rd_ind);
1543 }
1544 
1545 /* Address sent and requested stall occurred (Master mode) */
1546 static void npcm_i2c_irq_handle_stall_after_start(struct npcm_i2c *bus)
1547 {
1548 	if (npcm_i2c_is_quick(bus)) {
1549 		bus->state = I2C_STOP_PENDING;
1550 		bus->stop_ind = I2C_MASTER_DONE_IND;
1551 		npcm_i2c_eob_int(bus, true);
1552 		npcm_i2c_master_stop(bus);
1553 	} else if ((bus->rd_size == 1) && !bus->read_block_use) {
1554 		/*
1555 		 * Receiving one byte only - set NACK after ensuring
1556 		 * slave ACKed the address byte.
1557 		 */
1558 		npcm_i2c_nack(bus);
1559 	}
1560 
1561 	/* Reset stall-after-address-byte */
1562 	npcm_i2c_stall_after_start(bus, false);
1563 
1564 	/* Clear stall only after setting STOP */
1565 	iowrite8(NPCM_I2CST_STASTR, bus->reg + NPCM_I2CST);
1566 }
1567 
1568 /* SDA status is set - TX or RX, master */
1569 static void npcm_i2c_irq_handle_sda(struct npcm_i2c *bus, u8 i2cst)
1570 {
1571 	u8 fif_cts;
1572 
1573 	if (!npcm_i2c_is_master(bus))
1574 		return;
1575 
1576 	if (bus->state == I2C_IDLE) {
1577 		bus->stop_ind = I2C_WAKE_UP_IND;
1578 
1579 		if (npcm_i2c_is_quick(bus) || bus->read_block_use)
1580 			/*
1581 			 * Need to stall after successful
1582 			 * completion of sending address byte
1583 			 */
1584 			npcm_i2c_stall_after_start(bus, true);
1585 		else
1586 			npcm_i2c_stall_after_start(bus, false);
1587 
1588 		/*
1589 		 * Receiving one byte only - stall after successful completion
1590 		 * of sending address byte If we NACK here, and slave doesn't
1591 		 * ACK the address, we might unintentionally NACK the next
1592 		 * multi-byte read
1593 		 */
1594 		if (bus->wr_size == 0 && bus->rd_size == 1)
1595 			npcm_i2c_stall_after_start(bus, true);
1596 
1597 		/* Initiate I2C master tx */
1598 
1599 		/* select bank 1 for FIFO regs */
1600 		npcm_i2c_select_bank(bus, I2C_BANK_1);
1601 
1602 		fif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1603 		fif_cts = fif_cts & ~NPCM_I2CFIF_CTS_SLVRSTR;
1604 
1605 		/* clear FIFO and relevant status bits. */
1606 		fif_cts = fif_cts | NPCM_I2CFIF_CTS_CLR_FIFO;
1607 		iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1608 
1609 		/* re-enable */
1610 		fif_cts = fif_cts | NPCM_I2CFIF_CTS_RXF_TXE;
1611 		iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1612 
1613 		/*
1614 		 * Configure the FIFO threshold:
1615 		 * according to the needed # of bytes to read.
1616 		 * Note: due to HW limitation can't config the rx fifo before it
1617 		 * got and ACK on the restart. LAST bit will not be reset unless
1618 		 * RX completed. It will stay set on the next tx.
1619 		 */
1620 		if (bus->wr_size)
1621 			npcm_i2c_set_fifo(bus, -1, bus->wr_size);
1622 		else
1623 			npcm_i2c_set_fifo(bus, bus->rd_size, -1);
1624 
1625 		bus->state = I2C_OPER_STARTED;
1626 
1627 		if (npcm_i2c_is_quick(bus) || bus->wr_size)
1628 			npcm_i2c_wr_byte(bus, bus->dest_addr);
1629 		else
1630 			npcm_i2c_wr_byte(bus, bus->dest_addr | BIT(0));
1631 	/* SDA interrupt, after start\restart */
1632 	} else {
1633 		if (bus->operation == I2C_WRITE_OPER)
1634 			npcm_i2c_irq_master_handler_write(bus);
1635 		else if (bus->operation == I2C_READ_OPER)
1636 			npcm_i2c_irq_master_handler_read(bus);
1637 	}
1638 }
1639 
1640 static int npcm_i2c_int_master_handler(struct npcm_i2c *bus)
1641 {
1642 	u8 i2cst;
1643 	int ret = -EIO;
1644 
1645 	i2cst = ioread8(bus->reg + NPCM_I2CST);
1646 
1647 	if (FIELD_GET(NPCM_I2CST_NMATCH, i2cst)) {
1648 		npcm_i2c_irq_handle_nmatch(bus);
1649 		return 0;
1650 	}
1651 	/* A NACK has occurred */
1652 	if (FIELD_GET(NPCM_I2CST_NEGACK, i2cst)) {
1653 		npcm_i2c_irq_handle_nack(bus);
1654 		return 0;
1655 	}
1656 
1657 	/* Master mode: a Bus Error has been identified */
1658 	if (FIELD_GET(NPCM_I2CST_BER, i2cst)) {
1659 		npcm_i2c_irq_handle_ber(bus);
1660 		return 0;
1661 	}
1662 
1663 	/* EOB: a master End Of Busy (meaning STOP completed) */
1664 	if ((FIELD_GET(NPCM_I2CCTL1_EOBINTE,
1665 		       ioread8(bus->reg + NPCM_I2CCTL1)) == 1) &&
