xref: /linux/drivers/i2c/busses/i2c-npcm7xx.c (revision 005c54278b3dd38f6045a2450a8c988cc7d3def2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Nuvoton NPCM7xx I2C Controller driver
4  *
5  * Copyright (C) 2020 Nuvoton Technologies tali.perry@nuvoton.com
6  */
7 #include <linux/bitfield.h>
8 #include <linux/clk.h>
9 #include <linux/debugfs.h>
10 #include <linux/errno.h>
11 #include <linux/i2c.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/irq.h>
15 #include <linux/jiffies.h>
16 #include <linux/kernel.h>
17 #include <linux/mfd/syscon.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/regmap.h>
23 
24 enum i2c_mode {
25 	I2C_MASTER,
26 	I2C_SLAVE,
27 };
28 
29 /*
30  * External I2C Interface driver xfer indication values, which indicate status
31  * of the bus.
32  */
33 enum i2c_state_ind {
34 	I2C_NO_STATUS_IND = 0,
35 	I2C_SLAVE_RCV_IND,
36 	I2C_SLAVE_XMIT_IND,
37 	I2C_SLAVE_XMIT_MISSING_DATA_IND,
38 	I2C_SLAVE_RESTART_IND,
39 	I2C_SLAVE_DONE_IND,
40 	I2C_MASTER_DONE_IND,
41 	I2C_NACK_IND,
42 	I2C_BUS_ERR_IND,
43 	I2C_WAKE_UP_IND,
44 	I2C_BLOCK_BYTES_ERR_IND,
45 	I2C_SLAVE_RCV_MISSING_DATA_IND,
46 };
47 
48 /*
49  * Operation type values (used to define the operation currently running)
50  * module is interrupt driven, on each interrupt the current operation is
51  * checked to see if the module is currently reading or writing.
52  */
53 enum i2c_oper {
54 	I2C_NO_OPER = 0,
55 	I2C_WRITE_OPER,
56 	I2C_READ_OPER,
57 };
58 
59 /* I2C Bank (module had 2 banks of registers) */
60 enum i2c_bank {
61 	I2C_BANK_0 = 0,
62 	I2C_BANK_1,
63 };
64 
65 /* Internal I2C states values (for the I2C module state machine). */
66 enum i2c_state {
67 	I2C_DISABLE = 0,
68 	I2C_IDLE,
69 	I2C_MASTER_START,
70 	I2C_SLAVE_MATCH,
71 	I2C_OPER_STARTED,
72 	I2C_STOP_PENDING,
73 };
74 
75 #if IS_ENABLED(CONFIG_I2C_SLAVE)
76 /* Module supports setting multiple own slave addresses */
77 enum i2c_addr {
78 	I2C_SLAVE_ADDR1 = 0,
79 	I2C_SLAVE_ADDR2,
80 	I2C_SLAVE_ADDR3,
81 	I2C_SLAVE_ADDR4,
82 	I2C_SLAVE_ADDR5,
83 	I2C_SLAVE_ADDR6,
84 	I2C_SLAVE_ADDR7,
85 	I2C_SLAVE_ADDR8,
86 	I2C_SLAVE_ADDR9,
87 	I2C_SLAVE_ADDR10,
88 	I2C_GC_ADDR,
89 	I2C_ARP_ADDR,
90 };
91 #endif
92 
93 /* init register and default value required to enable module */
94 #define NPCM_I2CSEGCTL			0xE4
95 
96 /* Common regs */
97 #define NPCM_I2CSDA			0x00
98 #define NPCM_I2CST			0x02
99 #define NPCM_I2CCST			0x04
100 #define NPCM_I2CCTL1			0x06
101 #define NPCM_I2CADDR1			0x08
102 #define NPCM_I2CCTL2			0x0A
103 #define NPCM_I2CADDR2			0x0C
104 #define NPCM_I2CCTL3			0x0E
105 #define NPCM_I2CCST2			0x18
106 #define NPCM_I2CCST3			0x19
107 #define I2C_VER				0x1F
108 
109 /*BANK0 regs*/
110 #define NPCM_I2CADDR3			0x10
111 #define NPCM_I2CADDR7			0x11
112 #define NPCM_I2CADDR4			0x12
113 #define NPCM_I2CADDR8			0x13
114 #define NPCM_I2CADDR5			0x14
115 #define NPCM_I2CADDR9			0x15
116 #define NPCM_I2CADDR6			0x16
117 #define NPCM_I2CADDR10			0x17
118 
119 #if IS_ENABLED(CONFIG_I2C_SLAVE)
120 /*
121  * npcm_i2caddr array:
122  * The module supports having multiple own slave addresses.
123  * Since the addr regs are sprinkled all over the address space,
124  * use this array to get the address or each register.
125  */
126 #define I2C_NUM_OWN_ADDR 2
127 #define I2C_NUM_OWN_ADDR_SUPPORTED 2
128 
129 static const int npcm_i2caddr[I2C_NUM_OWN_ADDR] = {
130 	NPCM_I2CADDR1, NPCM_I2CADDR2,
131 };
132 #endif
133 
134 #define NPCM_I2CCTL4			0x1A
135 #define NPCM_I2CCTL5			0x1B
136 #define NPCM_I2CSCLLT			0x1C /* SCL Low Time */
137 #define NPCM_I2CFIF_CTL			0x1D /* FIFO Control */
138 #define NPCM_I2CSCLHT			0x1E /* SCL High Time */
139 
140 /* BANK 1 regs */
141 #define NPCM_I2CFIF_CTS			0x10 /* Both FIFOs Control and Status */
142 #define NPCM_I2CTXF_CTL			0x12 /* Tx-FIFO Control */
143 #define NPCM_I2CT_OUT			0x14 /* Bus T.O. */
144 #define NPCM_I2CPEC			0x16 /* PEC Data */
145 #define NPCM_I2CTXF_STS			0x1A /* Tx-FIFO Status */
146 #define NPCM_I2CRXF_STS			0x1C /* Rx-FIFO Status */
147 #define NPCM_I2CRXF_CTL			0x1E /* Rx-FIFO Control */
148 
149 /* NPCM_I2CST reg fields */
150 #define NPCM_I2CST_XMIT			BIT(0)
151 #define NPCM_I2CST_MASTER		BIT(1)
152 #define NPCM_I2CST_NMATCH		BIT(2)
153 #define NPCM_I2CST_STASTR		BIT(3)
154 #define NPCM_I2CST_NEGACK		BIT(4)
155 #define NPCM_I2CST_BER			BIT(5)
156 #define NPCM_I2CST_SDAST		BIT(6)
157 #define NPCM_I2CST_SLVSTP		BIT(7)
158 
159 /* NPCM_I2CCST reg fields */
160 #define NPCM_I2CCST_BUSY		BIT(0)
161 #define NPCM_I2CCST_BB			BIT(1)
162 #define NPCM_I2CCST_MATCH		BIT(2)
163 #define NPCM_I2CCST_GCMATCH		BIT(3)
164 #define NPCM_I2CCST_TSDA		BIT(4)
165 #define NPCM_I2CCST_TGSCL		BIT(5)
166 #define NPCM_I2CCST_MATCHAF		BIT(6)
167 #define NPCM_I2CCST_ARPMATCH		BIT(7)
168 
169 /* NPCM_I2CCTL1 reg fields */
170 #define NPCM_I2CCTL1_START		BIT(0)
171 #define NPCM_I2CCTL1_STOP		BIT(1)
172 #define NPCM_I2CCTL1_INTEN		BIT(2)
173 #define NPCM_I2CCTL1_EOBINTE		BIT(3)
174 #define NPCM_I2CCTL1_ACK		BIT(4)
175 #define NPCM_I2CCTL1_GCMEN		BIT(5)
176 #define NPCM_I2CCTL1_NMINTE		BIT(6)
177 #define NPCM_I2CCTL1_STASTRE		BIT(7)
178 
179 /* RW1S fields (inside a RW reg): */
180 #define NPCM_I2CCTL1_RWS   \
181 	(NPCM_I2CCTL1_START | NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_ACK)
182 
183 /* npcm_i2caddr reg fields */
184 #define NPCM_I2CADDR_A			GENMASK(6, 0)
185 #define NPCM_I2CADDR_SAEN		BIT(7)
186 
187 /* NPCM_I2CCTL2 reg fields */
188 #define I2CCTL2_ENABLE			BIT(0)
189 #define I2CCTL2_SCLFRQ6_0		GENMASK(7, 1)
190 
191 /* NPCM_I2CCTL3 reg fields */
192 #define I2CCTL3_SCLFRQ8_7		GENMASK(1, 0)
193 #define I2CCTL3_ARPMEN			BIT(2)
194 #define I2CCTL3_IDL_START		BIT(3)
195 #define I2CCTL3_400K_MODE		BIT(4)
196 #define I2CCTL3_BNK_SEL			BIT(5)
197 #define I2CCTL3_SDA_LVL			BIT(6)
198 #define I2CCTL3_SCL_LVL			BIT(7)
199 
200 /* NPCM_I2CCST2 reg fields */
201 #define NPCM_I2CCST2_MATCHA1F		BIT(0)
202 #define NPCM_I2CCST2_MATCHA2F		BIT(1)
203 #define NPCM_I2CCST2_MATCHA3F		BIT(2)
204 #define NPCM_I2CCST2_MATCHA4F		BIT(3)
205 #define NPCM_I2CCST2_MATCHA5F		BIT(4)
206 #define NPCM_I2CCST2_MATCHA6F		BIT(5)
207 #define NPCM_I2CCST2_MATCHA7F		BIT(5)
208 #define NPCM_I2CCST2_INTSTS		BIT(7)
209 
210 /* NPCM_I2CCST3 reg fields */
211 #define NPCM_I2CCST3_MATCHA8F		BIT(0)
212 #define NPCM_I2CCST3_MATCHA9F		BIT(1)
213 #define NPCM_I2CCST3_MATCHA10F		BIT(2)
214 #define NPCM_I2CCST3_EO_BUSY		BIT(7)
215 
216 /* NPCM_I2CCTL4 reg fields */
217 #define I2CCTL4_HLDT			GENMASK(5, 0)
218 #define I2CCTL4_LVL_WE			BIT(7)
219 
220 /* NPCM_I2CCTL5 reg fields */
221 #define I2CCTL5_DBNCT			GENMASK(3, 0)
222 
223 /* NPCM_I2CFIF_CTS reg fields */
224 #define NPCM_I2CFIF_CTS_RXF_TXE		BIT(1)
225 #define NPCM_I2CFIF_CTS_RFTE_IE		BIT(3)
226 #define NPCM_I2CFIF_CTS_CLR_FIFO	BIT(6)
227 #define NPCM_I2CFIF_CTS_SLVRSTR		BIT(7)
228 
229 /* NPCM_I2CTXF_CTL reg field */
230 #define NPCM_I2CTXF_CTL_THR_TXIE	BIT(6)
231 
232 /* NPCM_I2CT_OUT reg fields */
233 #define NPCM_I2CT_OUT_TO_CKDIV		GENMASK(5, 0)
234 #define NPCM_I2CT_OUT_T_OUTIE		BIT(6)
235 #define NPCM_I2CT_OUT_T_OUTST		BIT(7)
236 
237 /* NPCM_I2CTXF_STS reg fields */
238 #define NPCM_I2CTXF_STS_TX_THST		BIT(6)
239 
240 /* NPCM_I2CRXF_STS reg fields */
241 #define NPCM_I2CRXF_STS_RX_THST		BIT(6)
242 
243 /* NPCM_I2CFIF_CTL reg fields */
244 #define NPCM_I2CFIF_CTL_FIFO_EN		BIT(4)
245 
246 /* NPCM_I2CRXF_CTL reg fields */
247 #define NPCM_I2CRXF_CTL_THR_RXIE	BIT(6)
248 
249 #define MAX_I2C_HW_FIFO_SIZE		32
250 
251 /* I2C_VER reg fields */
252 #define I2C_VER_VERSION			GENMASK(6, 0)
253 #define I2C_VER_FIFO_EN			BIT(7)
254 
255 /* stall/stuck timeout in us */
256 #define DEFAULT_STALL_COUNT		25
257 
258 /* SCLFRQ field position */
259 #define SCLFRQ_0_TO_6			GENMASK(6, 0)
260 #define SCLFRQ_7_TO_8			GENMASK(8, 7)
261 
262 /* supported clk settings. values in Hz. */
263 #define I2C_FREQ_MIN_HZ			10000
264 #define I2C_FREQ_MAX_HZ			I2C_MAX_FAST_MODE_PLUS_FREQ
265 
266 struct npcm_i2c_data {
267 	u8 fifo_size;
268 	u32 segctl_init_val;
269 	u8 txf_sts_tx_bytes;
270 	u8 rxf_sts_rx_bytes;
271 	u8 rxf_ctl_last_pec;
272 };
273 
274 static const struct npcm_i2c_data npxm7xx_i2c_data = {
275 	.fifo_size = 16,
276 	.segctl_init_val = 0x0333F000,
277 	.txf_sts_tx_bytes = GENMASK(4, 0),
278 	.rxf_sts_rx_bytes = GENMASK(4, 0),
279 	.rxf_ctl_last_pec = BIT(5),
280 };
281 
282 static const struct npcm_i2c_data npxm8xx_i2c_data = {
283 	.fifo_size = 32,
284 	.segctl_init_val = 0x9333F000,
285 	.txf_sts_tx_bytes = GENMASK(5, 0),
286 	.rxf_sts_rx_bytes = GENMASK(5, 0),
287 	.rxf_ctl_last_pec = BIT(7),
288 };
289 
290 /* Status of one I2C module */
291 struct npcm_i2c {
292 	struct i2c_adapter adap;
293 	struct device *dev;
294 	unsigned char __iomem *reg;
295 	const struct npcm_i2c_data *data;
296 	spinlock_t lock;   /* IRQ synchronization */
297 	struct completion cmd_complete;
298 	int cmd_err;
299 	struct i2c_msg *msgs;
300 	int msgs_num;
301 	int num;
302 	u32 apb_clk;
303 	struct i2c_bus_recovery_info rinfo;
304 	enum i2c_state state;
305 	enum i2c_oper operation;
306 	enum i2c_mode master_or_slave;
307 	enum i2c_state_ind stop_ind;
308 	u8 dest_addr;
309 	u8 *rd_buf;
310 	u16 rd_size;
311 	u16 rd_ind;
312 	u8 *wr_buf;
313 	u16 wr_size;
314 	u16 wr_ind;
315 	bool fifo_use;
316 	u16 PEC_mask; /* PEC bit mask per slave address */
317 	bool PEC_use;
318 	bool read_block_use;
319 	unsigned long int_time_stamp;
320 	unsigned long bus_freq; /* in Hz */
321 #if IS_ENABLED(CONFIG_I2C_SLAVE)
