xref: /linux/drivers/i2c/busses/i2c-npcm7xx.c (revision 156010ed9c2ac1e9df6c11b1f688cf8a6e0152e6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Nuvoton NPCM7xx I2C Controller driver
4  *
5  * Copyright (C) 2020 Nuvoton Technologies tali.perry@nuvoton.com
6  */
7 #include <linux/bitfield.h>
8 #include <linux/clk.h>
9 #include <linux/debugfs.h>
10 #include <linux/errno.h>
11 #include <linux/i2c.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/irq.h>
15 #include <linux/jiffies.h>
16 #include <linux/kernel.h>
17 #include <linux/mfd/syscon.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/regmap.h>
23 
24 enum i2c_mode {
25 	I2C_MASTER,
26 	I2C_SLAVE,
27 };
28 
29 /*
30  * External I2C Interface driver xfer indication values, which indicate status
31  * of the bus.
32  */
33 enum i2c_state_ind {
34 	I2C_NO_STATUS_IND = 0,
35 	I2C_SLAVE_RCV_IND,
36 	I2C_SLAVE_XMIT_IND,
37 	I2C_SLAVE_XMIT_MISSING_DATA_IND,
38 	I2C_SLAVE_RESTART_IND,
39 	I2C_SLAVE_DONE_IND,
40 	I2C_MASTER_DONE_IND,
41 	I2C_NACK_IND,
42 	I2C_BUS_ERR_IND,
43 	I2C_WAKE_UP_IND,
44 	I2C_BLOCK_BYTES_ERR_IND,
45 	I2C_SLAVE_RCV_MISSING_DATA_IND,
46 };
47 
48 /*
49  * Operation type values (used to define the operation currently running)
50  * module is interrupt driven, on each interrupt the current operation is
51  * checked to see if the module is currently reading or writing.
52  */
53 enum i2c_oper {
54 	I2C_NO_OPER = 0,
55 	I2C_WRITE_OPER,
56 	I2C_READ_OPER,
57 };
58 
59 /* I2C Bank (module had 2 banks of registers) */
60 enum i2c_bank {
61 	I2C_BANK_0 = 0,
62 	I2C_BANK_1,
63 };
64 
65 /* Internal I2C states values (for the I2C module state machine). */
66 enum i2c_state {
67 	I2C_DISABLE = 0,
68 	I2C_IDLE,
69 	I2C_MASTER_START,
70 	I2C_SLAVE_MATCH,
71 	I2C_OPER_STARTED,
72 	I2C_STOP_PENDING,
73 };
74 
75 #if IS_ENABLED(CONFIG_I2C_SLAVE)
76 /* Module supports setting multiple own slave addresses */
77 enum i2c_addr {
78 	I2C_SLAVE_ADDR1 = 0,
79 	I2C_SLAVE_ADDR2,
80 	I2C_SLAVE_ADDR3,
81 	I2C_SLAVE_ADDR4,
82 	I2C_SLAVE_ADDR5,
83 	I2C_SLAVE_ADDR6,
84 	I2C_SLAVE_ADDR7,
85 	I2C_SLAVE_ADDR8,
86 	I2C_SLAVE_ADDR9,
87 	I2C_SLAVE_ADDR10,
88 	I2C_GC_ADDR,
89 	I2C_ARP_ADDR,
90 };
91 #endif
92 
93 /* init register and default value required to enable module */
94 #define NPCM_I2CSEGCTL			0xE4
95 
96 /* Common regs */
97 #define NPCM_I2CSDA			0x00
98 #define NPCM_I2CST			0x02
99 #define NPCM_I2CCST			0x04
100 #define NPCM_I2CCTL1			0x06
101 #define NPCM_I2CADDR1			0x08
102 #define NPCM_I2CCTL2			0x0A
103 #define NPCM_I2CADDR2			0x0C
104 #define NPCM_I2CCTL3			0x0E
105 #define NPCM_I2CCST2			0x18
106 #define NPCM_I2CCST3			0x19
107 #define I2C_VER				0x1F
108 
109 /* BANK 0 regs */
110 #define NPCM_I2CADDR3			0x10
111 #define NPCM_I2CADDR7			0x11
112 #define NPCM_I2CADDR4			0x12
113 #define NPCM_I2CADDR8			0x13
114 #define NPCM_I2CADDR5			0x14
115 #define NPCM_I2CADDR9			0x15
116 #define NPCM_I2CADDR6			0x16
117 #define NPCM_I2CADDR10			0x17
118 #define NPCM_I2CCTL4			0x1A
119 #define NPCM_I2CCTL5			0x1B
120 #define NPCM_I2CSCLLT			0x1C /* SCL Low Time */
121 #define NPCM_I2CFIF_CTL			0x1D /* FIFO Control */
122 #define NPCM_I2CSCLHT			0x1E /* SCL High Time */
123 
124 /* BANK 1 regs */
125 #define NPCM_I2CFIF_CTS			0x10 /* Both FIFOs Control and Status */
126 #define NPCM_I2CTXF_CTL			0x12 /* Tx-FIFO Control */
127 #define NPCM_I2CT_OUT			0x14 /* Bus T.O. */
128 #define NPCM_I2CPEC			0x16 /* PEC Data */
129 #define NPCM_I2CTXF_STS			0x1A /* Tx-FIFO Status */
130 #define NPCM_I2CRXF_STS			0x1C /* Rx-FIFO Status */
131 #define NPCM_I2CRXF_CTL			0x1E /* Rx-FIFO Control */
132 
133 #if IS_ENABLED(CONFIG_I2C_SLAVE)
134 /*
135  * npcm_i2caddr array:
136  * The module supports having multiple own slave addresses.
137  * Since the addr regs are sprinkled all over the address space,
138  * use this array to get the address or each register.
139  */
140 #define I2C_NUM_OWN_ADDR 2
141 #define I2C_NUM_OWN_ADDR_SUPPORTED 2
142 
143 static const int npcm_i2caddr[I2C_NUM_OWN_ADDR] = {
144 	NPCM_I2CADDR1, NPCM_I2CADDR2,
145 };
146 #endif
147 
148 /* NPCM_I2CST reg fields */
149 #define NPCM_I2CST_XMIT			BIT(0)	/* Transmit mode */
150 #define NPCM_I2CST_MASTER		BIT(1)	/* Master mode */
151 #define NPCM_I2CST_NMATCH		BIT(2)	/* New match */
152 #define NPCM_I2CST_STASTR		BIT(3)	/* Stall after start */
153 #define NPCM_I2CST_NEGACK		BIT(4)	/* Negative ACK */
154 #define NPCM_I2CST_BER			BIT(5)	/* Bus error */
155 #define NPCM_I2CST_SDAST		BIT(6)	/* SDA status */
156 #define NPCM_I2CST_SLVSTP		BIT(7)	/* Slave stop */
157 
158 /* NPCM_I2CCST reg fields */
159 #define NPCM_I2CCST_BUSY		BIT(0)	/* Busy */
160 #define NPCM_I2CCST_BB			BIT(1)	/* Bus busy */
161 #define NPCM_I2CCST_MATCH		BIT(2)	/* Address match */
162 #define NPCM_I2CCST_GCMATCH		BIT(3)	/* Global call match */
163 #define NPCM_I2CCST_TSDA		BIT(4)	/* Test SDA line */
164 #define NPCM_I2CCST_TGSCL		BIT(5)	/* Toggle SCL line */
165 #define NPCM_I2CCST_MATCHAF		BIT(6)	/* Match address field */
166 #define NPCM_I2CCST_ARPMATCH		BIT(7)	/* ARP address match */
167 
168 /* NPCM_I2CCTL1 reg fields */
169 #define NPCM_I2CCTL1_START		BIT(0)	/* Generate start condition */
170 #define NPCM_I2CCTL1_STOP		BIT(1)	/* Generate stop condition */
171 #define NPCM_I2CCTL1_INTEN		BIT(2)	/* Interrupt enable */
172 #define NPCM_I2CCTL1_EOBINTE		BIT(3)
173 #define NPCM_I2CCTL1_ACK		BIT(4)
174 #define NPCM_I2CCTL1_GCMEN		BIT(5)	/* Global call match enable */
175 #define NPCM_I2CCTL1_NMINTE		BIT(6)	/* New match interrupt enable */
176 #define NPCM_I2CCTL1_STASTRE		BIT(7)	/* Stall after start enable */
177 
178 /* RW1S fields (inside a RW reg): */
179 #define NPCM_I2CCTL1_RWS   \
180 	(NPCM_I2CCTL1_START | NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_ACK)
181 
182 /* npcm_i2caddr reg fields */
183 #define NPCM_I2CADDR_A			GENMASK(6, 0)	/* Address */
184 #define NPCM_I2CADDR_SAEN		BIT(7)		/* Slave address enable */
185 
186 /* NPCM_I2CCTL2 reg fields */
187 #define I2CCTL2_ENABLE			BIT(0)		/* Module enable */
188 #define I2CCTL2_SCLFRQ6_0		GENMASK(7, 1)	/* Bits 0:6 of frequency divisor */
189 
190 /* NPCM_I2CCTL3 reg fields */
191 #define I2CCTL3_SCLFRQ8_7		GENMASK(1, 0)	/* Bits 7:8 of frequency divisor */
192 #define I2CCTL3_ARPMEN			BIT(2)	/* ARP match enable */
193 #define I2CCTL3_IDL_START		BIT(3)
194 #define I2CCTL3_400K_MODE		BIT(4)
195 #define I2CCTL3_BNK_SEL			BIT(5)
196 #define I2CCTL3_SDA_LVL			BIT(6)
197 #define I2CCTL3_SCL_LVL			BIT(7)
198 
199 /* NPCM_I2CCST2 reg fields */
200 #define NPCM_I2CCST2_MATCHA1F		BIT(0)
201 #define NPCM_I2CCST2_MATCHA2F		BIT(1)
202 #define NPCM_I2CCST2_MATCHA3F		BIT(2)
203 #define NPCM_I2CCST2_MATCHA4F		BIT(3)
204 #define NPCM_I2CCST2_MATCHA5F		BIT(4)
205 #define NPCM_I2CCST2_MATCHA6F		BIT(5)
206 #define NPCM_I2CCST2_MATCHA7F		BIT(5)
207 #define NPCM_I2CCST2_INTSTS		BIT(7)
208 
209 /* NPCM_I2CCST3 reg fields */
210 #define NPCM_I2CCST3_MATCHA8F		BIT(0)
211 #define NPCM_I2CCST3_MATCHA9F		BIT(1)
212 #define NPCM_I2CCST3_MATCHA10F		BIT(2)
213 #define NPCM_I2CCST3_EO_BUSY		BIT(7)
214 
215 /* NPCM_I2CCTL4 reg fields */
216 #define I2CCTL4_HLDT			GENMASK(5, 0)
217 #define I2CCTL4_LVL_WE			BIT(7)
218 
219 /* NPCM_I2CCTL5 reg fields */
220 #define I2CCTL5_DBNCT			GENMASK(3, 0)
221 
222 /* NPCM_I2CFIF_CTS reg fields */
223 #define NPCM_I2CFIF_CTS_RXF_TXE		BIT(1)
224 #define NPCM_I2CFIF_CTS_RFTE_IE		BIT(3)
225 #define NPCM_I2CFIF_CTS_CLR_FIFO	BIT(6)
226 #define NPCM_I2CFIF_CTS_SLVRSTR		BIT(7)
227 
228 /* NPCM_I2CTXF_CTL reg field */
229 #define NPCM_I2CTXF_CTL_THR_TXIE	BIT(6)
230 
231 /* NPCM_I2CT_OUT reg fields */
232 #define NPCM_I2CT_OUT_TO_CKDIV		GENMASK(5, 0)
233 #define NPCM_I2CT_OUT_T_OUTIE		BIT(6)
234 #define NPCM_I2CT_OUT_T_OUTST		BIT(7)
235 
236 /* NPCM_I2CTXF_STS reg fields */
237 #define NPCM_I2CTXF_STS_TX_THST		BIT(6)
238 
239 /* NPCM_I2CRXF_STS reg fields */
240 #define NPCM_I2CRXF_STS_RX_THST		BIT(6)
241 
242 /* NPCM_I2CFIF_CTL reg fields */
243 #define NPCM_I2CFIF_CTL_FIFO_EN		BIT(4)
244 
245 /* NPCM_I2CRXF_CTL reg fields */
246 #define NPCM_I2CRXF_CTL_THR_RXIE	BIT(6)
247 
248 #define MAX_I2C_HW_FIFO_SIZE		32
249 
250 /* I2C_VER reg fields */
251 #define I2C_VER_VERSION			GENMASK(6, 0)
252 #define I2C_VER_FIFO_EN			BIT(7)
253 
254 /* stall/stuck timeout in us */
255 #define DEFAULT_STALL_COUNT		25
256 
257 /* SCLFRQ field position */
258 #define SCLFRQ_0_TO_6			GENMASK(6, 0)
259 #define SCLFRQ_7_TO_8			GENMASK(8, 7)
260 
261 /* supported clk settings. values in Hz. */
262 #define I2C_FREQ_MIN_HZ			10000
263 #define I2C_FREQ_MAX_HZ			I2C_MAX_FAST_MODE_PLUS_FREQ
264 
265 struct npcm_i2c_data {
266 	u8 fifo_size;
267 	u32 segctl_init_val;
268 	u8 txf_sts_tx_bytes;
269 	u8 rxf_sts_rx_bytes;
270 	u8 rxf_ctl_last_pec;
271 };
272 
273 static const struct npcm_i2c_data npxm7xx_i2c_data = {
274 	.fifo_size = 16,
275 	.segctl_init_val = 0x0333F000,
276 	.txf_sts_tx_bytes = GENMASK(4, 0),
277 	.rxf_sts_rx_bytes = GENMASK(4, 0),
278 	.rxf_ctl_last_pec = BIT(5),
279 };
280 
281 static const struct npcm_i2c_data npxm8xx_i2c_data = {
282 	.fifo_size = 32,
283 	.segctl_init_val = 0x9333F000,
284 	.txf_sts_tx_bytes = GENMASK(5, 0),
285 	.rxf_sts_rx_bytes = GENMASK(5, 0),
286 	.rxf_ctl_last_pec = BIT(7),
287 };
288 
289 /* Status of one I2C module */
290 struct npcm_i2c {
291 	struct i2c_adapter adap;
292 	struct device *dev;
293 	unsigned char __iomem *reg;
294 	const struct npcm_i2c_data *data;
295 	spinlock_t lock;   /* IRQ synchronization */
296 	struct completion cmd_complete;
297 	int cmd_err;
298 	struct i2c_msg *msgs;
299 	int msgs_num;
300 	int num;
301 	u32 apb_clk;
302 	struct i2c_bus_recovery_info rinfo;
303 	enum i2c_state state;
304 	enum i2c_oper operation;
305 	enum i2c_mode master_or_slave;
306 	enum i2c_state_ind stop_ind;
307 	u8 dest_addr;