1666 	    (FIELD_GET(NPCM_I2CCST3_EO_BUSY,
1667 		       ioread8(bus->reg + NPCM_I2CCST3)))) {
1668 		npcm_i2c_irq_handle_eob(bus);
1669 		return 0;
1670 	}
1671 
1672 	/* Address sent and requested stall occurred (Master mode) */
1673 	if (FIELD_GET(NPCM_I2CST_STASTR, i2cst)) {
1674 		npcm_i2c_irq_handle_stall_after_start(bus);
1675 		ret = 0;
1676 	}
1677 
1678 	/* SDA status is set - TX or RX, master */
1679 	if (FIELD_GET(NPCM_I2CST_SDAST, i2cst) ||
1680 	    (bus->fifo_use &&
1681 	    (npcm_i2c_tx_fifo_empty(bus) || npcm_i2c_rx_fifo_full(bus)))) {
1682 		npcm_i2c_irq_handle_sda(bus, i2cst);
1683 		ret = 0;
1684 	}
1685 
1686 	return ret;
1687 }
1688 
1689 /* recovery using TGCLK functionality of the module */
1690 static int npcm_i2c_recovery_tgclk(struct i2c_adapter *_adap)
1691 {
1692 	u8               val;
1693 	u8               fif_cts;
1694 	bool             done = false;
1695 	int              status = -ENOTRECOVERABLE;
1696 	struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
1697 	/* Allow 3 bytes (27 toggles) to be read from the slave: */
1698 	int              iter = 27;
1699 
1700 	if ((npcm_i2c_get_SDA(_adap) == 1) && (npcm_i2c_get_SCL(_adap) == 1)) {
1701 		dev_dbg(bus->dev, "bus%d-0x%x recovery skipped, bus not stuck",
1702 			bus->num, bus->dest_addr);
1703 		npcm_i2c_reset(bus);
1704 		bus->ber_state = false;
1705 		return 0;
1706 	}
1707 
1708 	npcm_i2c_int_enable(bus, false);
1709 	npcm_i2c_disable(bus);
1710 	npcm_i2c_enable(bus);
1711 	iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
1712 	npcm_i2c_clear_tx_fifo(bus);
1713 	npcm_i2c_clear_rx_fifo(bus);
1714 	iowrite8(0, bus->reg + NPCM_I2CRXF_CTL);
1715 	iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
1716 	npcm_i2c_stall_after_start(bus, false);
1717 
1718 	/* select bank 1 for FIFO regs */
1719 	npcm_i2c_select_bank(bus, I2C_BANK_1);
1720 
1721 	/* clear FIFO and relevant status bits. */
1722 	fif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1723 	fif_cts &= ~NPCM_I2CFIF_CTS_SLVRSTR;
1724 	fif_cts |= NPCM_I2CFIF_CTS_CLR_FIFO;
1725 	iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1726 	npcm_i2c_set_fifo(bus, -1, 0);
1727 
1728 	/* Repeat the following sequence until SDA is released */
1729 	do {
1730 		/* Issue a single SCL toggle */
1731 		iowrite8(NPCM_I2CCST_TGSCL, bus->reg + NPCM_I2CCST);
1732 		usleep_range(20, 30);
1733 		/* If SDA line is inactive (high), stop */
1734 		if (npcm_i2c_get_SDA(_adap)) {
1735 			done = true;
1736 			status = 0;
1737 		}
1738 	} while (!done && iter--);
1739 
1740 	/* If SDA line is released: send start-addr-stop, to re-sync. */
1741 	if (npcm_i2c_get_SDA(_adap)) {
1742 		/* Send an address byte in write direction: */
1743 		npcm_i2c_wr_byte(bus, bus->dest_addr);
1744 		npcm_i2c_master_start(bus);
1745 		/* Wait until START condition is sent */
1746 		status = readx_poll_timeout(npcm_i2c_get_SCL, _adap, val, !val,
1747 					    20, 200);
1748 		/* If START condition was sent */
1749 		if (npcm_i2c_is_master(bus) > 0) {
1750 			usleep_range(20, 30);
1751 			npcm_i2c_master_stop(bus);
1752 			usleep_range(200, 500);
1753 		}
1754 	}
1755 	npcm_i2c_reset(bus);
1756 	npcm_i2c_int_enable(bus, true);
1757 
1758 	if ((npcm_i2c_get_SDA(_adap) == 1) && (npcm_i2c_get_SCL(_adap) == 1))
1759 		status = 0;
1760 	else
1761 		status = -ENOTRECOVERABLE;
1762 	if (status) {
1763 		if (bus->rec_fail_cnt < ULLONG_MAX)
1764 			bus->rec_fail_cnt++;
1765 	} else {
1766 		if (bus->rec_succ_cnt < ULLONG_MAX)
1767 			bus->rec_succ_cnt++;
1768 	}
1769 	bus->ber_state = false;
1770 	return status;
1771 }
1772 
1773 /* recovery using bit banging functionality of the module */
1774 static void npcm_i2c_recovery_init(struct i2c_adapter *_adap)
1775 {
1776 	struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
1777 	struct i2c_bus_recovery_info *rinfo = &bus->rinfo;
1778 
1779 	rinfo->recover_bus = npcm_i2c_recovery_tgclk;
1780 
1781 	/*
1782 	 * npcm i2c HW allows direct reading of SCL and SDA.