322 	u8 own_slave_addr;
323 	struct i2c_client *slave;
324 	int slv_rd_size;
325 	int slv_rd_ind;
326 	int slv_wr_size;
327 	int slv_wr_ind;
328 	u8 slv_rd_buf[MAX_I2C_HW_FIFO_SIZE];
329 	u8 slv_wr_buf[MAX_I2C_HW_FIFO_SIZE];
330 #endif
331 	struct dentry *debugfs; /* debugfs device directory */
332 	u64 ber_cnt;
333 	u64 rec_succ_cnt;
334 	u64 rec_fail_cnt;
335 	u64 nack_cnt;
336 	u64 timeout_cnt;
337 	u64 tx_complete_cnt;
338 };
339 
340 static inline void npcm_i2c_select_bank(struct npcm_i2c *bus,
341 					enum i2c_bank bank)
342 {
343 	u8 i2cctl3 = ioread8(bus->reg + NPCM_I2CCTL3);
344 
345 	if (bank == I2C_BANK_0)
346 		i2cctl3 = i2cctl3 & ~I2CCTL3_BNK_SEL;
347 	else
348 		i2cctl3 = i2cctl3 | I2CCTL3_BNK_SEL;
349 	iowrite8(i2cctl3, bus->reg + NPCM_I2CCTL3);
350 }
351 
352 static void npcm_i2c_init_params(struct npcm_i2c *bus)
353 {
354 	bus->stop_ind = I2C_NO_STATUS_IND;
355 	bus->rd_size = 0;
356 	bus->wr_size = 0;
357 	bus->rd_ind = 0;
358 	bus->wr_ind = 0;
359 	bus->read_block_use = false;
360 	bus->int_time_stamp = 0;
361 	bus->PEC_use = false;
362 	bus->PEC_mask = 0;
363 #if IS_ENABLED(CONFIG_I2C_SLAVE)
364 	if (bus->slave)
365 		bus->master_or_slave = I2C_SLAVE;
366 #endif
367 }
368 
369 static inline void npcm_i2c_wr_byte(struct npcm_i2c *bus, u8 data)
370 {
371 	iowrite8(data, bus->reg + NPCM_I2CSDA);
372 }
373 
374 static inline u8 npcm_i2c_rd_byte(struct npcm_i2c *bus)
375 {
376 	return ioread8(bus->reg + NPCM_I2CSDA);
377 }
378 
379 static int npcm_i2c_get_SCL(struct i2c_adapter *_adap)
380 {
381 	struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
382 
383 	return !!(I2CCTL3_SCL_LVL & ioread8(bus->reg + NPCM_I2CCTL3));
384 }
385 
386 static int npcm_i2c_get_SDA(struct i2c_adapter *_adap)
387 {
388 	struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
389 
390 	return !!(I2CCTL3_SDA_LVL & ioread8(bus->reg + NPCM_I2CCTL3));
391 }
392 
393 static inline u16 npcm_i2c_get_index(struct npcm_i2c *bus)
394 {
395 	if (bus->operation == I2C_READ_OPER)
396 		return bus->rd_ind;
397 	if (bus->operation == I2C_WRITE_OPER)
398 		return bus->wr_ind;
399 	return 0;
400 }
401 
402 /* quick protocol (just address) */
403 static inline bool npcm_i2c_is_quick(struct npcm_i2c *bus)
404 {
405 	return bus->wr_size == 0 && bus->rd_size == 0;
406 }
407 
408 static void npcm_i2c_disable(struct npcm_i2c *bus)
409 {
410 	u8 i2cctl2;
411 
412 #if IS_ENABLED(CONFIG_I2C_SLAVE)
413 	int i;
414 
415 	/* Slave addresses removal */
416 	for (i = I2C_SLAVE_ADDR1; i < I2C_NUM_OWN_ADDR_SUPPORTED; i++)
417 		iowrite8(0, bus->reg + npcm_i2caddr[i]);
418 
419 #endif
420 	/* Disable module */
421 	i2cctl2 = ioread8(bus->reg + NPCM_I2CCTL2);
422 	i2cctl2 = i2cctl2 & ~I2CCTL2_ENABLE;
423 	iowrite8(i2cctl2, bus->reg + NPCM_I2CCTL2);
424 
425 	bus->state = I2C_DISABLE;
426 }
427 
428 static void npcm_i2c_enable(struct npcm_i2c *bus)
429 {
430 	u8 i2cctl2 = ioread8(bus->reg + NPCM_I2CCTL2);
431 
432 	i2cctl2 = i2cctl2 | I2CCTL2_ENABLE;
433 	iowrite8(i2cctl2, bus->reg + NPCM_I2CCTL2);
434 	bus->state = I2C_IDLE;
435 }
436 
437 /* enable\disable end of busy (EOB) interrupts */
438 static inline void npcm_i2c_eob_int(struct npcm_i2c *bus, bool enable)
439 {
440 	u8 val;
441 
442 	/* Clear EO_BUSY pending bit: */
443 	val = ioread8(bus->reg + NPCM_I2CCST3);
444 	val = val | NPCM_I2CCST3_EO_BUSY;
445 	iowrite8(val, bus->reg + NPCM_I2CCST3);
446 
447 	val = ioread8(bus->reg + NPCM_I2CCTL1);
448 	val &= ~NPCM_I2CCTL1_RWS;
449 	if (enable)
450 		val |= NPCM_I2CCTL1_EOBINTE;
451 	else
452 		val &= ~NPCM_I2CCTL1_EOBINTE;
453 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
454 }
455 
456 static inline bool npcm_i2c_tx_fifo_empty(struct npcm_i2c *bus)
457 {
458 	u8 tx_fifo_sts;
459 
460 	tx_fifo_sts = ioread8(bus->reg + NPCM_I2CTXF_STS);
461 	/* check if TX FIFO is not empty */
462 	if ((tx_fifo_sts & bus->data->txf_sts_tx_bytes) == 0)
463 		return false;
464 
465 	/* check if TX FIFO status bit is set: */
466 	return !!FIELD_GET(NPCM_I2CTXF_STS_TX_THST, tx_fifo_sts);
467 }
468 
469 static inline bool npcm_i2c_rx_fifo_full(struct npcm_i2c *bus)
470 {
471 	u8 rx_fifo_sts;
472 
473 	rx_fifo_sts = ioread8(bus->reg + NPCM_I2CRXF_STS);
474 	/* check if RX FIFO is not empty: */
475 	if ((rx_fifo_sts & bus->data->rxf_sts_rx_bytes) == 0)
476 		return false;
477 
478 	/* check if rx fifo full status is set: */
479 	return !!FIELD_GET(NPCM_I2CRXF_STS_RX_THST, rx_fifo_sts);
480 }
481 
482 static inline void npcm_i2c_clear_fifo_int(struct npcm_i2c *bus)
483 {
484 	u8 val;
485 
486 	val = ioread8(bus->reg + NPCM_I2CFIF_CTS);
487 	val = (val & NPCM_I2CFIF_CTS_SLVRSTR) | NPCM_I2CFIF_CTS_RXF_TXE;
488 	iowrite8(val, bus->reg + NPCM_I2CFIF_CTS);
489 }
490 
491 static inline void npcm_i2c_clear_tx_fifo(struct npcm_i2c *bus)
492 {
493 	u8 val;
494 
495 	val = ioread8(bus->reg + NPCM_I2CTXF_STS);
496 	val = val | NPCM_I2CTXF_STS_TX_THST;
497 	iowrite8(val, bus->reg + NPCM_I2CTXF_STS);
498 }
499 
500 static inline void npcm_i2c_clear_rx_fifo(struct npcm_i2c *bus)
501 {
502 	u8 val;
503 
504 	val = ioread8(bus->reg + NPCM_I2CRXF_STS);
505 	val = val | NPCM_I2CRXF_STS_RX_THST;
506 	iowrite8(val, bus->reg + NPCM_I2CRXF_STS);
507 }
508 
509 static void npcm_i2c_int_enable(struct npcm_i2c *bus, bool enable)
510 {
511 	u8 val;
512 
513 	val = ioread8(bus->reg + NPCM_I2CCTL1);
514 	val &= ~NPCM_I2CCTL1_RWS;
515 	if (enable)
516 		val |= NPCM_I2CCTL1_INTEN;
517 	else
518 		val &= ~NPCM_I2CCTL1_INTEN;
519 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
520 }
521 
522 static inline void npcm_i2c_master_start(struct npcm_i2c *bus)
523 {
524 	u8 val;
525 
526 	val = ioread8(bus->reg + NPCM_I2CCTL1);
527 	val &= ~(NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_ACK);
528 	val |= NPCM_I2CCTL1_START;
529 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
530 }
531 
532 static inline void npcm_i2c_master_stop(struct npcm_i2c *bus)
533 {
534 	u8 val;
535 
536 	/*
537 	 * override HW issue: I2C may fail to supply stop condition in Master
538 	 * Write operation.
539 	 * Need to delay at least 5 us from the last int, before issueing a stop
540 	 */
541 	udelay(10); /* function called from interrupt, can't sleep */
542 	val = ioread8(bus->reg + NPCM_I2CCTL1);
543 	val &= ~(NPCM_I2CCTL1_START | NPCM_I2CCTL1_ACK);
544 	val |= NPCM_I2CCTL1_STOP;
545 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
546 
547 	if (!bus->fifo_use)
548 		return;
549 
550 	npcm_i2c_select_bank(bus, I2C_BANK_1);
551 
552 	if (bus->operation == I2C_READ_OPER)
553 		npcm_i2c_clear_rx_fifo(bus);
554 	else
555 		npcm_i2c_clear_tx_fifo(bus);
556 	npcm_i2c_clear_fifo_int(bus);
557 	iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
558 }
559 
560 static inline void npcm_i2c_stall_after_start(struct npcm_i2c *bus, bool stall)
561 {
562 	u8 val;
563 
564 	val = ioread8(bus->reg + NPCM_I2CCTL1);
565 	val &= ~NPCM_I2CCTL1_RWS;
566 	if (stall)
567 		val |= NPCM_I2CCTL1_STASTRE;
568 	else
569 		val &= ~NPCM_I2CCTL1_STASTRE;
570 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
571 }
572 
573 static inline void npcm_i2c_nack(struct npcm_i2c *bus)
574 {
575 	u8 val;
576 
577 	val = ioread8(bus->reg + NPCM_I2CCTL1);
578 	val &= ~(NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_START);
579 	val |= NPCM_I2CCTL1_ACK;
580 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
581 }
582 
583 static inline void npcm_i2c_clear_master_status(struct npcm_i2c *bus)
584 {
585 	u8 val;
586 
587 	/* Clear NEGACK, STASTR and BER bits */
588 	val = NPCM_I2CST_BER | NPCM_I2CST_NEGACK | NPCM_I2CST_STASTR;
589 	iowrite8(val, bus->reg + NPCM_I2CST);
590 }
591 
592 #if IS_ENABLED(CONFIG_I2C_SLAVE)
593 static void npcm_i2c_slave_int_enable(struct npcm_i2c *bus, bool enable)
594 {
595 	u8 i2cctl1;
596 
597 	/* enable interrupt on slave match: */
598 	i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
599 	i2cctl1 &= ~NPCM_I2CCTL1_RWS;
600 	if (enable)
601 		i2cctl1 |= NPCM_I2CCTL1_NMINTE;
602 	else
603 		i2cctl1 &= ~NPCM_I2CCTL1_NMINTE;
604 	iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
605 }
606 
607 static int npcm_i2c_slave_enable(struct npcm_i2c *bus, enum i2c_addr addr_type,
608 				 u8 addr, bool enable)
609 {
610 	u8 i2cctl1;
611 	u8 i2cctl3;
612 	u8 sa_reg;
613 
614 	sa_reg = (addr & 0x7F) | FIELD_PREP(NPCM_I2CADDR_SAEN, enable);
615 	if (addr_type == I2C_GC_ADDR) {
616 		i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
617 		if (enable)
618 			i2cctl1 |= NPCM_I2CCTL1_GCMEN;
619 		else
620 			i2cctl1 &= ~NPCM_I2CCTL1_GCMEN;
621 		iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
622 		return 0;
623 	} else if (addr_type == I2C_ARP_ADDR) {
624 		i2cctl3 = ioread8(bus->reg + NPCM_I2CCTL3);
625 		if (enable)
626 			i2cctl3 |= I2CCTL3_ARPMEN;
627 		else
628 			i2cctl3 &= ~I2CCTL3_ARPMEN;
629 		iowrite8(i2cctl3, bus->reg + NPCM_I2CCTL3);
630 		return 0;
631 	}
632 	if (addr_type > I2C_SLAVE_ADDR2 && addr_type <= I2C_SLAVE_ADDR10)
633 		dev_err(bus->dev, "try to enable more than 2 SA not supported\n");
634 
635 	if (addr_type >= I2C_ARP_ADDR)
636 		return -EFAULT;
637 
638 	/* Set and enable the address */
639 	iowrite8(sa_reg, bus->reg + npcm_i2caddr[addr_type]);
640 	npcm_i2c_slave_int_enable(bus, enable);
641 
642 	return 0;
643 }
644 #endif
645 
646 static void npcm_i2c_reset(struct npcm_i2c *bus)
647 {
648 	/*
649 	 * Save I2CCTL1 relevant bits. It is being cleared when the module
650 	 *  is disabled.