308 	u8 *rd_buf;
309 	u16 rd_size;
310 	u16 rd_ind;
311 	u8 *wr_buf;
312 	u16 wr_size;
313 	u16 wr_ind;
314 	bool fifo_use;
315 	u16 PEC_mask; /* PEC bit mask per slave address */
316 	bool PEC_use;
317 	bool read_block_use;
318 	unsigned long int_time_stamp;
319 	unsigned long bus_freq; /* in Hz */
320 #if IS_ENABLED(CONFIG_I2C_SLAVE)
321 	u8 own_slave_addr;
322 	struct i2c_client *slave;
323 	int slv_rd_size;
324 	int slv_rd_ind;
325 	int slv_wr_size;
326 	int slv_wr_ind;
327 	u8 slv_rd_buf[MAX_I2C_HW_FIFO_SIZE];
328 	u8 slv_wr_buf[MAX_I2C_HW_FIFO_SIZE];
329 #endif
330 	struct dentry *debugfs; /* debugfs device directory */
331 	u64 ber_cnt;
332 	u64 rec_succ_cnt;
333 	u64 rec_fail_cnt;
334 	u64 nack_cnt;
335 	u64 timeout_cnt;
336 	u64 tx_complete_cnt;
337 };
338 
339 static inline void npcm_i2c_select_bank(struct npcm_i2c *bus,
340 					enum i2c_bank bank)
341 {
342 	u8 i2cctl3 = ioread8(bus->reg + NPCM_I2CCTL3);
343 
344 	if (bank == I2C_BANK_0)
345 		i2cctl3 = i2cctl3 & ~I2CCTL3_BNK_SEL;
346 	else
347 		i2cctl3 = i2cctl3 | I2CCTL3_BNK_SEL;
348 	iowrite8(i2cctl3, bus->reg + NPCM_I2CCTL3);
349 }
350 
351 static void npcm_i2c_init_params(struct npcm_i2c *bus)
352 {
353 	bus->stop_ind = I2C_NO_STATUS_IND;
354 	bus->rd_size = 0;
355 	bus->wr_size = 0;
356 	bus->rd_ind = 0;
357 	bus->wr_ind = 0;
358 	bus->read_block_use = false;
359 	bus->int_time_stamp = 0;
360 	bus->PEC_use = false;
361 	bus->PEC_mask = 0;
362 #if IS_ENABLED(CONFIG_I2C_SLAVE)
363 	if (bus->slave)
364 		bus->master_or_slave = I2C_SLAVE;
365 #endif
366 }
367 
368 static inline void npcm_i2c_wr_byte(struct npcm_i2c *bus, u8 data)
369 {
370 	iowrite8(data, bus->reg + NPCM_I2CSDA);
371 }
372 
373 static inline u8 npcm_i2c_rd_byte(struct npcm_i2c *bus)
374 {
375 	return ioread8(bus->reg + NPCM_I2CSDA);
376 }
377 
378 static int npcm_i2c_get_SCL(struct i2c_adapter *_adap)
379 {
380 	struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
381 
382 	return !!(I2CCTL3_SCL_LVL & ioread8(bus->reg + NPCM_I2CCTL3));
383 }
384 
385 static int npcm_i2c_get_SDA(struct i2c_adapter *_adap)
386 {
387 	struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
388 
389 	return !!(I2CCTL3_SDA_LVL & ioread8(bus->reg + NPCM_I2CCTL3));
390 }
391 
392 static inline u16 npcm_i2c_get_index(struct npcm_i2c *bus)
393 {
394 	if (bus->operation == I2C_READ_OPER)
395 		return bus->rd_ind;
396 	if (bus->operation == I2C_WRITE_OPER)
397 		return bus->wr_ind;
398 	return 0;
399 }
400 
401 /* quick protocol (just address) */
402 static inline bool npcm_i2c_is_quick(struct npcm_i2c *bus)
403 {
404 	return bus->wr_size == 0 && bus->rd_size == 0;
405 }
406 
407 static void npcm_i2c_disable(struct npcm_i2c *bus)
408 {
409 	u8 i2cctl2;
410 
411 #if IS_ENABLED(CONFIG_I2C_SLAVE)
412 	int i;
413 
414 	/* Slave addresses removal */
415 	for (i = I2C_SLAVE_ADDR1; i < I2C_NUM_OWN_ADDR_SUPPORTED; i++)
416 		iowrite8(0, bus->reg + npcm_i2caddr[i]);
417 
418 #endif
419 	/* Disable module */
420 	i2cctl2 = ioread8(bus->reg + NPCM_I2CCTL2);
421 	i2cctl2 = i2cctl2 & ~I2CCTL2_ENABLE;
422 	iowrite8(i2cctl2, bus->reg + NPCM_I2CCTL2);
423 
424 	bus->state = I2C_DISABLE;
425 }
426 
427 static void npcm_i2c_enable(struct npcm_i2c *bus)
428 {
429 	u8 i2cctl2 = ioread8(bus->reg + NPCM_I2CCTL2);
430 
431 	i2cctl2 = i2cctl2 | I2CCTL2_ENABLE;
432 	iowrite8(i2cctl2, bus->reg + NPCM_I2CCTL2);
433 	bus->state = I2C_IDLE;
434 }
435 
436 /* enable\disable end of busy (EOB) interrupts */
437 static inline void npcm_i2c_eob_int(struct npcm_i2c *bus, bool enable)
438 {
439 	u8 val;
440 
441 	/* Clear EO_BUSY pending bit: */
442 	val = ioread8(bus->reg + NPCM_I2CCST3);
443 	val = val | NPCM_I2CCST3_EO_BUSY;
444 	iowrite8(val, bus->reg + NPCM_I2CCST3);
445 
446 	val = ioread8(bus->reg + NPCM_I2CCTL1);
447 	val &= ~NPCM_I2CCTL1_RWS;
448 	if (enable)
449 		val |= NPCM_I2CCTL1_EOBINTE;
450 	else
451 		val &= ~NPCM_I2CCTL1_EOBINTE;
452 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
453 }
454 
455 static inline bool npcm_i2c_tx_fifo_empty(struct npcm_i2c *bus)
456 {
457 	u8 tx_fifo_sts;
458 
459 	tx_fifo_sts = ioread8(bus->reg + NPCM_I2CTXF_STS);
460 	/* check if TX FIFO is not empty */
461 	if ((tx_fifo_sts & bus->data->txf_sts_tx_bytes) == 0)
462 		return false;
463 
464 	/* check if TX FIFO status bit is set: */
465 	return !!FIELD_GET(NPCM_I2CTXF_STS_TX_THST, tx_fifo_sts);
466 }
467 
468 static inline bool npcm_i2c_rx_fifo_full(struct npcm_i2c *bus)
469 {
470 	u8 rx_fifo_sts;
471 
472 	rx_fifo_sts = ioread8(bus->reg + NPCM_I2CRXF_STS);
473 	/* check if RX FIFO is not empty: */
474 	if ((rx_fifo_sts & bus->data->rxf_sts_rx_bytes) == 0)
475 		return false;
476 
477 	/* check if rx fifo full status is set: */
478 	return !!FIELD_GET(NPCM_I2CRXF_STS_RX_THST, rx_fifo_sts);
479 }
480 
481 static inline void npcm_i2c_clear_fifo_int(struct npcm_i2c *bus)
482 {
483 	u8 val;
484 
485 	val = ioread8(bus->reg + NPCM_I2CFIF_CTS);
486 	val = (val & NPCM_I2CFIF_CTS_SLVRSTR) | NPCM_I2CFIF_CTS_RXF_TXE;
487 	iowrite8(val, bus->reg + NPCM_I2CFIF_CTS);
488 }
489 
490 static inline void npcm_i2c_clear_tx_fifo(struct npcm_i2c *bus)
491 {
492 	u8 val;
493 
494 	val = ioread8(bus->reg + NPCM_I2CTXF_STS);
495 	val = val | NPCM_I2CTXF_STS_TX_THST;
496 	iowrite8(val, bus->reg + NPCM_I2CTXF_STS);
497 }
498 
499 static inline void npcm_i2c_clear_rx_fifo(struct npcm_i2c *bus)
500 {
501 	u8 val;
502 
503 	val = ioread8(bus->reg + NPCM_I2CRXF_STS);
504 	val = val | NPCM_I2CRXF_STS_RX_THST;
505 	iowrite8(val, bus->reg + NPCM_I2CRXF_STS);
506 }
507 
508 static void npcm_i2c_int_enable(struct npcm_i2c *bus, bool enable)
509 {
510 	u8 val;
511 
512 	val = ioread8(bus->reg + NPCM_I2CCTL1);
513 	val &= ~NPCM_I2CCTL1_RWS;
514 	if (enable)
515 		val |= NPCM_I2CCTL1_INTEN;
516 	else
517 		val &= ~NPCM_I2CCTL1_INTEN;
518 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
519 }
520 
521 static inline void npcm_i2c_master_start(struct npcm_i2c *bus)
522 {
523 	u8 val;
524 
525 	val = ioread8(bus->reg + NPCM_I2CCTL1);
526 	val &= ~(NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_ACK);
527 	val |= NPCM_I2CCTL1_START;
528 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
529 }
530 
531 static inline void npcm_i2c_master_stop(struct npcm_i2c *bus)
532 {
533 	u8 val;
534 
535 	/*
536 	 * override HW issue: I2C may fail to supply stop condition in Master
537 	 * Write operation.
538 	 * Need to delay at least 5 us from the last int, before issueing a stop
539 	 */
540 	udelay(10); /* function called from interrupt, can't sleep */
541 	val = ioread8(bus->reg + NPCM_I2CCTL1);
542 	val &= ~(NPCM_I2CCTL1_START | NPCM_I2CCTL1_ACK);
543 	val |= NPCM_I2CCTL1_STOP;
544 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
545 
546 	if (!bus->fifo_use)
547 		return;
548 
549 	npcm_i2c_select_bank(bus, I2C_BANK_1);
550 
551 	if (bus->operation == I2C_READ_OPER)
552 		npcm_i2c_clear_rx_fifo(bus);
553 	else
554 		npcm_i2c_clear_tx_fifo(bus);
555 	npcm_i2c_clear_fifo_int(bus);
556 	iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
557 }
558 
559 static inline void npcm_i2c_stall_after_start(struct npcm_i2c *bus, bool stall)
560 {
561 	u8 val;
562 
563 	val = ioread8(bus->reg + NPCM_I2CCTL1);
564 	val &= ~NPCM_I2CCTL1_RWS;
565 	if (stall)
566 		val |= NPCM_I2CCTL1_STASTRE;
567 	else
568 		val &= ~NPCM_I2CCTL1_STASTRE;
569 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
570 }
571 
572 static inline void npcm_i2c_nack(struct npcm_i2c *bus)
573 {
574 	u8 val;
575 
576 	val = ioread8(bus->reg + NPCM_I2CCTL1);
577 	val &= ~(NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_START);
578 	val |= NPCM_I2CCTL1_ACK;
579 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
580 }
581 
582 static inline void npcm_i2c_clear_master_status(struct npcm_i2c *bus)
583 {
584 	u8 val;
585 
586 	/* Clear NEGACK, STASTR and BER bits */
587 	val = NPCM_I2CST_BER | NPCM_I2CST_NEGACK | NPCM_I2CST_STASTR;
588 	iowrite8(val, bus->reg + NPCM_I2CST);
589 }
590 
591 #if IS_ENABLED(CONFIG_I2C_SLAVE)
592 static void npcm_i2c_slave_int_enable(struct npcm_i2c *bus, bool enable)
593 {
594 	u8 i2cctl1;
595 
596 	/* enable interrupt on slave match: */
597 	i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
598 	i2cctl1 &= ~NPCM_I2CCTL1_RWS;
599 	if (enable)
600 		i2cctl1 |= NPCM_I2CCTL1_NMINTE;
601 	else
602 		i2cctl1 &= ~NPCM_I2CCTL1_NMINTE;
603 	iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
604 }
605 
606 static int npcm_i2c_slave_enable(struct npcm_i2c *bus, enum i2c_addr addr_type,
607 				 u8 addr, bool enable)
608 {
609 	u8 i2cctl1;
610 	u8 i2cctl3;
611 	u8 sa_reg;
612 
613 	sa_reg = (addr & 0x7F) | FIELD_PREP(NPCM_I2CADDR_SAEN, enable);
614 	if (addr_type == I2C_GC_ADDR) {
615 		i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
616 		if (enable)
617 			i2cctl1 |= NPCM_I2CCTL1_GCMEN;
618 		else
619 			i2cctl1 &= ~NPCM_I2CCTL1_GCMEN;
620 		iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
621 		return 0;
622 	} else if (addr_type == I2C_ARP_ADDR) {
623 		i2cctl3 = ioread8(bus->reg + NPCM_I2CCTL3);
624 		if (enable)
625 			i2cctl3 |= I2CCTL3_ARPMEN;
626 		else
627 			i2cctl3 &= ~I2CCTL3_ARPMEN;
628 		iowrite8(i2cctl3, bus->reg + NPCM_I2CCTL3);
629 		return 0;
630 	}
631 	if (addr_type > I2C_SLAVE_ADDR2 && addr_type <= I2C_SLAVE_ADDR10)
632 		dev_err(bus->dev, "try to enable more than 2 SA not supported\n");
633 
634 	if (addr_type >= I2C_ARP_ADDR)
635 		return -EFAULT;
636 
637 	/* Set and enable the address */
638 	iowrite8(sa_reg, bus->reg + npcm_i2caddr[addr_type]);
639 	npcm_i2c_slave_int_enable(bus, enable);
640 
641 	return 0;
642 }
643 #endif
644 
645 static void npcm_i2c_reset(struct npcm_i2c *bus)
646 {
647 	/*
648 	 * Save I2CCTL1 relevant bits. It is being cleared when the module
649 	 *  is disabled.