1783 	 * However, it does not support setting SCL and SDA directly.
1784 	 * The recovery function can toggle SCL when SDA is low (but not set)
1785 	 * Getter functions used internally, and can be used externally.
1786 	 */
1787 	rinfo->get_scl = npcm_i2c_get_SCL;
1788 	rinfo->get_sda = npcm_i2c_get_SDA;
1789 	_adap->bus_recovery_info = rinfo;
1790 }
1791 
1792 /* SCLFRQ min/max field values */
1793 #define SCLFRQ_MIN  10
1794 #define SCLFRQ_MAX  511
1795 #define clk_coef(freq, mul)	DIV_ROUND_UP((freq) * (mul), 1000000)
1796 
1797 /*
1798  * npcm_i2c_init_clk: init HW timing parameters.
1799  * NPCM7XX i2c module timing parameters are dependent on module core clk (APB)
1800  * and bus frequency.
1801  * 100kHz bus requires tSCL = 4 * SCLFRQ * tCLK. LT and HT are symmetric.
1802  * 400kHz bus requires asymmetric HT and LT. A different equation is recommended
1803  * by the HW designer, given core clock range (equations in comments below).
1804  *
1805  */
1806 static int npcm_i2c_init_clk(struct npcm_i2c *bus, u32 bus_freq_hz)
1807 {
1808 	u32  k1 = 0;
1809 	u32  k2 = 0;
1810 	u8   dbnct = 0;
1811 	u32  sclfrq = 0;
1812 	u8   hldt = 7;
1813 	u8   fast_mode = 0;
1814 	u32  src_clk_khz;
1815 	u32  bus_freq_khz;
1816 
1817 	src_clk_khz = bus->apb_clk / 1000;
1818 	bus_freq_khz = bus_freq_hz / 1000;
1819 	bus->bus_freq = bus_freq_hz;
1820 
1821 	/* 100KHz and below: */
1822 	if (bus_freq_hz <= I2C_MAX_STANDARD_MODE_FREQ) {
1823 		sclfrq = src_clk_khz / (bus_freq_khz * 4);
1824 
1825 		if (sclfrq < SCLFRQ_MIN || sclfrq > SCLFRQ_MAX)
1826 			return -EDOM;
1827 
1828 		if (src_clk_khz >= 40000)
1829 			hldt = 17;
1830 		else if (src_clk_khz >= 12500)
1831 			hldt = 15;
1832 		else
1833 			hldt = 7;
1834 	}
1835 
1836 	/* 400KHz: */
1837 	else if (bus_freq_hz <= I2C_MAX_FAST_MODE_FREQ) {
1838 		sclfrq = 0;
1839 		fast_mode = I2CCTL3_400K_MODE;
1840 
1841 		if (src_clk_khz < 7500)
1842 			/* 400KHZ cannot be supported for core clock < 7.5MHz */
1843 			return -EDOM;
1844 
1845 		else if (src_clk_khz >= 50000) {
1846 			k1 = 80;
1847 			k2 = 48;
1848 			hldt = 12;
1849 			dbnct = 7;
1850 		}
1851 
1852 		/* Master or Slave with frequency > 25MHz */
1853 		else if (src_clk_khz > 25000) {
1854 			hldt = clk_coef(src_clk_khz, 300) + 7;
1855 			k1 = clk_coef(src_clk_khz, 1600);
1856 			k2 = clk_coef(src_clk_khz, 900);
1857 		}
1858 	}
1859 
1860 	/* 1MHz: */
1861 	else if (bus_freq_hz <= I2C_MAX_FAST_MODE_PLUS_FREQ) {
1862 		sclfrq = 0;
1863 		fast_mode = I2CCTL3_400K_MODE;
1864 
1865 		/* 1MHZ cannot be supported for core clock < 24 MHz */
1866 		if (src_clk_khz < 24000)
1867 			return -EDOM;
1868 
1869 		k1 = clk_coef(src_clk_khz, 620);
1870 		k2 = clk_coef(src_clk_khz, 380);
1871 
1872 		/* Core clk > 40 MHz */
1873 		if (src_clk_khz > 40000) {
1874 			/*
1875 			 * Set HLDT:
1876 			 * SDA hold time:  (HLDT-7) * T(CLK) >= 120
1877 			 * HLDT = 120/T(CLK) + 7 = 120 * FREQ(CLK) + 7
1878 			 */
1879 			hldt = clk_coef(src_clk_khz, 120) + 7;
1880 		} else {
1881 			hldt = 7;
1882 			dbnct = 2;
1883 		}
1884 	}
1885 