651 	 */
652 	u8 i2cctl1;
653 #if IS_ENABLED(CONFIG_I2C_SLAVE)
654 	u8 addr;
655 #endif
656 
657 	i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
658 
659 	npcm_i2c_disable(bus);
660 	npcm_i2c_enable(bus);
661 
662 	/* Restore NPCM_I2CCTL1 Status */
663 	i2cctl1 &= ~NPCM_I2CCTL1_RWS;
664 	iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
665 
666 	/* Clear BB (BUS BUSY) bit */
667 	iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
668 	iowrite8(0xFF, bus->reg + NPCM_I2CST);
669 
670 	/* Clear and disable EOB */
671 	npcm_i2c_eob_int(bus, false);
672 
673 	/* Clear all fifo bits: */
674 	iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
675 
676 #if IS_ENABLED(CONFIG_I2C_SLAVE)
677 	if (bus->slave) {
678 		addr = bus->slave->addr;
679 		npcm_i2c_slave_enable(bus, I2C_SLAVE_ADDR1, addr, true);
680 	}
681 #endif
682 
683 	/* Clear status bits for spurious interrupts */
684 	npcm_i2c_clear_master_status(bus);
685 
686 	bus->state = I2C_IDLE;
687 }
688 
689 static inline bool npcm_i2c_is_master(struct npcm_i2c *bus)
690 {
691 	return !!FIELD_GET(NPCM_I2CST_MASTER, ioread8(bus->reg + NPCM_I2CST));
692 }
693 
694 static void npcm_i2c_callback(struct npcm_i2c *bus,
695 			      enum i2c_state_ind op_status, u16 info)
696 {
697 	struct i2c_msg *msgs;
698 	int msgs_num;
699 
700 	msgs = bus->msgs;
701 	msgs_num = bus->msgs_num;
702 	/*
703 	 * check that transaction was not timed-out, and msgs still
704 	 * holds a valid value.
705 	 */
706 	if (!msgs)
707 		return;
708 
709 	if (completion_done(&bus->cmd_complete))
710 		return;
711 
712 	switch (op_status) {
713 	case I2C_MASTER_DONE_IND:
714 		bus->cmd_err = bus->msgs_num;
715 		if (bus->tx_complete_cnt < ULLONG_MAX)
716 			bus->tx_complete_cnt++;
717 		fallthrough;
718 	case I2C_BLOCK_BYTES_ERR_IND:
719 		/* Master tx finished and all transmit bytes were sent */
720 		if (bus->msgs) {
721 			if (msgs[0].flags & I2C_M_RD)
722 				msgs[0].len = info;
723 			else if (msgs_num == 2 &&
724 				 msgs[1].flags & I2C_M_RD)
725 				msgs[1].len = info;
726 		}
727 		if (completion_done(&bus->cmd_complete) == false)
728 			complete(&bus->cmd_complete);
729 	break;
730 
731 	case I2C_NACK_IND:
732 		/* MASTER transmit got a NACK before tx all bytes */
733 		bus->cmd_err = -ENXIO;
734 		if (bus->master_or_slave == I2C_MASTER)
735 			complete(&bus->cmd_complete);
736 
737 		break;
738 	case I2C_BUS_ERR_IND:
739 		/* Bus error */
740 		bus->cmd_err = -EAGAIN;
741 		if (bus->master_or_slave == I2C_MASTER)
742 			complete(&bus->cmd_complete);
743 
744 		break;
745 	case I2C_WAKE_UP_IND:
746 		/* I2C wake up */
747 		break;
748 	default:
749 		break;
750 	}
751 
752 	bus->operation = I2C_NO_OPER;
753 #if IS_ENABLED(CONFIG_I2C_SLAVE)
754 	if (bus->slave)
755 		bus->master_or_slave = I2C_SLAVE;
756 #endif
757 }
758 
759 static u8 npcm_i2c_fifo_usage(struct npcm_i2c *bus)
760 {
761 	if (bus->operation == I2C_WRITE_OPER)
762 		return (bus->data->txf_sts_tx_bytes &
763 			ioread8(bus->reg + NPCM_I2CTXF_STS));
764 	if (bus->operation == I2C_READ_OPER)
765 		return (bus->data->rxf_sts_rx_bytes &
766 			ioread8(bus->reg + NPCM_I2CRXF_STS));
767 	return 0;
768 }
769 
770 static void npcm_i2c_write_to_fifo_master(struct npcm_i2c *bus, u16 max_bytes)
771 {
772 	u8 size_free_fifo;
773 
774 	/*
775 	 * Fill the FIFO, while the FIFO is not full and there are more bytes
776 	 * to write
777 	 */
778 	size_free_fifo = bus->data->fifo_size - npcm_i2c_fifo_usage(bus);
779 	while (max_bytes-- && size_free_fifo) {
780 		if (bus->wr_ind < bus->wr_size)
781 			npcm_i2c_wr_byte(bus, bus->wr_buf[bus->wr_ind++]);
782 		else
783 			npcm_i2c_wr_byte(bus, 0xFF);
784 		size_free_fifo = bus->data->fifo_size - npcm_i2c_fifo_usage(bus);
785 	}
786 }
787 
788 /*
789  * npcm_i2c_set_fifo:
790  * configure the FIFO before using it. If nread is -1 RX FIFO will not be
791  * configured. same for nwrite
792  */
793 static void npcm_i2c_set_fifo(struct npcm_i2c *bus, int nread, int nwrite)
794 {
795 	u8 rxf_ctl = 0;
796 
797 	if (!bus->fifo_use)
798 		return;
799 	npcm_i2c_select_bank(bus, I2C_BANK_1);
800 	npcm_i2c_clear_tx_fifo(bus);
801 	npcm_i2c_clear_rx_fifo(bus);
802 
803 	/* configure RX FIFO */
804 	if (nread > 0) {
805 		rxf_ctl = min_t(int, nread, bus->data->fifo_size);
806 
807 		/* set LAST bit. if LAST is set next FIFO packet is nacked */
808 		if (nread <= bus->data->fifo_size)
809 			rxf_ctl |= bus->data->rxf_ctl_last_pec;
810 
811 		/*
812 		 * if we are about to read the first byte in blk rd mode,
813 		 * don't NACK it. If slave returns zero size HW can't NACK
814 		 * it immediately, it will read extra byte and then NACK.
815 		 */
816 		if (bus->rd_ind == 0 && bus->read_block_use) {
817 			/* set fifo to read one byte, no last: */
818 			rxf_ctl = 1;
819 		}
820 
821 		/* set fifo size: */
822 		iowrite8(rxf_ctl, bus->reg + NPCM_I2CRXF_CTL);
823 	}
824 
825 	/* configure TX FIFO */
826 	if (nwrite > 0) {
827 		if (nwrite > bus->data->fifo_size)
828 			/* data to send is more then FIFO size. */
829 			iowrite8(bus->data->fifo_size, bus->reg + NPCM_I2CTXF_CTL);
830 		else
831 			iowrite8(nwrite, bus->reg + NPCM_I2CTXF_CTL);
832 
833 		npcm_i2c_clear_tx_fifo(bus);
834 	}
835 }
836 
837 static void npcm_i2c_read_fifo(struct npcm_i2c *bus, u8 bytes_in_fifo)
838 {
839 	u8 data;
840 
841 	while (bytes_in_fifo--) {
842 		data = npcm_i2c_rd_byte(bus);
843 		if (bus->rd_ind < bus->rd_size)
844 			bus->rd_buf[bus->rd_ind++] = data;
845 	}
846 }
847 
848 static void npcm_i2c_master_abort(struct npcm_i2c *bus)
849 {
850 	/* Only current master is allowed to issue a stop condition */
851 	if (!npcm_i2c_is_master(bus))
852 		return;
853 
854 	npcm_i2c_eob_int(bus, true);
855 	npcm_i2c_master_stop(bus);
856 	npcm_i2c_clear_master_status(bus);
857 }
858 
859 #if IS_ENABLED(CONFIG_I2C_SLAVE)
860 static u8 npcm_i2c_get_slave_addr(struct npcm_i2c *bus, enum i2c_addr addr_type)
861 {
862 	u8 slave_add;
863 
864 	if (addr_type > I2C_SLAVE_ADDR2 && addr_type <= I2C_SLAVE_ADDR10)
865 		dev_err(bus->dev, "get slave: try to use more than 2 SA not supported\n");
866 
867 	slave_add = ioread8(bus->reg + npcm_i2caddr[(int)addr_type]);
868 
869 	return slave_add;
870 }
871 
872 static int npcm_i2c_remove_slave_addr(struct npcm_i2c *bus, u8 slave_add)
873 {
874 	int i;
875 
876 	/* Set the enable bit */
877 	slave_add |= 0x80;
878 
879 	for (i = I2C_SLAVE_ADDR1; i < I2C_NUM_OWN_ADDR_SUPPORTED; i++) {
880 		if (ioread8(bus->reg + npcm_i2caddr[i]) == slave_add)
881 			iowrite8(0, bus->reg + npcm_i2caddr[i]);
882 	}
883 
884 	return 0;
885 }
886 
887 static void npcm_i2c_write_fifo_slave(struct npcm_i2c *bus, u16 max_bytes)
888 {
889 	/*
890 	 * Fill the FIFO, while the FIFO is not full and there are more bytes
891 	 * to write
892 	 */
893 	npcm_i2c_clear_fifo_int(bus);
894 	npcm_i2c_clear_tx_fifo(bus);
895 	iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
896 	while (max_bytes-- && bus->data->fifo_size != npcm_i2c_fifo_usage(bus)) {
897 		if (bus->slv_wr_size <= 0)
898 			break;
899 		bus->slv_wr_ind = bus->slv_wr_ind & (bus->data->fifo_size - 1);
900 		npcm_i2c_wr_byte(bus, bus->slv_wr_buf[bus->slv_wr_ind]);
901 		bus->slv_wr_ind++;
902 		bus->slv_wr_ind = bus->slv_wr_ind & (bus->data->fifo_size - 1);
903 		bus->slv_wr_size--;
904 	}
905 }
906 
907 static void npcm_i2c_read_fifo_slave(struct npcm_i2c *bus, u8 bytes_in_fifo)
908 {
909 	u8 data;
910 
911 	if (!bus->slave)
912 		return;
913 
914 	while (bytes_in_fifo--) {
915 		data = npcm_i2c_rd_byte(bus);
916 
917 		bus->slv_rd_ind = bus->slv_rd_ind & (bus->data->fifo_size - 1);
918 		bus->slv_rd_buf[bus->slv_rd_ind] = data;
919 		bus->slv_rd_ind++;
920 
921 		/* 1st byte is length in block protocol: */
922 		if (bus->slv_rd_ind == 1 && bus->read_block_use)
923 			bus->slv_rd_size = data + bus->PEC_use + 1;
924 	}
925 }
926 
927 static int npcm_i2c_slave_get_wr_buf(struct npcm_i2c *bus)
928 {
929 	int i;
930 	u8 value;
931 	int ind;
932 	int ret = bus->slv_wr_ind;
933 
934 	/* fill a cyclic buffer */
935 	for (i = 0; i < bus->data->fifo_size; i++) {
936 		if (bus->slv_wr_size >= bus->data->fifo_size)
937 			break;
938 		if (bus->state == I2C_SLAVE_MATCH) {
939 			i2c_slave_event(bus->slave, I2C_SLAVE_READ_REQUESTED, &value);
940 			bus->state = I2C_OPER_STARTED;
941 		} else {
942 			i2c_slave_event(bus->slave, I2C_SLAVE_READ_PROCESSED, &value);
943 		}
944 		ind = (bus->slv_wr_ind + bus->slv_wr_size) & (bus->data->fifo_size - 1);
945 		bus->slv_wr_buf[ind] = value;
946 		bus->slv_wr_size++;
947 	}
948 	return bus->data->fifo_size - ret;
949 }
950 
951 static void npcm_i2c_slave_send_rd_buf(struct npcm_i2c *bus)
952 {
953 	int i;
954 
955 	for (i = 0; i < bus->slv_rd_ind; i++)
956 		i2c_slave_event(bus->slave, I2C_SLAVE_WRITE_RECEIVED,
957 				&bus->slv_rd_buf[i]);
958 	/*
959 	 * once we send bytes up, need to reset the counter of the wr buf
960 	 * got data from master (new offset in device), ignore wr fifo:
961 	 */
962 	if (bus->slv_rd_ind) {
963 		bus->slv_wr_size = 0;
964 		bus->slv_wr_ind = 0;
965 	}
966 
967 	bus->slv_rd_ind = 0;
968 	bus->slv_rd_size = bus->adap.quirks->max_read_len;
969 
970 	npcm_i2c_clear_fifo_int(bus);
971 	npcm_i2c_clear_rx_fifo(bus);
972 }
973 
974 static void npcm_i2c_slave_receive(struct npcm_i2c *bus, u16 nread,
975 				   u8 *read_data)
976 {
977 	bus->state = I2C_OPER_STARTED;
978 	bus->operation = I2C_READ_OPER;
979 	bus->slv_rd_size = nread;
980 	bus->slv_rd_ind = 0;
981 
982 	iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
983 	iowrite8(bus->data->fifo_size, bus->reg + NPCM_I2CRXF_CTL);
984 	npcm_i2c_clear_tx_fifo(bus);
985 	npcm_i2c_clear_rx_fifo(bus);
986 }
987 
988 static void npcm_i2c_slave_xmit(struct npcm_i2c *bus, u16 nwrite,
989 				u8 *write_data)
990 {
991 	if (nwrite == 0)
992 		return;
993 
994 	bus->operation = I2C_WRITE_OPER;
995 
996 	/* get the next buffer */
997 	npcm_i2c_slave_get_wr_buf(bus);
998 	npcm_i2c_write_fifo_slave(bus, nwrite);
999 }
1000 
1001 /*
1002  * npcm_i2c_slave_wr_buf_sync:
1003  * currently slave IF only supports single byte operations.
