xref: /linux/drivers/i2c/busses/i2c-npcm7xx.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Nuvoton NPCM7xx I2C Controller driver
4  *
5  * Copyright (C) 2020 Nuvoton Technologies tali.perry@nuvoton.com
6  */
7 #include <linux/bitfield.h>
8 #include <linux/clk.h>
9 #include <linux/debugfs.h>
10 #include <linux/errno.h>
11 #include <linux/i2c.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/irq.h>
15 #include <linux/jiffies.h>
16 #include <linux/kernel.h>
17 #include <linux/mfd/syscon.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/platform_device.h>
21 #include <linux/regmap.h>
22 
23 enum i2c_mode {
24 	I2C_MASTER,
25 	I2C_SLAVE,
26 };
27 
28 /*
29  * External I2C Interface driver xfer indication values, which indicate status
30  * of the bus.
31  */
32 enum i2c_state_ind {
33 	I2C_NO_STATUS_IND = 0,
34 	I2C_SLAVE_RCV_IND,
35 	I2C_SLAVE_XMIT_IND,
36 	I2C_SLAVE_XMIT_MISSING_DATA_IND,
37 	I2C_SLAVE_RESTART_IND,
38 	I2C_SLAVE_DONE_IND,
39 	I2C_MASTER_DONE_IND,
40 	I2C_NACK_IND,
41 	I2C_BUS_ERR_IND,
42 	I2C_WAKE_UP_IND,
43 	I2C_BLOCK_BYTES_ERR_IND,
44 	I2C_SLAVE_RCV_MISSING_DATA_IND,
45 };
46 
47 /*
48  * Operation type values (used to define the operation currently running)
49  * module is interrupt driven, on each interrupt the current operation is
50  * checked to see if the module is currently reading or writing.
51  */
52 enum i2c_oper {
53 	I2C_NO_OPER = 0,
54 	I2C_WRITE_OPER,
55 	I2C_READ_OPER,
56 };
57 
58 /* I2C Bank (module had 2 banks of registers) */
59 enum i2c_bank {
60 	I2C_BANK_0 = 0,
61 	I2C_BANK_1,
62 };
63 
64 /* Internal I2C states values (for the I2C module state machine). */
65 enum i2c_state {
66 	I2C_DISABLE = 0,
67 	I2C_IDLE,
68 	I2C_MASTER_START,
69 	I2C_SLAVE_MATCH,
70 	I2C_OPER_STARTED,
71 	I2C_STOP_PENDING,
72 };
73 
74 #if IS_ENABLED(CONFIG_I2C_SLAVE)
75 /* Module supports setting multiple own slave addresses */
76 enum i2c_addr {
77 	I2C_SLAVE_ADDR1 = 0,
78 	I2C_SLAVE_ADDR2,
79 	I2C_SLAVE_ADDR3,
80 	I2C_SLAVE_ADDR4,
81 	I2C_SLAVE_ADDR5,
82 	I2C_SLAVE_ADDR6,
83 	I2C_SLAVE_ADDR7,
84 	I2C_SLAVE_ADDR8,
85 	I2C_SLAVE_ADDR9,
86 	I2C_SLAVE_ADDR10,
87 	I2C_GC_ADDR,
88 	I2C_ARP_ADDR,
89 };
90 #endif
91 
92 /* init register and default value required to enable module */
93 #define NPCM_I2CSEGCTL			0xE4
94 
95 /* Common regs */
96 #define NPCM_I2CSDA			0x00
97 #define NPCM_I2CST			0x02
98 #define NPCM_I2CCST			0x04
99 #define NPCM_I2CCTL1			0x06
100 #define NPCM_I2CADDR1			0x08
101 #define NPCM_I2CCTL2			0x0A
102 #define NPCM_I2CADDR2			0x0C
103 #define NPCM_I2CCTL3			0x0E
104 #define NPCM_I2CCST2			0x18
105 #define NPCM_I2CCST3			0x19
106 #define I2C_VER				0x1F
107 
108 /* BANK 0 regs */
109 #define NPCM_I2CADDR3			0x10
110 #define NPCM_I2CADDR7			0x11
111 #define NPCM_I2CADDR4			0x12
112 #define NPCM_I2CADDR8			0x13
113 #define NPCM_I2CADDR5			0x14
114 #define NPCM_I2CADDR9			0x15
115 #define NPCM_I2CADDR6			0x16
116 #define NPCM_I2CADDR10			0x17
117 #define NPCM_I2CCTL4			0x1A
118 #define NPCM_I2CCTL5			0x1B
119 #define NPCM_I2CSCLLT			0x1C /* SCL Low Time */
120 #define NPCM_I2CFIF_CTL			0x1D /* FIFO Control */
121 #define NPCM_I2CSCLHT			0x1E /* SCL High Time */
122 
123 /* BANK 1 regs */
124 #define NPCM_I2CFIF_CTS			0x10 /* Both FIFOs Control and Status */
125 #define NPCM_I2CTXF_CTL			0x12 /* Tx-FIFO Control */
126 #define NPCM_I2CT_OUT			0x14 /* Bus T.O. */
127 #define NPCM_I2CPEC			0x16 /* PEC Data */
128 #define NPCM_I2CTXF_STS			0x1A /* Tx-FIFO Status */
129 #define NPCM_I2CRXF_STS			0x1C /* Rx-FIFO Status */
130 #define NPCM_I2CRXF_CTL			0x1E /* Rx-FIFO Control */
131 
132 #if IS_ENABLED(CONFIG_I2C_SLAVE)
133 /*
134  * npcm_i2caddr array:
135  * The module supports having multiple own slave addresses.
136  * Since the addr regs are sprinkled all over the address space,
137  * use this array to get the address or each register.
138  */
139 #define I2C_NUM_OWN_ADDR 10
140 #define I2C_NUM_OWN_ADDR_SUPPORTED 2
141 
142 static const int npcm_i2caddr[I2C_NUM_OWN_ADDR] = {
143 	NPCM_I2CADDR1, NPCM_I2CADDR2, NPCM_I2CADDR3, NPCM_I2CADDR4,
144 	NPCM_I2CADDR5, NPCM_I2CADDR6, NPCM_I2CADDR7, NPCM_I2CADDR8,
145 	NPCM_I2CADDR9, NPCM_I2CADDR10,
146 };
147 #endif
148 
149 /* NPCM_I2CST reg fields */
150 #define NPCM_I2CST_XMIT			BIT(0)	/* Transmit mode */
151 #define NPCM_I2CST_MASTER		BIT(1)	/* Master mode */
152 #define NPCM_I2CST_NMATCH		BIT(2)	/* New match */
153 #define NPCM_I2CST_STASTR		BIT(3)	/* Stall after start */
154 #define NPCM_I2CST_NEGACK		BIT(4)	/* Negative ACK */
155 #define NPCM_I2CST_BER			BIT(5)	/* Bus error */
156 #define NPCM_I2CST_SDAST		BIT(6)	/* SDA status */
157 #define NPCM_I2CST_SLVSTP		BIT(7)	/* Slave stop */
158 
159 /* NPCM_I2CCST reg fields */
160 #define NPCM_I2CCST_BUSY		BIT(0)	/* Busy */
161 #define NPCM_I2CCST_BB			BIT(1)	/* Bus busy */
162 #define NPCM_I2CCST_MATCH		BIT(2)	/* Address match */
163 #define NPCM_I2CCST_GCMATCH		BIT(3)	/* Global call match */
164 #define NPCM_I2CCST_TSDA		BIT(4)	/* Test SDA line */
165 #define NPCM_I2CCST_TGSCL		BIT(5)	/* Toggle SCL line */
166 #define NPCM_I2CCST_MATCHAF		BIT(6)	/* Match address field */
167 #define NPCM_I2CCST_ARPMATCH		BIT(7)	/* ARP address match */
168 
169 /* NPCM_I2CCTL1 reg fields */
170 #define NPCM_I2CCTL1_START		BIT(0)	/* Generate start condition */
171 #define NPCM_I2CCTL1_STOP		BIT(1)	/* Generate stop condition */
172 #define NPCM_I2CCTL1_INTEN		BIT(2)	/* Interrupt enable */
173 #define NPCM_I2CCTL1_EOBINTE		BIT(3)
174 #define NPCM_I2CCTL1_ACK		BIT(4)
175 #define NPCM_I2CCTL1_GCMEN		BIT(5)	/* Global call match enable */
176 #define NPCM_I2CCTL1_NMINTE		BIT(6)	/* New match interrupt enable */
177 #define NPCM_I2CCTL1_STASTRE		BIT(7)	/* Stall after start enable */
178 
179 /* RW1S fields (inside a RW reg): */
180 #define NPCM_I2CCTL1_RWS   \
181 	(NPCM_I2CCTL1_START | NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_ACK)
182 
183 /* npcm_i2caddr reg fields */
184 #define NPCM_I2CADDR_A			GENMASK(6, 0)	/* Address */
185 #define NPCM_I2CADDR_SAEN		BIT(7)		/* Slave address enable */
186 
187 /* NPCM_I2CCTL2 reg fields */
188 #define I2CCTL2_ENABLE			BIT(0)		/* Module enable */
189 #define I2CCTL2_SCLFRQ6_0		GENMASK(7, 1)	/* Bits 0:6 of frequency divisor */
190 
191 /* NPCM_I2CCTL3 reg fields */
192 #define I2CCTL3_SCLFRQ8_7		GENMASK(1, 0)	/* Bits 7:8 of frequency divisor */
193 #define I2CCTL3_ARPMEN			BIT(2)	/* ARP match enable */
194 #define I2CCTL3_IDL_START		BIT(3)
195 #define I2CCTL3_400K_MODE		BIT(4)
196 #define I2CCTL3_BNK_SEL			BIT(5)
197 #define I2CCTL3_SDA_LVL			BIT(6)
198 #define I2CCTL3_SCL_LVL			BIT(7)
199 
200 /* NPCM_I2CCST2 reg fields */
201 #define NPCM_I2CCST2_MATCHA1F		BIT(0)
202 #define NPCM_I2CCST2_MATCHA2F		BIT(1)
203 #define NPCM_I2CCST2_MATCHA3F		BIT(2)
204 #define NPCM_I2CCST2_MATCHA4F		BIT(3)
205 #define NPCM_I2CCST2_MATCHA5F		BIT(4)
206 #define NPCM_I2CCST2_MATCHA6F		BIT(5)
207 #define NPCM_I2CCST2_MATCHA7F		BIT(5)
208 #define NPCM_I2CCST2_INTSTS		BIT(7)
209 
210 /* NPCM_I2CCST3 reg fields */
211 #define NPCM_I2CCST3_MATCHA8F		BIT(0)
212 #define NPCM_I2CCST3_MATCHA9F		BIT(1)
213 #define NPCM_I2CCST3_MATCHA10F		BIT(2)
214 #define NPCM_I2CCST3_EO_BUSY		BIT(7)
215 
216 /* NPCM_I2CCTL4 reg fields */
217 #define I2CCTL4_HLDT			GENMASK(5, 0)
218 #define I2CCTL4_LVL_WE			BIT(7)
219 
220 /* NPCM_I2CCTL5 reg fields */
221 #define I2CCTL5_DBNCT			GENMASK(3, 0)
222 
223 /* NPCM_I2CFIF_CTS reg fields */
224 #define NPCM_I2CFIF_CTS_RXF_TXE		BIT(1)
225 #define NPCM_I2CFIF_CTS_RFTE_IE		BIT(3)
226 #define NPCM_I2CFIF_CTS_CLR_FIFO	BIT(6)
227 #define NPCM_I2CFIF_CTS_SLVRSTR		BIT(7)
228 
229 /* NPCM_I2CTXF_CTL reg field */
230 #define NPCM_I2CTXF_CTL_THR_TXIE	BIT(6)
231 
232 /* NPCM_I2CT_OUT reg fields */
233 #define NPCM_I2CT_OUT_TO_CKDIV		GENMASK(5, 0)
234 #define NPCM_I2CT_OUT_T_OUTIE		BIT(6)
235 #define NPCM_I2CT_OUT_T_OUTST		BIT(7)
236 
237 /* NPCM_I2CTXF_STS reg fields */
238 #define NPCM_I2CTXF_STS_TX_THST		BIT(6)
239 
240 /* NPCM_I2CRXF_STS reg fields */
241 #define NPCM_I2CRXF_STS_RX_THST		BIT(6)
242 
243 /* NPCM_I2CFIF_CTL reg fields */
244 #define NPCM_I2CFIF_CTL_FIFO_EN		BIT(4)
245 