650 	 */
651 	u8 i2cctl1;
652 #if IS_ENABLED(CONFIG_I2C_SLAVE)
653 	u8 addr;
654 #endif
655 
656 	i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
657 
658 	npcm_i2c_disable(bus);
659 	npcm_i2c_enable(bus);
660 
661 	/* Restore NPCM_I2CCTL1 Status */
662 	i2cctl1 &= ~NPCM_I2CCTL1_RWS;
663 	iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
664 
665 	/* Clear BB (BUS BUSY) bit */
666 	iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
667 	iowrite8(0xFF, bus->reg + NPCM_I2CST);
668 
669 	/* Clear and disable EOB */
670 	npcm_i2c_eob_int(bus, false);
671 
672 	/* Clear all fifo bits: */
673 	iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
674 
675 #if IS_ENABLED(CONFIG_I2C_SLAVE)
676 	if (bus->slave) {
677 		addr = bus->slave->addr;
678 		npcm_i2c_slave_enable(bus, I2C_SLAVE_ADDR1, addr, true);
679 	}
680 #endif
681 
682 	/* Clear status bits for spurious interrupts */
683 	npcm_i2c_clear_master_status(bus);
684 
685 	bus->state = I2C_IDLE;
686 }
687 
688 static inline bool npcm_i2c_is_master(struct npcm_i2c *bus)
689 {
690 	return !!FIELD_GET(NPCM_I2CST_MASTER, ioread8(bus->reg + NPCM_I2CST));
691 }
692 
693 static void npcm_i2c_callback(struct npcm_i2c *bus,
694 			      enum i2c_state_ind op_status, u16 info)
695 {
696 	struct i2c_msg *msgs;
697 	int msgs_num;
698 
699 	msgs = bus->msgs;
700 	msgs_num = bus->msgs_num;
701 	/*
702 	 * check that transaction was not timed-out, and msgs still
703 	 * holds a valid value.
704 	 */
705 	if (!msgs)
706 		return;
707 
708 	if (completion_done(&bus->cmd_complete))
709 		return;
710 
711 	switch (op_status) {
712 	case I2C_MASTER_DONE_IND:
713 		bus->cmd_err = bus->msgs_num;
714 		if (bus->tx_complete_cnt < ULLONG_MAX)
715 			bus->tx_complete_cnt++;
716 		fallthrough;
717 	case I2C_BLOCK_BYTES_ERR_IND:
718 		/* Master tx finished and all transmit bytes were sent */
719 		if (bus->msgs) {
720 			if (msgs[0].flags & I2C_M_RD)
721 				msgs[0].len = info;
722 			else if (msgs_num == 2 &&
723 				 msgs[1].flags & I2C_M_RD)
724 				msgs[1].len = info;
725 		}
726 		if (completion_done(&bus->cmd_complete) == false)
727 			complete(&bus->cmd_complete);
728 	break;
729 
730 	case I2C_NACK_IND:
731 		/* MASTER transmit got a NACK before tx all bytes */
732 		bus->cmd_err = -ENXIO;
733 		if (bus->master_or_slave == I2C_MASTER)
734 			complete(&bus->cmd_complete);
735 
736 		break;
737 	case I2C_BUS_ERR_IND:
738 		/* Bus error */
739 		bus->cmd_err = -EAGAIN;
740 		if (bus->master_or_slave == I2C_MASTER)
741 			complete(&bus->cmd_complete);
742 
743 		break;
744 	case I2C_WAKE_UP_IND:
745 		/* I2C wake up */
746 		break;
747 	default:
748 		break;
749 	}
750 
751 	bus->operation = I2C_NO_OPER;
752 #if IS_ENABLED(CONFIG_I2C_SLAVE)
753 	if (bus->slave)
754 		bus->master_or_slave = I2C_SLAVE;
755 #endif
756 }
757 
758 static u8 npcm_i2c_fifo_usage(struct npcm_i2c *bus)
759 {
760 	if (bus->operation == I2C_WRITE_OPER)
761 		return (bus->data->txf_sts_tx_bytes &
762 			ioread8(bus->reg + NPCM_I2CTXF_STS));
763 	if (bus->operation == I2C_READ_OPER)
764 		return (bus->data->rxf_sts_rx_bytes &
765 			ioread8(bus->reg + NPCM_I2CRXF_STS));
766 	return 0;
767 }
768 
769 static void npcm_i2c_write_to_fifo_master(struct npcm_i2c *bus, u16 max_bytes)
770 {
771 	u8 size_free_fifo;
772 
773 	/*
774 	 * Fill the FIFO, while the FIFO is not full and there are more bytes
775 	 * to write
776 	 */
777 	size_free_fifo = bus->data->fifo_size - npcm_i2c_fifo_usage(bus);
778 	while (max_bytes-- && size_free_fifo) {
779 		if (bus->wr_ind < bus->wr_size)
780 			npcm_i2c_wr_byte(bus, bus->wr_buf[bus->wr_ind++]);
781 		else
782 			npcm_i2c_wr_byte(bus, 0xFF);
783 		size_free_fifo = bus->data->fifo_size - npcm_i2c_fifo_usage(bus);
784 	}
785 }
786 
787 /*
788  * npcm_i2c_set_fifo:
789  * configure the FIFO before using it. If nread is -1 RX FIFO will not be
790  * configured. same for nwrite
791  */
792 static void npcm_i2c_set_fifo(struct npcm_i2c *bus, int nread, int nwrite)
793 {
794 	u8 rxf_ctl = 0;
795 
796 	if (!bus->fifo_use)
797 		return;
798 	npcm_i2c_select_bank(bus, I2C_BANK_1);
799 	npcm_i2c_clear_tx_fifo(bus);
800 	npcm_i2c_clear_rx_fifo(bus);
801 
802 	/* configure RX FIFO */
803 	if (nread > 0) {
804 		rxf_ctl = min_t(int, nread, bus->data->fifo_size);
805 
806 		/* set LAST bit. if LAST is set next FIFO packet is nacked */
807 		if (nread <= bus->data->fifo_size)
808 			rxf_ctl |= bus->data->rxf_ctl_last_pec;
809 
810 		/*
811 		 * if we are about to read the first byte in blk rd mode,
812 		 * don't NACK it. If slave returns zero size HW can't NACK
813 		 * it immediately, it will read extra byte and then NACK.
814 		 */
815 		if (bus->rd_ind == 0 && bus->read_block_use) {
816 			/* set fifo to read one byte, no last: */
817 			rxf_ctl = 1;
818 		}
819 
820 		/* set fifo size: */
821 		iowrite8(rxf_ctl, bus->reg + NPCM_I2CRXF_CTL);
822 	}
823 
824 	/* configure TX FIFO */
825 	if (nwrite > 0) {
826 		if (nwrite > bus->data->fifo_size)
827 			/* data to send is more then FIFO size. */
828 			iowrite8(bus->data->fifo_size, bus->reg + NPCM_I2CTXF_CTL);
829 		else
830 			iowrite8(nwrite, bus->reg + NPCM_I2CTXF_CTL);
831 
832 		npcm_i2c_clear_tx_fifo(bus);
833 	}
834 }
835 
836 static void npcm_i2c_read_fifo(struct npcm_i2c *bus, u8 bytes_in_fifo)
837 {
838 	u8 data;
839 
840 	while (bytes_in_fifo--) {
841 		data = npcm_i2c_rd_byte(bus);
842 		if (bus->rd_ind < bus->rd_size)
843 			bus->rd_buf[bus->rd_ind++] = data;
844 	}
845 }
846 
847 static void npcm_i2c_master_abort(struct npcm_i2c *bus)
848 {
849 	/* Only current master is allowed to issue a stop condition */
850 	if (!npcm_i2c_is_master(bus))
851 		return;
852 
853 	npcm_i2c_eob_int(bus, true);
854 	npcm_i2c_master_stop(bus);
855 	npcm_i2c_clear_master_status(bus);
856 }
857 
858 #if IS_ENABLED(CONFIG_I2C_SLAVE)
859 static u8 npcm_i2c_get_slave_addr(struct npcm_i2c *bus, enum i2c_addr addr_type)
860 {
861 	u8 slave_add;
862 
863 	if (addr_type > I2C_SLAVE_ADDR2 && addr_type <= I2C_SLAVE_ADDR10)
864 		dev_err(bus->dev, "get slave: try to use more than 2 SA not supported\n");
865 
866 	slave_add = ioread8(bus->reg + npcm_i2caddr[(int)addr_type]);
867 
868 	return slave_add;
869 }
870 
871 static int npcm_i2c_remove_slave_addr(struct npcm_i2c *bus, u8 slave_add)
872 {
873 	int i;
874 
875 	/* Set the enable bit */
876 	slave_add |= 0x80;
877 
878 	for (i = I2C_SLAVE_ADDR1; i < I2C_NUM_OWN_ADDR_SUPPORTED; i++) {
879 		if (ioread8(bus->reg + npcm_i2caddr[i]) == slave_add)
880 			iowrite8(0, bus->reg + npcm_i2caddr[i]);
881 	}
882 
883 	return 0;
884 }
885 
886 static void npcm_i2c_write_fifo_slave(struct npcm_i2c *bus, u16 max_bytes)
887 {
888 	/*
889 	 * Fill the FIFO, while the FIFO is not full and there are more bytes
890 	 * to write
891 	 */
892 	npcm_i2c_clear_fifo_int(bus);
893 	npcm_i2c_clear_tx_fifo(bus);
894 	iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
895 	while (max_bytes-- && bus->data->fifo_size != npcm_i2c_fifo_usage(bus)) {
896 		if (bus->slv_wr_size <= 0)
897 			break;
898 		bus->slv_wr_ind = bus->slv_wr_ind & (bus->data->fifo_size - 1);
899 		npcm_i2c_wr_byte(bus, bus->slv_wr_buf[bus->slv_wr_ind]);
900 		bus->slv_wr_ind++;
901 		bus->slv_wr_ind = bus->slv_wr_ind & (bus->data->fifo_size - 1);
902 		bus->slv_wr_size--;
903 	}
904 }
905 
906 static void npcm_i2c_read_fifo_slave(struct npcm_i2c *bus, u8 bytes_in_fifo)
907 {
908 	u8 data;
909 
910 	if (!bus->slave)
911 		return;
912 
913 	while (bytes_in_fifo--) {
914 		data = npcm_i2c_rd_byte(bus);
915 
916 		bus->slv_rd_ind = bus->slv_rd_ind & (bus->data->fifo_size - 1);
917 		bus->slv_rd_buf[bus->slv_rd_ind] = data;
918 		bus->slv_rd_ind++;
919 
920 		/* 1st byte is length in block protocol: */
921 		if (bus->slv_rd_ind == 1 && bus->read_block_use)
922 			bus->slv_rd_size = data + bus->PEC_use + 1;
923 	}
924 }
925 
926 static int npcm_i2c_slave_get_wr_buf(struct npcm_i2c *bus)
927 {
928 	int i;
929 	u8 value;
930 	int ind;
931 	int ret = bus->slv_wr_ind;
932 
933 	/* fill a cyclic buffer */
934 	for (i = 0; i < bus->data->fifo_size; i++) {
935 		if (bus->slv_wr_size >= bus->data->fifo_size)
936 			break;
937 		if (bus->state == I2C_SLAVE_MATCH) {
938 			i2c_slave_event(bus->slave, I2C_SLAVE_READ_REQUESTED, &value);
939 			bus->state = I2C_OPER_STARTED;
940 		} else {
941 			i2c_slave_event(bus->slave, I2C_SLAVE_READ_PROCESSED, &value);
942 		}
943 		ind = (bus->slv_wr_ind + bus->slv_wr_size) & (bus->data->fifo_size - 1);
944 		bus->slv_wr_buf[ind] = value;
945 		bus->slv_wr_size++;
946 	}
947 	return bus->data->fifo_size - ret;
948 }
949 
950 static void npcm_i2c_slave_send_rd_buf(struct npcm_i2c *bus)
951 {
952 	int i;
953 
954 	for (i = 0; i < bus->slv_rd_ind; i++)
955 		i2c_slave_event(bus->slave, I2C_SLAVE_WRITE_RECEIVED,
956 				&bus->slv_rd_buf[i]);
957 	/*
958 	 * once we send bytes up, need to reset the counter of the wr buf
959 	 * got data from master (new offset in device), ignore wr fifo:
960 	 */
961 	if (bus->slv_rd_ind) {
962 		bus->slv_wr_size = 0;
963 		bus->slv_wr_ind = 0;
964 	}
965 
966 	bus->slv_rd_ind = 0;
967 	bus->slv_rd_size = bus->adap.quirks->max_read_len;
968 
969 	npcm_i2c_clear_fifo_int(bus);
970 	npcm_i2c_clear_rx_fifo(bus);
971 }
972 
973 static void npcm_i2c_slave_receive(struct npcm_i2c *bus, u16 nread,
974 				   u8 *read_data)
975 {
976 	bus->state = I2C_OPER_STARTED;
977 	bus->operation = I2C_READ_OPER;
978 	bus->slv_rd_size = nread;
979 	bus->slv_rd_ind = 0;
980 
981 	iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
982 	iowrite8(bus->data->fifo_size, bus->reg + NPCM_I2CRXF_CTL);
983 	npcm_i2c_clear_tx_fifo(bus);
984 	npcm_i2c_clear_rx_fifo(bus);
985 }
986 
987 static void npcm_i2c_slave_xmit(struct npcm_i2c *bus, u16 nwrite,
988 				u8 *write_data)
989 {
990 	if (nwrite == 0)
991 		return;
992 
993 	bus->operation = I2C_WRITE_OPER;
994 
995 	/* get the next buffer */
996 	npcm_i2c_slave_get_wr_buf(bus);
997 	npcm_i2c_write_fifo_slave(bus, nwrite);
998 }
999 
1000 /*
1001  * npcm_i2c_slave_wr_buf_sync:
1002  * currently slave IF only supports single byte operations.