1004  * in order to utilize the npcm HW FIFO, the driver will ask for 16 bytes
1005  * at a time, pack them in buffer, and then transmit them all together
1006  * to the FIFO and onward to the bus.
1007  * NACK on read will be once reached to bus->adap->quirks->max_read_len.
1008  * sending a NACK wherever the backend requests for it is not supported.
1009  * the next two functions allow reading to local buffer before writing it all
1010  * to the HW FIFO.
1011  */
1012 static void npcm_i2c_slave_wr_buf_sync(struct npcm_i2c *bus)
1013 {
1014 	int left_in_fifo;
1015 
1016 	left_in_fifo = bus->data->txf_sts_tx_bytes &
1017 			ioread8(bus->reg + NPCM_I2CTXF_STS);
1018 
1019 	/* fifo already full: */
1020 	if (left_in_fifo >= bus->data->fifo_size ||
1021 	    bus->slv_wr_size >= bus->data->fifo_size)
1022 		return;
1023 
1024 	/* update the wr fifo index back to the untransmitted bytes: */
1025 	bus->slv_wr_ind = bus->slv_wr_ind - left_in_fifo;
1026 	bus->slv_wr_size = bus->slv_wr_size + left_in_fifo;
1027 
1028 	if (bus->slv_wr_ind < 0)
1029 		bus->slv_wr_ind += bus->data->fifo_size;
1030 }
1031 
1032 static void npcm_i2c_slave_rd_wr(struct npcm_i2c *bus)
1033 {
1034 	if (NPCM_I2CST_XMIT & ioread8(bus->reg + NPCM_I2CST)) {
1035 		/*
1036 		 * Slave got an address match with direction bit 1 so it should
1037 		 * transmit data. Write till the master will NACK
1038 		 */
1039 		bus->operation = I2C_WRITE_OPER;
1040 		npcm_i2c_slave_xmit(bus, bus->adap.quirks->max_write_len,
1041 				    bus->slv_wr_buf);
1042 	} else {
1043 		/*
1044 		 * Slave got an address match with direction bit 0 so it should
1045 		 * receive data.
1046 		 * this module does not support saying no to bytes.
1047 		 * it will always ACK.
1048 		 */
1049 		bus->operation = I2C_READ_OPER;
1050 		npcm_i2c_read_fifo_slave(bus, npcm_i2c_fifo_usage(bus));
1051 		bus->stop_ind = I2C_SLAVE_RCV_IND;
1052 		npcm_i2c_slave_send_rd_buf(bus);
1053 		npcm_i2c_slave_receive(bus, bus->adap.quirks->max_read_len,
1054 				       bus->slv_rd_buf);
1055 	}
1056 }
1057 
1058 static irqreturn_t npcm_i2c_int_slave_handler(struct npcm_i2c *bus)
1059 {
1060 	u8 val;
1061 	irqreturn_t ret = IRQ_NONE;
1062 	u8 i2cst = ioread8(bus->reg + NPCM_I2CST);
1063 
1064 	/* Slave: A NACK has occurred */
1065 	if (NPCM_I2CST_NEGACK & i2cst) {
1066 		bus->stop_ind = I2C_NACK_IND;
1067 		npcm_i2c_slave_wr_buf_sync(bus);
1068 		if (bus->fifo_use)
1069 			/* clear the FIFO */
1070 			iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO,
1071 				 bus->reg + NPCM_I2CFIF_CTS);
1072 
1073 		/* In slave write, NACK is OK, otherwise it is a problem */
1074 		bus->stop_ind = I2C_NO_STATUS_IND;
1075 		bus->operation = I2C_NO_OPER;
1076 		bus->own_slave_addr = 0xFF;
1077 
1078 		/*
1079 		 * Slave has to wait for STOP to decide this is the end
1080 		 * of the transaction. tx is not yet considered as done
1081 		 */
1082 		iowrite8(NPCM_I2CST_NEGACK, bus->reg + NPCM_I2CST);
1083 
1084 		ret = IRQ_HANDLED;
1085 	}
1086 
1087 	/* Slave mode: a Bus Error (BER) has been identified */
1088 	if (NPCM_I2CST_BER & i2cst) {
1089 		/*
1090 		 * Check whether bus arbitration or Start or Stop during data
1091 		 * xfer bus arbitration problem should not result in recovery
1092 		 */
1093 		bus->stop_ind = I2C_BUS_ERR_IND;
1094 
1095 		/* wait for bus busy before clear fifo */
1096 		iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
1097 
1098 		bus->state = I2C_IDLE;
1099 
1100 		/*
1101 		 * in BER case we might get 2 interrupts: one for slave one for
1102 		 * master ( for a channel which is master\slave switching)
1103 		 */
1104 		if (completion_done(&bus->cmd_complete) == false) {
1105 			bus->cmd_err = -EIO;
1106 			complete(&bus->cmd_complete);
1107 		}
1108 		bus->own_slave_addr = 0xFF;
1109 		iowrite8(NPCM_I2CST_BER, bus->reg + NPCM_I2CST);
1110 		ret = IRQ_HANDLED;
1111 	}
1112 
1113 	/* A Slave Stop Condition has been identified */
1114 	if (NPCM_I2CST_SLVSTP & i2cst) {
1115 		u8 bytes_in_fifo = npcm_i2c_fifo_usage(bus);
1116 
1117 		bus->stop_ind = I2C_SLAVE_DONE_IND;
1118 
1119 		if (bus->operation == I2C_READ_OPER)
1120 			npcm_i2c_read_fifo_slave(bus, bytes_in_fifo);
1121 
1122 		/* if the buffer is empty nothing will be sent */
1123 		npcm_i2c_slave_send_rd_buf(bus);
1124 
1125 		/* Slave done transmitting or receiving */
1126 		bus->stop_ind = I2C_NO_STATUS_IND;
1127 
1128 		/*
1129 		 * Note, just because we got here, it doesn't mean we through
1130 		 * away the wr buffer.
1131 		 * we keep it until the next received offset.
1132 		 */
1133 		bus->operation = I2C_NO_OPER;
1134 		bus->own_slave_addr = 0xFF;
1135 		i2c_slave_event(bus->slave, I2C_SLAVE_STOP, 0);
1136 		iowrite8(NPCM_I2CST_SLVSTP, bus->reg + NPCM_I2CST);
1137 		if (bus->fifo_use) {
1138 			npcm_i2c_clear_fifo_int(bus);
1139 			npcm_i2c_clear_rx_fifo(bus);
1140 			npcm_i2c_clear_tx_fifo(bus);
1141 
1142 			iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO,
1143 				 bus->reg + NPCM_I2CFIF_CTS);
1144 		}
1145 		bus->state = I2C_IDLE;
1146 		ret = IRQ_HANDLED;
1147 	}
1148 
1149 	/* restart condition occurred and Rx-FIFO was not empty */
1150 	if (bus->fifo_use && FIELD_GET(NPCM_I2CFIF_CTS_SLVRSTR,
1151 				       ioread8(bus->reg + NPCM_I2CFIF_CTS))) {
1152 		bus->stop_ind = I2C_SLAVE_RESTART_IND;
1153 		bus->master_or_slave = I2C_SLAVE;
1154 		if (bus->operation == I2C_READ_OPER)
1155 			npcm_i2c_read_fifo_slave(bus, npcm_i2c_fifo_usage(bus));
1156 		bus->operation = I2C_WRITE_OPER;
1157 		iowrite8(0, bus->reg + NPCM_I2CRXF_CTL);
1158 		val = NPCM_I2CFIF_CTS_CLR_FIFO | NPCM_I2CFIF_CTS_SLVRSTR |
1159 		      NPCM_I2CFIF_CTS_RXF_TXE;
1160 		iowrite8(val, bus->reg + NPCM_I2CFIF_CTS);
1161 		npcm_i2c_slave_rd_wr(bus);
1162 		ret = IRQ_HANDLED;
1163 	}
1164 
1165 	/* A Slave Address Match has been identified */
1166 	if (NPCM_I2CST_NMATCH & i2cst) {
1167 		u8 info = 0;
1168 
1169 		/* Address match automatically implies slave mode */
1170 		bus->master_or_slave = I2C_SLAVE;
1171 		npcm_i2c_clear_fifo_int(bus);
1172 		npcm_i2c_clear_rx_fifo(bus);
1173 		npcm_i2c_clear_tx_fifo(bus);
1174 		iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
1175 		iowrite8(bus->data->fifo_size, bus->reg + NPCM_I2CRXF_CTL);
1176 		if (NPCM_I2CST_XMIT & i2cst) {
1177 			bus->operation = I2C_WRITE_OPER;
1178 		} else {
1179 			i2c_slave_event(bus->slave, I2C_SLAVE_WRITE_REQUESTED,
1180 					&info);
1181 			bus->operation = I2C_READ_OPER;
1182 		}
1183 		if (bus->own_slave_addr == 0xFF) {
1184 			/* Check which type of address match */
1185 			val = ioread8(bus->reg + NPCM_I2CCST);
1186 			if (NPCM_I2CCST_MATCH & val) {
1187 				u16 addr;
1188 				enum i2c_addr eaddr;
1189 				u8 i2ccst2;
1190 				u8 i2ccst3;
1191 
1192 				i2ccst3 = ioread8(bus->reg + NPCM_I2CCST3);
1193 				i2ccst2 = ioread8(bus->reg + NPCM_I2CCST2);
1194 
1195 				/*
1196 				 * the i2c module can response to 10 own SA.
1197 				 * check which one was addressed by the master.
1198 				 * respond to the first one.
1199 				 */
1200 				addr = ((i2ccst3 & 0x07) << 7) |
1201 					(i2ccst2 & 0x7F);
1202 				info = ffs(addr);
1203 				eaddr = (enum i2c_addr)info;
1204 				addr = npcm_i2c_get_slave_addr(bus, eaddr);
1205 				addr &= 0x7F;
1206 				bus->own_slave_addr = addr;
1207 				if (bus->PEC_mask & BIT(info))
1208 					bus->PEC_use = true;
1209 				else
1210 					bus->PEC_use = false;
1211 			} else {
1212 				if (NPCM_I2CCST_GCMATCH & val)
1213 					bus->own_slave_addr = 0;
1214 				if (NPCM_I2CCST_ARPMATCH & val)
1215 					bus->own_slave_addr = 0x61;
1216 			}
1217 		} else {
1218 			/*
1219 			 *  Slave match can happen in two options:
1220 			 *  1. Start, SA, read (slave read without further ado)
1221 			 *  2. Start, SA, read, data, restart, SA, read,  ...
1222 			 *     (slave read in fragmented mode)
1223 			 *  3. Start, SA, write, data, restart, SA, read, ..
