1 /* 2 * Copyright (C) 2009 ST-Ericsson SA 3 * Copyright (C) 2009 STMicroelectronics 4 * 5 * I2C master mode controller driver, used in Nomadik 8815 6 * and Ux500 platforms. 7 * 8 * Author: Srinidhi Kasagar <srinidhi.kasagar@stericsson.com> 9 * Author: Sachin Verma <sachin.verma@st.com> 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License version 2, as 13 * published by the Free Software Foundation. 14 */ 15 #include <linux/init.h> 16 #include <linux/module.h> 17 #include <linux/amba/bus.h> 18 #include <linux/atomic.h> 19 #include <linux/slab.h> 20 #include <linux/interrupt.h> 21 #include <linux/i2c.h> 22 #include <linux/err.h> 23 #include <linux/clk.h> 24 #include <linux/io.h> 25 #include <linux/regulator/consumer.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/platform_data/i2c-nomadik.h> 28 29 #define DRIVER_NAME "nmk-i2c" 30 31 /* I2C Controller register offsets */ 32 #define I2C_CR (0x000) 33 #define I2C_SCR (0x004) 34 #define I2C_HSMCR (0x008) 35 #define I2C_MCR (0x00C) 36 #define I2C_TFR (0x010) 37 #define I2C_SR (0x014) 38 #define I2C_RFR (0x018) 39 #define I2C_TFTR (0x01C) 40 #define I2C_RFTR (0x020) 41 #define I2C_DMAR (0x024) 42 #define I2C_BRCR (0x028) 43 #define I2C_IMSCR (0x02C) 44 #define I2C_RISR (0x030) 45 #define I2C_MISR (0x034) 46 #define I2C_ICR (0x038) 47 48 /* Control registers */ 49 #define I2C_CR_PE (0x1 << 0) /* Peripheral Enable */ 50 #define I2C_CR_OM (0x3 << 1) /* Operating mode */ 51 #define I2C_CR_SAM (0x1 << 3) /* Slave addressing mode */ 52 #define I2C_CR_SM (0x3 << 4) /* Speed mode */ 53 #define I2C_CR_SGCM (0x1 << 6) /* Slave general call mode */ 54 #define I2C_CR_FTX (0x1 << 7) /* Flush Transmit */ 55 #define I2C_CR_FRX (0x1 << 8) /* Flush Receive */ 56 #define I2C_CR_DMA_TX_EN (0x1 << 9) /* DMA Tx enable */ 57 #define I2C_CR_DMA_RX_EN (0x1 << 10) /* DMA Rx Enable */ 58 #define I2C_CR_DMA_SLE (0x1 << 11) /* DMA sync. logic enable */ 59 #define I2C_CR_LM (0x1 << 12) /* Loopback mode */ 60 #define I2C_CR_FON (0x3 << 13) /* Filtering on */ 61 #define I2C_CR_FS (0x3 << 15) /* Force stop enable */ 62 63 /* Master controller (MCR) register */ 64 #define I2C_MCR_OP (0x1 << 0) /* Operation */ 65 #define I2C_MCR_A7 (0x7f << 1) /* 7-bit address */ 66 #define I2C_MCR_EA10 (0x7 << 8) /* 10-bit Extended address */ 67 #define I2C_MCR_SB (0x1 << 11) /* Extended address */ 68 #define I2C_MCR_AM (0x3 << 12) /* Address type */ 69 #define I2C_MCR_STOP (0x1 << 14) /* Stop condition */ 70 #define I2C_MCR_LENGTH (0x7ff << 15) /* Transaction length */ 71 72 /* Status register (SR) */ 73 #define I2C_SR_OP (0x3 << 0) /* Operation */ 74 #define I2C_SR_STATUS (0x3 << 2) /* controller status */ 75 #define I2C_SR_CAUSE (0x7 << 4) /* Abort cause */ 76 #define I2C_SR_TYPE (0x3 << 7) /* Receive type */ 77 #define I2C_SR_LENGTH (0x7ff << 9) /* Transfer length */ 78 79 /* Interrupt mask set/clear (IMSCR) bits */ 80 #define I2C_IT_TXFE (0x1 << 0) 81 #define I2C_IT_TXFNE (0x1 << 1) 82 #define I2C_IT_TXFF (0x1 << 2) 83 #define I2C_IT_TXFOVR (0x1 << 3) 84 #define I2C_IT_RXFE (0x1 << 4) 85 #define I2C_IT_RXFNF (0x1 << 5) 86 #define I2C_IT_RXFF (0x1 << 6) 87 #define I2C_IT_RFSR (0x1 << 16) 88 #define I2C_IT_RFSE (0x1 << 17) 89 #define I2C_IT_WTSR (0x1 << 18) 90 #define I2C_IT_MTD (0x1 << 19) 91 #define I2C_IT_STD (0x1 << 20) 92 #define I2C_IT_MAL (0x1 << 24) 