1003  * in order to utilize the npcm HW FIFO, the driver will ask for 16 bytes
1004  * at a time, pack them in buffer, and then transmit them all together
1005  * to the FIFO and onward to the bus.
1006  * NACK on read will be once reached to bus->adap->quirks->max_read_len.
1007  * sending a NACK wherever the backend requests for it is not supported.
1008  * the next two functions allow reading to local buffer before writing it all
1009  * to the HW FIFO.
1010  */
1011 static void npcm_i2c_slave_wr_buf_sync(struct npcm_i2c *bus)
1012 {
1013 	int left_in_fifo;
1014 
1015 	left_in_fifo = bus->data->txf_sts_tx_bytes &
1016 			ioread8(bus->reg + NPCM_I2CTXF_STS);
1017 
1018 	/* fifo already full: */
1019 	if (left_in_fifo >= bus->data->fifo_size ||
1020 	    bus->slv_wr_size >= bus->data->fifo_size)
1021 		return;
1022 
1023 	/* update the wr fifo index back to the untransmitted bytes: */
1024 	bus->slv_wr_ind = bus->slv_wr_ind - left_in_fifo;
1025 	bus->slv_wr_size = bus->slv_wr_size + left_in_fifo;
1026 
1027 	if (bus->slv_wr_ind < 0)
1028 		bus->slv_wr_ind += bus->data->fifo_size;
1029 }
1030 
1031 static void npcm_i2c_slave_rd_wr(struct npcm_i2c *bus)
1032 {
1033 	if (NPCM_I2CST_XMIT & ioread8(bus->reg + NPCM_I2CST)) {
1034 		/*
1035 		 * Slave got an address match with direction bit 1 so it should
1036 		 * transmit data. Write till the master will NACK
1037 		 */
1038 		bus->operation = I2C_WRITE_OPER;
1039 		npcm_i2c_slave_xmit(bus, bus->adap.quirks->max_write_len,
1040 				    bus->slv_wr_buf);
1041 	} else {
1042 		/*
1043 		 * Slave got an address match with direction bit 0 so it should
1044 		 * receive data.
1045 		 * this module does not support saying no to bytes.
1046 		 * it will always ACK.
1047 		 */
1048 		bus->operation = I2C_READ_OPER;
1049 		npcm_i2c_read_fifo_slave(bus, npcm_i2c_fifo_usage(bus));
1050 		bus->stop_ind = I2C_SLAVE_RCV_IND;
1051 		npcm_i2c_slave_send_rd_buf(bus);
1052 		npcm_i2c_slave_receive(bus, bus->adap.quirks->max_read_len,
1053 				       bus->slv_rd_buf);
1054 	}
1055 }
1056 
1057 static irqreturn_t npcm_i2c_int_slave_handler(struct npcm_i2c *bus)
1058 {
1059 	u8 val;
1060 	irqreturn_t ret = IRQ_NONE;
1061 	u8 i2cst = ioread8(bus->reg + NPCM_I2CST);
1062 
1063 	/* Slave: A NACK has occurred */
1064 	if (NPCM_I2CST_NEGACK & i2cst) {
1065 		bus->stop_ind = I2C_NACK_IND;
1066 		npcm_i2c_slave_wr_buf_sync(bus);
1067 		if (bus->fifo_use)
1068 			/* clear the FIFO */
1069 			iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO,
1070 				 bus->reg + NPCM_I2CFIF_CTS);
1071 
1072 		/* In slave write, NACK is OK, otherwise it is a problem */
1073 		bus->stop_ind = I2C_NO_STATUS_IND;
1074 		bus->operation = I2C_NO_OPER;
1075 		bus->own_slave_addr = 0xFF;
1076 
1077 		/*
1078 		 * Slave has to wait for STOP to decide this is the end
1079 		 * of the transaction. tx is not yet considered as done
1080 		 */
1081 		iowrite8(NPCM_I2CST_NEGACK, bus->reg + NPCM_I2CST);
1082 
1083 		ret = IRQ_HANDLED;
1084 	}
1085 
1086 	/* Slave mode: a Bus Error (BER) has been identified */
1087 	if (NPCM_I2CST_BER & i2cst) {
1088 		/*
1089 		 * Check whether bus arbitration or Start or Stop during data
1090 		 * xfer bus arbitration problem should not result in recovery
1091 		 */
1092 		bus->stop_ind = I2C_BUS_ERR_IND;
1093 
1094 		/* wait for bus busy before clear fifo */
1095 		iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
1096 
1097 		bus->state = I2C_IDLE;
1098 
1099 		/*
1100 		 * in BER case we might get 2 interrupts: one for slave one for
1101 		 * master ( for a channel which is master\slave switching)
1102 		 */
1103 		if (completion_done(&bus->cmd_complete) == false) {
1104 			bus->cmd_err = -EIO;
1105 			complete(&bus->cmd_complete);
1106 		}
1107 		bus->own_slave_addr = 0xFF;
1108 		iowrite8(NPCM_I2CST_BER, bus->reg + NPCM_I2CST);
1109 		ret = IRQ_HANDLED;
1110 	}
1111 
1112 	/* A Slave Stop Condition has been identified */
1113 	if (NPCM_I2CST_SLVSTP & i2cst) {
1114 		u8 bytes_in_fifo = npcm_i2c_fifo_usage(bus);
1115 
1116 		bus->stop_ind = I2C_SLAVE_DONE_IND;
1117 
1118 		if (bus->operation == I2C_READ_OPER)
1119 			npcm_i2c_read_fifo_slave(bus, bytes_in_fifo);
1120 
1121 		/* if the buffer is empty nothing will be sent */
1122 		npcm_i2c_slave_send_rd_buf(bus);
1123 
1124 		/* Slave done transmitting or receiving */
1125 		bus->stop_ind = I2C_NO_STATUS_IND;
1126 
1127 		/*
1128 		 * Note, just because we got here, it doesn't mean we through
1129 		 * away the wr buffer.
1130 		 * we keep it until the next received offset.
1131 		 */
1132 		bus->operation = I2C_NO_OPER;
1133 		bus->own_slave_addr = 0xFF;
1134 		i2c_slave_event(bus->slave, I2C_SLAVE_STOP, 0);
1135 		iowrite8(NPCM_I2CST_SLVSTP, bus->reg + NPCM_I2CST);
1136 		if (bus->fifo_use) {
1137 			npcm_i2c_clear_fifo_int(bus);
1138 			npcm_i2c_clear_rx_fifo(bus);
1139 			npcm_i2c_clear_tx_fifo(bus);
1140 
1141 			iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO,
1142 				 bus->reg + NPCM_I2CFIF_CTS);
1143 		}
1144 		bus->state = I2C_IDLE;
1145 		ret = IRQ_HANDLED;
1146 	}
1147 
1148 	/* restart condition occurred and Rx-FIFO was not empty */
1149 	if (bus->fifo_use && FIELD_GET(NPCM_I2CFIF_CTS_SLVRSTR,
1150 				       ioread8(bus->reg + NPCM_I2CFIF_CTS))) {
1151 		bus->stop_ind = I2C_SLAVE_RESTART_IND;
1152 		bus->master_or_slave = I2C_SLAVE;
1153 		if (bus->operation == I2C_READ_OPER)
1154 			npcm_i2c_read_fifo_slave(bus, npcm_i2c_fifo_usage(bus));
1155 		bus->operation = I2C_WRITE_OPER;
1156 		iowrite8(0, bus->reg + NPCM_I2CRXF_CTL);
1157 		val = NPCM_I2CFIF_CTS_CLR_FIFO | NPCM_I2CFIF_CTS_SLVRSTR |
1158 		      NPCM_I2CFIF_CTS_RXF_TXE;
1159 		iowrite8(val, bus->reg + NPCM_I2CFIF_CTS);
1160 		npcm_i2c_slave_rd_wr(bus);
1161 		ret = IRQ_HANDLED;
1162 	}
1163 
1164 	/* A Slave Address Match has been identified */
1165 	if (NPCM_I2CST_NMATCH & i2cst) {
1166 		u8 info = 0;
1167 
1168 		/* Address match automatically implies slave mode */
1169 		bus->master_or_slave = I2C_SLAVE;
1170 		npcm_i2c_clear_fifo_int(bus);
1171 		npcm_i2c_clear_rx_fifo(bus);
1172 		npcm_i2c_clear_tx_fifo(bus);
1173 		iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
1174 		iowrite8(bus->data->fifo_size, bus->reg + NPCM_I2CRXF_CTL);
1175 		if (NPCM_I2CST_XMIT & i2cst) {
1176 			bus->operation = I2C_WRITE_OPER;
1177 		} else {
1178 			i2c_slave_event(bus->slave, I2C_SLAVE_WRITE_REQUESTED,
1179 					&info);
1180 			bus->operation = I2C_READ_OPER;
1181 		}
1182 		if (bus->own_slave_addr == 0xFF) {
1183 			/* Check which type of address match */
1184 			val = ioread8(bus->reg + NPCM_I2CCST);
1185 			if (NPCM_I2CCST_MATCH & val) {
1186 				u16 addr;
1187 				enum i2c_addr eaddr;
1188 				u8 i2ccst2;
1189 				u8 i2ccst3;
1190 
1191 				i2ccst3 = ioread8(bus->reg + NPCM_I2CCST3);
1192 				i2ccst2 = ioread8(bus->reg + NPCM_I2CCST2);
1193 
1194 				/*
1195 				 * the i2c module can response to 10 own SA.
1196 				 * check which one was addressed by the master.
1197 				 * respond to the first one.
1198 				 */
1199 				addr = ((i2ccst3 & 0x07) << 7) |
1200 					(i2ccst2 & 0x7F);
1201 				info = ffs(addr);
1202 				eaddr = (enum i2c_addr)info;
1203 				addr = npcm_i2c_get_slave_addr(bus, eaddr);
1204 				addr &= 0x7F;
1205 				bus->own_slave_addr = addr;
1206 				if (bus->PEC_mask & BIT(info))
1207 					bus->PEC_use = true;
1208 				else
1209 					bus->PEC_use = false;
1210 			} else {
1211 				if (NPCM_I2CCST_GCMATCH & val)
1212 					bus->own_slave_addr = 0;
1213 				if (NPCM_I2CCST_ARPMATCH & val)
1214 					bus->own_slave_addr = 0x61;
1215 			}
1216 		} else {
1217 			/*
1218 			 *  Slave match can happen in two options:
1219 			 *  1. Start, SA, read (slave read without further ado)
1220 			 *  2. Start, SA, read, data, restart, SA, read,  ...
1221 			 *     (slave read in fragmented mode)
1222 			 *  3. Start, SA, write, data, restart, SA, read, ..