246 /* NPCM_I2CRXF_CTL reg fields */
247 #define NPCM_I2CRXF_CTL_THR_RXIE	BIT(6)
248 
249 #define MAX_I2C_HW_FIFO_SIZE		32
250 
251 /* I2C_VER reg fields */
252 #define I2C_VER_VERSION			GENMASK(6, 0)
253 #define I2C_VER_FIFO_EN			BIT(7)
254 
255 /* stall/stuck timeout in us */
256 #define DEFAULT_STALL_COUNT		25
257 
258 /* SCLFRQ field position */
259 #define SCLFRQ_0_TO_6			GENMASK(6, 0)
260 #define SCLFRQ_7_TO_8			GENMASK(8, 7)
261 
262 /* supported clk settings. values in Hz. */
263 #define I2C_FREQ_MIN_HZ			10000
264 #define I2C_FREQ_MAX_HZ			I2C_MAX_FAST_MODE_PLUS_FREQ
265 
266 struct npcm_i2c_data {
267 	u8 fifo_size;
268 	u32 segctl_init_val;
269 	u8 txf_sts_tx_bytes;
270 	u8 rxf_sts_rx_bytes;
271 	u8 rxf_ctl_last_pec;
272 };
273 
274 static const struct npcm_i2c_data npxm7xx_i2c_data = {
275 	.fifo_size = 16,
276 	.segctl_init_val = 0x0333F000,
277 	.txf_sts_tx_bytes = GENMASK(4, 0),
278 	.rxf_sts_rx_bytes = GENMASK(4, 0),
279 	.rxf_ctl_last_pec = BIT(5),
280 };
281 
282 static const struct npcm_i2c_data npxm8xx_i2c_data = {
283 	.fifo_size = 32,
284 	.segctl_init_val = 0x9333F000,
285 	.txf_sts_tx_bytes = GENMASK(5, 0),
286 	.rxf_sts_rx_bytes = GENMASK(5, 0),
287 	.rxf_ctl_last_pec = BIT(7),
288 };
289 
290 /* Status of one I2C module */
291 struct npcm_i2c {
292 	struct i2c_adapter adap;
293 	struct device *dev;
294 	unsigned char __iomem *reg;
295 	const struct npcm_i2c_data *data;
296 	spinlock_t lock;   /* IRQ synchronization */
297 	struct completion cmd_complete;
298 	int cmd_err;
299 	struct i2c_msg *msgs;
300 	int msgs_num;
301 	int num;
302 	u32 apb_clk;
303 	struct i2c_bus_recovery_info rinfo;
304 	enum i2c_state state;
305 	enum i2c_oper operation;
306 	enum i2c_mode master_or_slave;
307 	enum i2c_state_ind stop_ind;
308 	u8 dest_addr;
309 	u8 *rd_buf;
310 	u16 rd_size;
311 	u16 rd_ind;
312 	u8 *wr_buf;
313 	u16 wr_size;
314 	u16 wr_ind;
315 	bool fifo_use;
316 	u16 PEC_mask; /* PEC bit mask per slave address */
317 	bool PEC_use;
318 	bool read_block_use;
319 	unsigned long int_time_stamp;
320 	unsigned long bus_freq; /* in Hz */
321 #if IS_ENABLED(CONFIG_I2C_SLAVE)
322 	u8 own_slave_addr;
323 	struct i2c_client *slave;
324 	int slv_rd_size;
325 	int slv_rd_ind;
326 	int slv_wr_size;
327 	int slv_wr_ind;
328 	u8 slv_rd_buf[MAX_I2C_HW_FIFO_SIZE];
329 	u8 slv_wr_buf[MAX_I2C_HW_FIFO_SIZE];
330 #endif
331 	u64 ber_cnt;
332 	u64 rec_succ_cnt;
333 	u64 rec_fail_cnt;
334 	u64 nack_cnt;
335 	u64 timeout_cnt;
336 	u64 tx_complete_cnt;
337 };
338 
339 static inline void npcm_i2c_select_bank(struct npcm_i2c *bus,
340 					enum i2c_bank bank)
341 {
342 	u8 i2cctl3 = ioread8(bus->reg + NPCM_I2CCTL3);
343 
344 	if (bank == I2C_BANK_0)
345 		i2cctl3 = i2cctl3 & ~I2CCTL3_BNK_SEL;
346 	else
347 		i2cctl3 = i2cctl3 | I2CCTL3_BNK_SEL;
348 	iowrite8(i2cctl3, bus->reg + NPCM_I2CCTL3);
349 }
350 
351 static void npcm_i2c_init_params(struct npcm_i2c *bus)
352 {
353 	bus->stop_ind = I2C_NO_STATUS_IND;
354 	bus->rd_size = 0;
355 	bus->wr_size = 0;
356 	bus->rd_ind = 0;
357 	bus->wr_ind = 0;
358 	bus->read_block_use = false;
359 	bus->int_time_stamp = 0;
360 	bus->PEC_use = false;
361 	bus->PEC_mask = 0;
362 #if IS_ENABLED(CONFIG_I2C_SLAVE)
363 	if (bus->slave)
364 		bus->master_or_slave = I2C_SLAVE;
365 #endif
366 }
367 
368 static inline void npcm_i2c_wr_byte(struct npcm_i2c *bus, u8 data)
369 {
370 	iowrite8(data, bus->reg + NPCM_I2CSDA);
371 }
372 
373 static inline u8 npcm_i2c_rd_byte(struct npcm_i2c *bus)
374 {
375 	return ioread8(bus->reg + NPCM_I2CSDA);
376 }
377 
378 static int npcm_i2c_get_SCL(struct i2c_adapter *_adap)
379 {
380 	struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
381 
382 	return !!(I2CCTL3_SCL_LVL & ioread8(bus->reg + NPCM_I2CCTL3));
383 }
384 
385 static int npcm_i2c_get_SDA(struct i2c_adapter *_adap)
386 {
387 	struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
388 
389 	return !!(I2CCTL3_SDA_LVL & ioread8(bus->reg + NPCM_I2CCTL3));
390 }
391 
392 static inline u16 npcm_i2c_get_index(struct npcm_i2c *bus)
393 {
394 	if (bus->operation == I2C_READ_OPER)
395 		return bus->rd_ind;
396 	if (bus->operation == I2C_WRITE_OPER)
397 		return bus->wr_ind;
398 	return 0;
399 }
400 
401 /* quick protocol (just address) */
402 static inline bool npcm_i2c_is_quick(struct npcm_i2c *bus)
403 {
404 	return bus->wr_size == 0 && bus->rd_size == 0;
405 }
406 
407 static void npcm_i2c_disable(struct npcm_i2c *bus)
408 {
409 	u8 i2cctl2;
410 
411 #if IS_ENABLED(CONFIG_I2C_SLAVE)
412 	int i;
413 
414 	/* Slave addresses removal */
415 	for (i = I2C_SLAVE_ADDR1; i < I2C_NUM_OWN_ADDR_SUPPORTED; i++)
416 		iowrite8(0, bus->reg + npcm_i2caddr[i]);
417 
418 #endif
419 	/* Disable module */
420 	i2cctl2 = ioread8(bus->reg + NPCM_I2CCTL2);
421 	i2cctl2 = i2cctl2 & ~I2CCTL2_ENABLE;
422 	iowrite8(i2cctl2, bus->reg + NPCM_I2CCTL2);
423 
424 	bus->state = I2C_DISABLE;
425 }
426 
427 static void npcm_i2c_enable(struct npcm_i2c *bus)
428 {
429 	u8 i2cctl2 = ioread8(bus->reg + NPCM_I2CCTL2);
430 
431 	i2cctl2 = i2cctl2 | I2CCTL2_ENABLE;
432 	iowrite8(i2cctl2, bus->reg + NPCM_I2CCTL2);
433 	bus->state = I2C_IDLE;
434 }
435 
436 /* enable\disable end of busy (EOB) interrupts */
437 static inline void npcm_i2c_eob_int(struct npcm_i2c *bus, bool enable)
438 {
439 	u8 val;
440 
441 	/* Clear EO_BUSY pending bit: */
442 	val = ioread8(bus->reg + NPCM_I2CCST3);
443 	val = val | NPCM_I2CCST3_EO_BUSY;
444 	iowrite8(val, bus->reg + NPCM_I2CCST3);
445 
446 	val = ioread8(bus->reg + NPCM_I2CCTL1);
447 	val &= ~NPCM_I2CCTL1_RWS;
448 	if (enable)
449 		val |= NPCM_I2CCTL1_EOBINTE;
450 	else
451 		val &= ~NPCM_I2CCTL1_EOBINTE;
452 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
453 }
454 
455 static inline bool npcm_i2c_tx_fifo_empty(struct npcm_i2c *bus)
456 {
457 	u8 tx_fifo_sts;
458 
459 	tx_fifo_sts = ioread8(bus->reg + NPCM_I2CTXF_STS);
460 	/* check if TX FIFO is not empty */
461 	if ((tx_fifo_sts & bus->data->txf_sts_tx_bytes) == 0)
462 		return false;
463 
464 	/* check if TX FIFO status bit is set: */
465 	return !!FIELD_GET(NPCM_I2CTXF_STS_TX_THST, tx_fifo_sts);
466 }
467 
468 static inline bool npcm_i2c_rx_fifo_full(struct npcm_i2c *bus)
469 {
470 	u8 rx_fifo_sts;
471 
472 	rx_fifo_sts = ioread8(bus->reg + NPCM_I2CRXF_STS);
473 	/* check if RX FIFO is not empty: */
474 	if ((rx_fifo_sts & bus->data->rxf_sts_rx_bytes) == 0)
475 		return false;
476 
477 	/* check if rx fifo full status is set: */
478 	return !!FIELD_GET(NPCM_I2CRXF_STS_RX_THST, rx_fifo_sts);
479 }
480 
481 static inline void npcm_i2c_clear_fifo_int(struct npcm_i2c *bus)
482 {
483 	u8 val;
484 
485 	val = ioread8(bus->reg + NPCM_I2CFIF_CTS);
486 	val = (val & NPCM_I2CFIF_CTS_SLVRSTR) | NPCM_I2CFIF_CTS_RXF_TXE;
487 	iowrite8(val, bus->reg + NPCM_I2CFIF_CTS);
488 }
489 
490 static inline void npcm_i2c_clear_tx_fifo(struct npcm_i2c *bus)
491 {
492 	u8 val;
493 
494 	val = ioread8(bus->reg + NPCM_I2CTXF_STS);
495 	val = val | NPCM_I2CTXF_STS_TX_THST;
496 	iowrite8(val, bus->reg + NPCM_I2CTXF_STS);
497 }
498 
499 static inline void npcm_i2c_clear_rx_fifo(struct npcm_i2c *bus)
500 {
501 	u8 val;
502 
503 	val = ioread8(bus->reg + NPCM_I2CRXF_STS);
504 	val = val | NPCM_I2CRXF_STS_RX_THST;
505 	iowrite8(val, bus->reg + NPCM_I2CRXF_STS);
506 }
507 
508 static void npcm_i2c_int_enable(struct npcm_i2c *bus, bool enable)
509 {
510 	u8 val;
511 
512 	val = ioread8(bus->reg + NPCM_I2CCTL1);
513 	val &= ~NPCM_I2CCTL1_RWS;
514 	if (enable)
515 		val |= NPCM_I2CCTL1_INTEN;
516 	else
517 		val &= ~NPCM_I2CCTL1_INTEN;
518 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
519 }
520 
521 static inline void npcm_i2c_master_start(struct npcm_i2c *bus)
522 {
523 	u8 val;
524 
525 	val = ioread8(bus->reg + NPCM_I2CCTL1);
526 	val &= ~(NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_ACK);
527 	val |= NPCM_I2CCTL1_START;
528 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
529 }
530 
531 static inline void npcm_i2c_master_stop(struct npcm_i2c *bus)
532 {
533 	u8 val;
534 
535 	/*
536 	 * override HW issue: I2C may fail to supply stop condition in Master
537 	 * Write operation.