93 #define I2C_IT_BERR (0x1 << 25) 94 #define I2C_IT_MTDWS (0x1 << 28) 95 96 #define GEN_MASK(val, mask, sb) (((val) << (sb)) & (mask)) 97 98 /* some bits in ICR are reserved */ 99 #define I2C_CLEAR_ALL_INTS 0x131f007f 100 101 /* first three msb bits are reserved */ 102 #define IRQ_MASK(mask) (mask & 0x1fffffff) 103 104 /* maximum threshold value */ 105 #define MAX_I2C_FIFO_THRESHOLD 15 106 107 enum i2c_status { 108 I2C_NOP, 109 I2C_ON_GOING, 110 I2C_OK, 111 I2C_ABORT 112 }; 113 114 /* operation */ 115 enum i2c_operation { 116 I2C_NO_OPERATION = 0xff, 117 I2C_WRITE = 0x00, 118 I2C_READ = 0x01 119 }; 120 121 /** 122 * struct i2c_nmk_client - client specific data 123 * @slave_adr: 7-bit slave address 124 * @count: no. bytes to be transferred 125 * @buffer: client data buffer 126 * @xfer_bytes: bytes transferred till now 127 * @operation: current I2C operation 128 */ 129 struct i2c_nmk_client { 130 unsigned short slave_adr; 131 unsigned long count; 132 unsigned char *buffer; 133 unsigned long xfer_bytes; 134 enum i2c_operation operation; 135 }; 136 137 /** 138 * struct nmk_i2c_dev - private data structure of the controller. 139 * @adev: parent amba device. 140 * @adap: corresponding I2C adapter. 141 * @irq: interrupt line for the controller. 142 * @virtbase: virtual io memory area. 143 * @clk: hardware i2c block clock. 144 * @cfg: machine provided controller configuration. 145 * @cli: holder of client specific data. 146 * @stop: stop condition. 147 * @xfer_complete: acknowledge completion for a I2C message. 148 * @result: controller propogated result. 149 * @regulator: pointer to i2c regulator. 150 * @busy: Busy doing transfer. 151 */ 152 struct nmk_i2c_dev { 153 struct amba_device *adev; 154 struct i2c_adapter adap; 155 int irq; 156 void __iomem *virtbase; 157 struct clk *clk; 158 struct nmk_i2c_controller cfg; 159 struct i2c_nmk_client cli; 160 int stop; 161 struct completion xfer_complete; 162 int result; 163 struct regulator *regulator; 164 bool busy; 165 }; 166 167 /* controller's abort causes */ 168 static const char *abort_causes[] = { 169 "no ack received after address transmission", 170 "no ack received during data phase", 171 "ack received after xmission of master code", 172 "master lost arbitration", 173 "slave restarts", 174 "slave reset", 175 "overflow, maxsize is 2047 bytes", 176 }; 177 178 static inline void i2c_set_bit(void __iomem *reg, u32 mask) 179 { 180 writel(readl(reg) | mask, reg); 181 } 182 183 static inline void i2c_clr_bit(void __iomem *reg, u32 mask) 184 { 185 writel(readl(reg) & ~mask, reg); 186 } 187 188 /** 189 * flush_i2c_fifo() - This function flushes the I2C FIFO 190 * @dev: private data of I2C Driver 191 * 192 * This function flushes the I2C Tx and Rx FIFOs. It returns 193 * 0 on successful flushing of FIFO 194 */ 195 static int flush_i2c_fifo(struct nmk_i2c_dev *dev) 196 { 197 #define LOOP_ATTEMPTS 10 198 int i; 199 unsigned long timeout; 200 201 /* 202 * flush the transmit and receive FIFO. The flushing 203 * operation takes several cycles before to be completed. 204 * On the completion, the I2C internal logic clears these 205 * bits, until then no one must access Tx, Rx FIFO and 206 * should poll on these bits waiting for the completion. 