1223 			 *     (regular write-read mode)
1224 			 */
1225 			if ((bus->state == I2C_OPER_STARTED &&
1226 			     bus->operation == I2C_READ_OPER &&
1227 			     bus->stop_ind == I2C_SLAVE_XMIT_IND) ||
1228 			     bus->stop_ind == I2C_SLAVE_RCV_IND) {
1229 				/* slave tx after slave rx w/o STOP */
1230 				bus->stop_ind = I2C_SLAVE_RESTART_IND;
1231 			}
1232 		}
1233 
1234 		if (NPCM_I2CST_XMIT & i2cst)
1235 			bus->stop_ind = I2C_SLAVE_XMIT_IND;
1236 		else
1237 			bus->stop_ind = I2C_SLAVE_RCV_IND;
1238 		bus->state = I2C_SLAVE_MATCH;
1239 		npcm_i2c_slave_rd_wr(bus);
1240 		iowrite8(NPCM_I2CST_NMATCH, bus->reg + NPCM_I2CST);
1241 		ret = IRQ_HANDLED;
1242 	}
1243 
1244 	/* Slave SDA status is set - tx or rx */
1245 	if ((NPCM_I2CST_SDAST & i2cst) ||
1246 	    (bus->fifo_use &&
1247 	    (npcm_i2c_tx_fifo_empty(bus) || npcm_i2c_rx_fifo_full(bus)))) {
1248 		npcm_i2c_slave_rd_wr(bus);
1249 		iowrite8(NPCM_I2CST_SDAST, bus->reg + NPCM_I2CST);
1250 		ret = IRQ_HANDLED;
1251 	} /* SDAST */
1252 
1253 	/*
1254 	 * If irq is not one of the above, make sure EOB is disabled and all
1255 	 * status bits are cleared.
1256 	 */
1257 	if (ret == IRQ_NONE) {
1258 		npcm_i2c_eob_int(bus, false);
1259 		npcm_i2c_clear_master_status(bus);
1260 	}
1261 
1262 	return IRQ_HANDLED;
1263 }
1264 
1265 static int npcm_i2c_reg_slave(struct i2c_client *client)
1266 {
1267 	unsigned long lock_flags;
1268 	struct npcm_i2c *bus = i2c_get_adapdata(client->adapter);
1269 
1270 	bus->slave = client;
1271 
1272 	if (!bus->slave)
1273 		return -EINVAL;
1274 
1275 	if (client->flags & I2C_CLIENT_TEN)
1276 		return -EAFNOSUPPORT;
1277 
1278 	spin_lock_irqsave(&bus->lock, lock_flags);
1279 
1280 	npcm_i2c_init_params(bus);
1281 	bus->slv_rd_size = 0;
1282 	bus->slv_wr_size = 0;
1283 	bus->slv_rd_ind = 0;
1284 	bus->slv_wr_ind = 0;
1285 	if (client->flags & I2C_CLIENT_PEC)
1286 		bus->PEC_use = true;
1287 
1288 	dev_info(bus->dev, "i2c%d register slave SA=0x%x, PEC=%d\n", bus->num,
1289 		 client->addr, bus->PEC_use);
1290 
1291 	npcm_i2c_slave_enable(bus, I2C_SLAVE_ADDR1, client->addr, true);
1292 	npcm_i2c_clear_fifo_int(bus);
1293 	npcm_i2c_clear_rx_fifo(bus);
1294 	npcm_i2c_clear_tx_fifo(bus);
1295 	npcm_i2c_slave_int_enable(bus, true);
1296 
1297 	spin_unlock_irqrestore(&bus->lock, lock_flags);
1298 	return 0;
1299 }
1300 
1301 static int npcm_i2c_unreg_slave(struct i2c_client *client)
1302 {
1303 	struct npcm_i2c *bus = client->adapter->algo_data;
1304 	unsigned long lock_flags;
1305 
1306 	spin_lock_irqsave(&bus->lock, lock_flags);
1307 	if (!bus->slave) {
1308 		spin_unlock_irqrestore(&bus->lock, lock_flags);
1309 		return -EINVAL;
1310 	}
1311 	npcm_i2c_slave_int_enable(bus, false);
1312 	npcm_i2c_remove_slave_addr(bus, client->addr);
1313 	bus->slave = NULL;
1314 	spin_unlock_irqrestore(&bus->lock, lock_flags);
1315 	return 0;
1316 }
1317 #endif /* CONFIG_I2C_SLAVE */
1318 
1319 static void npcm_i2c_master_fifo_read(struct npcm_i2c *bus)
1320 {
1321 	int rcount;
1322 	int fifo_bytes;
1323 	enum i2c_state_ind ind = I2C_MASTER_DONE_IND;
1324 
1325 	fifo_bytes = npcm_i2c_fifo_usage(bus);
1326 	rcount = bus->rd_size - bus->rd_ind;
1327 
1328 	/*
1329 	 * In order not to change the RX_TRH during transaction (we found that
1330 	 * this might be problematic if it takes too much time to read the FIFO)
1331 	 * we read the data in the following way. If the number of bytes to
1332 	 * read == FIFO Size + C (where C < FIFO Size)then first read C bytes
1333 	 * and in the next int we read rest of the data.
1334 	 */
1335 	if (rcount < (2 * bus->data->fifo_size) && rcount > bus->data->fifo_size)
1336 		fifo_bytes = rcount - bus->data->fifo_size;
1337 
1338 	if (rcount <= fifo_bytes) {
1339 		/* last bytes are about to be read - end of tx */
1340 		bus->state = I2C_STOP_PENDING;
1341 		bus->stop_ind = ind;
1342 		npcm_i2c_eob_int(bus, true);
1343 		/* Stop should be set before reading last byte. */
1344 		npcm_i2c_master_stop(bus);
1345 		npcm_i2c_read_fifo(bus, fifo_bytes);
1346 	} else {
1347 		npcm_i2c_read_fifo(bus, fifo_bytes);
1348 		rcount = bus->rd_size - bus->rd_ind;
1349 		npcm_i2c_set_fifo(bus, rcount, -1);
1350 	}
1351 }
1352 
1353 static void npcm_i2c_irq_master_handler_write(struct npcm_i2c *bus)
1354 {
1355 	u16 wcount;
1356 
1357 	if (bus->fifo_use)
1358 		npcm_i2c_clear_tx_fifo(bus); /* clear the TX fifo status bit */
1359 
1360 	/* Master write operation - last byte handling */
1361 	if (bus->wr_ind == bus->wr_size) {
1362 		if (bus->fifo_use && npcm_i2c_fifo_usage(bus) > 0)
1363 			/*
1364 			 * No more bytes to send (to add to the FIFO),
1365 			 * however the FIFO is not empty yet. It is
1366 			 * still in the middle of tx. Currently there's nothing
1367 			 * to do except for waiting to the end of the tx
1368 			 * We will get an int when the FIFO will get empty.
1369 			 */
1370 			return;
1371 
1372 		if (bus->rd_size == 0) {
1373 			/* all bytes have been written, in wr only operation */
1374 			npcm_i2c_eob_int(bus, true);
1375 			bus->state = I2C_STOP_PENDING;
1376 			bus->stop_ind = I2C_MASTER_DONE_IND;
1377 			npcm_i2c_master_stop(bus);
1378 			/* Clear SDA Status bit (by writing dummy byte) */
1379 			npcm_i2c_wr_byte(bus, 0xFF);
1380 
1381 		} else {
1382 			/* last write-byte written on previous int - restart */
1383 			npcm_i2c_set_fifo(bus, bus->rd_size, -1);
1384 			/* Generate repeated start upon next write to SDA */
1385 			npcm_i2c_master_start(bus);
1386 
1387 			/*
1388 			 * Receiving one byte only - stall after successful
1389 			 * completion of send address byte. If we NACK here, and
1390 			 * slave doesn't ACK the address, we might
1391 			 * unintentionally NACK the next multi-byte read.
1392 			 */
1393 			if (bus->rd_size == 1)
1394 				npcm_i2c_stall_after_start(bus, true);
1395 
1396 			/* Next int will occur on read */
1397 			bus->operation = I2C_READ_OPER;
1398 			/* send the slave address in read direction */
1399 			npcm_i2c_wr_byte(bus, bus->dest_addr | 0x1);
1400 		}
1401 	} else {
1402 		/* write next byte not last byte and not slave address */
1403 		if (!bus->fifo_use || bus->wr_size == 1) {
1404 			npcm_i2c_wr_byte(bus, bus->wr_buf[bus->wr_ind++]);
1405 		} else {
1406 			wcount = bus->wr_size - bus->wr_ind;
1407 			npcm_i2c_set_fifo(bus, -1, wcount);
1408 			if (wcount)
1409 				npcm_i2c_write_to_fifo_master(bus, wcount);
1410 		}
1411 	}
1412 }
1413 
1414 static void npcm_i2c_irq_master_handler_read(struct npcm_i2c *bus)
1415 {
1416 	u16 block_extra_bytes_size;
1417 	u8 data;
1418 
1419 	/* added bytes to the packet: */
1420 	block_extra_bytes_size = bus->read_block_use + bus->PEC_use;
1421 
1422 	/*
1423 	 * Perform master read, distinguishing between last byte and the rest of
1424 	 * the bytes. The last byte should be read when the clock is stopped
1425 	 */
1426 	if (bus->rd_ind == 0) { /* first byte handling: */
1427 		if (bus->read_block_use) {
1428 			/* first byte in block protocol is the size: */
1429 			data = npcm_i2c_rd_byte(bus);
1430 			data = clamp_val(data, 1, I2C_SMBUS_BLOCK_MAX);
1431 			bus->rd_size = data + block_extra_bytes_size;
1432 			bus->rd_buf[bus->rd_ind++] = data;
1433 
1434 			/* clear RX FIFO interrupt status: */
1435 			if (bus->fifo_use) {
1436 				data = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1437 				data = data | NPCM_I2CFIF_CTS_RXF_TXE;
1438 				iowrite8(data, bus->reg + NPCM_I2CFIF_CTS);
1439 			}
1440 
1441 			npcm_i2c_set_fifo(bus, bus->rd_size - 1, -1);
1442 			npcm_i2c_stall_after_start(bus, false);
1443 		} else {
1444 			npcm_i2c_clear_tx_fifo(bus);
1445 			npcm_i2c_master_fifo_read(bus);
1446 		}
1447 	} else {
1448 		if (bus->rd_size == block_extra_bytes_size &&
1449 		    bus->read_block_use) {
1450 			bus->state = I2C_STOP_PENDING;
1451 			bus->stop_ind = I2C_BLOCK_BYTES_ERR_IND;
1452 			bus->cmd_err = -EIO;
1453 			npcm_i2c_eob_int(bus, true);
1454 			npcm_i2c_master_stop(bus);
1455 			npcm_i2c_read_fifo(bus, npcm_i2c_fifo_usage(bus));
1456 		} else {
1457 			npcm_i2c_master_fifo_read(bus);
1458 		}
1459 	}
1460 }
1461 
1462 static void npcm_i2c_irq_handle_nmatch(struct npcm_i2c *bus)
1463 {
1464 	iowrite8(NPCM_I2CST_NMATCH, bus->reg + NPCM_I2CST);
1465 	npcm_i2c_nack(bus);
1466 	bus->stop_ind = I2C_BUS_ERR_IND;
1467 	npcm_i2c_callback(bus, bus->stop_ind, npcm_i2c_get_index(bus));
1468 }
1469 
1470 /* A NACK has occurred */
1471 static void npcm_i2c_irq_handle_nack(struct npcm_i2c *bus)
1472 {
1473 	u8 val;
1474 
1475 	if (bus->nack_cnt < ULLONG_MAX)
1476 		bus->nack_cnt++;
1477 
1478 	if (bus->fifo_use) {
1479 		/*
1480 		 * if there are still untransmitted bytes in TX FIFO
1481 		 * reduce them from wr_ind
1482 		 */
1483 		if (bus->operation == I2C_WRITE_OPER)
1484 			bus->wr_ind -= npcm_i2c_fifo_usage(bus);
1485 
1486 		/* clear the FIFO */
1487 		iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
1488 	}
1489 
1490 	/* In master write operation, got unexpected NACK */
1491 	bus->stop_ind = I2C_NACK_IND;
1492 	/* Only current master is allowed to issue Stop Condition */
1493 	if (npcm_i2c_is_master(bus)) {
1494 		/* stopping in the middle */
1495 		npcm_i2c_eob_int(bus, false);
1496 		npcm_i2c_master_stop(bus);
1497 
1498 		/* Clear SDA Status bit (by reading dummy byte) */
1499 		npcm_i2c_rd_byte(bus);
1500 
1501 		/*
1502 		 * The bus is released from stall only after the SW clears
1503 		 * NEGACK bit. Then a Stop condition is sent.
1504 		 */
1505 		npcm_i2c_clear_master_status(bus);
1506 		readx_poll_timeout_atomic(ioread8, bus->reg + NPCM_I2CCST, val,
1507 					  !(val & NPCM_I2CCST_BUSY), 10, 200);
1508 		/* Verify no status bits are still set after bus is released */
1509 		npcm_i2c_clear_master_status(bus);
1510 	}
1511 	bus->state = I2C_IDLE;
1512 
1513 	/*
1514 	 * In Master mode, NACK should be cleared only after STOP.
1515 	 * In such case, the bus is released from stall only after the
1516 	 * software clears NACK bit. Then a Stop condition is sent.