538 	 * Need to delay at least 5 us from the last int, before issueing a stop
539 	 */
540 	udelay(10); /* function called from interrupt, can't sleep */
541 	val = ioread8(bus->reg + NPCM_I2CCTL1);
542 	val &= ~(NPCM_I2CCTL1_START | NPCM_I2CCTL1_ACK);
543 	val |= NPCM_I2CCTL1_STOP;
544 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
545 
546 	if (!bus->fifo_use)
547 		return;
548 
549 	npcm_i2c_select_bank(bus, I2C_BANK_1);
550 
551 	if (bus->operation == I2C_READ_OPER)
552 		npcm_i2c_clear_rx_fifo(bus);
553 	else
554 		npcm_i2c_clear_tx_fifo(bus);
555 	npcm_i2c_clear_fifo_int(bus);
556 	iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
557 }
558 
559 static inline void npcm_i2c_stall_after_start(struct npcm_i2c *bus, bool stall)
560 {
561 	u8 val;
562 
563 	val = ioread8(bus->reg + NPCM_I2CCTL1);
564 	val &= ~NPCM_I2CCTL1_RWS;
565 	if (stall)
566 		val |= NPCM_I2CCTL1_STASTRE;
567 	else
568 		val &= ~NPCM_I2CCTL1_STASTRE;
569 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
570 }
571 
572 static inline void npcm_i2c_nack(struct npcm_i2c *bus)
573 {
574 	u8 val;
575 
576 	val = ioread8(bus->reg + NPCM_I2CCTL1);
577 	val &= ~(NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_START);
578 	val |= NPCM_I2CCTL1_ACK;
579 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
580 }
581 
582 static inline void npcm_i2c_clear_master_status(struct npcm_i2c *bus)
583 {
584 	u8 val;
585 
586 	/* Clear NEGACK, STASTR and BER bits */
587 	val = NPCM_I2CST_BER | NPCM_I2CST_NEGACK | NPCM_I2CST_STASTR;
588 	iowrite8(val, bus->reg + NPCM_I2CST);
589 }
590 
591 #if IS_ENABLED(CONFIG_I2C_SLAVE)
592 static void npcm_i2c_slave_int_enable(struct npcm_i2c *bus, bool enable)
593 {
594 	u8 i2cctl1;
595 
596 	/* enable interrupt on slave match: */
597 	i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
598 	i2cctl1 &= ~NPCM_I2CCTL1_RWS;
599 	if (enable)
600 		i2cctl1 |= NPCM_I2CCTL1_NMINTE;
601 	else
602 		i2cctl1 &= ~NPCM_I2CCTL1_NMINTE;
603 	iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
604 }
605 
606 static int npcm_i2c_slave_enable(struct npcm_i2c *bus, enum i2c_addr addr_type,
607 				 u8 addr, bool enable)
608 {
609 	u8 i2cctl1;
610 	u8 i2cctl3;
611 	u8 sa_reg;
612 
613 	sa_reg = (addr & 0x7F) | FIELD_PREP(NPCM_I2CADDR_SAEN, enable);
614 	if (addr_type == I2C_GC_ADDR) {
615 		i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
616 		if (enable)
617 			i2cctl1 |= NPCM_I2CCTL1_GCMEN;
618 		else
619 			i2cctl1 &= ~NPCM_I2CCTL1_GCMEN;
620 		iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
621 		return 0;
622 	} else if (addr_type == I2C_ARP_ADDR) {
623 		i2cctl3 = ioread8(bus->reg + NPCM_I2CCTL3);
624 		if (enable)
625 			i2cctl3 |= I2CCTL3_ARPMEN;
626 		else
627 			i2cctl3 &= ~I2CCTL3_ARPMEN;
628 		iowrite8(i2cctl3, bus->reg + NPCM_I2CCTL3);
629 		return 0;
630 	}
631 	if (addr_type > I2C_SLAVE_ADDR2 && addr_type <= I2C_SLAVE_ADDR10)
632 		dev_err(bus->dev, "try to enable more than 2 SA not supported\n");
633 
634 	if (addr_type >= I2C_ARP_ADDR)
635 		return -EFAULT;
636 
637 	/* Set and enable the address */
638 	iowrite8(sa_reg, bus->reg + npcm_i2caddr[addr_type]);
639 	npcm_i2c_slave_int_enable(bus, enable);
640 
641 	return 0;
642 }
643 #endif
644 
645 static void npcm_i2c_reset(struct npcm_i2c *bus)
646 {
647 	/*
648 	 * Save I2CCTL1 relevant bits. It is being cleared when the module
649 	 *  is disabled.
650 	 */
651 	u8 i2cctl1;
652 #if IS_ENABLED(CONFIG_I2C_SLAVE)
653 	u8 addr;
654 #endif
655 
656 	i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
657 
658 	npcm_i2c_disable(bus);
659 	npcm_i2c_enable(bus);
660 
661 	/* Restore NPCM_I2CCTL1 Status */
662 	i2cctl1 &= ~NPCM_I2CCTL1_RWS;
663 	iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
664 
665 	/* Clear BB (BUS BUSY) bit */
666 	iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
667 	iowrite8(0xFF, bus->reg + NPCM_I2CST);
668 
669 	/* Clear and disable EOB */
670 	npcm_i2c_eob_int(bus, false);
671 
672 	/* Clear all fifo bits: */
673 	iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
674 
675 #if IS_ENABLED(CONFIG_I2C_SLAVE)
676 	if (bus->slave) {
677 		addr = bus->slave->addr;
678 		npcm_i2c_slave_enable(bus, I2C_SLAVE_ADDR1, addr, true);
679 	}
680 #endif
681 
682 	/* Clear status bits for spurious interrupts */
683 	npcm_i2c_clear_master_status(bus);
684 
685 	bus->state = I2C_IDLE;
686 }
687 
688 static inline bool npcm_i2c_is_master(struct npcm_i2c *bus)
689 {
690 	return !!FIELD_GET(NPCM_I2CST_MASTER, ioread8(bus->reg + NPCM_I2CST));
691 }
692 
693 static void npcm_i2c_callback(struct npcm_i2c *bus,
694 			      enum i2c_state_ind op_status, u16 info)
695 {
696 	struct i2c_msg *msgs;
697 	int msgs_num;
698 	bool do_complete = false;
699 
700 	msgs = bus->msgs;
701 	msgs_num = bus->msgs_num;
702 	/*
703 	 * check that transaction was not timed-out, and msgs still
704 	 * holds a valid value.
705 	 */
706 	if (!msgs)
707 		return;
708 
709 	if (completion_done(&bus->cmd_complete))
710 		return;
711 
712 	switch (op_status) {
713 	case I2C_MASTER_DONE_IND:
714 		bus->cmd_err = bus->msgs_num;
715 		if (bus->tx_complete_cnt < ULLONG_MAX)
716 			bus->tx_complete_cnt++;
717 		fallthrough;
718 	case I2C_BLOCK_BYTES_ERR_IND:
719 		/* Master tx finished and all transmit bytes were sent */
720 		if (bus->msgs) {
721 			if (msgs[0].flags & I2C_M_RD)
722 				msgs[0].len = info;
723 			else if (msgs_num == 2 &&
724 				 msgs[1].flags & I2C_M_RD)
725 				msgs[1].len = info;
726 		}
727 		do_complete = true;
728 		break;
729 	case I2C_NACK_IND:
730 		/* MASTER transmit got a NACK before tx all bytes */
731 		bus->cmd_err = -ENXIO;
732 		do_complete = true;
733 		break;
734 	case I2C_BUS_ERR_IND:
735 		/* Bus error */
736 		bus->cmd_err = -EAGAIN;
737 		do_complete = true;
738 		break;
739 	case I2C_WAKE_UP_IND:
740 		/* I2C wake up */
741 		break;
742 	default:
743 		break;
744 	}
745 
746 	bus->operation = I2C_NO_OPER;
747 #if IS_ENABLED(CONFIG_I2C_SLAVE)
748 	if (bus->slave)
749 		bus->master_or_slave = I2C_SLAVE;
750 #endif
751 	if (do_complete)
752 		complete(&bus->cmd_complete);
753 }
754 
755 static u8 npcm_i2c_fifo_usage(struct npcm_i2c *bus)
756 {
757 	if (bus->operation == I2C_WRITE_OPER)
758 		return (bus->data->txf_sts_tx_bytes &
759 			ioread8(bus->reg + NPCM_I2CTXF_STS));
760 	if (bus->operation == I2C_READ_OPER)
761 		return (bus->data->rxf_sts_rx_bytes &
762 			ioread8(bus->reg + NPCM_I2CRXF_STS));
763 	return 0;
764 }
765 
766 static void npcm_i2c_write_to_fifo_master(struct npcm_i2c *bus, u16 max_bytes)
767 {
768 	u8 size_free_fifo;
769 
770 	/*
771 	 * Fill the FIFO, while the FIFO is not full and there are more bytes
772 	 * to write
773 	 */
774 	size_free_fifo = bus->data->fifo_size - npcm_i2c_fifo_usage(bus);
775 	while (max_bytes-- && size_free_fifo) {
776 		if (bus->wr_ind < bus->wr_size)
777 			npcm_i2c_wr_byte(bus, bus->wr_buf[bus->wr_ind++]);
778 		else
779 			npcm_i2c_wr_byte(bus, 0xFF);
780 		size_free_fifo = bus->data->fifo_size - npcm_i2c_fifo_usage(bus);
781 	}
782 }
783 
784 /*
785  * npcm_i2c_set_fifo:
786  * configure the FIFO before using it. If nread is -1 RX FIFO will not be
787  * configured. same for nwrite
788  */
789 static void npcm_i2c_set_fifo(struct npcm_i2c *bus, int nread, int nwrite)
790 {
791 	u8 rxf_ctl = 0;
792 
793 	if (!bus->fifo_use)
794 		return;
795 	npcm_i2c_select_bank(bus, I2C_BANK_1);
796 	npcm_i2c_clear_tx_fifo(bus);
797 	npcm_i2c_clear_rx_fifo(bus);
798 
799 	/* configure RX FIFO */
800 	if (nread > 0) {
801 		rxf_ctl = min_t(int, nread, bus->data->fifo_size);
802 
803 		/* set LAST bit. if LAST is set next FIFO packet is nacked */
804 		if (nread <= bus->data->fifo_size)
805 			rxf_ctl |= bus->data->rxf_ctl_last_pec;
806 
807 		/*
808 		 * if we are about to read the first byte in blk rd mode,
809 		 * don't NACK it. If slave returns zero size HW can't NACK
810 		 * it immediately, it will read extra byte and then NACK.
811 		 */
812 		if (bus->rd_ind == 0 && bus->read_block_use) {
813 			/* set fifo to read one byte, no last: */
814 			rxf_ctl = 1;
815 		}
816 
817 		/* set fifo size: */
818 		iowrite8(rxf_ctl, bus->reg + NPCM_I2CRXF_CTL);
819 	}
820 
821 	/* configure TX FIFO */
822 	if (nwrite > 0) {
823 		if (nwrite > bus->data->fifo_size)
824 			/* data to send is more then FIFO size. */
825 			iowrite8(bus->data->fifo_size, bus->reg + NPCM_I2CTXF_CTL);
826 		else
827 			iowrite8(nwrite, bus->reg + NPCM_I2CTXF_CTL);
828 
829 		npcm_i2c_clear_tx_fifo(bus);
830 	}
831 }
832 
833 static void npcm_i2c_read_fifo(struct npcm_i2c *bus, u8 bytes_in_fifo)
834 {
835 	u8 data;
836 
837 	while (bytes_in_fifo--) {
838 		data = npcm_i2c_rd_byte(bus);
839 		if (bus->rd_ind < bus->rd_size)
840 			bus->rd_buf[bus->rd_ind++] = data;
841 	}
842 }
843 
844 static void npcm_i2c_master_abort(struct npcm_i2c *bus)
845 {
846 	/* Only current master is allowed to issue a stop condition */
847 	if (!npcm_i2c_is_master(bus))
848 		return;
849 
850 	npcm_i2c_eob_int(bus, true);
851 	npcm_i2c_master_stop(bus);
852 	npcm_i2c_clear_master_status(bus);
853 }
854 
855 #if IS_ENABLED(CONFIG_I2C_SLAVE)
856 static u8 npcm_i2c_get_slave_addr(struct npcm_i2c *bus, enum i2c_addr addr_type)
857 {
858 	u8 slave_add;
859 
860 	if (addr_type > I2C_SLAVE_ADDR2 && addr_type <= I2C_SLAVE_ADDR10)
861 		dev_err(bus->dev, "get slave: try to use more than 2 SA not supported\n");
862 
863 	slave_add = ioread8(bus->reg + npcm_i2caddr[(int)addr_type]);
864 
865 	return slave_add;
866 }
867 
868 static int npcm_i2c_remove_slave_addr(struct npcm_i2c *bus, u8 slave_add)
869 {
870 	int i;
871 
872 	/* Set the enable bit */
873 	slave_add |= 0x80;
874 
875 	for (i = I2C_SLAVE_ADDR1; i < I2C_NUM_OWN_ADDR_SUPPORTED; i++) {
876 		if (ioread8(bus->reg + npcm_i2caddr[i]) == slave_add)
877 			iowrite8(0, bus->reg + npcm_i2caddr[i]);
878 	}
879 
880 	return 0;
881 }
882 
883 static void npcm_i2c_write_fifo_slave(struct npcm_i2c *bus, u16 max_bytes)
884 {
885 	/*
886 	 * Fill the FIFO, while the FIFO is not full and there are more bytes
887 	 * to write
888 	 */
889 	npcm_i2c_clear_fifo_int(bus);
890 	npcm_i2c_clear_tx_fifo(bus);
891 	iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
892 	while (max_bytes-- && bus->data->fifo_size != npcm_i2c_fifo_usage(bus)) {
893 		if (bus->slv_wr_size <= 0)
894 			break;
895 		bus->slv_wr_ind = bus->slv_wr_ind & (bus->data->fifo_size - 1);
896 		npcm_i2c_wr_byte(bus, bus->slv_wr_buf[bus->slv_wr_ind]);
897 		bus->slv_wr_ind++;
898 		bus->slv_wr_ind = bus->slv_wr_ind & (bus->data->fifo_size - 1);
899 		bus->slv_wr_size--;
900 	}
901 }
902 
903 static void npcm_i2c_read_fifo_slave(struct npcm_i2c *bus, u8 bytes_in_fifo)
904 {
905 	u8 data;
906 
907 	if (!bus->slave)
908 		return;
909 
910 	while (bytes_in_fifo--) {
911 		data = npcm_i2c_rd_byte(bus);
912 
913 		bus->slv_rd_ind = bus->slv_rd_ind & (bus->data->fifo_size - 1);
914 		bus->slv_rd_buf[bus->slv_rd_ind] = data;
915 		bus->slv_rd_ind++;
916 
917 		/* 1st byte is length in block protocol: */
918 		if (bus->slv_rd_ind == 1 && bus->read_block_use)
919 			bus->slv_rd_size = data + bus->PEC_use + 1;
920 	}
921 }
922 
923 static int npcm_i2c_slave_get_wr_buf(struct npcm_i2c *bus)
924 {
925 	int i;
926 	u8 value;
927 	int ind;
928 	int ret = bus->slv_wr_ind;
929 
930 	/* fill a cyclic buffer */
931 	for (i = 0; i < bus->data->fifo_size; i++) {
932 		if (bus->slv_wr_size >= bus->data->fifo_size)
933 			break;
934 		if (bus->state == I2C_SLAVE_MATCH) {
935 			i2c_slave_event(bus->slave, I2C_SLAVE_READ_REQUESTED, &value);
936 			bus->state = I2C_OPER_STARTED;
937 		} else {
938 			i2c_slave_event(bus->slave, I2C_SLAVE_READ_PROCESSED, &value);
939 		}
940 		ind = (bus->slv_wr_ind + bus->slv_wr_size) & (bus->data->fifo_size - 1);
941 		bus->slv_wr_buf[ind] = value;
942 		bus->slv_wr_size++;
943 	}
944 	return bus->data->fifo_size - ret;
945 }
946 
947 static void npcm_i2c_slave_send_rd_buf(struct npcm_i2c *bus)
948 {
949 	int i;
950 
951 	for (i = 0; i < bus->slv_rd_ind; i++)
952 		i2c_slave_event(bus->slave, I2C_SLAVE_WRITE_RECEIVED,
953 				&bus->slv_rd_buf[i]);
954 	/*
955 	 * once we send bytes up, need to reset the counter of the wr buf
956 	 * got data from master (new offset in device), ignore wr fifo:
957 	 */
958 	if (bus->slv_rd_ind) {
959 		bus->slv_wr_size = 0;
960 		bus->slv_wr_ind = 0;
961 	}
962 
963 	bus->slv_rd_ind = 0;
964 	bus->slv_rd_size = bus->adap.quirks->max_read_len;
965 
966 	npcm_i2c_clear_fifo_int(bus);
967 	npcm_i2c_clear_rx_fifo(bus);
968 }
969 
970 static void npcm_i2c_slave_receive(struct npcm_i2c *bus, u16 nread,
971 				   u8 *read_data)
972 {
973 	bus->state = I2C_OPER_STARTED;
974 	bus->operation = I2C_READ_OPER;
975 	bus->slv_rd_size = nread;
976 	bus->slv_rd_ind = 0;
977 
978 	iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
979 	iowrite8(bus->data->fifo_size, bus->reg + NPCM_I2CRXF_CTL);
980 	npcm_i2c_clear_tx_fifo(bus);
981 	npcm_i2c_clear_rx_fifo(bus);
982 }
983 
984 static void npcm_i2c_slave_xmit(struct npcm_i2c *bus, u16 nwrite,
985 				u8 *write_data)
986 {
987 	if (nwrite == 0)
988 		return;
989 
990 	bus->operation = I2C_WRITE_OPER;
991 
992 	/* get the next buffer */
993 	npcm_i2c_slave_get_wr_buf(bus);
994 	npcm_i2c_write_fifo_slave(bus, nwrite);
995 }
996 
997 /*
998  * npcm_i2c_slave_wr_buf_sync:
999  * currently slave IF only supports single byte operations.