1886 	/* Frequency larger than 1 MHz is not supported */
1887 	else
1888 		return -EINVAL;
1889 
1890 	if (bus_freq_hz >= I2C_MAX_FAST_MODE_FREQ) {
1891 		k1 = round_up(k1, 2);
1892 		k2 = round_up(k2 + 1, 2);
1893 		if (k1 < SCLFRQ_MIN || k1 > SCLFRQ_MAX ||
1894 		    k2 < SCLFRQ_MIN || k2 > SCLFRQ_MAX)
1895 			return -EDOM;
1896 	}
1897 
1898 	/* write sclfrq value. bits [6:0] are in I2CCTL2 reg */
1899 	iowrite8(FIELD_PREP(I2CCTL2_SCLFRQ6_0, sclfrq & 0x7F),
1900 		 bus->reg + NPCM_I2CCTL2);
1901 
1902 	/* bits [8:7] are in I2CCTL3 reg */
1903 	iowrite8(fast_mode | FIELD_PREP(I2CCTL3_SCLFRQ8_7, (sclfrq >> 7) & 0x3),
1904 		 bus->reg + NPCM_I2CCTL3);
1905 
1906 	/* Select Bank 0 to access NPCM_I2CCTL4/NPCM_I2CCTL5 */
1907 	npcm_i2c_select_bank(bus, I2C_BANK_0);
1908 
1909 	if (bus_freq_hz >= I2C_MAX_FAST_MODE_FREQ) {
1910 		/*
1911 		 * Set SCL Low/High Time:
1912 		 * k1 = 2 * SCLLT7-0 -> Low Time  = k1 / 2
1913 		 * k2 = 2 * SCLLT7-0 -> High Time = k2 / 2
1914 		 */
1915 		iowrite8(k1 / 2, bus->reg + NPCM_I2CSCLLT);
1916 		iowrite8(k2 / 2, bus->reg + NPCM_I2CSCLHT);
1917 
1918 		iowrite8(dbnct, bus->reg + NPCM_I2CCTL5);
1919 	}
1920 
1921 	iowrite8(hldt, bus->reg + NPCM_I2CCTL4);
1922 
1923 	/* Return to Bank 1, and stay there by default: */
1924 	npcm_i2c_select_bank(bus, I2C_BANK_1);
1925 
1926 	return 0;
1927 }
1928 
1929 static int npcm_i2c_init_module(struct npcm_i2c *bus, enum i2c_mode mode,
1930 				u32 bus_freq_hz)
1931 {
1932 	u8 val;
1933 	int ret;
1934 
1935 	/* Check whether module already enabled or frequency is out of bounds */
1936 	if ((bus->state != I2C_DISABLE && bus->state != I2C_IDLE) ||
1937 	    bus_freq_hz < I2C_FREQ_MIN_HZ || bus_freq_hz > I2C_FREQ_MAX_HZ)
1938 		return -EINVAL;
1939 
1940 	npcm_i2c_int_enable(bus, false);
1941 	npcm_i2c_disable(bus);
1942 
1943 	/* Configure FIFO mode : */
1944 	if (FIELD_GET(I2C_VER_FIFO_EN, ioread8(bus->reg + I2C_VER))) {
1945 		bus->fifo_use = true;
1946 		npcm_i2c_select_bank(bus, I2C_BANK_0);
1947 		val = ioread8(bus->reg + NPCM_I2CFIF_CTL);
1948 		val |= NPCM_I2CFIF_CTL_FIFO_EN;
1949 		iowrite8(val, bus->reg + NPCM_I2CFIF_CTL);
1950 		npcm_i2c_select_bank(bus, I2C_BANK_1);
1951 	} else {
1952 		bus->fifo_use = false;
1953 	}
1954 
1955 	/* Configure I2C module clock frequency */
1956 	ret = npcm_i2c_init_clk(bus, bus_freq_hz);
1957 	if (ret) {
1958 		dev_err(bus->dev, "npcm_i2c_init_clk failed\n");
1959 		return ret;
1960 	}
1961 
1962 	/* Enable module (before configuring CTL1) */
1963 	npcm_i2c_enable(bus);
1964 	bus->state = I2C_IDLE;
1965 	val = ioread8(bus->reg + NPCM_I2CCTL1);
1966 	val = (val | NPCM_I2CCTL1_NMINTE) & ~NPCM_I2CCTL1_RWS;
1967 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
1968 
1969 	npcm_i2c_reset(bus);
1970 
1971 	/* Check HW is OK: SDA and SCL should be high at this point. */
1972 	if ((npcm_i2c_get_SDA(&bus->adap) == 0) || (npcm_i2c_get_SCL(&bus->adap) == 0)) {
1973 		dev_err(bus->dev, "I2C%d init fail: lines are low\n", bus->num);
1974 		dev_err(bus->dev, "SDA=%d SCL=%d\n", npcm_i2c_get_SDA(&bus->adap),
1975 			npcm_i2c_get_SCL(&bus->adap));