1517 	 */
1518 	npcm_i2c_callback(bus, bus->stop_ind, bus->wr_ind);
1519 }
1520 
1521 	/* Master mode: a Bus Error has been identified */
1522 static void npcm_i2c_irq_handle_ber(struct npcm_i2c *bus)
1523 {
1524 	if (bus->ber_cnt < ULLONG_MAX)
1525 		bus->ber_cnt++;
1526 	bus->stop_ind = I2C_BUS_ERR_IND;
1527 	if (npcm_i2c_is_master(bus)) {
1528 		npcm_i2c_master_abort(bus);
1529 	} else {
1530 		npcm_i2c_clear_master_status(bus);
1531 
1532 		/* Clear BB (BUS BUSY) bit */
1533 		iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
1534 
1535 		bus->cmd_err = -EAGAIN;
1536 		npcm_i2c_callback(bus, bus->stop_ind, npcm_i2c_get_index(bus));
1537 	}
1538 	bus->state = I2C_IDLE;
1539 }
1540 
1541 	/* EOB: a master End Of Busy (meaning STOP completed) */
1542 static void npcm_i2c_irq_handle_eob(struct npcm_i2c *bus)
1543 {
1544 	npcm_i2c_eob_int(bus, false);
1545 	bus->state = I2C_IDLE;
1546 	npcm_i2c_callback(bus, bus->stop_ind, bus->rd_ind);
1547 }
1548 
1549 /* Address sent and requested stall occurred (Master mode) */
1550 static void npcm_i2c_irq_handle_stall_after_start(struct npcm_i2c *bus)
1551 {
1552 	if (npcm_i2c_is_quick(bus)) {
1553 		bus->state = I2C_STOP_PENDING;
1554 		bus->stop_ind = I2C_MASTER_DONE_IND;
1555 		npcm_i2c_eob_int(bus, true);
1556 		npcm_i2c_master_stop(bus);
1557 	} else if ((bus->rd_size == 1) && !bus->read_block_use) {
1558 		/*
1559 		 * Receiving one byte only - set NACK after ensuring
1560 		 * slave ACKed the address byte.
1561 		 */
1562 		npcm_i2c_nack(bus);
1563 	}
1564 
1565 	/* Reset stall-after-address-byte */
1566 	npcm_i2c_stall_after_start(bus, false);
1567 
1568 	/* Clear stall only after setting STOP */
1569 	iowrite8(NPCM_I2CST_STASTR, bus->reg + NPCM_I2CST);
1570 }
1571 
1572 /* SDA status is set - TX or RX, master */
1573 static void npcm_i2c_irq_handle_sda(struct npcm_i2c *bus, u8 i2cst)
1574 {
1575 	u8 fif_cts;
1576 
1577 	if (!npcm_i2c_is_master(bus))
1578 		return;
1579 
1580 	if (bus->state == I2C_IDLE) {
1581 		bus->stop_ind = I2C_WAKE_UP_IND;
1582 
1583 		if (npcm_i2c_is_quick(bus) || bus->read_block_use)
1584 			/*
1585 			 * Need to stall after successful
1586 			 * completion of sending address byte
1587 			 */
1588 			npcm_i2c_stall_after_start(bus, true);
1589 		else
1590 			npcm_i2c_stall_after_start(bus, false);
1591 
1592 		/*
1593 		 * Receiving one byte only - stall after successful completion
1594 		 * of sending address byte If we NACK here, and slave doesn't
1595 		 * ACK the address, we might unintentionally NACK the next
1596 		 * multi-byte read
1597 		 */
1598 		if (bus->wr_size == 0 && bus->rd_size == 1)
1599 			npcm_i2c_stall_after_start(bus, true);
1600 
1601 		/* Initiate I2C master tx */
1602 
1603 		/* select bank 1 for FIFO regs */
1604 		npcm_i2c_select_bank(bus, I2C_BANK_1);
1605 
1606 		fif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1607 		fif_cts = fif_cts & ~NPCM_I2CFIF_CTS_SLVRSTR;
1608 
1609 		/* clear FIFO and relevant status bits. */
1610 		fif_cts = fif_cts | NPCM_I2CFIF_CTS_CLR_FIFO;
1611 		iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1612 
1613 		/* re-enable */
1614 		fif_cts = fif_cts | NPCM_I2CFIF_CTS_RXF_TXE;
1615 		iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1616 
1617 		/*
1618 		 * Configure the FIFO threshold:
1619 		 * according to the needed # of bytes to read.
1620 		 * Note: due to HW limitation can't config the rx fifo before it
1621 		 * got and ACK on the restart. LAST bit will not be reset unless
1622 		 * RX completed. It will stay set on the next tx.
1623 		 */
1624 		if (bus->wr_size)
1625 			npcm_i2c_set_fifo(bus, -1, bus->wr_size);
1626 		else
1627 			npcm_i2c_set_fifo(bus, bus->rd_size, -1);
1628 
1629 		bus->state = I2C_OPER_STARTED;
1630 
1631 		if (npcm_i2c_is_quick(bus) || bus->wr_size)
1632 			npcm_i2c_wr_byte(bus, bus->dest_addr);
1633 		else
1634 			npcm_i2c_wr_byte(bus, bus->dest_addr | BIT(0));
1635 	/* SDA interrupt, after start\restart */
1636 	} else {
1637 		if (NPCM_I2CST_XMIT & i2cst) {
1638 			bus->operation = I2C_WRITE_OPER;
1639 			npcm_i2c_irq_master_handler_write(bus);
1640 		} else {
1641 			bus->operation = I2C_READ_OPER;
1642 			npcm_i2c_irq_master_handler_read(bus);
1643 		}
1644 	}
1645 }
1646 
1647 static int npcm_i2c_int_master_handler(struct npcm_i2c *bus)
1648 {
1649 	u8 i2cst;
1650 	int ret = -EIO;
1651 
1652 	i2cst = ioread8(bus->reg + NPCM_I2CST);
1653 
1654 	if (FIELD_GET(NPCM_I2CST_NMATCH, i2cst)) {
1655 		npcm_i2c_irq_handle_nmatch(bus);
1656 		return 0;
1657 	}
1658 	/* A NACK has occurred */
1659 	if (FIELD_GET(NPCM_I2CST_NEGACK, i2cst)) {
1660 		npcm_i2c_irq_handle_nack(bus);
1661 		return 0;
1662 	}
1663 
1664 	/* Master mode: a Bus Error has been identified */
1665 	if (FIELD_GET(NPCM_I2CST_BER, i2cst)) {
1666 		npcm_i2c_irq_handle_ber(bus);
1667 		return 0;
1668 	}
1669 
1670 	/* EOB: a master End Of Busy (meaning STOP completed) */
1671 	if ((FIELD_GET(NPCM_I2CCTL1_EOBINTE,
1672 		       ioread8(bus->reg + NPCM_I2CCTL1)) == 1) &&
1673 	    (FIELD_GET(NPCM_I2CCST3_EO_BUSY,
1674 		       ioread8(bus->reg + NPCM_I2CCST3)))) {
1675 		npcm_i2c_irq_handle_eob(bus);
1676 		return 0;
1677 	}
1678 
1679 	/* Address sent and requested stall occurred (Master mode) */
1680 	if (FIELD_GET(NPCM_I2CST_STASTR, i2cst)) {
1681 		npcm_i2c_irq_handle_stall_after_start(bus);
1682 		ret = 0;
1683 	}
1684 
1685 	/* SDA status is set - TX or RX, master */
1686 	if (FIELD_GET(NPCM_I2CST_SDAST, i2cst) ||
1687 	    (bus->fifo_use &&
1688 	    (npcm_i2c_tx_fifo_empty(bus) || npcm_i2c_rx_fifo_full(bus)))) {
1689 		npcm_i2c_irq_handle_sda(bus, i2cst);
1690 		ret = 0;
1691 	}
1692 
1693 	return ret;
1694 }
1695 
1696 /* recovery using TGCLK functionality of the module */
1697 static int npcm_i2c_recovery_tgclk(struct i2c_adapter *_adap)
1698 {
1699 	u8               val;
1700 	u8               fif_cts;
1701 	bool             done = false;
1702 	int              status = -ENOTRECOVERABLE;
1703 	struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
1704 	/* Allow 3 bytes (27 toggles) to be read from the slave: */
1705 	int              iter = 27;
1706 
1707 	if ((npcm_i2c_get_SDA(_adap) == 1) && (npcm_i2c_get_SCL(_adap) == 1)) {
1708 		dev_dbg(bus->dev, "bus%d-0x%x recovery skipped, bus not stuck",
1709 			bus->num, bus->dest_addr);
1710 		npcm_i2c_reset(bus);
1711 		return 0;
1712 	}
1713 
1714 	npcm_i2c_int_enable(bus, false);
1715 	npcm_i2c_disable(bus);
1716 	npcm_i2c_enable(bus);
1717 	iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
1718 	npcm_i2c_clear_tx_fifo(bus);
1719 	npcm_i2c_clear_rx_fifo(bus);
1720 	iowrite8(0, bus->reg + NPCM_I2CRXF_CTL);
1721 	iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
1722 	npcm_i2c_stall_after_start(bus, false);
1723 
1724 	/* select bank 1 for FIFO regs */
1725 	npcm_i2c_select_bank(bus, I2C_BANK_1);
1726 
1727 	/* clear FIFO and relevant status bits. */
1728 	fif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1729 	fif_cts &= ~NPCM_I2CFIF_CTS_SLVRSTR;
1730 	fif_cts |= NPCM_I2CFIF_CTS_CLR_FIFO;
1731 	iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1732 	npcm_i2c_set_fifo(bus, -1, 0);
1733 
1734 	/* Repeat the following sequence until SDA is released */
1735 	do {
1736 		/* Issue a single SCL toggle */
1737 		iowrite8(NPCM_I2CCST_TGSCL, bus->reg + NPCM_I2CCST);
1738 		usleep_range(20, 30);
1739 		/* If SDA line is inactive (high), stop */
1740 		if (npcm_i2c_get_SDA(_adap)) {
1741 			done = true;
1742 			status = 0;
1743 		}
1744 	} while (!done && iter--);
1745 
1746 	/* If SDA line is released: send start-addr-stop, to re-sync. */
1747 	if (npcm_i2c_get_SDA(_adap)) {
1748 		/* Send an address byte in write direction: */
1749 		npcm_i2c_wr_byte(bus, bus->dest_addr);
1750 		npcm_i2c_master_start(bus);
1751 		/* Wait until START condition is sent */
1752 		status = readx_poll_timeout(npcm_i2c_get_SCL, _adap, val, !val,
1753 					    20, 200);
1754 		/* If START condition was sent */
1755 		if (npcm_i2c_is_master(bus) > 0) {
1756 			usleep_range(20, 30);
1757 			npcm_i2c_master_stop(bus);
1758 			usleep_range(200, 500);
1759 		}
1760 	}
1761 	npcm_i2c_reset(bus);
1762 	npcm_i2c_int_enable(bus, true);
1763 
1764 	if ((npcm_i2c_get_SDA(_adap) == 1) && (npcm_i2c_get_SCL(_adap) == 1))
1765 		status = 0;
1766 	else
1767 		status = -ENOTRECOVERABLE;
1768 	if (status) {
1769 		if (bus->rec_fail_cnt < ULLONG_MAX)
1770 			bus->rec_fail_cnt++;
1771 	} else {
1772 		if (bus->rec_succ_cnt < ULLONG_MAX)
1773 			bus->rec_succ_cnt++;
1774 	}
1775 	return status;
1776 }
1777 
1778 /* recovery using bit banging functionality of the module */
1779 static void npcm_i2c_recovery_init(struct i2c_adapter *_adap)
1780 {
1781 	struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
1782 	struct i2c_bus_recovery_info *rinfo = &bus->rinfo;
1783 
1784 	rinfo->recover_bus = npcm_i2c_recovery_tgclk;
1785 
1786 	/*
1787 	 * npcm i2c HW allows direct reading of SCL and SDA.
1788 	 * However, it does not support setting SCL and SDA directly.
1789 	 * The recovery function can toggle SCL when SDA is low (but not set)
1790 	 * Getter functions used internally, and can be used externally.
1791 	 */
1792 	rinfo->get_scl = npcm_i2c_get_SCL;
1793 	rinfo->get_sda = npcm_i2c_get_SDA;
1794 	_adap->bus_recovery_info = rinfo;
1795 }
1796 
1797 /* SCLFRQ min/max field values */
1798 #define SCLFRQ_MIN  10
1799 #define SCLFRQ_MAX  511
1800 #define clk_coef(freq, mul)	DIV_ROUND_UP((freq) * (mul), 1000000)
1801 
1802 /*
1803  * npcm_i2c_init_clk: init HW timing parameters.
1804  * NPCM7XX i2c module timing parameters are dependent on module core clk (APB)
1805  * and bus frequency.
1806  * 100kHz bus requires tSCL = 4 * SCLFRQ * tCLK. LT and HT are symmetric.
1807  * 400kHz bus requires asymmetric HT and LT. A different equation is recommended
1808  * by the HW designer, given core clock range (equations in comments below).