207 */ 208 writel((I2C_CR_FTX | I2C_CR_FRX), dev->virtbase + I2C_CR); 209 210 for (i = 0; i < LOOP_ATTEMPTS; i++) { 211 timeout = jiffies + dev->adap.timeout; 212 213 while (!time_after(jiffies, timeout)) { 214 if ((readl(dev->virtbase + I2C_CR) & 215 (I2C_CR_FTX | I2C_CR_FRX)) == 0) 216 return 0; 217 } 218 } 219 220 dev_err(&dev->adev->dev, 221 "flushing operation timed out giving up after %d attempts", 222 LOOP_ATTEMPTS); 223 224 return -ETIMEDOUT; 225 } 226 227 /** 228 * disable_all_interrupts() - Disable all interrupts of this I2c Bus 229 * @dev: private data of I2C Driver 230 */ 231 static void disable_all_interrupts(struct nmk_i2c_dev *dev) 232 { 233 u32 mask = IRQ_MASK(0); 234 writel(mask, dev->virtbase + I2C_IMSCR); 235 } 236 237 /** 238 * clear_all_interrupts() - Clear all interrupts of I2C Controller 239 * @dev: private data of I2C Driver 240 */ 241 static void clear_all_interrupts(struct nmk_i2c_dev *dev) 242 { 243 u32 mask; 244 mask = IRQ_MASK(I2C_CLEAR_ALL_INTS); 245 writel(mask, dev->virtbase + I2C_ICR); 246 } 247 248 /** 249 * init_hw() - initialize the I2C hardware 250 * @dev: private data of I2C Driver 251 */ 252 static int init_hw(struct nmk_i2c_dev *dev) 253 { 254 int stat; 255 256 stat = flush_i2c_fifo(dev); 257 if (stat) 258 goto exit; 259 260 /* disable the controller */ 261 i2c_clr_bit(dev->virtbase + I2C_CR , I2C_CR_PE); 262 263 disable_all_interrupts(dev); 264 265 clear_all_interrupts(dev); 266 267 dev->cli.operation = I2C_NO_OPERATION; 268 269 exit: 270 return stat; 271 } 272 273 /* enable peripheral, master mode operation */ 274 #define DEFAULT_I2C_REG_CR ((1 << 1) | I2C_CR_PE) 275 276 /** 277 * load_i2c_mcr_reg() - load the MCR register 278 * @dev: private data of controller 279 * @flags: message flags 280 */ 281 static u32 load_i2c_mcr_reg(struct nmk_i2c_dev *dev, u16 flags) 282 { 283 u32 mcr = 0; 284 unsigned short slave_adr_3msb_bits; 285 286 mcr |= GEN_MASK(dev->cli.slave_adr, I2C_MCR_A7, 1); 287 288 if (unlikely(flags & I2C_M_TEN)) { 289 /* 10-bit address transaction */ 290 mcr |= GEN_MASK(2, I2C_MCR_AM, 12); 291 /* 292 * Get the top 3 bits. 293 * EA10 represents extended address in MCR. This includes 294 * the extension (MSB bits) of the 7 bit address loaded 295 * in A7 296 */ 297 slave_adr_3msb_bits = (dev->cli.slave_adr >> 7) & 0x7; 298 299 mcr |= GEN_MASK(slave_adr_3msb_bits, I2C_MCR_EA10, 8); 300 } else { 301 /* 7-bit address transaction */ 302 mcr |= GEN_MASK(1, I2C_MCR_AM, 12); 303 } 304 305 /* start byte procedure not applied */ 306 mcr |= GEN_MASK(0, I2C_MCR_SB, 11); 307 308 /* check the operation, master read/write? */ 309 if (dev->cli.operation == I2C_WRITE) 310 mcr |= GEN_MASK(I2C_WRITE, I2C_MCR_OP, 0); 311 else 312 mcr |= GEN_MASK(I2C_READ, I2C_MCR_OP, 0); 313 314 /* stop or repeated start? */ 315 if (dev->stop) 316 mcr |= GEN_MASK(1, I2C_MCR_STOP, 14); 317 else 318 mcr &= ~(GEN_MASK(1, I2C_MCR_STOP, 14)); 319 320 mcr |= GEN_MASK(dev->cli.count, I2C_MCR_LENGTH, 15); 321 322 return mcr; 323 } 324 325 /** 326 * setup_i2c_controller() - setup the controller 327 * @dev: private data of controller 328 */ 329 static void setup_i2c_controller(struct nmk_i2c_dev *dev) 330 { 331 u32 brcr1, brcr2; 332 u32 i2c_clk, div; 333 334 writel(0x0, dev->virtbase + I2C_CR); 335 writel(0x0, dev->virtbase + I2C_HSMCR); 336 writel(0x0, dev->virtbase + I2C_TFTR); 337 writel(0x0, dev->virtbase + I2C_RFTR); 338 writel(0x0, dev->virtbase + I2C_DMAR); 