1000  * in order to utilize the npcm HW FIFO, the driver will ask for 16 bytes
1001  * at a time, pack them in buffer, and then transmit them all together
1002  * to the FIFO and onward to the bus.
1003  * NACK on read will be once reached to bus->adap->quirks->max_read_len.
1004  * sending a NACK wherever the backend requests for it is not supported.
1005  * the next two functions allow reading to local buffer before writing it all
1006  * to the HW FIFO.
1007  */
1008 static void npcm_i2c_slave_wr_buf_sync(struct npcm_i2c *bus)
1009 {
1010 	int left_in_fifo;
1011 
1012 	left_in_fifo = bus->data->txf_sts_tx_bytes &
1013 			ioread8(bus->reg + NPCM_I2CTXF_STS);
1014 
1015 	/* fifo already full: */
1016 	if (left_in_fifo >= bus->data->fifo_size ||
1017 	    bus->slv_wr_size >= bus->data->fifo_size)
1018 		return;
1019 
1020 	/* update the wr fifo index back to the untransmitted bytes: */
1021 	bus->slv_wr_ind = bus->slv_wr_ind - left_in_fifo;
1022 	bus->slv_wr_size = bus->slv_wr_size + left_in_fifo;
1023 
1024 	if (bus->slv_wr_ind < 0)
1025 		bus->slv_wr_ind += bus->data->fifo_size;
1026 }
1027 
1028 static void npcm_i2c_slave_rd_wr(struct npcm_i2c *bus)
1029 {
1030 	if (NPCM_I2CST_XMIT & ioread8(bus->reg + NPCM_I2CST)) {
1031 		/*
1032 		 * Slave got an address match with direction bit 1 so it should
1033 		 * transmit data. Write till the master will NACK
1034 		 */
1035 		bus->operation = I2C_WRITE_OPER;
1036 		npcm_i2c_slave_xmit(bus, bus->adap.quirks->max_write_len,
1037 				    bus->slv_wr_buf);
1038 	} else {
1039 		/*
1040 		 * Slave got an address match with direction bit 0 so it should
1041 		 * receive data.
1042 		 * this module does not support saying no to bytes.
1043 		 * it will always ACK.
1044 		 */
1045 		bus->operation = I2C_READ_OPER;
1046 		npcm_i2c_read_fifo_slave(bus, npcm_i2c_fifo_usage(bus));
1047 		bus->stop_ind = I2C_SLAVE_RCV_IND;
1048 		npcm_i2c_slave_send_rd_buf(bus);
1049 		npcm_i2c_slave_receive(bus, bus->adap.quirks->max_read_len,
1050 				       bus->slv_rd_buf);
1051 	}
1052 }
1053 
1054 static irqreturn_t npcm_i2c_int_slave_handler(struct npcm_i2c *bus)
1055 {
1056 	u8 val;
1057 	irqreturn_t ret = IRQ_NONE;
1058 	u8 i2cst = ioread8(bus->reg + NPCM_I2CST);
1059 
1060 	/* Slave: A NACK has occurred */
1061 	if (NPCM_I2CST_NEGACK & i2cst) {
1062 		bus->stop_ind = I2C_NACK_IND;
1063 		npcm_i2c_slave_wr_buf_sync(bus);
1064 		if (bus->fifo_use)
1065 			/* clear the FIFO */
1066 			iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO,
1067 				 bus->reg + NPCM_I2CFIF_CTS);
1068 
1069 		/* In slave write, NACK is OK, otherwise it is a problem */
1070 		bus->stop_ind = I2C_NO_STATUS_IND;
1071 		bus->operation = I2C_NO_OPER;
1072 		bus->own_slave_addr = 0xFF;
1073 
1074 		/*
1075 		 * Slave has to wait for STOP to decide this is the end
1076 		 * of the transaction. tx is not yet considered as done
1077 		 */
1078 		iowrite8(NPCM_I2CST_NEGACK, bus->reg + NPCM_I2CST);
1079 
1080 		ret = IRQ_HANDLED;
1081 	}
1082 
1083 	/* Slave mode: a Bus Error (BER) has been identified */
1084 	if (NPCM_I2CST_BER & i2cst) {
1085 		/*
1086 		 * Check whether bus arbitration or Start or Stop during data
1087 		 * xfer bus arbitration problem should not result in recovery
1088 		 */
1089 		bus->stop_ind = I2C_BUS_ERR_IND;
1090 
1091 		/* wait for bus busy before clear fifo */
1092 		iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
1093 
1094 		bus->state = I2C_IDLE;
1095 
1096 		/*
1097 		 * in BER case we might get 2 interrupts: one for slave one for
1098 		 * master ( for a channel which is master\slave switching)
1099 		 */
1100 		if (completion_done(&bus->cmd_complete) == false) {
1101 			bus->cmd_err = -EIO;
1102 			complete(&bus->cmd_complete);
1103 		}
1104 		bus->own_slave_addr = 0xFF;
1105 		iowrite8(NPCM_I2CST_BER, bus->reg + NPCM_I2CST);
1106 		ret = IRQ_HANDLED;
1107 	}
1108 
1109 	/* A Slave Stop Condition has been identified */
1110 	if (NPCM_I2CST_SLVSTP & i2cst) {
1111 		u8 bytes_in_fifo = npcm_i2c_fifo_usage(bus);
1112 
1113 		bus->stop_ind = I2C_SLAVE_DONE_IND;
1114 
1115 		if (bus->operation == I2C_READ_OPER)
1116 			npcm_i2c_read_fifo_slave(bus, bytes_in_fifo);
1117 
1118 		/* if the buffer is empty nothing will be sent */
1119 		npcm_i2c_slave_send_rd_buf(bus);
1120 
1121 		/* Slave done transmitting or receiving */
1122 		bus->stop_ind = I2C_NO_STATUS_IND;
1123 
1124 		/*
1125 		 * Note, just because we got here, it doesn't mean we through
1126 		 * away the wr buffer.
1127 		 * we keep it until the next received offset.
1128 		 */
1129 		bus->operation = I2C_NO_OPER;
1130 		bus->own_slave_addr = 0xFF;
1131 		i2c_slave_event(bus->slave, I2C_SLAVE_STOP, 0);
1132 		iowrite8(NPCM_I2CST_SLVSTP, bus->reg + NPCM_I2CST);
1133 		if (bus->fifo_use) {
1134 			npcm_i2c_clear_fifo_int(bus);
1135 			npcm_i2c_clear_rx_fifo(bus);
1136 			npcm_i2c_clear_tx_fifo(bus);
1137 
1138 			iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO,
1139 				 bus->reg + NPCM_I2CFIF_CTS);
1140 		}
1141 		bus->state = I2C_IDLE;
1142 		ret = IRQ_HANDLED;
1143 	}
1144 
1145 	/* restart condition occurred and Rx-FIFO was not empty */
1146 	if (bus->fifo_use && FIELD_GET(NPCM_I2CFIF_CTS_SLVRSTR,
1147 				       ioread8(bus->reg + NPCM_I2CFIF_CTS))) {
1148 		bus->stop_ind = I2C_SLAVE_RESTART_IND;
1149 		bus->master_or_slave = I2C_SLAVE;
1150 		if (bus->operation == I2C_READ_OPER)
1151 			npcm_i2c_read_fifo_slave(bus, npcm_i2c_fifo_usage(bus));
1152 		bus->operation = I2C_WRITE_OPER;
1153 		iowrite8(0, bus->reg + NPCM_I2CRXF_CTL);
1154 		val = NPCM_I2CFIF_CTS_CLR_FIFO | NPCM_I2CFIF_CTS_SLVRSTR |
1155 		      NPCM_I2CFIF_CTS_RXF_TXE;
1156 		iowrite8(val, bus->reg + NPCM_I2CFIF_CTS);
1157 		npcm_i2c_slave_rd_wr(bus);
1158 		ret = IRQ_HANDLED;
1159 	}
1160 
1161 	/* A Slave Address Match has been identified */
1162 	if (NPCM_I2CST_NMATCH & i2cst) {
1163 		u8 info = 0;
1164 
1165 		/* Address match automatically implies slave mode */
1166 		bus->master_or_slave = I2C_SLAVE;
1167 		npcm_i2c_clear_fifo_int(bus);
1168 		npcm_i2c_clear_rx_fifo(bus);
1169 		npcm_i2c_clear_tx_fifo(bus);
1170 		iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
1171 		iowrite8(bus->data->fifo_size, bus->reg + NPCM_I2CRXF_CTL);
1172 		if (NPCM_I2CST_XMIT & i2cst) {
1173 			bus->operation = I2C_WRITE_OPER;
1174 		} else {
1175 			i2c_slave_event(bus->slave, I2C_SLAVE_WRITE_REQUESTED,
1176 					&info);
1177 			bus->operation = I2C_READ_OPER;
1178 		}
1179 		if (bus->own_slave_addr == 0xFF) {
1180 			/* Check which type of address match */
1181 			val = ioread8(bus->reg + NPCM_I2CCST);
1182 			if (NPCM_I2CCST_MATCH & val) {
1183 				u16 addr;
1184 				enum i2c_addr eaddr;
1185 				u8 i2ccst2;
1186 				u8 i2ccst3;
1187 
1188 				i2ccst3 = ioread8(bus->reg + NPCM_I2CCST3);
1189 				i2ccst2 = ioread8(bus->reg + NPCM_I2CCST2);
1190 
1191 				/*
1192 				 * the i2c module can response to 10 own SA.
1193 				 * check which one was addressed by the master.
1194 				 * respond to the first one.
1195 				 */
1196 				addr = ((i2ccst3 & 0x07) << 7) |
1197 					(i2ccst2 & 0x7F);
1198 				info = ffs(addr);
1199 				eaddr = (enum i2c_addr)info;
1200 				addr = npcm_i2c_get_slave_addr(bus, eaddr);
1201 				addr &= 0x7F;
1202 				bus->own_slave_addr = addr;
1203 				if (bus->PEC_mask & BIT(info))
1204 					bus->PEC_use = true;
1205 				else
1206 					bus->PEC_use = false;
1207 			} else {
1208 				if (NPCM_I2CCST_GCMATCH & val)
1209 					bus->own_slave_addr = 0;
1210 				if (NPCM_I2CCST_ARPMATCH & val)
1211 					bus->own_slave_addr = 0x61;
1212 			}
1213 		} else {
1214 			/*
1215 			 *  Slave match can happen in two options:
1216 			 *  1. Start, SA, read (slave read without further ado)
1217 			 *  2. Start, SA, read, data, restart, SA, read,  ...