1809  *
1810  */
1811 static int npcm_i2c_init_clk(struct npcm_i2c *bus, u32 bus_freq_hz)
1812 {
1813 	u32  k1 = 0;
1814 	u32  k2 = 0;
1815 	u8   dbnct = 0;
1816 	u32  sclfrq = 0;
1817 	u8   hldt = 7;
1818 	u8   fast_mode = 0;
1819 	u32  src_clk_khz;
1820 	u32  bus_freq_khz;
1821 
1822 	src_clk_khz = bus->apb_clk / 1000;
1823 	bus_freq_khz = bus_freq_hz / 1000;
1824 	bus->bus_freq = bus_freq_hz;
1825 
1826 	/* 100KHz and below: */
1827 	if (bus_freq_hz <= I2C_MAX_STANDARD_MODE_FREQ) {
1828 		sclfrq = src_clk_khz / (bus_freq_khz * 4);
1829 
1830 		if (sclfrq < SCLFRQ_MIN || sclfrq > SCLFRQ_MAX)
1831 			return -EDOM;
1832 
1833 		if (src_clk_khz >= 40000)
1834 			hldt = 17;
1835 		else if (src_clk_khz >= 12500)
1836 			hldt = 15;
1837 		else
1838 			hldt = 7;
1839 	}
1840 
1841 	/* 400KHz: */
1842 	else if (bus_freq_hz <= I2C_MAX_FAST_MODE_FREQ) {
1843 		sclfrq = 0;
1844 		fast_mode = I2CCTL3_400K_MODE;
1845 
1846 		if (src_clk_khz < 7500)
1847 			/* 400KHZ cannot be supported for core clock < 7.5MHz */
1848 			return -EDOM;
1849 
1850 		else if (src_clk_khz >= 50000) {
1851 			k1 = 80;
1852 			k2 = 48;
1853 			hldt = 12;
1854 			dbnct = 7;
1855 		}
1856 
1857 		/* Master or Slave with frequency > 25MHz */
1858 		else if (src_clk_khz > 25000) {
1859 			hldt = clk_coef(src_clk_khz, 300) + 7;
1860 			k1 = clk_coef(src_clk_khz, 1600);
1861 			k2 = clk_coef(src_clk_khz, 900);
1862 		}
1863 	}
1864 
1865 	/* 1MHz: */
1866 	else if (bus_freq_hz <= I2C_MAX_FAST_MODE_PLUS_FREQ) {
1867 		sclfrq = 0;
1868 		fast_mode = I2CCTL3_400K_MODE;
1869 
1870 		/* 1MHZ cannot be supported for core clock < 24 MHz */
1871 		if (src_clk_khz < 24000)
1872 			return -EDOM;
1873 
1874 		k1 = clk_coef(src_clk_khz, 620);
1875 		k2 = clk_coef(src_clk_khz, 380);
1876 
1877 		/* Core clk > 40 MHz */
1878 		if (src_clk_khz > 40000) {
1879 			/*
1880 			 * Set HLDT:
1881 			 * SDA hold time:  (HLDT-7) * T(CLK) >= 120
1882 			 * HLDT = 120/T(CLK) + 7 = 120 * FREQ(CLK) + 7
1883 			 */
1884 			hldt = clk_coef(src_clk_khz, 120) + 7;
1885 		} else {
1886 			hldt = 7;
1887 			dbnct = 2;
1888 		}
1889 	}
1890 
1891 	/* Frequency larger than 1 MHz is not supported */
1892 	else
1893 		return -EINVAL;
1894 
1895 	if (bus_freq_hz >= I2C_MAX_FAST_MODE_FREQ) {
1896 		k1 = round_up(k1, 2);
1897 		k2 = round_up(k2 + 1, 2);
1898 		if (k1 < SCLFRQ_MIN || k1 > SCLFRQ_MAX ||
1899 		    k2 < SCLFRQ_MIN || k2 > SCLFRQ_MAX)
1900 			return -EDOM;
1901 	}
1902 
1903 	/* write sclfrq value. bits [6:0] are in I2CCTL2 reg */
1904 	iowrite8(FIELD_PREP(I2CCTL2_SCLFRQ6_0, sclfrq & 0x7F),
1905 		 bus->reg + NPCM_I2CCTL2);
1906 
1907 	/* bits [8:7] are in I2CCTL3 reg */
1908 	iowrite8(fast_mode | FIELD_PREP(I2CCTL3_SCLFRQ8_7, (sclfrq >> 7) & 0x3),
1909 		 bus->reg + NPCM_I2CCTL3);
1910 
1911 	/* Select Bank 0 to access NPCM_I2CCTL4/NPCM_I2CCTL5 */
1912 	npcm_i2c_select_bank(bus, I2C_BANK_0);
1913 
1914 	if (bus_freq_hz >= I2C_MAX_FAST_MODE_FREQ) {
1915 		/*
1916 		 * Set SCL Low/High Time:
1917 		 * k1 = 2 * SCLLT7-0 -> Low Time  = k1 / 2
1918 		 * k2 = 2 * SCLLT7-0 -> High Time = k2 / 2
1919 		 */
1920 		iowrite8(k1 / 2, bus->reg + NPCM_I2CSCLLT);
1921 		iowrite8(k2 / 2, bus->reg + NPCM_I2CSCLHT);
1922 
1923 		iowrite8(dbnct, bus->reg + NPCM_I2CCTL5);
1924 	}
1925 
1926 	iowrite8(hldt, bus->reg + NPCM_I2CCTL4);
1927 
1928 	/* Return to Bank 1, and stay there by default: */
1929 	npcm_i2c_select_bank(bus, I2C_BANK_1);
1930 
1931 	return 0;
1932 }
1933 
1934 static int npcm_i2c_init_module(struct npcm_i2c *bus, enum i2c_mode mode,
1935 				u32 bus_freq_hz)
1936 {
1937 	u8 val;
1938 	int ret;
1939 
1940 	/* Check whether module already enabled or frequency is out of bounds */
1941 	if ((bus->state != I2C_DISABLE && bus->state != I2C_IDLE) ||
1942 	    bus_freq_hz < I2C_FREQ_MIN_HZ || bus_freq_hz > I2C_FREQ_MAX_HZ)
1943 		return -EINVAL;
1944 
1945 	npcm_i2c_int_enable(bus, false);
1946 	npcm_i2c_disable(bus);
1947 
1948 	/* Configure FIFO mode : */
1949 	if (FIELD_GET(I2C_VER_FIFO_EN, ioread8(bus->reg + I2C_VER))) {
1950 		bus->fifo_use = true;
1951 		npcm_i2c_select_bank(bus, I2C_BANK_0);
1952 		val = ioread8(bus->reg + NPCM_I2CFIF_CTL);
1953 		val |= NPCM_I2CFIF_CTL_FIFO_EN;
1954 		iowrite8(val, bus->reg + NPCM_I2CFIF_CTL);
1955 		npcm_i2c_select_bank(bus, I2C_BANK_1);
1956 	} else {
1957 		bus->fifo_use = false;
1958 	}
1959 
1960 	/* Configure I2C module clock frequency */
1961 	ret = npcm_i2c_init_clk(bus, bus_freq_hz);
1962 	if (ret) {
1963 		dev_err(bus->dev, "npcm_i2c_init_clk failed\n");
1964 		return ret;
1965 	}
1966 
1967 	/* Enable module (before configuring CTL1) */
1968 	npcm_i2c_enable(bus);
1969 	bus->state = I2C_IDLE;
1970 	val = ioread8(bus->reg + NPCM_I2CCTL1);
1971 	val = (val | NPCM_I2CCTL1_NMINTE) & ~NPCM_I2CCTL1_RWS;
1972 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
1973 
1974 	npcm_i2c_reset(bus);
1975 
1976 	/* Check HW is OK: SDA and SCL should be high at this point. */
1977 	if ((npcm_i2c_get_SDA(&bus->adap) == 0) || (npcm_i2c_get_SCL(&bus->adap) == 0)) {
1978 		dev_err(bus->dev, "I2C%d init fail: lines are low\n", bus->num);
1979 		dev_err(bus->dev, "SDA=%d SCL=%d\n", npcm_i2c_get_SDA(&bus->adap),
1980 			npcm_i2c_get_SCL(&bus->adap));
1981 		return -ENXIO;
1982 	}
1983 
1984 	npcm_i2c_int_enable(bus, true);
1985 	return 0;
1986 }
1987 
1988 static int __npcm_i2c_init(struct npcm_i2c *bus, struct platform_device *pdev)
1989 {
1990 	u32 clk_freq_hz;
1991 	int ret;
1992 
1993 	/* Initialize the internal data structures */
1994 	bus->state = I2C_DISABLE;
1995 	bus->master_or_slave = I2C_SLAVE;
1996 	bus->int_time_stamp = 0;
1997 #if IS_ENABLED(CONFIG_I2C_SLAVE)
1998 	bus->slave = NULL;
1999 #endif
2000 
2001 	ret = device_property_read_u32(&pdev->dev, "clock-frequency",
2002 				       &clk_freq_hz);
2003 	if (ret) {
2004 		dev_info(&pdev->dev, "Could not read clock-frequency property");
2005 		clk_freq_hz = I2C_MAX_STANDARD_MODE_FREQ;
2006 	}
2007 
2008 	ret = npcm_i2c_init_module(bus, I2C_MASTER, clk_freq_hz);
2009 	if (ret) {
2010 		dev_err(&pdev->dev, "npcm_i2c_init_module failed\n");
2011 		return ret;
2012 	}
2013 
2014 	return 0;
2015 }
2016 
2017 static irqreturn_t npcm_i2c_bus_irq(int irq, void *dev_id)
2018 {
2019 	struct npcm_i2c *bus = dev_id;
2020 
2021 	if (npcm_i2c_is_master(bus))
2022 		bus->master_or_slave = I2C_MASTER;
2023 
2024 	if (bus->master_or_slave == I2C_MASTER) {
2025 		bus->int_time_stamp = jiffies;
2026 		if (!npcm_i2c_int_master_handler(bus))
2027 			return IRQ_HANDLED;
2028 	}
2029 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2030 	if (bus->slave) {
2031 		bus->master_or_slave = I2C_SLAVE;
2032 		if (npcm_i2c_int_slave_handler(bus))
2033 			return IRQ_HANDLED;
2034 	}
2035 #endif
2036 	/* Clear status bits for spurious interrupts */
2037 	npcm_i2c_clear_master_status(bus);
2038 
2039 	return IRQ_HANDLED;
2040 }
2041 
2042 static bool npcm_i2c_master_start_xmit(struct npcm_i2c *bus,
2043 				       u8 slave_addr, u16 nwrite, u16 nread,
2044 				       u8 *write_data, u8 *read_data,
2045 				       bool use_PEC, bool use_read_block)
2046 {
2047 	if (bus->state != I2C_IDLE) {
2048 		bus->cmd_err = -EBUSY;
2049 		return false;
2050 	}
2051 	bus->dest_addr = slave_addr << 1;
2052 	bus->wr_buf = write_data;
2053 	bus->wr_size = nwrite;
2054 	bus->wr_ind = 0;
2055 	bus->rd_buf = read_data;
2056 	bus->rd_size = nread;
2057 	bus->rd_ind = 0;
2058 	bus->PEC_use = 0;
2059 
2060 	/* for tx PEC is appended to buffer from i2c IF. PEC flag is ignored */
2061 	if (nread)
2062 		bus->PEC_use = use_PEC;
2063 
2064 	bus->read_block_use = use_read_block;
2065 	if (nread && !nwrite)
2066 		bus->operation = I2C_READ_OPER;
2067 	else
2068 		bus->operation = I2C_WRITE_OPER;
2069 	if (bus->fifo_use) {
2070 		u8 i2cfif_cts;
2071 
2072 		npcm_i2c_select_bank(bus, I2C_BANK_1);
2073 		/* clear FIFO and relevant status bits. */
2074 		i2cfif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
2075 		i2cfif_cts &= ~NPCM_I2CFIF_CTS_SLVRSTR;
2076 		i2cfif_cts |= NPCM_I2CFIF_CTS_CLR_FIFO;
2077 		iowrite8(i2cfif_cts, bus->reg + NPCM_I2CFIF_CTS);
2078 	}
2079 
2080 	bus->state = I2C_IDLE;
2081 	npcm_i2c_stall_after_start(bus, true);
2082 	npcm_i2c_master_start(bus);
2083 	return true;
2084 }
2085 
2086 static int npcm_i2c_master_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
2087 				int num)
2088 {
2089 	struct npcm_i2c *bus = container_of(adap, struct npcm_i2c, adap);
2090 	struct i2c_msg *msg0, *msg1;
2091 	unsigned long time_left, flags;
2092 	u16 nwrite, nread;
2093 	u8 *write_data, *read_data;
2094 	u8 slave_addr;
2095 	unsigned long timeout;
2096 	bool read_block = false;
2097 	bool read_PEC = false;
2098 	u8 bus_busy;
2099 	unsigned long timeout_usec;
2100 
2101 	if (bus->state == I2C_DISABLE) {
2102 		dev_err(bus->dev, "I2C%d module is disabled", bus->num);
2103 		return -EINVAL;
2104 	}
2105 
2106 	msg0 = &msgs[0];
2107 	slave_addr = msg0->addr;
2108 	if (msg0->flags & I2C_M_RD) { /* read */
2109 		nwrite = 0;
2110 		write_data = NULL;
2111 		read_data = msg0->buf;
2112 		if (msg0->flags & I2C_M_RECV_LEN) {
2113 			nread = 1;
2114 			read_block = true;
2115 			if (msg0->flags & I2C_CLIENT_PEC)
2116 				read_PEC = true;
2117 		} else {
2118 			nread = msg0->len;
2119 		}
2120 	} else { /* write */
2121 		nwrite = msg0->len;
2122 		write_data = msg0->buf;
2123 		nread = 0;
2124 		read_data = NULL;
2125 		if (num == 2) {
2126 			msg1 = &msgs[1];
2127 			read_data = msg1->buf;
2128 			if (msg1->flags & I2C_M_RECV_LEN) {
2129 				nread = 1;
2130 				read_block = true;
2131 				if (msg1->flags & I2C_CLIENT_PEC)
2132 					read_PEC = true;
2133 			} else {
2134 				nread = msg1->len;
2135 				read_block = false;
2136 			}
2137 		}
2138 	}
2139 
2140 	/*
2141 	 * Adaptive TimeOut: estimated time in usec + 100% margin:
2142 	 * 2: double the timeout for clock stretching case
2143 	 * 9: bits per transaction (including the ack/nack)
2144 	 */
2145 	timeout_usec = (2 * 9 * USEC_PER_SEC / bus->bus_freq) * (2 + nread + nwrite);
2146 	timeout = max_t(unsigned long, bus->adap.timeout, usecs_to_jiffies(timeout_usec));
2147 	if (nwrite >= 32 * 1024 || nread >= 32 * 1024) {
2148 		dev_err(bus->dev, "i2c%d buffer too big\n", bus->num);
2149 		return -EINVAL;
2150 	}
2151 
2152 	time_left = jiffies + timeout + 1;
2153 	do {
2154 		/*
2155 		 * we must clear slave address immediately when the bus is not
2156 		 * busy, so we spinlock it, but we don't keep the lock for the
2157 		 * entire while since it is too long.