1976 		return -ENXIO;
1977 	}
1978 
1979 	npcm_i2c_int_enable(bus, true);
1980 	return 0;
1981 }
1982 
1983 static int __npcm_i2c_init(struct npcm_i2c *bus, struct platform_device *pdev)
1984 {
1985 	u32 clk_freq_hz;
1986 	int ret;
1987 
1988 	/* Initialize the internal data structures */
1989 	bus->state = I2C_DISABLE;
1990 	bus->master_or_slave = I2C_SLAVE;
1991 	bus->int_time_stamp = 0;
1992 #if IS_ENABLED(CONFIG_I2C_SLAVE)
1993 	bus->slave = NULL;
1994 #endif
1995 
1996 	ret = device_property_read_u32(&pdev->dev, "clock-frequency",
1997 				       &clk_freq_hz);
1998 	if (ret) {
1999 		dev_info(&pdev->dev, "Could not read clock-frequency property");
2000 		clk_freq_hz = I2C_MAX_STANDARD_MODE_FREQ;
2001 	}
2002 
2003 	ret = npcm_i2c_init_module(bus, I2C_MASTER, clk_freq_hz);
2004 	if (ret) {
2005 		dev_err(&pdev->dev, "npcm_i2c_init_module failed\n");
2006 		return ret;
2007 	}
2008 
2009 	return 0;
2010 }
2011 
2012 static irqreturn_t npcm_i2c_bus_irq(int irq, void *dev_id)
2013 {
2014 	struct npcm_i2c *bus = dev_id;
2015 
2016 	if (npcm_i2c_is_master(bus))
2017 		bus->master_or_slave = I2C_MASTER;
2018 
2019 	if (bus->master_or_slave == I2C_MASTER) {
2020 		bus->int_time_stamp = jiffies;
2021 		if (!npcm_i2c_int_master_handler(bus))
2022 			return IRQ_HANDLED;
2023 	}
2024 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2025 	if (bus->slave) {
2026 		bus->master_or_slave = I2C_SLAVE;
2027 		if (npcm_i2c_int_slave_handler(bus))
2028 			return IRQ_HANDLED;
2029 	}
2030 #endif
2031 	/* Clear status bits for spurious interrupts */
2032 	npcm_i2c_clear_master_status(bus);
2033 
2034 	return IRQ_HANDLED;
2035 }
2036 
2037 static bool npcm_i2c_master_start_xmit(struct npcm_i2c *bus,
2038 				       u8 slave_addr, u16 nwrite, u16 nread,
2039 				       u8 *write_data, u8 *read_data,
2040 				       bool use_PEC, bool use_read_block)
2041 {
2042 	if (bus->state != I2C_IDLE) {
2043 		bus->cmd_err = -EBUSY;
2044 		return false;
2045 	}
2046 	bus->dest_addr = slave_addr << 1;
2047 	bus->wr_buf = write_data;
2048 	bus->wr_size = nwrite;
2049 	bus->wr_ind = 0;
2050 	bus->rd_buf = read_data;
2051 	bus->rd_size = nread;
2052 	bus->rd_ind = 0;
2053 	bus->PEC_use = 0;
2054 
2055 	/* for tx PEC is appended to buffer from i2c IF. PEC flag is ignored */
2056 	if (nread)
2057 		bus->PEC_use = use_PEC;
2058 
2059 	bus->read_block_use = use_read_block;
2060 	if (nread && !nwrite)
2061 		bus->operation = I2C_READ_OPER;
2062 	else
2063 		bus->operation = I2C_WRITE_OPER;
2064 	if (bus->fifo_use) {
2065 		u8 i2cfif_cts;
2066 
2067 		npcm_i2c_select_bank(bus, I2C_BANK_1);
2068 		/* clear FIFO and relevant status bits. */
2069 		i2cfif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
2070 		i2cfif_cts &= ~NPCM_I2CFIF_CTS_SLVRSTR;
2071 		i2cfif_cts |= NPCM_I2CFIF_CTS_CLR_FIFO;
2072 		iowrite8(i2cfif_cts, bus->reg + NPCM_I2CFIF_CTS);
2073 	}
2074 
2075 	bus->state = I2C_IDLE;
2076 	npcm_i2c_stall_after_start(bus, true);
2077 	npcm_i2c_master_start(bus);
2078 	return true;
2079 }
2080 