1224 			 *     (regular write-read mode)
1225 			 */
1226 			if ((bus->state == I2C_OPER_STARTED &&
1227 			     bus->operation == I2C_READ_OPER &&
1228 			     bus->stop_ind == I2C_SLAVE_XMIT_IND) ||
1229 			     bus->stop_ind == I2C_SLAVE_RCV_IND) {
1230 				/* slave tx after slave rx w/o STOP */
1231 				bus->stop_ind = I2C_SLAVE_RESTART_IND;
1232 			}
1233 		}
1234 
1235 		if (NPCM_I2CST_XMIT & i2cst)
1236 			bus->stop_ind = I2C_SLAVE_XMIT_IND;
1237 		else
1238 			bus->stop_ind = I2C_SLAVE_RCV_IND;
1239 		bus->state = I2C_SLAVE_MATCH;
1240 		npcm_i2c_slave_rd_wr(bus);
1241 		iowrite8(NPCM_I2CST_NMATCH, bus->reg + NPCM_I2CST);
1242 		ret = IRQ_HANDLED;
1243 	}
1244 
1245 	/* Slave SDA status is set - tx or rx */
1246 	if ((NPCM_I2CST_SDAST & i2cst) ||
1247 	    (bus->fifo_use &&
1248 	    (npcm_i2c_tx_fifo_empty(bus) || npcm_i2c_rx_fifo_full(bus)))) {
1249 		npcm_i2c_slave_rd_wr(bus);
1250 		iowrite8(NPCM_I2CST_SDAST, bus->reg + NPCM_I2CST);
1251 		ret = IRQ_HANDLED;
1252 	} /* SDAST */
1253 
1254 	/*
1255 	 * If irq is not one of the above, make sure EOB is disabled and all
1256 	 * status bits are cleared.
1257 	 */
1258 	if (ret == IRQ_NONE) {
1259 		npcm_i2c_eob_int(bus, false);
1260 		npcm_i2c_clear_master_status(bus);
1261 	}
1262 
1263 	return IRQ_HANDLED;
1264 }
1265 
1266 static int npcm_i2c_reg_slave(struct i2c_client *client)
1267 {
1268 	unsigned long lock_flags;
1269 	struct npcm_i2c *bus = i2c_get_adapdata(client->adapter);
1270 
1271 	bus->slave = client;
1272 
1273 	if (!bus->slave)
1274 		return -EINVAL;
1275 
1276 	if (client->flags & I2C_CLIENT_TEN)
1277 		return -EAFNOSUPPORT;
1278 
1279 	spin_lock_irqsave(&bus->lock, lock_flags);
1280 
1281 	npcm_i2c_init_params(bus);
1282 	bus->slv_rd_size = 0;
1283 	bus->slv_wr_size = 0;
1284 	bus->slv_rd_ind = 0;
1285 	bus->slv_wr_ind = 0;
1286 	if (client->flags & I2C_CLIENT_PEC)
1287 		bus->PEC_use = true;
1288 
1289 	dev_info(bus->dev, "i2c%d register slave SA=0x%x, PEC=%d\n", bus->num,
1290 		 client->addr, bus->PEC_use);
1291 
1292 	npcm_i2c_slave_enable(bus, I2C_SLAVE_ADDR1, client->addr, true);
1293 	npcm_i2c_clear_fifo_int(bus);
1294 	npcm_i2c_clear_rx_fifo(bus);
1295 	npcm_i2c_clear_tx_fifo(bus);
1296 	npcm_i2c_slave_int_enable(bus, true);
1297 
1298 	spin_unlock_irqrestore(&bus->lock, lock_flags);
1299 	return 0;
1300 }
1301 
1302 static int npcm_i2c_unreg_slave(struct i2c_client *client)
1303 {
1304 	struct npcm_i2c *bus = client->adapter->algo_data;
1305 	unsigned long lock_flags;
1306 
1307 	spin_lock_irqsave(&bus->lock, lock_flags);
1308 	if (!bus->slave) {
1309 		spin_unlock_irqrestore(&bus->lock, lock_flags);
1310 		return -EINVAL;
1311 	}
1312 	npcm_i2c_slave_int_enable(bus, false);
1313 	npcm_i2c_remove_slave_addr(bus, client->addr);
1314 	bus->slave = NULL;
1315 	spin_unlock_irqrestore(&bus->lock, lock_flags);
1316 	return 0;
1317 }
1318 #endif /* CONFIG_I2C_SLAVE */
1319 
1320 static void npcm_i2c_master_fifo_read(struct npcm_i2c *bus)
1321 {
1322 	int rcount;
1323 	int fifo_bytes;
1324 	enum i2c_state_ind ind = I2C_MASTER_DONE_IND;
1325 
1326 	fifo_bytes = npcm_i2c_fifo_usage(bus);
1327 	rcount = bus->rd_size - bus->rd_ind;
1328 
1329 	/*
1330 	 * In order not to change the RX_TRH during transaction (we found that
1331 	 * this might be problematic if it takes too much time to read the FIFO)
1332 	 * we read the data in the following way. If the number of bytes to
1333 	 * read == FIFO Size + C (where C < FIFO Size)then first read C bytes
1334 	 * and in the next int we read rest of the data.
1335 	 */
1336 	if (rcount < (2 * bus->data->fifo_size) && rcount > bus->data->fifo_size)
1337 		fifo_bytes = rcount - bus->data->fifo_size;
1338 
1339 	if (rcount <= fifo_bytes) {
1340 		/* last bytes are about to be read - end of tx */
1341 		bus->state = I2C_STOP_PENDING;
1342 		bus->stop_ind = ind;
1343 		npcm_i2c_eob_int(bus, true);
1344 		/* Stop should be set before reading last byte. */
1345 		npcm_i2c_master_stop(bus);
1346 		npcm_i2c_read_fifo(bus, fifo_bytes);
1347 	} else {
1348 		npcm_i2c_read_fifo(bus, fifo_bytes);
1349 		rcount = bus->rd_size - bus->rd_ind;
1350 		npcm_i2c_set_fifo(bus, rcount, -1);
1351 	}
1352 }
1353 
1354 static void npcm_i2c_irq_master_handler_write(struct npcm_i2c *bus)
1355 {
1356 	u16 wcount;
1357 
1358 	if (bus->fifo_use)
1359 		npcm_i2c_clear_tx_fifo(bus); /* clear the TX fifo status bit */
1360 
1361 	/* Master write operation - last byte handling */
1362 	if (bus->wr_ind == bus->wr_size) {
1363 		if (bus->fifo_use && npcm_i2c_fifo_usage(bus) > 0)
1364 			/*
1365 			 * No more bytes to send (to add to the FIFO),
1366 			 * however the FIFO is not empty yet. It is
1367 			 * still in the middle of tx. Currently there's nothing
1368 			 * to do except for waiting to the end of the tx
1369 			 * We will get an int when the FIFO will get empty.
1370 			 */
1371 			return;
1372 
1373 		if (bus->rd_size == 0) {
1374 			/* all bytes have been written, in wr only operation */
1375 			npcm_i2c_eob_int(bus, true);
1376 			bus->state = I2C_STOP_PENDING;
1377 			bus->stop_ind = I2C_MASTER_DONE_IND;
1378 			npcm_i2c_master_stop(bus);
1379 			/* Clear SDA Status bit (by writing dummy byte) */
1380 			npcm_i2c_wr_byte(bus, 0xFF);
1381 
1382 		} else {
1383 			/* last write-byte written on previous int - restart */
1384 			npcm_i2c_set_fifo(bus, bus->rd_size, -1);
1385 			/* Generate repeated start upon next write to SDA */
1386 			npcm_i2c_master_start(bus);
1387 
1388 			/*
1389 			 * Receiving one byte only - stall after successful
1390 			 * completion of send address byte. If we NACK here, and
1391 			 * slave doesn't ACK the address, we might
1392 			 * unintentionally NACK the next multi-byte read.
1393 			 */
1394 			if (bus->rd_size == 1)
1395 				npcm_i2c_stall_after_start(bus, true);
1396 
1397 			/* Next int will occur on read */
1398 			bus->operation = I2C_READ_OPER;
1399 			/* send the slave address in read direction */
1400 			npcm_i2c_wr_byte(bus, bus->dest_addr | 0x1);
1401 		}
1402 	} else {
1403 		/* write next byte not last byte and not slave address */
1404 		if (!bus->fifo_use || bus->wr_size == 1) {
1405 			npcm_i2c_wr_byte(bus, bus->wr_buf[bus->wr_ind++]);
1406 		} else {
1407 			wcount = bus->wr_size - bus->wr_ind;
1408 			npcm_i2c_set_fifo(bus, -1, wcount);
1409 			if (wcount)
1410 				npcm_i2c_write_to_fifo_master(bus, wcount);
1411 		}
1412 	}
1413 }
1414 
1415 static void npcm_i2c_irq_master_handler_read(struct npcm_i2c *bus)
1416 {
1417 	u16 block_extra_bytes_size;
1418 	u8 data;
1419 
1420 	/* added bytes to the packet: */
1421 	block_extra_bytes_size = bus->read_block_use + bus->PEC_use;
1422 
1423 	/*
1424 	 * Perform master read, distinguishing between last byte and the rest of
1425 	 * the bytes. The last byte should be read when the clock is stopped
1426 	 */
1427 	if (bus->rd_ind == 0) { /* first byte handling: */
1428 		if (bus->read_block_use) {
1429 			/* first byte in block protocol is the size: */
1430 			data = npcm_i2c_rd_byte(bus);
1431 			data = clamp_val(data, 1, I2C_SMBUS_BLOCK_MAX);
1432 			bus->rd_size = data + block_extra_bytes_size;
1433 			bus->rd_buf[bus->rd_ind++] = data;
1434 
1435 			/* clear RX FIFO interrupt status: */
1436 			if (bus->fifo_use) {
1437 				data = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1438 				data = data | NPCM_I2CFIF_CTS_RXF_TXE;
1439 				iowrite8(data, bus->reg + NPCM_I2CFIF_CTS);
1440 			}
1441 
1442 			npcm_i2c_set_fifo(bus, bus->rd_size - 1, -1);
1443 			npcm_i2c_stall_after_start(bus, false);
1444 		} else {
1445 			npcm_i2c_clear_tx_fifo(bus);
1446 			npcm_i2c_master_fifo_read(bus);
1447 		}
1448 	} else {
1449 		if (bus->rd_size == block_extra_bytes_size &&
1450 		    bus->read_block_use) {
1451 			bus->state = I2C_STOP_PENDING;
1452 			bus->stop_ind = I2C_BLOCK_BYTES_ERR_IND;
1453 			bus->cmd_err = -EIO;
1454 			npcm_i2c_eob_int(bus, true);
1455 			npcm_i2c_master_stop(bus);
1456 			npcm_i2c_read_fifo(bus, npcm_i2c_fifo_usage(bus));
1457 		} else {
1458 			npcm_i2c_master_fifo_read(bus);
1459 		}
1460 	}
1461 }
1462 
1463 static void npcm_i2c_irq_handle_nmatch(struct npcm_i2c *bus)
1464 {
1465 	iowrite8(NPCM_I2CST_NMATCH, bus->reg + NPCM_I2CST);
1466 	npcm_i2c_nack(bus);
1467 	bus->stop_ind = I2C_BUS_ERR_IND;
1468 	npcm_i2c_callback(bus, bus->stop_ind, npcm_i2c_get_index(bus));
1469 }
1470 
1471 /* A NACK has occurred */
1472 static void npcm_i2c_irq_handle_nack(struct npcm_i2c *bus)
1473 {
1474 	u8 val;
1475 
1476 	if (bus->nack_cnt < ULLONG_MAX)
1477 		bus->nack_cnt++;
1478 
1479 	if (bus->fifo_use) {
1480 		/*
1481 		 * if there are still untransmitted bytes in TX FIFO
1482 		 * reduce them from wr_ind
1483 		 */
1484 		if (bus->operation == I2C_WRITE_OPER)
1485 			bus->wr_ind -= npcm_i2c_fifo_usage(bus);
1486 
1487 		/* clear the FIFO */
1488 		iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
1489 	}
1490 
1491 	/* In master write operation, got unexpected NACK */
1492 	bus->stop_ind = I2C_NACK_IND;
1493 	/* Only current master is allowed to issue Stop Condition */
1494 	if (npcm_i2c_is_master(bus)) {
1495 		/* stopping in the middle */
1496 		npcm_i2c_eob_int(bus, false);
1497 		npcm_i2c_master_stop(bus);
1498 
1499 		/* Clear SDA Status bit (by reading dummy byte) */
1500 		npcm_i2c_rd_byte(bus);
1501 
1502 		/*
1503 		 * The bus is released from stall only after the SW clears
1504 		 * NEGACK bit. Then a Stop condition is sent.
1505 		 */
1506 		npcm_i2c_clear_master_status(bus);
1507 		readx_poll_timeout_atomic(ioread8, bus->reg + NPCM_I2CCST, val,
1508 					  !(val & NPCM_I2CCST_BUSY), 10, 200);
1509 		/* Verify no status bits are still set after bus is released */
1510 		npcm_i2c_clear_master_status(bus);
1511 	}
1512 	bus->state = I2C_IDLE;
1513 
1514 	/*
1515 	 * In Master mode, NACK should be cleared only after STOP.
1516 	 * In such case, the bus is released from stall only after the
1517 	 * software clears NACK bit. Then a Stop condition is sent.