1218 			 *     (slave read in fragmented mode)
1219 			 *  3. Start, SA, write, data, restart, SA, read, ..
1220 			 *     (regular write-read mode)
1221 			 */
1222 			if ((bus->state == I2C_OPER_STARTED &&
1223 			     bus->operation == I2C_READ_OPER &&
1224 			     bus->stop_ind == I2C_SLAVE_XMIT_IND) ||
1225 			     bus->stop_ind == I2C_SLAVE_RCV_IND) {
1226 				/* slave tx after slave rx w/o STOP */
1227 				bus->stop_ind = I2C_SLAVE_RESTART_IND;
1228 			}
1229 		}
1230 
1231 		if (NPCM_I2CST_XMIT & i2cst)
1232 			bus->stop_ind = I2C_SLAVE_XMIT_IND;
1233 		else
1234 			bus->stop_ind = I2C_SLAVE_RCV_IND;
1235 		bus->state = I2C_SLAVE_MATCH;
1236 		npcm_i2c_slave_rd_wr(bus);
1237 		iowrite8(NPCM_I2CST_NMATCH, bus->reg + NPCM_I2CST);
1238 		ret = IRQ_HANDLED;
1239 	}
1240 
1241 	/* Slave SDA status is set - tx or rx */
1242 	if ((NPCM_I2CST_SDAST & i2cst) ||
1243 	    (bus->fifo_use &&
1244 	    (npcm_i2c_tx_fifo_empty(bus) || npcm_i2c_rx_fifo_full(bus)))) {
1245 		npcm_i2c_slave_rd_wr(bus);
1246 		iowrite8(NPCM_I2CST_SDAST, bus->reg + NPCM_I2CST);
1247 		ret = IRQ_HANDLED;
1248 	} /* SDAST */
1249 
1250 	/*
1251 	 * If irq is not one of the above, make sure EOB is disabled and all
1252 	 * status bits are cleared.
1253 	 */
1254 	if (ret == IRQ_NONE) {
1255 		npcm_i2c_eob_int(bus, false);
1256 		npcm_i2c_clear_master_status(bus);
1257 	}
1258 
1259 	return IRQ_HANDLED;
1260 }
1261 
1262 static int npcm_i2c_reg_slave(struct i2c_client *client)
1263 {
1264 	unsigned long lock_flags;
1265 	struct npcm_i2c *bus = i2c_get_adapdata(client->adapter);
1266 
1267 	bus->slave = client;
1268 
1269 	if (client->flags & I2C_CLIENT_TEN)
1270 		return -EAFNOSUPPORT;
1271 
1272 	spin_lock_irqsave(&bus->lock, lock_flags);
1273 
1274 	npcm_i2c_init_params(bus);
1275 	bus->slv_rd_size = 0;
1276 	bus->slv_wr_size = 0;
1277 	bus->slv_rd_ind = 0;
1278 	bus->slv_wr_ind = 0;
1279 	if (client->flags & I2C_CLIENT_PEC)
1280 		bus->PEC_use = true;
1281 
1282 	dev_info(bus->dev, "i2c%d register slave SA=0x%x, PEC=%d\n", bus->num,
1283 		 client->addr, bus->PEC_use);
1284 
1285 	npcm_i2c_slave_enable(bus, I2C_SLAVE_ADDR1, client->addr, true);
1286 	npcm_i2c_clear_fifo_int(bus);
1287 	npcm_i2c_clear_rx_fifo(bus);
1288 	npcm_i2c_clear_tx_fifo(bus);
1289 	npcm_i2c_slave_int_enable(bus, true);
1290 
1291 	spin_unlock_irqrestore(&bus->lock, lock_flags);
1292 	return 0;
1293 }
1294 
1295 static int npcm_i2c_unreg_slave(struct i2c_client *client)
1296 {
1297 	struct npcm_i2c *bus = client->adapter->algo_data;
1298 	unsigned long lock_flags;
1299 
1300 	spin_lock_irqsave(&bus->lock, lock_flags);
1301 	if (!bus->slave) {
1302 		spin_unlock_irqrestore(&bus->lock, lock_flags);
1303 		return -EINVAL;
1304 	}
1305 	npcm_i2c_slave_int_enable(bus, false);
1306 	npcm_i2c_remove_slave_addr(bus, client->addr);
1307 	bus->slave = NULL;
1308 	spin_unlock_irqrestore(&bus->lock, lock_flags);
1309 	return 0;
1310 }
1311 #endif /* CONFIG_I2C_SLAVE */
1312 
1313 static void npcm_i2c_master_fifo_read(struct npcm_i2c *bus)
1314 {
1315 	int rcount;
1316 	int fifo_bytes;
1317 	enum i2c_state_ind ind = I2C_MASTER_DONE_IND;
1318 
1319 	fifo_bytes = npcm_i2c_fifo_usage(bus);
1320 	rcount = bus->rd_size - bus->rd_ind;
1321 
1322 	/*
1323 	 * In order not to change the RX_TRH during transaction (we found that
1324 	 * this might be problematic if it takes too much time to read the FIFO)
1325 	 * we read the data in the following way. If the number of bytes to
1326 	 * read == FIFO Size + C (where C < FIFO Size)then first read C bytes
1327 	 * and in the next int we read rest of the data.
1328 	 */
1329 	if (rcount < (2 * bus->data->fifo_size) && rcount > bus->data->fifo_size)
1330 		fifo_bytes = rcount - bus->data->fifo_size;
1331 
1332 	if (rcount <= fifo_bytes) {
1333 		/* last bytes are about to be read - end of tx */
1334 		bus->state = I2C_STOP_PENDING;
1335 		bus->stop_ind = ind;
1336 		npcm_i2c_eob_int(bus, true);
1337 		/* Stop should be set before reading last byte. */
1338 		npcm_i2c_master_stop(bus);
1339 		npcm_i2c_read_fifo(bus, fifo_bytes);
1340 	} else {
1341 		npcm_i2c_read_fifo(bus, fifo_bytes);
1342 		rcount = bus->rd_size - bus->rd_ind;
1343 		npcm_i2c_set_fifo(bus, rcount, -1);
1344 	}
1345 }
1346 
1347 static void npcm_i2c_irq_master_handler_write(struct npcm_i2c *bus)
1348 {
1349 	u16 wcount;
1350 
1351 	if (bus->fifo_use)
1352 		npcm_i2c_clear_tx_fifo(bus); /* clear the TX fifo status bit */
1353 
1354 	/* Master write operation - last byte handling */
1355 	if (bus->wr_ind == bus->wr_size) {
1356 		if (bus->fifo_use && npcm_i2c_fifo_usage(bus) > 0)
1357 			/*
1358 			 * No more bytes to send (to add to the FIFO),
1359 			 * however the FIFO is not empty yet. It is
1360 			 * still in the middle of tx. Currently there's nothing
1361 			 * to do except for waiting to the end of the tx
1362 			 * We will get an int when the FIFO will get empty.
1363 			 */
1364 			return;
1365 
1366 		if (bus->rd_size == 0) {
1367 			/* all bytes have been written, in wr only operation */
1368 			npcm_i2c_eob_int(bus, true);
1369 			bus->state = I2C_STOP_PENDING;
1370 			bus->stop_ind = I2C_MASTER_DONE_IND;
1371 			npcm_i2c_master_stop(bus);
1372 			/* Clear SDA Status bit (by writing dummy byte) */
1373 			npcm_i2c_wr_byte(bus, 0xFF);
1374 
1375 		} else {
1376 			/* last write-byte written on previous int - restart */
1377 			npcm_i2c_set_fifo(bus, bus->rd_size, -1);
1378 			/* Generate repeated start upon next write to SDA */
1379 			npcm_i2c_master_start(bus);
1380 
1381 			/*
1382 			 * Receiving one byte only - stall after successful
1383 			 * completion of send address byte. If we NACK here, and
1384 			 * slave doesn't ACK the address, we might
1385 			 * unintentionally NACK the next multi-byte read.
1386 			 */
1387 			if (bus->rd_size == 1)
1388 				npcm_i2c_stall_after_start(bus, true);
1389 
1390 			/* Next int will occur on read */
1391 			bus->operation = I2C_READ_OPER;
1392 			/* send the slave address in read direction */
1393 			npcm_i2c_wr_byte(bus, bus->dest_addr | 0x1);
1394 		}
1395 	} else {
1396 		/* write next byte not last byte and not slave address */
1397 		if (!bus->fifo_use || bus->wr_size == 1) {
1398 			npcm_i2c_wr_byte(bus, bus->wr_buf[bus->wr_ind++]);
1399 		} else {
1400 			wcount = bus->wr_size - bus->wr_ind;
1401 			npcm_i2c_set_fifo(bus, -1, wcount);
1402 			if (wcount)
1403 				npcm_i2c_write_to_fifo_master(bus, wcount);
1404 		}
1405 	}
1406 }
1407 
1408 static void npcm_i2c_irq_master_handler_read(struct npcm_i2c *bus)
1409 {
1410 	u16 block_extra_bytes_size;
1411 	u8 data;
1412 
1413 	/* added bytes to the packet: */
1414 	block_extra_bytes_size = bus->read_block_use + bus->PEC_use;
1415 
1416 	/*
1417 	 * Perform master read, distinguishing between last byte and the rest of
1418 	 * the bytes. The last byte should be read when the clock is stopped
1419 	 */
1420 	if (bus->rd_ind == 0) { /* first byte handling: */
1421 		if (bus->read_block_use) {
1422 			/* first byte in block protocol is the size: */
1423 			data = npcm_i2c_rd_byte(bus);
1424 			data = clamp_val(data, 1, I2C_SMBUS_BLOCK_MAX);
1425 			bus->rd_size = data + block_extra_bytes_size;
1426 			bus->rd_buf[bus->rd_ind++] = data;
1427 
1428 			/* clear RX FIFO interrupt status: */
1429 			if (bus->fifo_use) {
1430 				data = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1431 				data = data | NPCM_I2CFIF_CTS_RXF_TXE;
1432 				iowrite8(data, bus->reg + NPCM_I2CFIF_CTS);
1433 			}
1434 
1435 			npcm_i2c_set_fifo(bus, bus->rd_size - 1, -1);
1436 			npcm_i2c_stall_after_start(bus, false);
1437 		} else {
1438 			npcm_i2c_clear_tx_fifo(bus);
1439 			npcm_i2c_master_fifo_read(bus);
1440 		}
1441 	} else {
1442 		if (bus->rd_size == block_extra_bytes_size &&
1443 		    bus->read_block_use) {
1444 			bus->state = I2C_STOP_PENDING;
1445 			bus->stop_ind = I2C_BLOCK_BYTES_ERR_IND;
1446 			bus->cmd_err = -EIO;
1447 			npcm_i2c_eob_int(bus, true);
1448 			npcm_i2c_master_stop(bus);
1449 			npcm_i2c_read_fifo(bus, npcm_i2c_fifo_usage(bus));
1450 		} else {
1451 			npcm_i2c_master_fifo_read(bus);
1452 		}
1453 	}
1454 }
1455 
1456 static void npcm_i2c_irq_handle_nmatch(struct npcm_i2c *bus)
1457 {
1458 	iowrite8(NPCM_I2CST_NMATCH, bus->reg + NPCM_I2CST);
1459 	npcm_i2c_nack(bus);
1460 	bus->stop_ind = I2C_BUS_ERR_IND;
1461 	npcm_i2c_callback(bus, bus->stop_ind, npcm_i2c_get_index(bus));
1462 }
1463 
1464 /* A NACK has occurred */
1465 static void npcm_i2c_irq_handle_nack(struct npcm_i2c *bus)
1466 {
1467 	u8 val;
1468 
1469 	if (bus->nack_cnt < ULLONG_MAX)
1470 		bus->nack_cnt++;
1471 
1472 	if (bus->fifo_use) {
1473 		/*
1474 		 * if there are still untransmitted bytes in TX FIFO
1475 		 * reduce them from wr_ind
1476 		 */
1477 		if (bus->operation == I2C_WRITE_OPER)
1478 			bus->wr_ind -= npcm_i2c_fifo_usage(bus);
1479 
1480 		/* clear the FIFO */
1481 		iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
1482 	}
1483 
1484 	/* In master write operation, got unexpected NACK */
1485 	bus->stop_ind = I2C_NACK_IND;
1486 	/* Only current master is allowed to issue Stop Condition */
1487 	if (npcm_i2c_is_master(bus)) {
1488 		/* stopping in the middle */
1489 		npcm_i2c_eob_int(bus, false);
1490 		npcm_i2c_master_stop(bus);
1491 
1492 		/* Clear SDA Status bit (by reading dummy byte) */
1493 		npcm_i2c_rd_byte(bus);
1494 
1495 		/*
1496 		 * The bus is released from stall only after the SW clears
1497 		 * NEGACK bit. Then a Stop condition is sent.