2081 static int npcm_i2c_master_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
2082 				int num)
2083 {
2084 	struct npcm_i2c *bus = container_of(adap, struct npcm_i2c, adap);
2085 	struct i2c_msg *msg0, *msg1;
2086 	unsigned long time_left, flags;
2087 	u16 nwrite, nread;
2088 	u8 *write_data, *read_data;
2089 	u8 slave_addr;
2090 	unsigned long timeout;
2091 	bool read_block = false;
2092 	bool read_PEC = false;
2093 	u8 bus_busy;
2094 	unsigned long timeout_usec;
2095 
2096 	if (bus->state == I2C_DISABLE) {
2097 		dev_err(bus->dev, "I2C%d module is disabled", bus->num);
2098 		return -EINVAL;
2099 	}
2100 
2101 	msg0 = &msgs[0];
2102 	slave_addr = msg0->addr;
2103 	if (msg0->flags & I2C_M_RD) { /* read */
2104 		nwrite = 0;
2105 		write_data = NULL;
2106 		read_data = msg0->buf;
2107 		if (msg0->flags & I2C_M_RECV_LEN) {
2108 			nread = 1;
2109 			read_block = true;
2110 			if (msg0->flags & I2C_CLIENT_PEC)
2111 				read_PEC = true;
2112 		} else {
2113 			nread = msg0->len;
2114 		}
2115 	} else { /* write */
2116 		nwrite = msg0->len;
2117 		write_data = msg0->buf;
2118 		nread = 0;
2119 		read_data = NULL;
2120 		if (num == 2) {
2121 			msg1 = &msgs[1];
2122 			read_data = msg1->buf;
2123 			if (msg1->flags & I2C_M_RECV_LEN) {
2124 				nread = 1;
2125 				read_block = true;
2126 				if (msg1->flags & I2C_CLIENT_PEC)
2127 					read_PEC = true;
2128 			} else {
2129 				nread = msg1->len;
2130 				read_block = false;
2131 			}
2132 		}
2133 	}
2134 
2135 	/*
2136 	 * Adaptive TimeOut: estimated time in usec + 100% margin:
2137 	 * 2: double the timeout for clock stretching case
2138 	 * 9: bits per transaction (including the ack/nack)
2139 	 */
2140 	timeout_usec = (2 * 9 * USEC_PER_SEC / bus->bus_freq) * (2 + nread + nwrite);
2141 	timeout = max_t(unsigned long, bus->adap.timeout, usecs_to_jiffies(timeout_usec));
2142 	if (nwrite >= 32 * 1024 || nread >= 32 * 1024) {
2143 		dev_err(bus->dev, "i2c%d buffer too big\n", bus->num);
2144 		return -EINVAL;
2145 	}
2146 
2147 	time_left = jiffies + timeout + 1;
2148 	do {
2149 		/*
2150 		 * we must clear slave address immediately when the bus is not
2151 		 * busy, so we spinlock it, but we don't keep the lock for the
2152 		 * entire while since it is too long.
2153 		 */
2154 		spin_lock_irqsave(&bus->lock, flags);
2155 		bus_busy = ioread8(bus->reg + NPCM_I2CCST) & NPCM_I2CCST_BB;
2156 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2157 		if (!bus_busy && bus->slave)
2158 			iowrite8((bus->slave->addr & 0x7F),
2159 				 bus->reg + NPCM_I2CADDR1);
2160 #endif
2161 		spin_unlock_irqrestore(&bus->lock, flags);
2162 
2163 	} while (time_is_after_jiffies(time_left) && bus_busy);
2164 
2165 	/*
2166 	 * Check the BER (bus error) state, when ber_state is true, it means that the module
2167 	 * detects the bus error which is caused by some factor like that the electricity
2168 	 * noise occurs on the bus. Under this condition, the module is reset and the bus
2169 	 * gets recovered.
2170 	 *
2171 	 * While ber_state is false, the module reset and bus recovery also get done as the
2172 	 * bus is busy.