1518 	 */
1519 	npcm_i2c_callback(bus, bus->stop_ind, bus->wr_ind);
1520 }
1521 
1522 	/* Master mode: a Bus Error has been identified */
1523 static void npcm_i2c_irq_handle_ber(struct npcm_i2c *bus)
1524 {
1525 	if (bus->ber_cnt < ULLONG_MAX)
1526 		bus->ber_cnt++;
1527 	bus->stop_ind = I2C_BUS_ERR_IND;
1528 	if (npcm_i2c_is_master(bus)) {
1529 		npcm_i2c_master_abort(bus);
1530 	} else {
1531 		npcm_i2c_clear_master_status(bus);
1532 
1533 		/* Clear BB (BUS BUSY) bit */
1534 		iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
1535 
1536 		bus->cmd_err = -EAGAIN;
1537 		npcm_i2c_callback(bus, bus->stop_ind, npcm_i2c_get_index(bus));
1538 	}
1539 	bus->state = I2C_IDLE;
1540 }
1541 
1542 	/* EOB: a master End Of Busy (meaning STOP completed) */
1543 static void npcm_i2c_irq_handle_eob(struct npcm_i2c *bus)
1544 {
1545 	npcm_i2c_eob_int(bus, false);
1546 	bus->state = I2C_IDLE;
1547 	npcm_i2c_callback(bus, bus->stop_ind, bus->rd_ind);
1548 }
1549 
1550 /* Address sent and requested stall occurred (Master mode) */
1551 static void npcm_i2c_irq_handle_stall_after_start(struct npcm_i2c *bus)
1552 {
1553 	if (npcm_i2c_is_quick(bus)) {
1554 		bus->state = I2C_STOP_PENDING;
1555 		bus->stop_ind = I2C_MASTER_DONE_IND;
1556 		npcm_i2c_eob_int(bus, true);
1557 		npcm_i2c_master_stop(bus);
1558 	} else if ((bus->rd_size == 1) && !bus->read_block_use) {
1559 		/*
1560 		 * Receiving one byte only - set NACK after ensuring
1561 		 * slave ACKed the address byte.
1562 		 */
1563 		npcm_i2c_nack(bus);
1564 	}
1565 
1566 	/* Reset stall-after-address-byte */
1567 	npcm_i2c_stall_after_start(bus, false);
1568 
1569 	/* Clear stall only after setting STOP */
1570 	iowrite8(NPCM_I2CST_STASTR, bus->reg + NPCM_I2CST);
1571 }
1572 
1573 /* SDA status is set - TX or RX, master */
1574 static void npcm_i2c_irq_handle_sda(struct npcm_i2c *bus, u8 i2cst)
1575 {
1576 	u8 fif_cts;
1577 
1578 	if (!npcm_i2c_is_master(bus))
1579 		return;
1580 
1581 	if (bus->state == I2C_IDLE) {
1582 		bus->stop_ind = I2C_WAKE_UP_IND;
1583 
1584 		if (npcm_i2c_is_quick(bus) || bus->read_block_use)
1585 			/*
1586 			 * Need to stall after successful
1587 			 * completion of sending address byte
1588 			 */
1589 			npcm_i2c_stall_after_start(bus, true);
1590 		else
1591 			npcm_i2c_stall_after_start(bus, false);
1592 
1593 		/*
1594 		 * Receiving one byte only - stall after successful completion
1595 		 * of sending address byte If we NACK here, and slave doesn't
1596 		 * ACK the address, we might unintentionally NACK the next
1597 		 * multi-byte read
1598 		 */
1599 		if (bus->wr_size == 0 && bus->rd_size == 1)
1600 			npcm_i2c_stall_after_start(bus, true);
1601 
1602 		/* Initiate I2C master tx */
1603 
1604 		/* select bank 1 for FIFO regs */
1605 		npcm_i2c_select_bank(bus, I2C_BANK_1);
1606 
1607 		fif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1608 		fif_cts = fif_cts & ~NPCM_I2CFIF_CTS_SLVRSTR;
1609 
1610 		/* clear FIFO and relevant status bits. */
1611 		fif_cts = fif_cts | NPCM_I2CFIF_CTS_CLR_FIFO;
1612 		iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1613 
1614 		/* re-enable */
1615 		fif_cts = fif_cts | NPCM_I2CFIF_CTS_RXF_TXE;
1616 		iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1617 
1618 		/*
1619 		 * Configure the FIFO threshold:
1620 		 * according to the needed # of bytes to read.
1621 		 * Note: due to HW limitation can't config the rx fifo before it
1622 		 * got and ACK on the restart. LAST bit will not be reset unless
1623 		 * RX completed. It will stay set on the next tx.
1624 		 */
1625 		if (bus->wr_size)
1626 			npcm_i2c_set_fifo(bus, -1, bus->wr_size);
1627 		else
1628 			npcm_i2c_set_fifo(bus, bus->rd_size, -1);
1629 
1630 		bus->state = I2C_OPER_STARTED;
1631 
1632 		if (npcm_i2c_is_quick(bus) || bus->wr_size)
1633 			npcm_i2c_wr_byte(bus, bus->dest_addr);
1634 		else
1635 			npcm_i2c_wr_byte(bus, bus->dest_addr | BIT(0));
1636 	/* SDA interrupt, after start\restart */
1637 	} else {
1638 		if (NPCM_I2CST_XMIT & i2cst) {
1639 			bus->operation = I2C_WRITE_OPER;
1640 			npcm_i2c_irq_master_handler_write(bus);
1641 		} else {
1642 			bus->operation = I2C_READ_OPER;
1643 			npcm_i2c_irq_master_handler_read(bus);
1644 		}
1645 	}
1646 }
1647 
1648 static int npcm_i2c_int_master_handler(struct npcm_i2c *bus)
1649 {
1650 	u8 i2cst;
1651 	int ret = -EIO;
1652 
1653 	i2cst = ioread8(bus->reg + NPCM_I2CST);
1654 
1655 	if (FIELD_GET(NPCM_I2CST_NMATCH, i2cst)) {
1656 		npcm_i2c_irq_handle_nmatch(bus);
1657 		return 0;
1658 	}
1659 	/* A NACK has occurred */
1660 	if (FIELD_GET(NPCM_I2CST_NEGACK, i2cst)) {
1661 		npcm_i2c_irq_handle_nack(bus);
1662 		return 0;
1663 	}
1664 
1665 	/* Master mode: a Bus Error has been identified */
1666 	if (FIELD_GET(NPCM_I2CST_BER, i2cst)) {
1667 		npcm_i2c_irq_handle_ber(bus);
1668 		return 0;
1669 	}
1670 
1671 	/* EOB: a master End Of Busy (meaning STOP completed) */
1672 	if ((FIELD_GET(NPCM_I2CCTL1_EOBINTE,
1673 		       ioread8(bus->reg + NPCM_I2CCTL1)) == 1) &&
1674 	    (FIELD_GET(NPCM_I2CCST3_EO_BUSY,
1675 		       ioread8(bus->reg + NPCM_I2CCST3)))) {
1676 		npcm_i2c_irq_handle_eob(bus);
1677 		return 0;
1678 	}
1679 
1680 	/* Address sent and requested stall occurred (Master mode) */
1681 	if (FIELD_GET(NPCM_I2CST_STASTR, i2cst)) {
1682 		npcm_i2c_irq_handle_stall_after_start(bus);
1683 		ret = 0;
1684 	}
1685 
1686 	/* SDA status is set - TX or RX, master */
1687 	if (FIELD_GET(NPCM_I2CST_SDAST, i2cst) ||
1688 	    (bus->fifo_use &&
1689 	    (npcm_i2c_tx_fifo_empty(bus) || npcm_i2c_rx_fifo_full(bus)))) {
1690 		npcm_i2c_irq_handle_sda(bus, i2cst);
1691 		ret = 0;
1692 	}
1693 
1694 	return ret;
1695 }
1696 
1697 /* recovery using TGCLK functionality of the module */
1698 static int npcm_i2c_recovery_tgclk(struct i2c_adapter *_adap)
1699 {
1700 	u8               val;
1701 	u8               fif_cts;
1702 	bool             done = false;
1703 	int              status = -ENOTRECOVERABLE;
1704 	struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
1705 	/* Allow 3 bytes (27 toggles) to be read from the slave: */
1706 	int              iter = 27;
1707 
1708 	if ((npcm_i2c_get_SDA(_adap) == 1) && (npcm_i2c_get_SCL(_adap) == 1)) {
1709 		dev_dbg(bus->dev, "bus%d-0x%x recovery skipped, bus not stuck",
1710 			bus->num, bus->dest_addr);
1711 		npcm_i2c_reset(bus);
1712 		return 0;
1713 	}
1714 
1715 	npcm_i2c_int_enable(bus, false);
1716 	npcm_i2c_disable(bus);
1717 	npcm_i2c_enable(bus);
1718 	iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
1719 	npcm_i2c_clear_tx_fifo(bus);
1720 	npcm_i2c_clear_rx_fifo(bus);
1721 	iowrite8(0, bus->reg + NPCM_I2CRXF_CTL);
1722 	iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
1723 	npcm_i2c_stall_after_start(bus, false);
1724 
1725 	/* select bank 1 for FIFO regs */
1726 	npcm_i2c_select_bank(bus, I2C_BANK_1);
1727 
1728 	/* clear FIFO and relevant status bits. */
1729 	fif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1730 	fif_cts &= ~NPCM_I2CFIF_CTS_SLVRSTR;
1731 	fif_cts |= NPCM_I2CFIF_CTS_CLR_FIFO;
1732 	iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1733 	npcm_i2c_set_fifo(bus, -1, 0);
1734 
1735 	/* Repeat the following sequence until SDA is released */
1736 	do {
1737 		/* Issue a single SCL toggle */
1738 		iowrite8(NPCM_I2CCST_TGSCL, bus->reg + NPCM_I2CCST);
1739 		usleep_range(20, 30);
1740 		/* If SDA line is inactive (high), stop */
1741 		if (npcm_i2c_get_SDA(_adap)) {
1742 			done = true;
1743 			status = 0;
1744 		}
1745 	} while (!done && iter--);
1746 
1747 	/* If SDA line is released: send start-addr-stop, to re-sync. */
1748 	if (npcm_i2c_get_SDA(_adap)) {
1749 		/* Send an address byte in write direction: */
1750 		npcm_i2c_wr_byte(bus, bus->dest_addr);
1751 		npcm_i2c_master_start(bus);
1752 		/* Wait until START condition is sent */
1753 		status = readx_poll_timeout(npcm_i2c_get_SCL, _adap, val, !val,
1754 					    20, 200);
1755 		/* If START condition was sent */
1756 		if (npcm_i2c_is_master(bus) > 0) {
1757 			usleep_range(20, 30);
1758 			npcm_i2c_master_stop(bus);
1759 			usleep_range(200, 500);
1760 		}
1761 	}
1762 	npcm_i2c_reset(bus);
1763 	npcm_i2c_int_enable(bus, true);
1764 
1765 	if ((npcm_i2c_get_SDA(_adap) == 1) && (npcm_i2c_get_SCL(_adap) == 1))
1766 		status = 0;
1767 	else
1768 		status = -ENOTRECOVERABLE;
1769 	if (status) {
1770 		if (bus->rec_fail_cnt < ULLONG_MAX)
1771 			bus->rec_fail_cnt++;
1772 	} else {
1773 		if (bus->rec_succ_cnt < ULLONG_MAX)
1774 			bus->rec_succ_cnt++;
1775 	}
1776 	return status;
1777 }
1778 
1779 /* recovery using bit banging functionality of the module */
1780 static void npcm_i2c_recovery_init(struct i2c_adapter *_adap)
1781 {
1782 	struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
1783 	struct i2c_bus_recovery_info *rinfo = &bus->rinfo;
1784 
1785 	rinfo->recover_bus = npcm_i2c_recovery_tgclk;
1786 
1787 	/*
1788 	 * npcm i2c HW allows direct reading of SCL and SDA.
1789 	 * However, it does not support setting SCL and SDA directly.
1790 	 * The recovery function can toggle SCL when SDA is low (but not set)
1791 	 * Getter functions used internally, and can be used externally.
1792 	 */
1793 	rinfo->get_scl = npcm_i2c_get_SCL;
1794 	rinfo->get_sda = npcm_i2c_get_SDA;
1795 	_adap->bus_recovery_info = rinfo;
1796 }
1797 
1798 /* SCLFRQ min/max field values */
1799 #define SCLFRQ_MIN  10
1800 #define SCLFRQ_MAX  511
1801 #define clk_coef(freq, mul)	DIV_ROUND_UP((freq) * (mul), 1000000)
1802 
1803 /*
1804  * npcm_i2c_init_clk: init HW timing parameters.
1805  * NPCM7XX i2c module timing parameters are dependent on module core clk (APB)
1806  * and bus frequency.
1807  * 100kHz bus requires tSCL = 4 * SCLFRQ * tCLK. LT and HT are symmetric.
1808  * 400kHz bus requires asymmetric HT and LT. A different equation is recommended
1809  * by the HW designer, given core clock range (equations in comments below).