1498 		 */
1499 		npcm_i2c_clear_master_status(bus);
1500 		readx_poll_timeout_atomic(ioread8, bus->reg + NPCM_I2CCST, val,
1501 					  !(val & NPCM_I2CCST_BUSY), 10, 200);
1502 		/* Verify no status bits are still set after bus is released */
1503 		npcm_i2c_clear_master_status(bus);
1504 	}
1505 	bus->state = I2C_IDLE;
1506 
1507 	/*
1508 	 * In Master mode, NACK should be cleared only after STOP.
1509 	 * In such case, the bus is released from stall only after the
1510 	 * software clears NACK bit. Then a Stop condition is sent.
1511 	 */
1512 	npcm_i2c_callback(bus, bus->stop_ind, bus->wr_ind);
1513 }
1514 
1515 	/* Master mode: a Bus Error has been identified */
1516 static void npcm_i2c_irq_handle_ber(struct npcm_i2c *bus)
1517 {
1518 	if (bus->ber_cnt < ULLONG_MAX)
1519 		bus->ber_cnt++;
1520 	bus->stop_ind = I2C_BUS_ERR_IND;
1521 	if (npcm_i2c_is_master(bus)) {
1522 		npcm_i2c_master_abort(bus);
1523 	} else {
1524 		npcm_i2c_clear_master_status(bus);
1525 
1526 		/* Clear BB (BUS BUSY) bit */
1527 		iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
1528 
1529 		bus->cmd_err = -EAGAIN;
1530 		npcm_i2c_callback(bus, bus->stop_ind, npcm_i2c_get_index(bus));
1531 	}
1532 	bus->state = I2C_IDLE;
1533 }
1534 
1535 	/* EOB: a master End Of Busy (meaning STOP completed) */
1536 static void npcm_i2c_irq_handle_eob(struct npcm_i2c *bus)
1537 {
1538 	npcm_i2c_eob_int(bus, false);
1539 	bus->state = I2C_IDLE;
1540 	npcm_i2c_callback(bus, bus->stop_ind, bus->rd_ind);
1541 }
1542 
1543 /* Address sent and requested stall occurred (Master mode) */
1544 static void npcm_i2c_irq_handle_stall_after_start(struct npcm_i2c *bus)
1545 {
1546 	if (npcm_i2c_is_quick(bus)) {
1547 		bus->state = I2C_STOP_PENDING;
1548 		bus->stop_ind = I2C_MASTER_DONE_IND;
1549 		npcm_i2c_eob_int(bus, true);
1550 		npcm_i2c_master_stop(bus);
1551 	} else if ((bus->rd_size == 1) && !bus->read_block_use) {
1552 		/*
1553 		 * Receiving one byte only - set NACK after ensuring
1554 		 * slave ACKed the address byte.
1555 		 */
1556 		npcm_i2c_nack(bus);
1557 	}
1558 
1559 	/* Reset stall-after-address-byte */
1560 	npcm_i2c_stall_after_start(bus, false);
1561 
1562 	/* Clear stall only after setting STOP */
1563 	iowrite8(NPCM_I2CST_STASTR, bus->reg + NPCM_I2CST);
1564 }
1565 
1566 /* SDA status is set - TX or RX, master */
1567 static void npcm_i2c_irq_handle_sda(struct npcm_i2c *bus, u8 i2cst)
1568 {
1569 	u8 fif_cts;
1570 
1571 	if (!npcm_i2c_is_master(bus))
1572 		return;
1573 
1574 	if (bus->state == I2C_IDLE) {
1575 		bus->stop_ind = I2C_WAKE_UP_IND;
1576 
1577 		if (npcm_i2c_is_quick(bus) || bus->read_block_use)
1578 			/*
1579 			 * Need to stall after successful
1580 			 * completion of sending address byte
1581 			 */
1582 			npcm_i2c_stall_after_start(bus, true);
1583 		else
1584 			npcm_i2c_stall_after_start(bus, false);
1585 
1586 		/*
1587 		 * Receiving one byte only - stall after successful completion
1588 		 * of sending address byte If we NACK here, and slave doesn't
1589 		 * ACK the address, we might unintentionally NACK the next
1590 		 * multi-byte read
1591 		 */
1592 		if (bus->wr_size == 0 && bus->rd_size == 1)
1593 			npcm_i2c_stall_after_start(bus, true);
1594 
1595 		/* Initiate I2C master tx */
1596 
1597 		/* select bank 1 for FIFO regs */
1598 		npcm_i2c_select_bank(bus, I2C_BANK_1);
1599 
1600 		fif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1601 		fif_cts = fif_cts & ~NPCM_I2CFIF_CTS_SLVRSTR;
1602 
1603 		/* clear FIFO and relevant status bits. */
1604 		fif_cts = fif_cts | NPCM_I2CFIF_CTS_CLR_FIFO;
1605 		iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1606 
1607 		/* re-enable */
1608 		fif_cts = fif_cts | NPCM_I2CFIF_CTS_RXF_TXE;
1609 		iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1610 
1611 		/*
1612 		 * Configure the FIFO threshold:
1613 		 * according to the needed # of bytes to read.
1614 		 * Note: due to HW limitation can't config the rx fifo before it
1615 		 * got and ACK on the restart. LAST bit will not be reset unless
1616 		 * RX completed. It will stay set on the next tx.
1617 		 */
1618 		if (bus->wr_size)
1619 			npcm_i2c_set_fifo(bus, -1, bus->wr_size);
1620 		else
1621 			npcm_i2c_set_fifo(bus, bus->rd_size, -1);
1622 
1623 		bus->state = I2C_OPER_STARTED;
1624 
1625 		if (npcm_i2c_is_quick(bus) || bus->wr_size)
1626 			npcm_i2c_wr_byte(bus, bus->dest_addr);
1627 		else
1628 			npcm_i2c_wr_byte(bus, bus->dest_addr | BIT(0));
1629 	/* SDA interrupt, after start\restart */
1630 	} else {
1631 		if (NPCM_I2CST_XMIT & i2cst) {
1632 			bus->operation = I2C_WRITE_OPER;
1633 			npcm_i2c_irq_master_handler_write(bus);
1634 		} else {
1635 			bus->operation = I2C_READ_OPER;
1636 			npcm_i2c_irq_master_handler_read(bus);
1637 		}
1638 	}
1639 }
1640 
1641 static int npcm_i2c_int_master_handler(struct npcm_i2c *bus)
1642 {
1643 	u8 i2cst;
1644 	int ret = -EIO;
1645 
1646 	i2cst = ioread8(bus->reg + NPCM_I2CST);
1647 
1648 	if (FIELD_GET(NPCM_I2CST_NMATCH, i2cst)) {
1649 		npcm_i2c_irq_handle_nmatch(bus);
1650 		return 0;
1651 	}
1652 	/* A NACK has occurred */
1653 	if (FIELD_GET(NPCM_I2CST_NEGACK, i2cst)) {
1654 		npcm_i2c_irq_handle_nack(bus);
1655 		return 0;
1656 	}
1657 
1658 	/* Master mode: a Bus Error has been identified */
1659 	if (FIELD_GET(NPCM_I2CST_BER, i2cst)) {
1660 		npcm_i2c_irq_handle_ber(bus);
1661 		return 0;
1662 	}
1663 
1664 	/* EOB: a master End Of Busy (meaning STOP completed) */
1665 	if ((FIELD_GET(NPCM_I2CCTL1_EOBINTE,
1666 		       ioread8(bus->reg + NPCM_I2CCTL1)) == 1) &&
1667 	    (FIELD_GET(NPCM_I2CCST3_EO_BUSY,
1668 		       ioread8(bus->reg + NPCM_I2CCST3)))) {
1669 		npcm_i2c_irq_handle_eob(bus);
1670 		return 0;
1671 	}
1672 
1673 	/* Address sent and requested stall occurred (Master mode) */
1674 	if (FIELD_GET(NPCM_I2CST_STASTR, i2cst)) {
1675 		npcm_i2c_irq_handle_stall_after_start(bus);
1676 		ret = 0;
1677 	}
1678 
1679 	/* SDA status is set - TX or RX, master */
1680 	if (FIELD_GET(NPCM_I2CST_SDAST, i2cst) ||
1681 	    (bus->fifo_use &&
1682 	    (npcm_i2c_tx_fifo_empty(bus) || npcm_i2c_rx_fifo_full(bus)))) {
1683 		npcm_i2c_irq_handle_sda(bus, i2cst);
1684 		ret = 0;
1685 	}
1686 
1687 	return ret;
1688 }
1689 
1690 /* recovery using TGCLK functionality of the module */
1691 static int npcm_i2c_recovery_tgclk(struct i2c_adapter *_adap)
1692 {
1693 	u8               val;
1694 	u8               fif_cts;
1695 	bool             done = false;
1696 	int              status = -ENOTRECOVERABLE;
1697 	struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
1698 	/* Allow 3 bytes (27 toggles) to be read from the slave: */
1699 	int              iter = 27;
1700 
1701 	if ((npcm_i2c_get_SDA(_adap) == 1) && (npcm_i2c_get_SCL(_adap) == 1)) {
1702 		dev_dbg(bus->dev, "bus%d-0x%x recovery skipped, bus not stuck",
1703 			bus->num, bus->dest_addr);
1704 		npcm_i2c_reset(bus);
1705 		return 0;
1706 	}
1707 
1708 	npcm_i2c_int_enable(bus, false);
1709 	npcm_i2c_disable(bus);
1710 	npcm_i2c_enable(bus);
1711 	iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
1712 	npcm_i2c_clear_tx_fifo(bus);
1713 	npcm_i2c_clear_rx_fifo(bus);
1714 	iowrite8(0, bus->reg + NPCM_I2CRXF_CTL);
1715 	iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
1716 	npcm_i2c_stall_after_start(bus, false);
1717 
1718 	/* select bank 1 for FIFO regs */
1719 	npcm_i2c_select_bank(bus, I2C_BANK_1);
1720 
1721 	/* clear FIFO and relevant status bits. */
1722 	fif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1723 	fif_cts &= ~NPCM_I2CFIF_CTS_SLVRSTR;
1724 	fif_cts |= NPCM_I2CFIF_CTS_CLR_FIFO;
1725 	iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1726 	npcm_i2c_set_fifo(bus, -1, 0);
1727 
1728 	/* Repeat the following sequence until SDA is released */
1729 	do {
1730 		/* Issue a single SCL toggle */
1731 		iowrite8(NPCM_I2CCST_TGSCL, bus->reg + NPCM_I2CCST);
1732 		usleep_range(20, 30);
1733 		/* If SDA line is inactive (high), stop */
1734 		if (npcm_i2c_get_SDA(_adap)) {
1735 			done = true;
1736 			status = 0;
1737 		}
1738 	} while (!done && iter--);
1739 
1740 	/* If SDA line is released: send start-addr-stop, to re-sync. */
1741 	if (npcm_i2c_get_SDA(_adap)) {
1742 		/* Send an address byte in write direction: */
1743 		npcm_i2c_wr_byte(bus, bus->dest_addr);
1744 		npcm_i2c_master_start(bus);
1745 		/* Wait until START condition is sent */
1746 		status = readx_poll_timeout(npcm_i2c_get_SCL, _adap, val, !val,
1747 					    20, 200);
1748 		/* If START condition was sent */
1749 		if (npcm_i2c_is_master(bus) > 0) {
1750 			usleep_range(20, 30);
1751 			npcm_i2c_master_stop(bus);
1752 			usleep_range(200, 500);
1753 		}
1754 	}
1755 	npcm_i2c_reset(bus);
1756 	npcm_i2c_int_enable(bus, true);
1757 
1758 	if ((npcm_i2c_get_SDA(_adap) == 1) && (npcm_i2c_get_SCL(_adap) == 1))
1759 		status = 0;
1760 	else
1761 		status = -ENOTRECOVERABLE;
1762 	if (status) {
1763 		if (bus->rec_fail_cnt < ULLONG_MAX)
1764 			bus->rec_fail_cnt++;
1765 	} else {
1766 		if (bus->rec_succ_cnt < ULLONG_MAX)
1767 			bus->rec_succ_cnt++;
1768 	}
1769 	return status;
1770 }
1771 
1772 /* recovery using bit banging functionality of the module */
1773 static void npcm_i2c_recovery_init(struct i2c_adapter *_adap)
1774 {
1775 	struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
1776 	struct i2c_bus_recovery_info *rinfo = &bus->rinfo;
1777 
1778 	rinfo->recover_bus = npcm_i2c_recovery_tgclk;
1779 
1780 	/*
1781 	 * npcm i2c HW allows direct reading of SCL and SDA.
1782 	 * However, it does not support setting SCL and SDA directly.
1783 	 * The recovery function can toggle SCL when SDA is low (but not set)
1784 	 * Getter functions used internally, and can be used externally.
1785 	 */
1786 	rinfo->get_scl = npcm_i2c_get_SCL;
1787 	rinfo->get_sda = npcm_i2c_get_SDA;
1788 	_adap->bus_recovery_info = rinfo;
1789 }
1790 
1791 /* SCLFRQ min/max field values */
1792 #define SCLFRQ_MIN  10
1793 #define SCLFRQ_MAX  511
1794 #define clk_coef(freq, mul)	DIV_ROUND_UP((freq) * (mul), 1000000)
1795 
1796 /*
1797  * npcm_i2c_init_clk: init HW timing parameters.