2173 	 */
2174 	if (bus_busy || bus->ber_state) {
2175 		iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
2176 		npcm_i2c_reset(bus);
2177 		i2c_recover_bus(adap);
2178 		return -EAGAIN;
2179 	}
2180 
2181 	npcm_i2c_init_params(bus);
2182 	bus->dest_addr = slave_addr;
2183 	bus->msgs = msgs;
2184 	bus->msgs_num = num;
2185 	bus->cmd_err = 0;
2186 	bus->read_block_use = read_block;
2187 
2188 	reinit_completion(&bus->cmd_complete);
2189 
2190 	npcm_i2c_int_enable(bus, true);
2191 
2192 	if (npcm_i2c_master_start_xmit(bus, slave_addr, nwrite, nread,
2193 				       write_data, read_data, read_PEC,
2194 				       read_block)) {
2195 		time_left = wait_for_completion_timeout(&bus->cmd_complete,
2196 							timeout);
2197 
2198 		if (time_left == 0) {
2199 			if (bus->timeout_cnt < ULLONG_MAX)
2200 				bus->timeout_cnt++;
2201 			if (bus->master_or_slave == I2C_MASTER) {
2202 				i2c_recover_bus(adap);
2203 				bus->cmd_err = -EIO;
2204 				bus->state = I2C_IDLE;
2205 			}
2206 		}
2207 	}
2208 
2209 	/* if there was BER, check if need to recover the bus: */
2210 	if (bus->cmd_err == -EAGAIN)
2211 		bus->cmd_err = i2c_recover_bus(adap);
2212 
2213 	/*
2214 	 * After any type of error, check if LAST bit is still set,
2215 	 * due to a HW issue.
2216 	 * It cannot be cleared without resetting the module.
2217 	 */
2218 	else if (bus->cmd_err &&
2219 		 (bus->data->rxf_ctl_last_pec & ioread8(bus->reg + NPCM_I2CRXF_CTL)))
2220 		npcm_i2c_reset(bus);
2221 
2222 	/* After any xfer, successful or not, stall and EOB must be disabled */
2223 	npcm_i2c_stall_after_start(bus, false);
2224 	npcm_i2c_eob_int(bus, false);
2225 
2226 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2227 	/* reenable slave if it was enabled */
2228 	if (bus->slave)
2229 		iowrite8((bus->slave->addr & 0x7F) | NPCM_I2CADDR_SAEN,
2230 			 bus->reg + NPCM_I2CADDR1);
2231 #else
2232 	npcm_i2c_int_enable(bus, false);
2233 #endif
2234 	return bus->cmd_err;
2235 }
2236 
2237 static u32 npcm_i2c_functionality(struct i2c_adapter *adap)
2238 {
2239 	return I2C_FUNC_I2C |
2240 	       I2C_FUNC_SMBUS_EMUL |
2241 	       I2C_FUNC_SMBUS_BLOCK_DATA |
2242 	       I2C_FUNC_SMBUS_PEC |
2243 	       I2C_FUNC_SLAVE;
2244 }
2245 
2246 static const struct i2c_adapter_quirks npcm_i2c_quirks = {
2247 	.max_read_len = 32768,
2248 	.max_write_len = 32768,
2249 	.flags = I2C_AQ_COMB_WRITE_THEN_READ,
2250 };
2251 
2252 static const struct i2c_algorithm npcm_i2c_algo = {
2253 	.master_xfer = npcm_i2c_master_xfer,
2254 	.functionality = npcm_i2c_functionality,
2255 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2256 	.reg_slave	= npcm_i2c_reg_slave,
2257 	.unreg_slave	= npcm_i2c_unreg_slave,
2258 #endif
2259 };
2260 
2261 static void npcm_i2c_init_debugfs(struct platform_device *pdev,
2262 				  struct npcm_i2c *bus)
2263 {
2264 	debugfs_create_u64("ber_cnt", 0444, bus->adap.debugfs, &bus->ber_cnt);
2265 	debugfs_create_u64("nack_cnt", 0444, bus->adap.debugfs, &bus->nack_cnt);
2266 	debugfs_create_u64("rec_succ_cnt", 0444, bus->adap.debugfs, &bus->rec_succ_cnt);
2267 	debugfs_create_u64("rec_fail_cnt", 0444, bus->adap.debugfs, &bus->rec_fail_cnt);
2268 	debugfs_create_u64("timeout_cnt", 0444, bus->adap.debugfs, &bus->timeout_cnt);
2269 	debugfs_create_u64("tx_complete_cnt", 0444, bus->adap.debugfs, &bus->tx_complete_cnt);
2270 }
2271 
2272 static int npcm_i2c_probe_bus(struct platform_device *pdev)
2273 {
2274 	struct device_node *np = pdev->dev.of_node;
2275 	static struct regmap *gcr_regmap;