1810  *
1811  */
1812 static int npcm_i2c_init_clk(struct npcm_i2c *bus, u32 bus_freq_hz)
1813 {
1814 	u32  k1 = 0;
1815 	u32  k2 = 0;
1816 	u8   dbnct = 0;
1817 	u32  sclfrq = 0;
1818 	u8   hldt = 7;
1819 	u8   fast_mode = 0;
1820 	u32  src_clk_khz;
1821 	u32  bus_freq_khz;
1822 
1823 	src_clk_khz = bus->apb_clk / 1000;
1824 	bus_freq_khz = bus_freq_hz / 1000;
1825 	bus->bus_freq = bus_freq_hz;
1826 
1827 	/* 100KHz and below: */
1828 	if (bus_freq_hz <= I2C_MAX_STANDARD_MODE_FREQ) {
1829 		sclfrq = src_clk_khz / (bus_freq_khz * 4);
1830 
1831 		if (sclfrq < SCLFRQ_MIN || sclfrq > SCLFRQ_MAX)
1832 			return -EDOM;
1833 
1834 		if (src_clk_khz >= 40000)
1835 			hldt = 17;
1836 		else if (src_clk_khz >= 12500)
1837 			hldt = 15;
1838 		else
1839 			hldt = 7;
1840 	}
1841 
1842 	/* 400KHz: */
1843 	else if (bus_freq_hz <= I2C_MAX_FAST_MODE_FREQ) {
1844 		sclfrq = 0;
1845 		fast_mode = I2CCTL3_400K_MODE;
1846 
1847 		if (src_clk_khz < 7500)
1848 			/* 400KHZ cannot be supported for core clock < 7.5MHz */
1849 			return -EDOM;
1850 
1851 		else if (src_clk_khz >= 50000) {
1852 			k1 = 80;
1853 			k2 = 48;
1854 			hldt = 12;
1855 			dbnct = 7;
1856 		}
1857 
1858 		/* Master or Slave with frequency > 25MHz */
1859 		else if (src_clk_khz > 25000) {
1860 			hldt = clk_coef(src_clk_khz, 300) + 7;
1861 			k1 = clk_coef(src_clk_khz, 1600);
1862 			k2 = clk_coef(src_clk_khz, 900);
1863 		}
1864 	}
1865 
1866 	/* 1MHz: */
1867 	else if (bus_freq_hz <= I2C_MAX_FAST_MODE_PLUS_FREQ) {
1868 		sclfrq = 0;
1869 		fast_mode = I2CCTL3_400K_MODE;
1870 
1871 		/* 1MHZ cannot be supported for core clock < 24 MHz */
1872 		if (src_clk_khz < 24000)
1873 			return -EDOM;
1874 
1875 		k1 = clk_coef(src_clk_khz, 620);
1876 		k2 = clk_coef(src_clk_khz, 380);
1877 
1878 		/* Core clk > 40 MHz */
1879 		if (src_clk_khz > 40000) {
1880 			/*
1881 			 * Set HLDT:
1882 			 * SDA hold time:  (HLDT-7) * T(CLK) >= 120
1883 			 * HLDT = 120/T(CLK) + 7 = 120 * FREQ(CLK) + 7
1884 			 */
1885 			hldt = clk_coef(src_clk_khz, 120) + 7;
1886 		} else {
1887 			hldt = 7;
1888 			dbnct = 2;
1889 		}
1890 	}
1891 
1892 	/* Frequency larger than 1 MHz is not supported */
1893 	else
1894 		return -EINVAL;
1895 
1896 	if (bus_freq_hz >= I2C_MAX_FAST_MODE_FREQ) {
1897 		k1 = round_up(k1, 2);
1898 		k2 = round_up(k2 + 1, 2);
1899 		if (k1 < SCLFRQ_MIN || k1 > SCLFRQ_MAX ||
1900 		    k2 < SCLFRQ_MIN || k2 > SCLFRQ_MAX)
1901 			return -EDOM;
1902 	}
1903 
1904 	/* write sclfrq value. bits [6:0] are in I2CCTL2 reg */
1905 	iowrite8(FIELD_PREP(I2CCTL2_SCLFRQ6_0, sclfrq & 0x7F),
1906 		 bus->reg + NPCM_I2CCTL2);
1907 
1908 	/* bits [8:7] are in I2CCTL3 reg */
1909 	iowrite8(fast_mode | FIELD_PREP(I2CCTL3_SCLFRQ8_7, (sclfrq >> 7) & 0x3),
1910 		 bus->reg + NPCM_I2CCTL3);
1911 
1912 	/* Select Bank 0 to access NPCM_I2CCTL4/NPCM_I2CCTL5 */
1913 	npcm_i2c_select_bank(bus, I2C_BANK_0);
1914 
1915 	if (bus_freq_hz >= I2C_MAX_FAST_MODE_FREQ) {
1916 		/*
1917 		 * Set SCL Low/High Time:
1918 		 * k1 = 2 * SCLLT7-0 -> Low Time  = k1 / 2
1919 		 * k2 = 2 * SCLLT7-0 -> High Time = k2 / 2
1920 		 */
1921 		iowrite8(k1 / 2, bus->reg + NPCM_I2CSCLLT);
1922 		iowrite8(k2 / 2, bus->reg + NPCM_I2CSCLHT);
1923 
1924 		iowrite8(dbnct, bus->reg + NPCM_I2CCTL5);
1925 	}
1926 
1927 	iowrite8(hldt, bus->reg + NPCM_I2CCTL4);
1928 
1929 	/* Return to Bank 1, and stay there by default: */
1930 	npcm_i2c_select_bank(bus, I2C_BANK_1);
1931 
1932 	return 0;
1933 }
1934 
1935 static int npcm_i2c_init_module(struct npcm_i2c *bus, enum i2c_mode mode,
1936 				u32 bus_freq_hz)
1937 {
1938 	u8 val;
1939 	int ret;
1940 
1941 	/* Check whether module already enabled or frequency is out of bounds */
1942 	if ((bus->state != I2C_DISABLE && bus->state != I2C_IDLE) ||
1943 	    bus_freq_hz < I2C_FREQ_MIN_HZ || bus_freq_hz > I2C_FREQ_MAX_HZ)
1944 		return -EINVAL;
1945 
1946 	npcm_i2c_int_enable(bus, false);
1947 	npcm_i2c_disable(bus);
1948 
1949 	/* Configure FIFO mode : */
1950 	if (FIELD_GET(I2C_VER_FIFO_EN, ioread8(bus->reg + I2C_VER))) {
1951 		bus->fifo_use = true;
1952 		npcm_i2c_select_bank(bus, I2C_BANK_0);
1953 		val = ioread8(bus->reg + NPCM_I2CFIF_CTL);
1954 		val |= NPCM_I2CFIF_CTL_FIFO_EN;
1955 		iowrite8(val, bus->reg + NPCM_I2CFIF_CTL);
1956 		npcm_i2c_select_bank(bus, I2C_BANK_1);
1957 	} else {
1958 		bus->fifo_use = false;
1959 	}
1960 
1961 	/* Configure I2C module clock frequency */
1962 	ret = npcm_i2c_init_clk(bus, bus_freq_hz);
1963 	if (ret) {
1964 		dev_err(bus->dev, "npcm_i2c_init_clk failed\n");
1965 		return ret;
1966 	}
1967 
1968 	/* Enable module (before configuring CTL1) */
1969 	npcm_i2c_enable(bus);
1970 	bus->state = I2C_IDLE;
1971 	val = ioread8(bus->reg + NPCM_I2CCTL1);
1972 	val = (val | NPCM_I2CCTL1_NMINTE) & ~NPCM_I2CCTL1_RWS;
1973 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
1974 
1975 	npcm_i2c_reset(bus);
1976 
1977 	/* Check HW is OK: SDA and SCL should be high at this point. */
1978 	if ((npcm_i2c_get_SDA(&bus->adap) == 0) || (npcm_i2c_get_SCL(&bus->adap) == 0)) {
1979 		dev_err(bus->dev, "I2C%d init fail: lines are low\n", bus->num);
1980 		dev_err(bus->dev, "SDA=%d SCL=%d\n", npcm_i2c_get_SDA(&bus->adap),
1981 			npcm_i2c_get_SCL(&bus->adap));
1982 		return -ENXIO;
1983 	}
1984 
1985 	npcm_i2c_int_enable(bus, true);
1986 	return 0;
1987 }
1988 
1989 static int __npcm_i2c_init(struct npcm_i2c *bus, struct platform_device *pdev)
1990 {
1991 	u32 clk_freq_hz;
1992 	int ret;
1993 
1994 	/* Initialize the internal data structures */
1995 	bus->state = I2C_DISABLE;
1996 	bus->master_or_slave = I2C_SLAVE;
1997 	bus->int_time_stamp = 0;
1998 #if IS_ENABLED(CONFIG_I2C_SLAVE)
1999 	bus->slave = NULL;
2000 #endif
2001 
2002 	ret = device_property_read_u32(&pdev->dev, "clock-frequency",
2003 				       &clk_freq_hz);
2004 	if (ret) {
2005 		dev_info(&pdev->dev, "Could not read clock-frequency property");
2006 		clk_freq_hz = I2C_MAX_STANDARD_MODE_FREQ;
2007 	}
2008 
2009 	ret = npcm_i2c_init_module(bus, I2C_MASTER, clk_freq_hz);
2010 	if (ret) {
2011 		dev_err(&pdev->dev, "npcm_i2c_init_module failed\n");
2012 		return ret;
2013 	}
2014 
2015 	return 0;
2016 }
2017 
2018 static irqreturn_t npcm_i2c_bus_irq(int irq, void *dev_id)
2019 {
2020 	struct npcm_i2c *bus = dev_id;
2021 
2022 	if (npcm_i2c_is_master(bus))
2023 		bus->master_or_slave = I2C_MASTER;
2024 
2025 	if (bus->master_or_slave == I2C_MASTER) {
2026 		bus->int_time_stamp = jiffies;
2027 		if (!npcm_i2c_int_master_handler(bus))
2028 			return IRQ_HANDLED;
2029 	}
2030 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2031 	if (bus->slave) {
2032 		bus->master_or_slave = I2C_SLAVE;
2033 		if (npcm_i2c_int_slave_handler(bus))
2034 			return IRQ_HANDLED;
2035 	}
2036 #endif
2037 	/* Clear status bits for spurious interrupts */
2038 	npcm_i2c_clear_master_status(bus);
2039 
2040 	return IRQ_HANDLED;
2041 }
2042 
2043 static bool npcm_i2c_master_start_xmit(struct npcm_i2c *bus,
2044 				       u8 slave_addr, u16 nwrite, u16 nread,
2045 				       u8 *write_data, u8 *read_data,
2046 				       bool use_PEC, bool use_read_block)
2047 {
2048 	if (bus->state != I2C_IDLE) {
2049 		bus->cmd_err = -EBUSY;
2050 		return false;
2051 	}
2052 	bus->dest_addr = slave_addr << 1;
2053 	bus->wr_buf = write_data;
2054 	bus->wr_size = nwrite;
2055 	bus->wr_ind = 0;
2056 	bus->rd_buf = read_data;
2057 	bus->rd_size = nread;
2058 	bus->rd_ind = 0;
2059 	bus->PEC_use = 0;
2060 
2061 	/* for tx PEC is appended to buffer from i2c IF. PEC flag is ignored */
2062 	if (nread)
2063 		bus->PEC_use = use_PEC;
2064 
2065 	bus->read_block_use = use_read_block;
2066 	if (nread && !nwrite)
2067 		bus->operation = I2C_READ_OPER;
2068 	else
2069 		bus->operation = I2C_WRITE_OPER;
2070 	if (bus->fifo_use) {
2071 		u8 i2cfif_cts;
2072 
2073 		npcm_i2c_select_bank(bus, I2C_BANK_1);
2074 		/* clear FIFO and relevant status bits. */
2075 		i2cfif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
2076 		i2cfif_cts &= ~NPCM_I2CFIF_CTS_SLVRSTR;
2077 		i2cfif_cts |= NPCM_I2CFIF_CTS_CLR_FIFO;
2078 		iowrite8(i2cfif_cts, bus->reg + NPCM_I2CFIF_CTS);
2079 	}
2080 
2081 	bus->state = I2C_IDLE;
2082 	npcm_i2c_stall_after_start(bus, true);
2083 	npcm_i2c_master_start(bus);
2084 	return true;
2085 }
2086 
2087 static int npcm_i2c_master_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
2088 				int num)
2089 {
2090 	struct npcm_i2c *bus = container_of(adap, struct npcm_i2c, adap);
2091 	struct i2c_msg *msg0, *msg1;
2092 	unsigned long time_left, flags;
2093 	u16 nwrite, nread;
2094 	u8 *write_data, *read_data;
2095 	u8 slave_addr;
2096 	unsigned long timeout;
2097 	bool read_block = false;
2098 	bool read_PEC = false;
2099 	u8 bus_busy;
2100 	unsigned long timeout_usec;
2101 
2102 	if (bus->state == I2C_DISABLE) {
2103 		dev_err(bus->dev, "I2C%d module is disabled", bus->num);
2104 		return -EINVAL;
2105 	}
2106 
2107 	msg0 = &msgs[0];
2108 	slave_addr = msg0->addr;
2109 	if (msg0->flags & I2C_M_RD) { /* read */
2110 		nwrite = 0;
2111 		write_data = NULL;
2112 		read_data = msg0->buf;
2113 		if (msg0->flags & I2C_M_RECV_LEN) {
2114 			nread = 1;
2115 			read_block = true;
2116 			if (msg0->flags & I2C_CLIENT_PEC)
2117 				read_PEC = true;
2118 		} else {
2119 			nread = msg0->len;
2120 		}
2121 	} else { /* write */
2122 		nwrite = msg0->len;
2123 		write_data = msg0->buf;
2124 		nread = 0;
2125 		read_data = NULL;
2126 		if (num == 2) {
2127 			msg1 = &msgs[1];
2128 			read_data = msg1->buf;
2129 			if (msg1->flags & I2C_M_RECV_LEN) {
2130 				nread = 1;
2131 				read_block = true;
2132 				if (msg1->flags & I2C_CLIENT_PEC)
2133 					read_PEC = true;
2134 			} else {
2135 				nread = msg1->len;
2136 				read_block = false;
2137 			}
2138 		}
2139 	}
2140 
2141 	/*
2142 	 * Adaptive TimeOut: estimated time in usec + 100% margin:
2143 	 * 2: double the timeout for clock stretching case
2144 	 * 9: bits per transaction (including the ack/nack)
2145 	 */
2146 	timeout_usec = (2 * 9 * USEC_PER_SEC / bus->bus_freq) * (2 + nread + nwrite);
2147 	timeout = max_t(unsigned long, bus->adap.timeout, usecs_to_jiffies(timeout_usec));
2148 	if (nwrite >= 32 * 1024 || nread >= 32 * 1024) {
2149 		dev_err(bus->dev, "i2c%d buffer too big\n", bus->num);
2150 		return -EINVAL;
2151 	}
2152 
2153 	time_left = jiffies + timeout + 1;
2154 	do {
2155 		/*
2156 		 * we must clear slave address immediately when the bus is not
2157 		 * busy, so we spinlock it, but we don't keep the lock for the
2158 		 * entire while since it is too long.