2158 		 */
2159 		spin_lock_irqsave(&bus->lock, flags);
2160 		bus_busy = ioread8(bus->reg + NPCM_I2CCST) & NPCM_I2CCST_BB;
2161 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2162 		if (!bus_busy && bus->slave)
2163 			iowrite8((bus->slave->addr & 0x7F),
2164 				 bus->reg + NPCM_I2CADDR1);
2165 #endif
2166 		spin_unlock_irqrestore(&bus->lock, flags);
2167 
2168 	} while (time_is_after_jiffies(time_left) && bus_busy);
2169 
2170 	if (bus_busy) {
2171 		iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
2172 		npcm_i2c_reset(bus);
2173 		i2c_recover_bus(adap);
2174 		return -EAGAIN;
2175 	}
2176 
2177 	npcm_i2c_init_params(bus);
2178 	bus->dest_addr = slave_addr;
2179 	bus->msgs = msgs;
2180 	bus->msgs_num = num;
2181 	bus->cmd_err = 0;
2182 	bus->read_block_use = read_block;
2183 
2184 	reinit_completion(&bus->cmd_complete);
2185 
2186 	npcm_i2c_int_enable(bus, true);
2187 
2188 	if (npcm_i2c_master_start_xmit(bus, slave_addr, nwrite, nread,
2189 				       write_data, read_data, read_PEC,
2190 				       read_block)) {
2191 		time_left = wait_for_completion_timeout(&bus->cmd_complete,
2192 							timeout);
2193 
2194 		if (time_left == 0) {
2195 			if (bus->timeout_cnt < ULLONG_MAX)
2196 				bus->timeout_cnt++;
2197 			if (bus->master_or_slave == I2C_MASTER) {
2198 				i2c_recover_bus(adap);
2199 				bus->cmd_err = -EIO;
2200 				bus->state = I2C_IDLE;
2201 			}
2202 		}
2203 	}
2204 
2205 	/* if there was BER, check if need to recover the bus: */
2206 	if (bus->cmd_err == -EAGAIN)
2207 		bus->cmd_err = i2c_recover_bus(adap);
2208 
2209 	/*
2210 	 * After any type of error, check if LAST bit is still set,
2211 	 * due to a HW issue.
2212 	 * It cannot be cleared without resetting the module.
2213 	 */
2214 	else if (bus->cmd_err &&
2215 		 (bus->data->rxf_ctl_last_pec & ioread8(bus->reg + NPCM_I2CRXF_CTL)))
2216 		npcm_i2c_reset(bus);
2217 
2218 	/* After any xfer, successful or not, stall and EOB must be disabled */
2219 	npcm_i2c_stall_after_start(bus, false);
2220 	npcm_i2c_eob_int(bus, false);
2221 
2222 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2223 	/* reenable slave if it was enabled */
2224 	if (bus->slave)
2225 		iowrite8((bus->slave->addr & 0x7F) | NPCM_I2CADDR_SAEN,
2226 			 bus->reg + NPCM_I2CADDR1);
2227 #else
2228 	npcm_i2c_int_enable(bus, false);
2229 #endif
2230 	return bus->cmd_err;
2231 }
2232 
2233 static u32 npcm_i2c_functionality(struct i2c_adapter *adap)
2234 {
2235 	return I2C_FUNC_I2C |
2236 	       I2C_FUNC_SMBUS_EMUL |
2237 	       I2C_FUNC_SMBUS_BLOCK_DATA |
2238 	       I2C_FUNC_SMBUS_PEC |
2239 	       I2C_FUNC_SLAVE;
2240 }
2241 
2242 static const struct i2c_adapter_quirks npcm_i2c_quirks = {
2243 	.max_read_len = 32768,
2244 	.max_write_len = 32768,
2245 	.flags = I2C_AQ_COMB_WRITE_THEN_READ,
2246 };
2247 
2248 static const struct i2c_algorithm npcm_i2c_algo = {
2249 	.master_xfer = npcm_i2c_master_xfer,
2250 	.functionality = npcm_i2c_functionality,
2251 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2252 	.reg_slave	= npcm_i2c_reg_slave,
2253 	.unreg_slave	= npcm_i2c_unreg_slave,
2254 #endif
2255 };
2256 
2257 /* i2c debugfs directory: used to keep health monitor of i2c devices */
2258 static struct dentry *npcm_i2c_debugfs_dir;
2259 
2260 static void npcm_i2c_init_debugfs(struct platform_device *pdev,
2261 				  struct npcm_i2c *bus)
2262 {
2263 	struct dentry *d;
2264 
2265 	if (!npcm_i2c_debugfs_dir)
2266 		return;
2267 	d = debugfs_create_dir(dev_name(&pdev->dev), npcm_i2c_debugfs_dir);
2268 	if (IS_ERR_OR_NULL(d))
2269 		return;
2270 	debugfs_create_u64("ber_cnt", 0444, d, &bus->ber_cnt);
2271 	debugfs_create_u64("nack_cnt", 0444, d, &bus->nack_cnt);
2272 	debugfs_create_u64("rec_succ_cnt", 0444, d, &bus->rec_succ_cnt);
2273 	debugfs_create_u64("rec_fail_cnt", 0444, d, &bus->rec_fail_cnt);
2274 	debugfs_create_u64("timeout_cnt", 0444, d, &bus->timeout_cnt);
2275 	debugfs_create_u64("tx_complete_cnt", 0444, d, &bus->tx_complete_cnt);
2276 
2277 	bus->debugfs = d;
2278 }
2279 
2280 static int npcm_i2c_probe_bus(struct platform_device *pdev)
2281 {
2282 	struct device_node *np = pdev->dev.of_node;
2283 	static struct regmap *gcr_regmap;
2284 	struct device *dev = &pdev->dev;
2285 	struct i2c_adapter *adap;
2286 	struct npcm_i2c *bus;
2287 	struct clk *i2c_clk;
2288 	int irq;
2289 	int ret;
2290 
2291 	bus = devm_kzalloc(&pdev->dev, sizeof(*bus), GFP_KERNEL);
2292 	if (!bus)
2293 		return -ENOMEM;
2294 
2295 	bus->dev = &pdev->dev;
2296 
2297 	bus->data = of_device_get_match_data(dev);
2298 	if (!bus->data) {
2299 		dev_err(dev, "OF data missing\n");
2300 		return -EINVAL;
2301 	}
2302 
2303 	bus->num = of_alias_get_id(pdev->dev.of_node, "i2c");
2304 	/* core clk must be acquired to calculate module timing settings */
2305 	i2c_clk = devm_clk_get(&pdev->dev, NULL);
2306 	if (IS_ERR(i2c_clk))
2307 		return PTR_ERR(i2c_clk);
2308 	bus->apb_clk = clk_get_rate(i2c_clk);
2309 
2310 	gcr_regmap = syscon_regmap_lookup_by_phandle(np, "nuvoton,sys-mgr");
2311 	if (IS_ERR(gcr_regmap))
2312 		gcr_regmap = syscon_regmap_lookup_by_compatible("nuvoton,npcm750-gcr");
2313 
2314 	if (IS_ERR(gcr_regmap))
2315 		return PTR_ERR(gcr_regmap);
2316 	regmap_write(gcr_regmap, NPCM_I2CSEGCTL, bus->data->segctl_init_val);
2317 
2318 	bus->reg = devm_platform_ioremap_resource(pdev, 0);
2319 	if (IS_ERR(bus->reg))
2320 		return PTR_ERR(bus->reg);
2321 
2322 	spin_lock_init(&bus->lock);
2323 	init_completion(&bus->cmd_complete);
2324 
2325 	adap = &bus->adap;
2326 	adap->owner = THIS_MODULE;
2327 	adap->retries = 3;
2328 	adap->timeout = msecs_to_jiffies(35);
2329 	adap->algo = &npcm_i2c_algo;
2330 	adap->quirks = &npcm_i2c_quirks;
2331 	adap->algo_data = bus;
2332 	adap->dev.parent = &pdev->dev;
2333 	adap->dev.of_node = pdev->dev.of_node;
2334 	adap->nr = pdev->id;
2335 
2336 	irq = platform_get_irq(pdev, 0);
2337 	if (irq < 0)
2338 		return irq;
2339 
2340 	ret = devm_request_irq(bus->dev, irq, npcm_i2c_bus_irq, 0,
2341 			       dev_name(bus->dev), bus);
2342 	if (ret)
2343 		return ret;
2344 
2345 	ret = __npcm_i2c_init(bus, pdev);
2346 	if (ret)
2347 		return ret;
2348 
2349 	npcm_i2c_recovery_init(adap);
2350 
2351 	i2c_set_adapdata(adap, bus);
2352 
2353 	snprintf(bus->adap.name, sizeof(bus->adap.name), "npcm_i2c_%d",
2354 		 bus->num);
2355 	ret = i2c_add_numbered_adapter(&bus->adap);
2356 	if (ret)
2357 		return ret;
2358 
2359 	platform_set_drvdata(pdev, bus);
2360 	npcm_i2c_init_debugfs(pdev, bus);
2361 	return 0;
2362 }
2363 
2364 static int npcm_i2c_remove_bus(struct platform_device *pdev)
2365 {
2366 	unsigned long lock_flags;
2367 	struct npcm_i2c *bus = platform_get_drvdata(pdev);
2368 
2369 	debugfs_remove_recursive(bus->debugfs);
2370 	spin_lock_irqsave(&bus->lock, lock_flags);
2371 	npcm_i2c_disable(bus);
2372 	spin_unlock_irqrestore(&bus->lock, lock_flags);
2373 	i2c_del_adapter(&bus->adap);
2374 	return 0;
2375 }
2376 
2377 static const struct of_device_id npcm_i2c_bus_of_table[] = {
2378 	{ .compatible = "nuvoton,npcm750-i2c", .data = &npxm7xx_i2c_data },
2379 	{ .compatible = "nuvoton,npcm845-i2c", .data = &npxm8xx_i2c_data },
2380 	{}
2381 };
2382 MODULE_DEVICE_TABLE(of, npcm_i2c_bus_of_table);
2383 
2384 static struct platform_driver npcm_i2c_bus_driver = {
2385 	.probe = npcm_i2c_probe_bus,
2386 	.remove = npcm_i2c_remove_bus,
2387 	.driver = {
2388 		.name = "nuvoton-i2c",
2389 		.of_match_table = npcm_i2c_bus_of_table,
2390 	}
2391 };
2392 
2393 static int __init npcm_i2c_init(void)
2394 {
2395 	int ret;
2396 
2397 	npcm_i2c_debugfs_dir = debugfs_create_dir("npcm_i2c", NULL);
2398 
2399 	ret = platform_driver_register(&npcm_i2c_bus_driver);
2400 	if (ret) {
2401 		debugfs_remove_recursive(npcm_i2c_debugfs_dir);
2402 		return ret;
2403 	}
2404 
2405 	return 0;
2406 }
2407 module_init(npcm_i2c_init);
2408 
2409 static void __exit npcm_i2c_exit(void)
2410 {
2411 	platform_driver_unregister(&npcm_i2c_bus_driver);
2412 	debugfs_remove_recursive(npcm_i2c_debugfs_dir);
2413 }
2414 module_exit(npcm_i2c_exit);
2415 
2416 MODULE_AUTHOR("Avi Fishman <avi.fishman@gmail.com>");
2417 MODULE_AUTHOR("Tali Perry <tali.perry@nuvoton.com>");
2418 MODULE_AUTHOR("Tyrone Ting <kfting@nuvoton.com>");
2419 MODULE_DESCRIPTION("Nuvoton I2C Bus Driver");
2420 MODULE_LICENSE("GPL v2");
2421