1798  * NPCM7XX i2c module timing parameters are dependent on module core clk (APB)
1799  * and bus frequency.
1800  * 100kHz bus requires tSCL = 4 * SCLFRQ * tCLK. LT and HT are symmetric.
1801  * 400kHz bus requires asymmetric HT and LT. A different equation is recommended
1802  * by the HW designer, given core clock range (equations in comments below).
1803  *
1804  */
1805 static int npcm_i2c_init_clk(struct npcm_i2c *bus, u32 bus_freq_hz)
1806 {
1807 	u32  k1 = 0;
1808 	u32  k2 = 0;
1809 	u8   dbnct = 0;
1810 	u32  sclfrq = 0;
1811 	u8   hldt = 7;
1812 	u8   fast_mode = 0;
1813 	u32  src_clk_khz;
1814 	u32  bus_freq_khz;
1815 
1816 	src_clk_khz = bus->apb_clk / 1000;
1817 	bus_freq_khz = bus_freq_hz / 1000;
1818 	bus->bus_freq = bus_freq_hz;
1819 
1820 	/* 100KHz and below: */
1821 	if (bus_freq_hz <= I2C_MAX_STANDARD_MODE_FREQ) {
1822 		sclfrq = src_clk_khz / (bus_freq_khz * 4);
1823 
1824 		if (sclfrq < SCLFRQ_MIN || sclfrq > SCLFRQ_MAX)
1825 			return -EDOM;
1826 
1827 		if (src_clk_khz >= 40000)
1828 			hldt = 17;
1829 		else if (src_clk_khz >= 12500)
1830 			hldt = 15;
1831 		else
1832 			hldt = 7;
1833 	}
1834 
1835 	/* 400KHz: */
1836 	else if (bus_freq_hz <= I2C_MAX_FAST_MODE_FREQ) {
1837 		sclfrq = 0;
1838 		fast_mode = I2CCTL3_400K_MODE;
1839 
1840 		if (src_clk_khz < 7500)
1841 			/* 400KHZ cannot be supported for core clock < 7.5MHz */
1842 			return -EDOM;
1843 
1844 		else if (src_clk_khz >= 50000) {
1845 			k1 = 80;
1846 			k2 = 48;
1847 			hldt = 12;
1848 			dbnct = 7;
1849 		}
1850 
1851 		/* Master or Slave with frequency > 25MHz */
1852 		else if (src_clk_khz > 25000) {
1853 			hldt = clk_coef(src_clk_khz, 300) + 7;
1854 			k1 = clk_coef(src_clk_khz, 1600);
1855 			k2 = clk_coef(src_clk_khz, 900);
1856 		}
1857 	}
1858 
1859 	/* 1MHz: */
1860 	else if (bus_freq_hz <= I2C_MAX_FAST_MODE_PLUS_FREQ) {
1861 		sclfrq = 0;
1862 		fast_mode = I2CCTL3_400K_MODE;
1863 
1864 		/* 1MHZ cannot be supported for core clock < 24 MHz */
1865 		if (src_clk_khz < 24000)
1866 			return -EDOM;
1867 
1868 		k1 = clk_coef(src_clk_khz, 620);
1869 		k2 = clk_coef(src_clk_khz, 380);
1870 
1871 		/* Core clk > 40 MHz */
1872 		if (src_clk_khz > 40000) {
1873 			/*
1874 			 * Set HLDT:
1875 			 * SDA hold time:  (HLDT-7) * T(CLK) >= 120
1876 			 * HLDT = 120/T(CLK) + 7 = 120 * FREQ(CLK) + 7
1877 			 */
1878 			hldt = clk_coef(src_clk_khz, 120) + 7;
1879 		} else {
1880 			hldt = 7;
1881 			dbnct = 2;
1882 		}
1883 	}
1884 
1885 	/* Frequency larger than 1 MHz is not supported */
1886 	else
1887 		return -EINVAL;
1888 
1889 	if (bus_freq_hz >= I2C_MAX_FAST_MODE_FREQ) {
1890 		k1 = round_up(k1, 2);
1891 		k2 = round_up(k2 + 1, 2);
1892 		if (k1 < SCLFRQ_MIN || k1 > SCLFRQ_MAX ||
1893 		    k2 < SCLFRQ_MIN || k2 > SCLFRQ_MAX)
1894 			return -EDOM;
1895 	}
1896 
1897 	/* write sclfrq value. bits [6:0] are in I2CCTL2 reg */
1898 	iowrite8(FIELD_PREP(I2CCTL2_SCLFRQ6_0, sclfrq & 0x7F),
1899 		 bus->reg + NPCM_I2CCTL2);
1900 
1901 	/* bits [8:7] are in I2CCTL3 reg */
1902 	iowrite8(fast_mode | FIELD_PREP(I2CCTL3_SCLFRQ8_7, (sclfrq >> 7) & 0x3),
1903 		 bus->reg + NPCM_I2CCTL3);
1904 
1905 	/* Select Bank 0 to access NPCM_I2CCTL4/NPCM_I2CCTL5 */
1906 	npcm_i2c_select_bank(bus, I2C_BANK_0);
1907 
1908 	if (bus_freq_hz >= I2C_MAX_FAST_MODE_FREQ) {
1909 		/*
1910 		 * Set SCL Low/High Time:
1911 		 * k1 = 2 * SCLLT7-0 -> Low Time  = k1 / 2
1912 		 * k2 = 2 * SCLLT7-0 -> High Time = k2 / 2
1913 		 */
1914 		iowrite8(k1 / 2, bus->reg + NPCM_I2CSCLLT);
1915 		iowrite8(k2 / 2, bus->reg + NPCM_I2CSCLHT);
1916 
1917 		iowrite8(dbnct, bus->reg + NPCM_I2CCTL5);
1918 	}
1919 
1920 	iowrite8(hldt, bus->reg + NPCM_I2CCTL4);
1921 
1922 	/* Return to Bank 1, and stay there by default: */
1923 	npcm_i2c_select_bank(bus, I2C_BANK_1);
1924 
1925 	return 0;
1926 }
1927 
1928 static int npcm_i2c_init_module(struct npcm_i2c *bus, enum i2c_mode mode,
1929 				u32 bus_freq_hz)
1930 {
1931 	u8 val;
1932 	int ret;
1933 
1934 	/* Check whether module already enabled or frequency is out of bounds */
1935 	if ((bus->state != I2C_DISABLE && bus->state != I2C_IDLE) ||
1936 	    bus_freq_hz < I2C_FREQ_MIN_HZ || bus_freq_hz > I2C_FREQ_MAX_HZ)
1937 		return -EINVAL;
1938 
1939 	npcm_i2c_int_enable(bus, false);
1940 	npcm_i2c_disable(bus);
1941 
1942 	/* Configure FIFO mode : */
1943 	if (FIELD_GET(I2C_VER_FIFO_EN, ioread8(bus->reg + I2C_VER))) {
1944 		bus->fifo_use = true;
1945 		npcm_i2c_select_bank(bus, I2C_BANK_0);
1946 		val = ioread8(bus->reg + NPCM_I2CFIF_CTL);
1947 		val |= NPCM_I2CFIF_CTL_FIFO_EN;
1948 		iowrite8(val, bus->reg + NPCM_I2CFIF_CTL);
1949 		npcm_i2c_select_bank(bus, I2C_BANK_1);
1950 	} else {
1951 		bus->fifo_use = false;
1952 	}
1953 
1954 	/* Configure I2C module clock frequency */
1955 	ret = npcm_i2c_init_clk(bus, bus_freq_hz);
1956 	if (ret) {
1957 		dev_err(bus->dev, "npcm_i2c_init_clk failed\n");
1958 		return ret;
1959 	}
1960 
1961 	/* Enable module (before configuring CTL1) */
1962 	npcm_i2c_enable(bus);
1963 	bus->state = I2C_IDLE;
1964 	val = ioread8(bus->reg + NPCM_I2CCTL1);
1965 	val = (val | NPCM_I2CCTL1_NMINTE) & ~NPCM_I2CCTL1_RWS;
1966 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
1967 
1968 	npcm_i2c_reset(bus);
1969 
1970 	/* Check HW is OK: SDA and SCL should be high at this point. */
1971 	if ((npcm_i2c_get_SDA(&bus->adap) == 0) || (npcm_i2c_get_SCL(&bus->adap) == 0)) {
1972 		dev_err(bus->dev, "I2C%d init fail: lines are low\n", bus->num);
1973 		dev_err(bus->dev, "SDA=%d SCL=%d\n", npcm_i2c_get_SDA(&bus->adap),
1974 			npcm_i2c_get_SCL(&bus->adap));
1975 		return -ENXIO;
1976 	}
1977 
1978 	npcm_i2c_int_enable(bus, true);
1979 	return 0;
1980 }
1981 
1982 static int __npcm_i2c_init(struct npcm_i2c *bus, struct platform_device *pdev)
1983 {
1984 	u32 clk_freq_hz;
1985 	int ret;
1986 
1987 	/* Initialize the internal data structures */
1988 	bus->state = I2C_DISABLE;
1989 	bus->master_or_slave = I2C_SLAVE;
1990 	bus->int_time_stamp = 0;
1991 #if IS_ENABLED(CONFIG_I2C_SLAVE)
1992 	bus->slave = NULL;
1993 #endif
1994 
1995 	ret = device_property_read_u32(&pdev->dev, "clock-frequency",
1996 				       &clk_freq_hz);
1997 	if (ret) {
1998 		dev_info(&pdev->dev, "Could not read clock-frequency property");
1999 		clk_freq_hz = I2C_MAX_STANDARD_MODE_FREQ;
2000 	}
2001 
2002 	ret = npcm_i2c_init_module(bus, I2C_MASTER, clk_freq_hz);
2003 	if (ret) {
2004 		dev_err(&pdev->dev, "npcm_i2c_init_module failed\n");
2005 		return ret;
2006 	}
2007 
2008 	return 0;
2009 }
2010 
2011 static irqreturn_t npcm_i2c_bus_irq(int irq, void *dev_id)
2012 {
2013 	struct npcm_i2c *bus = dev_id;
2014 
2015 	if (npcm_i2c_is_master(bus))
2016 		bus->master_or_slave = I2C_MASTER;
2017 
2018 	if (bus->master_or_slave == I2C_MASTER) {
2019 		bus->int_time_stamp = jiffies;
2020 		if (!npcm_i2c_int_master_handler(bus))
2021 			return IRQ_HANDLED;
2022 	}
2023 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2024 	if (bus->slave) {
2025 		bus->master_or_slave = I2C_SLAVE;
2026 		if (npcm_i2c_int_slave_handler(bus))
2027 			return IRQ_HANDLED;
2028 	}
2029 #endif
2030 	/* Clear status bits for spurious interrupts */
2031 	npcm_i2c_clear_master_status(bus);
2032 
2033 	return IRQ_HANDLED;
2034 }
2035 
2036 static bool npcm_i2c_master_start_xmit(struct npcm_i2c *bus,
2037 				       u8 slave_addr, u16 nwrite, u16 nread,
2038 				       u8 *write_data, u8 *read_data,
2039 				       bool use_PEC, bool use_read_block)
2040 {
2041 	if (bus->state != I2C_IDLE) {
2042 		bus->cmd_err = -EBUSY;
2043 		return false;
2044 	}
2045 	bus->dest_addr = slave_addr << 1;
2046 	bus->wr_buf = write_data;
2047 	bus->wr_size = nwrite;
2048 	bus->wr_ind = 0;
2049 	bus->rd_buf = read_data;
2050 	bus->rd_size = nread;
2051 	bus->rd_ind = 0;
2052 	bus->PEC_use = 0;
2053 
2054 	/* for tx PEC is appended to buffer from i2c IF. PEC flag is ignored */
2055 	if (nread)
2056 		bus->PEC_use = use_PEC;
2057 
2058 	bus->read_block_use = use_read_block;
2059 	if (nread && !nwrite)
2060 		bus->operation = I2C_READ_OPER;
2061 	else
2062 		bus->operation = I2C_WRITE_OPER;
2063 	if (bus->fifo_use) {
2064 		u8 i2cfif_cts;
2065 
2066 		npcm_i2c_select_bank(bus, I2C_BANK_1);
2067 		/* clear FIFO and relevant status bits. */
2068 		i2cfif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
2069 		i2cfif_cts &= ~NPCM_I2CFIF_CTS_SLVRSTR;
2070 		i2cfif_cts |= NPCM_I2CFIF_CTS_CLR_FIFO;
2071 		iowrite8(i2cfif_cts, bus->reg + NPCM_I2CFIF_CTS);
2072 	}
2073 
2074 	bus->state = I2C_IDLE;
2075 	npcm_i2c_stall_after_start(bus, true);
2076 	npcm_i2c_master_start(bus);
2077 	return true;
2078 }
2079 
2080 static int npcm_i2c_master_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
2081 				int num)
2082 {
2083 	struct npcm_i2c *bus = container_of(adap, struct npcm_i2c, adap);
2084 	struct i2c_msg *msg0, *msg1;
2085 	unsigned long time_left, flags;
2086 	u16 nwrite, nread;
2087 	u8 *write_data, *read_data;
2088 	u8 slave_addr;
2089 	unsigned long timeout;
2090 	bool read_block = false;
2091 	bool read_PEC = false;
2092 	u8 bus_busy;
2093 	unsigned long timeout_usec;
2094 
2095 	if (bus->state == I2C_DISABLE) {
2096 		dev_err(bus->dev, "I2C%d module is disabled", bus->num);
2097 		return -EINVAL;
2098 	}
2099 
2100 	msg0 = &msgs[0];
2101 	slave_addr = msg0->addr;
2102 	if (msg0->flags & I2C_M_RD) { /* read */
2103 		nwrite = 0;
2104 		write_data = NULL;
2105 		read_data = msg0->buf;
2106 		if (msg0->flags & I2C_M_RECV_LEN) {
2107 			nread = 1;
2108 			read_block = true;
2109 			if (msg0->flags & I2C_CLIENT_PEC)
2110 				read_PEC = true;
2111 		} else {
2112 			nread = msg0->len;
2113 		}
2114 	} else { /* write */
2115 		nwrite = msg0->len;
2116 		write_data = msg0->buf;
2117 		nread = 0;
2118 		read_data = NULL;
2119 		if (num == 2) {
2120 			msg1 = &msgs[1];
2121 			read_data = msg1->buf;
2122 			if (msg1->flags & I2C_M_RECV_LEN) {
2123 				nread = 1;
2124 				read_block = true;
2125 				if (msg1->flags & I2C_CLIENT_PEC)
2126 					read_PEC = true;
2127 			} else {
2128 				nread = msg1->len;
2129 				read_block = false;
2130 			}
2131 		}
2132 	}
2133 
2134 	/*
2135 	 * Adaptive TimeOut: estimated time in usec + 100% margin:
2136 	 * 2: double the timeout for clock stretching case
2137 	 * 9: bits per transaction (including the ack/nack)
2138 	 */
2139 	timeout_usec = (2 * 9 * USEC_PER_SEC / bus->bus_freq) * (2 + nread + nwrite);
2140 	timeout = max_t(unsigned long, bus->adap.timeout, usecs_to_jiffies(timeout_usec));
2141 	if (nwrite >= 32 * 1024 || nread >= 32 * 1024) {
2142 		dev_err(bus->dev, "i2c%d buffer too big\n", bus->num);
2143 		return -EINVAL;
2144 	}
2145 
2146 	time_left = jiffies + timeout + 1;
2147 	do {
2148 		/*
2149 		 * we must clear slave address immediately when the bus is not
2150 		 * busy, so we spinlock it, but we don't keep the lock for the
2151 		 * entire while since it is too long.