2159 		 */
2160 		spin_lock_irqsave(&bus->lock, flags);
2161 		bus_busy = ioread8(bus->reg + NPCM_I2CCST) & NPCM_I2CCST_BB;
2162 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2163 		if (!bus_busy && bus->slave)
2164 			iowrite8((bus->slave->addr & 0x7F),
2165 				 bus->reg + NPCM_I2CADDR1);
2166 #endif
2167 		spin_unlock_irqrestore(&bus->lock, flags);
2168 
2169 	} while (time_is_after_jiffies(time_left) && bus_busy);
2170 
2171 	if (bus_busy) {
2172 		iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
2173 		npcm_i2c_reset(bus);
2174 		i2c_recover_bus(adap);
2175 		return -EAGAIN;
2176 	}
2177 
2178 	npcm_i2c_init_params(bus);
2179 	bus->dest_addr = slave_addr;
2180 	bus->msgs = msgs;
2181 	bus->msgs_num = num;
2182 	bus->cmd_err = 0;
2183 	bus->read_block_use = read_block;
2184 
2185 	reinit_completion(&bus->cmd_complete);
2186 
2187 	npcm_i2c_int_enable(bus, true);
2188 
2189 	if (npcm_i2c_master_start_xmit(bus, slave_addr, nwrite, nread,
2190 				       write_data, read_data, read_PEC,
2191 				       read_block)) {
2192 		time_left = wait_for_completion_timeout(&bus->cmd_complete,
2193 							timeout);
2194 
2195 		if (time_left == 0) {
2196 			if (bus->timeout_cnt < ULLONG_MAX)
2197 				bus->timeout_cnt++;
2198 			if (bus->master_or_slave == I2C_MASTER) {
2199 				i2c_recover_bus(adap);
2200 				bus->cmd_err = -EIO;
2201 				bus->state = I2C_IDLE;
2202 			}
2203 		}
2204 	}
2205 
2206 	/* if there was BER, check if need to recover the bus: */
2207 	if (bus->cmd_err == -EAGAIN)
2208 		bus->cmd_err = i2c_recover_bus(adap);
2209 
2210 	/*
2211 	 * After any type of error, check if LAST bit is still set,
2212 	 * due to a HW issue.
2213 	 * It cannot be cleared without resetting the module.
2214 	 */
2215 	else if (bus->cmd_err &&
2216 		 (bus->data->rxf_ctl_last_pec & ioread8(bus->reg + NPCM_I2CRXF_CTL)))
2217 		npcm_i2c_reset(bus);
2218 
2219 	/* After any xfer, successful or not, stall and EOB must be disabled */
2220 	npcm_i2c_stall_after_start(bus, false);
2221 	npcm_i2c_eob_int(bus, false);
2222 
2223 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2224 	/* reenable slave if it was enabled */
2225 	if (bus->slave)
2226 		iowrite8((bus->slave->addr & 0x7F) | NPCM_I2CADDR_SAEN,
2227 			 bus->reg + NPCM_I2CADDR1);
2228 #else
2229 	npcm_i2c_int_enable(bus, false);
2230 #endif
2231 	return bus->cmd_err;
2232 }
2233 
2234 static u32 npcm_i2c_functionality(struct i2c_adapter *adap)
2235 {
2236 	return I2C_FUNC_I2C |
2237 	       I2C_FUNC_SMBUS_EMUL |
2238 	       I2C_FUNC_SMBUS_BLOCK_DATA |
2239 	       I2C_FUNC_SMBUS_PEC |
2240 	       I2C_FUNC_SLAVE;
2241 }
2242 
2243 static const struct i2c_adapter_quirks npcm_i2c_quirks = {
2244 	.max_read_len = 32768,
2245 	.max_write_len = 32768,
2246 	.flags = I2C_AQ_COMB_WRITE_THEN_READ,
2247 };
2248 
2249 static const struct i2c_algorithm npcm_i2c_algo = {
2250 	.master_xfer = npcm_i2c_master_xfer,
2251 	.functionality = npcm_i2c_functionality,
2252 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2253 	.reg_slave	= npcm_i2c_reg_slave,
2254 	.unreg_slave	= npcm_i2c_unreg_slave,
2255 #endif
2256 };
2257 
2258 /* i2c debugfs directory: used to keep health monitor of i2c devices */
2259 static struct dentry *npcm_i2c_debugfs_dir;
2260 
2261 static void npcm_i2c_init_debugfs(struct platform_device *pdev,
2262 				  struct npcm_i2c *bus)
2263 {
2264 	struct dentry *d;
2265 
2266 	if (!npcm_i2c_debugfs_dir)
2267 		return;
2268 	d = debugfs_create_dir(dev_name(&pdev->dev), npcm_i2c_debugfs_dir);
2269 	if (IS_ERR_OR_NULL(d))
2270 		return;
2271 	debugfs_create_u64("ber_cnt", 0444, d, &bus->ber_cnt);
2272 	debugfs_create_u64("nack_cnt", 0444, d, &bus->nack_cnt);
2273 	debugfs_create_u64("rec_succ_cnt", 0444, d, &bus->rec_succ_cnt);
2274 	debugfs_create_u64("rec_fail_cnt", 0444, d, &bus->rec_fail_cnt);
2275 	debugfs_create_u64("timeout_cnt", 0444, d, &bus->timeout_cnt);
2276 	debugfs_create_u64("tx_complete_cnt", 0444, d, &bus->tx_complete_cnt);
2277 
2278 	bus->debugfs = d;
2279 }
2280 
2281 static int npcm_i2c_probe_bus(struct platform_device *pdev)
2282 {
2283 	struct device_node *np = pdev->dev.of_node;
2284 	static struct regmap *gcr_regmap;
2285 	struct device *dev = &pdev->dev;
2286 	struct i2c_adapter *adap;
2287 	struct npcm_i2c *bus;
2288 	struct clk *i2c_clk;
2289 	int irq;
2290 	int ret;
2291 
2292 	bus = devm_kzalloc(&pdev->dev, sizeof(*bus), GFP_KERNEL);
2293 	if (!bus)
2294 		return -ENOMEM;
2295 
2296 	bus->dev = &pdev->dev;
2297 
2298 	bus->data = of_device_get_match_data(dev);
2299 	if (!bus->data) {
2300 		dev_err(dev, "OF data missing\n");
2301 		return -EINVAL;
2302 	}
2303 
2304 	bus->num = of_alias_get_id(pdev->dev.of_node, "i2c");
2305 	/* core clk must be acquired to calculate module timing settings */
2306 	i2c_clk = devm_clk_get(&pdev->dev, NULL);
2307 	if (IS_ERR(i2c_clk))
2308 		return PTR_ERR(i2c_clk);
2309 	bus->apb_clk = clk_get_rate(i2c_clk);
2310 
2311 	gcr_regmap = syscon_regmap_lookup_by_phandle(np, "nuvoton,sys-mgr");
2312 	if (IS_ERR(gcr_regmap))
2313 		gcr_regmap = syscon_regmap_lookup_by_compatible("nuvoton,npcm750-gcr");
2314 
2315 	if (IS_ERR(gcr_regmap))
2316 		return PTR_ERR(gcr_regmap);
2317 	regmap_write(gcr_regmap, NPCM_I2CSEGCTL, bus->data->segctl_init_val);
2318 
2319 	bus->reg = devm_platform_ioremap_resource(pdev, 0);
2320 	if (IS_ERR(bus->reg))
2321 		return PTR_ERR(bus->reg);
2322 
2323 	spin_lock_init(&bus->lock);
2324 	init_completion(&bus->cmd_complete);
2325 
2326 	adap = &bus->adap;
2327 	adap->owner = THIS_MODULE;
2328 	adap->retries = 3;
2329 	adap->timeout = msecs_to_jiffies(35);
2330 	adap->algo = &npcm_i2c_algo;
2331 	adap->quirks = &npcm_i2c_quirks;
2332 	adap->algo_data = bus;
2333 	adap->dev.parent = &pdev->dev;
2334 	adap->dev.of_node = pdev->dev.of_node;
2335 	adap->nr = pdev->id;
2336 
2337 	irq = platform_get_irq(pdev, 0);
2338 	if (irq < 0)
2339 		return irq;
2340 
2341 	ret = devm_request_irq(bus->dev, irq, npcm_i2c_bus_irq, 0,
2342 			       dev_name(bus->dev), bus);
2343 	if (ret)
2344 		return ret;
2345 
2346 	ret = __npcm_i2c_init(bus, pdev);
2347 	if (ret)
2348 		return ret;
2349 
2350 	npcm_i2c_recovery_init(adap);
2351 
2352 	i2c_set_adapdata(adap, bus);
2353 
2354 	snprintf(bus->adap.name, sizeof(bus->adap.name), "npcm_i2c_%d",
2355 		 bus->num);
2356 	ret = i2c_add_numbered_adapter(&bus->adap);
2357 	if (ret)
2358 		return ret;
2359 
2360 	platform_set_drvdata(pdev, bus);
2361 	npcm_i2c_init_debugfs(pdev, bus);
2362 	return 0;
2363 }
2364 
2365 static int npcm_i2c_remove_bus(struct platform_device *pdev)
2366 {
2367 	unsigned long lock_flags;
2368 	struct npcm_i2c *bus = platform_get_drvdata(pdev);
2369 
2370 	debugfs_remove_recursive(bus->debugfs);
2371 	spin_lock_irqsave(&bus->lock, lock_flags);
2372 	npcm_i2c_disable(bus);
2373 	spin_unlock_irqrestore(&bus->lock, lock_flags);
2374 	i2c_del_adapter(&bus->adap);
2375 	return 0;
2376 }
2377 
2378 static const struct of_device_id npcm_i2c_bus_of_table[] = {
2379 	{ .compatible = "nuvoton,npcm750-i2c", .data = &npxm7xx_i2c_data },
2380 	{ .compatible = "nuvoton,npcm845-i2c", .data = &npxm8xx_i2c_data },
2381 	{}
2382 };
2383 MODULE_DEVICE_TABLE(of, npcm_i2c_bus_of_table);
2384 
2385 static struct platform_driver npcm_i2c_bus_driver = {
2386 	.probe = npcm_i2c_probe_bus,
2387 	.remove = npcm_i2c_remove_bus,
2388 	.driver = {
2389 		.name = "nuvoton-i2c",
2390 		.of_match_table = npcm_i2c_bus_of_table,
2391 	}
2392 };
2393 
2394 static int __init npcm_i2c_init(void)
2395 {
2396 	int ret;
2397 
2398 	npcm_i2c_debugfs_dir = debugfs_create_dir("npcm_i2c", NULL);
2399 
2400 	ret = platform_driver_register(&npcm_i2c_bus_driver);
2401 	if (ret) {
2402 		debugfs_remove_recursive(npcm_i2c_debugfs_dir);
2403 		return ret;
2404 	}
2405 
2406 	return 0;
2407 }
2408 module_init(npcm_i2c_init);
2409 
2410 static void __exit npcm_i2c_exit(void)
2411 {
2412 	platform_driver_unregister(&npcm_i2c_bus_driver);
2413 	debugfs_remove_recursive(npcm_i2c_debugfs_dir);
2414 }
2415 module_exit(npcm_i2c_exit);
2416 
2417 MODULE_AUTHOR("Avi Fishman <avi.fishman@gmail.com>");
2418 MODULE_AUTHOR("Tali Perry <tali.perry@nuvoton.com>");
2419 MODULE_AUTHOR("Tyrone Ting <kfting@nuvoton.com>");
2420 MODULE_DESCRIPTION("Nuvoton I2C Bus Driver");
2421 MODULE_LICENSE("GPL v2");
2422