2276 	struct device *dev = &pdev->dev;
2277 	struct i2c_adapter *adap;
2278 	struct npcm_i2c *bus;
2279 	struct clk *i2c_clk;
2280 	int irq;
2281 	int ret;
2282 
2283 	bus = devm_kzalloc(&pdev->dev, sizeof(*bus), GFP_KERNEL);
2284 	if (!bus)
2285 		return -ENOMEM;
2286 
2287 	bus->dev = &pdev->dev;
2288 
2289 	bus->data = of_device_get_match_data(dev);
2290 	if (!bus->data) {
2291 		dev_err(dev, "OF data missing\n");
2292 		return -EINVAL;
2293 	}
2294 
2295 	bus->num = of_alias_get_id(pdev->dev.of_node, "i2c");
2296 	/* core clk must be acquired to calculate module timing settings */
2297 	i2c_clk = devm_clk_get(&pdev->dev, NULL);
2298 	if (IS_ERR(i2c_clk))
2299 		return PTR_ERR(i2c_clk);
2300 	bus->apb_clk = clk_get_rate(i2c_clk);
2301 
2302 	gcr_regmap = syscon_regmap_lookup_by_phandle(np, "nuvoton,sys-mgr");
2303 	if (IS_ERR(gcr_regmap))
2304 		gcr_regmap = syscon_regmap_lookup_by_compatible("nuvoton,npcm750-gcr");
2305 
2306 	if (IS_ERR(gcr_regmap))
2307 		return PTR_ERR(gcr_regmap);
2308 	regmap_write(gcr_regmap, NPCM_I2CSEGCTL, bus->data->segctl_init_val);
2309 
2310 	bus->reg = devm_platform_ioremap_resource(pdev, 0);
2311 	if (IS_ERR(bus->reg))
2312 		return PTR_ERR(bus->reg);
2313 
2314 	spin_lock_init(&bus->lock);
2315 	init_completion(&bus->cmd_complete);
2316 
2317 	adap = &bus->adap;
2318 	adap->owner = THIS_MODULE;
2319 	adap->retries = 3;
2320 	adap->timeout = msecs_to_jiffies(35);
2321 	adap->algo = &npcm_i2c_algo;
2322 	adap->quirks = &npcm_i2c_quirks;
2323 	adap->algo_data = bus;
2324 	adap->dev.parent = &pdev->dev;
2325 	adap->dev.of_node = pdev->dev.of_node;
2326 	adap->nr = pdev->id;
2327 
2328 	irq = platform_get_irq(pdev, 0);
2329 	if (irq < 0)
2330 		return irq;
2331 
2332 	ret = devm_request_irq(bus->dev, irq, npcm_i2c_bus_irq, 0,
2333 			       dev_name(bus->dev), bus);
2334 	if (ret)
2335 		return ret;
2336 
2337 	ret = __npcm_i2c_init(bus, pdev);
2338 	if (ret)
2339 		return ret;
2340 
2341 	npcm_i2c_recovery_init(adap);
2342 
2343 	i2c_set_adapdata(adap, bus);
2344 
2345 	snprintf(bus->adap.name, sizeof(bus->adap.name), "npcm_i2c_%d",
2346 		 bus->num);
2347 	ret = i2c_add_numbered_adapter(&bus->adap);
2348 	if (ret)
2349 		return ret;
2350 
2351 	platform_set_drvdata(pdev, bus);
2352 	npcm_i2c_init_debugfs(pdev, bus);
2353 	return 0;
2354 }
2355 
2356 static void npcm_i2c_remove_bus(struct platform_device *pdev)
2357 {
2358 	unsigned long lock_flags;
2359 	struct npcm_i2c *bus = platform_get_drvdata(pdev);
2360 
2361 	spin_lock_irqsave(&bus->lock, lock_flags);
2362 	npcm_i2c_disable(bus);
2363 	spin_unlock_irqrestore(&bus->lock, lock_flags);
2364 	i2c_del_adapter(&bus->adap);
2365 }
2366 
2367 static const struct of_device_id npcm_i2c_bus_of_table[] = {
2368 	{ .compatible = "nuvoton,npcm750-i2c", .data = &npxm7xx_i2c_data },
2369 	{ .compatible = "nuvoton,npcm845-i2c", .data = &npxm8xx_i2c_data },
2370 	{}
2371 };
2372 MODULE_DEVICE_TABLE(of, npcm_i2c_bus_of_table);
2373 
2374 static struct platform_driver npcm_i2c_bus_driver = {
2375 	.probe = npcm_i2c_probe_bus,
2376 	.remove = npcm_i2c_remove_bus,
2377 	.driver = {
2378 		.name = "nuvoton-i2c",
2379 		.of_match_table = npcm_i2c_bus_of_table,
2380 	}
2381 };
2382 
2383 module_platform_driver(npcm_i2c_bus_driver);
2384 
2385 MODULE_AUTHOR("Avi Fishman <avi.fishman@gmail.com>");
2386 MODULE_AUTHOR("Tali Perry <tali.perry@nuvoton.com>");
2387 MODULE_AUTHOR("Tyrone Ting <kfting@nuvoton.com>");
2388 MODULE_DESCRIPTION("Nuvoton I2C Bus Driver");
2389 MODULE_LICENSE("GPL v2");
2390