2152 		 */
2153 		spin_lock_irqsave(&bus->lock, flags);
2154 		bus_busy = ioread8(bus->reg + NPCM_I2CCST) & NPCM_I2CCST_BB;
2155 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2156 		if (!bus_busy && bus->slave)
2157 			iowrite8((bus->slave->addr & 0x7F),
2158 				 bus->reg + NPCM_I2CADDR1);
2159 #endif
2160 		spin_unlock_irqrestore(&bus->lock, flags);
2161 
2162 	} while (time_is_after_jiffies(time_left) && bus_busy);
2163 
2164 	if (bus_busy) {
2165 		iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
2166 		npcm_i2c_reset(bus);
2167 		i2c_recover_bus(adap);
2168 		return -EAGAIN;
2169 	}
2170 
2171 	npcm_i2c_init_params(bus);
2172 	bus->dest_addr = slave_addr;
2173 	bus->msgs = msgs;
2174 	bus->msgs_num = num;
2175 	bus->cmd_err = 0;
2176 	bus->read_block_use = read_block;
2177 
2178 	reinit_completion(&bus->cmd_complete);
2179 
2180 	npcm_i2c_int_enable(bus, true);
2181 
2182 	if (npcm_i2c_master_start_xmit(bus, slave_addr, nwrite, nread,
2183 				       write_data, read_data, read_PEC,
2184 				       read_block)) {
2185 		time_left = wait_for_completion_timeout(&bus->cmd_complete,
2186 							timeout);
2187 
2188 		if (time_left == 0) {
2189 			if (bus->timeout_cnt < ULLONG_MAX)
2190 				bus->timeout_cnt++;
2191 			if (bus->master_or_slave == I2C_MASTER) {
2192 				i2c_recover_bus(adap);
2193 				bus->cmd_err = -EIO;
2194 				bus->state = I2C_IDLE;
2195 			}
2196 		}
2197 	}
2198 
2199 	/* if there was BER, check if need to recover the bus: */
2200 	if (bus->cmd_err == -EAGAIN)
2201 		bus->cmd_err = i2c_recover_bus(adap);
2202 
2203 	/*
2204 	 * After any type of error, check if LAST bit is still set,
2205 	 * due to a HW issue.
2206 	 * It cannot be cleared without resetting the module.
2207 	 */
2208 	else if (bus->cmd_err &&
2209 		 (bus->data->rxf_ctl_last_pec & ioread8(bus->reg + NPCM_I2CRXF_CTL)))
2210 		npcm_i2c_reset(bus);
2211 
2212 	/* After any xfer, successful or not, stall and EOB must be disabled */
2213 	npcm_i2c_stall_after_start(bus, false);
2214 	npcm_i2c_eob_int(bus, false);
2215 
2216 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2217 	/* reenable slave if it was enabled */
2218 	if (bus->slave)
2219 		iowrite8((bus->slave->addr & 0x7F) | NPCM_I2CADDR_SAEN,
2220 			 bus->reg + NPCM_I2CADDR1);
2221 #else
2222 	npcm_i2c_int_enable(bus, false);
2223 #endif
2224 	return bus->cmd_err;
2225 }
2226 
2227 static u32 npcm_i2c_functionality(struct i2c_adapter *adap)
2228 {
2229 	return I2C_FUNC_I2C |
2230 	       I2C_FUNC_SMBUS_EMUL |
2231 	       I2C_FUNC_SMBUS_BLOCK_DATA |
2232 	       I2C_FUNC_SMBUS_PEC |
2233 	       I2C_FUNC_SLAVE;
2234 }
2235 
2236 static const struct i2c_adapter_quirks npcm_i2c_quirks = {
2237 	.max_read_len = 32768,
2238 	.max_write_len = 32768,
2239 	.flags = I2C_AQ_COMB_WRITE_THEN_READ,
2240 };
2241 
2242 static const struct i2c_algorithm npcm_i2c_algo = {
2243 	.master_xfer = npcm_i2c_master_xfer,
2244 	.functionality = npcm_i2c_functionality,
2245 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2246 	.reg_slave	= npcm_i2c_reg_slave,
2247 	.unreg_slave	= npcm_i2c_unreg_slave,
2248 #endif
2249 };
2250 
2251 static void npcm_i2c_init_debugfs(struct platform_device *pdev,
2252 				  struct npcm_i2c *bus)
2253 {
2254 	debugfs_create_u64("ber_cnt", 0444, bus->adap.debugfs, &bus->ber_cnt);
2255 	debugfs_create_u64("nack_cnt", 0444, bus->adap.debugfs, &bus->nack_cnt);
2256 	debugfs_create_u64("rec_succ_cnt", 0444, bus->adap.debugfs, &bus->rec_succ_cnt);
2257 	debugfs_create_u64("rec_fail_cnt", 0444, bus->adap.debugfs, &bus->rec_fail_cnt);
2258 	debugfs_create_u64("timeout_cnt", 0444, bus->adap.debugfs, &bus->timeout_cnt);
2259 	debugfs_create_u64("tx_complete_cnt", 0444, bus->adap.debugfs, &bus->tx_complete_cnt);
2260 }
2261 
2262 static int npcm_i2c_probe_bus(struct platform_device *pdev)
2263 {
2264 	struct device_node *np = pdev->dev.of_node;
2265 	static struct regmap *gcr_regmap;
2266 	struct device *dev = &pdev->dev;
2267 	struct i2c_adapter *adap;
2268 	struct npcm_i2c *bus;
2269 	struct clk *i2c_clk;
2270 	int irq;
2271 	int ret;
2272 
2273 	bus = devm_kzalloc(&pdev->dev, sizeof(*bus), GFP_KERNEL);
2274 	if (!bus)
2275 		return -ENOMEM;
2276 
2277 	bus->dev = &pdev->dev;
2278 
2279 	bus->data = of_device_get_match_data(dev);
2280 	if (!bus->data) {
2281 		dev_err(dev, "OF data missing\n");
2282 		return -EINVAL;
2283 	}
2284 
2285 	bus->num = of_alias_get_id(pdev->dev.of_node, "i2c");
2286 	/* core clk must be acquired to calculate module timing settings */
2287 	i2c_clk = devm_clk_get(&pdev->dev, NULL);
2288 	if (IS_ERR(i2c_clk))
2289 		return PTR_ERR(i2c_clk);
2290 	bus->apb_clk = clk_get_rate(i2c_clk);
2291 
2292 	gcr_regmap = syscon_regmap_lookup_by_phandle(np, "nuvoton,sys-mgr");
2293 	if (IS_ERR(gcr_regmap))
2294 		gcr_regmap = syscon_regmap_lookup_by_compatible("nuvoton,npcm750-gcr");
2295 
2296 	if (IS_ERR(gcr_regmap))
2297 		return PTR_ERR(gcr_regmap);
2298 	regmap_write(gcr_regmap, NPCM_I2CSEGCTL, bus->data->segctl_init_val);
2299 
2300 	bus->reg = devm_platform_ioremap_resource(pdev, 0);
2301 	if (IS_ERR(bus->reg))
2302 		return PTR_ERR(bus->reg);
2303 
2304 	spin_lock_init(&bus->lock);
2305 	init_completion(&bus->cmd_complete);
2306 
2307 	adap = &bus->adap;
2308 	adap->owner = THIS_MODULE;
2309 	adap->retries = 3;
2310 	adap->timeout = msecs_to_jiffies(35);
2311 	adap->algo = &npcm_i2c_algo;
2312 	adap->quirks = &npcm_i2c_quirks;
2313 	adap->algo_data = bus;
2314 	adap->dev.parent = &pdev->dev;
2315 	adap->dev.of_node = pdev->dev.of_node;
2316 	adap->nr = pdev->id;
2317 
2318 	irq = platform_get_irq(pdev, 0);
2319 	if (irq < 0)
2320 		return irq;
2321 
2322 	ret = devm_request_irq(bus->dev, irq, npcm_i2c_bus_irq, 0,
2323 			       dev_name(bus->dev), bus);
2324 	if (ret)
2325 		return ret;
2326 
2327 	ret = __npcm_i2c_init(bus, pdev);
2328 	if (ret)
2329 		return ret;
2330 
2331 	npcm_i2c_recovery_init(adap);
2332 
2333 	i2c_set_adapdata(adap, bus);
2334 
2335 	snprintf(bus->adap.name, sizeof(bus->adap.name), "npcm_i2c_%d",
2336 		 bus->num);
2337 	ret = i2c_add_numbered_adapter(&bus->adap);
2338 	if (ret)
2339 		return ret;
2340 
2341 	platform_set_drvdata(pdev, bus);
2342 	npcm_i2c_init_debugfs(pdev, bus);
2343 	return 0;
2344 }
2345 
2346 static void npcm_i2c_remove_bus(struct platform_device *pdev)
2347 {
2348 	unsigned long lock_flags;
2349 	struct npcm_i2c *bus = platform_get_drvdata(pdev);
2350 
2351 	spin_lock_irqsave(&bus->lock, lock_flags);
2352 	npcm_i2c_disable(bus);
2353 	spin_unlock_irqrestore(&bus->lock, lock_flags);
2354 	i2c_del_adapter(&bus->adap);
2355 }
2356 
2357 static const struct of_device_id npcm_i2c_bus_of_table[] = {
2358 	{ .compatible = "nuvoton,npcm750-i2c", .data = &npxm7xx_i2c_data },
2359 	{ .compatible = "nuvoton,npcm845-i2c", .data = &npxm8xx_i2c_data },
2360 	{}
2361 };
2362 MODULE_DEVICE_TABLE(of, npcm_i2c_bus_of_table);
2363 
2364 static struct platform_driver npcm_i2c_bus_driver = {
2365 	.probe = npcm_i2c_probe_bus,
2366 	.remove_new = npcm_i2c_remove_bus,
2367 	.driver = {
2368 		.name = "nuvoton-i2c",
2369 		.of_match_table = npcm_i2c_bus_of_table,
2370 	}
2371 };
2372 
2373 module_platform_driver(npcm_i2c_bus_driver);
2374 
2375 MODULE_AUTHOR("Avi Fishman <avi.fishman@gmail.com>");
2376 MODULE_AUTHOR("Tali Perry <tali.perry@nuvoton.com>");
2377 MODULE_AUTHOR("Tyrone Ting <kfting@nuvoton.com>");
2378 MODULE_DESCRIPTION("Nuvoton I2C Bus Driver");
2379 MODULE_LICENSE("GPL v2");
2380