339 340 /* 341 * set the slsu: 342 * 343 * slsu defines the data setup time after SCL clock 344 * stretching in terms of i2c clk cycles. The 345 * needed setup time for the three modes are 250ns, 346 * 100ns, 10ns respectively thus leading to the values 347 * of 14, 6, 2 for a 48 MHz i2c clk. 348 */ 349 writel(dev->cfg.slsu << 16, dev->virtbase + I2C_SCR); 350 351 i2c_clk = clk_get_rate(dev->clk); 352 353 /* 354 * The spec says, in case of std. mode the divider is 355 * 2 whereas it is 3 for fast and fastplus mode of 356 * operation. TODO - high speed support. 357 */ 358 div = (dev->cfg.clk_freq > 100000) ? 3 : 2; 359 360 /* 361 * generate the mask for baud rate counters. The controller 362 * has two baud rate counters. One is used for High speed 363 * operation, and the other is for std, fast mode, fast mode 364 * plus operation. Currently we do not supprt high speed mode 365 * so set brcr1 to 0. 366 */ 367 brcr1 = 0 << 16; 368 brcr2 = (i2c_clk/(dev->cfg.clk_freq * div)) & 0xffff; 369 370 /* set the baud rate counter register */ 371 writel((brcr1 | brcr2), dev->virtbase + I2C_BRCR); 372 373 /* 374 * set the speed mode. Currently we support 375 * only standard and fast mode of operation 376 * TODO - support for fast mode plus (up to 1Mb/s) 377 * and high speed (up to 3.4 Mb/s) 378 */ 379 if (dev->cfg.sm > I2C_FREQ_MODE_FAST) { 380 dev_err(&dev->adev->dev, 381 "do not support this mode defaulting to std. mode\n"); 382 brcr2 = i2c_clk/(100000 * 2) & 0xffff; 383 writel((brcr1 | brcr2), dev->virtbase + I2C_BRCR); 384 writel(I2C_FREQ_MODE_STANDARD << 4, 385 dev->virtbase + I2C_CR); 386 } 387 writel(dev->cfg.sm << 4, dev->virtbase + I2C_CR); 388 389 /* set the Tx and Rx FIFO threshold */ 390 writel(dev->cfg.tft, dev->virtbase + I2C_TFTR); 391 writel(dev->cfg.rft, dev->virtbase + I2C_RFTR); 392 } 393 394 /** 395 * read_i2c() - Read from I2C client device 396 * @dev: private data of I2C Driver 397 * @flags: message flags 398 * 399 * This function reads from i2c client device when controller is in 400 * master mode. There is a completion timeout. If there is no transfer 401 * before timeout error is returned. 402 */ 403 static int read_i2c(struct nmk_i2c_dev *dev, u16 flags) 404 { 405 u32 status = 0; 406 u32 mcr; 407 u32 irq_mask = 0; 408 int timeout; 409 410 mcr = load_i2c_mcr_reg(dev, flags); 411 writel(mcr, dev->virtbase + I2C_MCR); 412 413 /* load the current CR value */ 414 writel(readl(dev->virtbase + I2C_CR) | DEFAULT_I2C_REG_CR, 415 dev->virtbase + I2C_CR); 416 417 /* enable the controller */ 418 i2c_set_bit(dev->virtbase + I2C_CR, I2C_CR_PE); 419 420 init_completion(&dev->xfer_complete); 421 422 /* enable interrupts by setting the mask */ 423 irq_mask = (I2C_IT_RXFNF | I2C_IT_RXFF | 424 I2C_IT_MAL | I2C_IT_BERR); 425 426 if (dev->stop) 427 irq_mask |= I2C_IT_MTD; 428 else 429 irq_mask |= I2C_IT_MTDWS; 430 431 irq_mask = I2C_CLEAR_ALL_INTS & IRQ_MASK(irq_mask); 432 433 writel(readl(dev->virtbase + I2C_IMSCR) | irq_mask, 434 dev->virtbase + I2C_IMSCR); 435 436 timeout = wait_for_completion_timeout( 437 &dev->xfer_complete, dev->adap.timeout); 438 439 if (timeout < 0) { 440 dev_err(&dev->adev->dev, 441 "wait_for_completion_timeout " 442 "returned %d waiting for event\n", timeout); 443 status = timeout; 444 } 445 446 if (timeout == 0) { 447 /* Controller timed out */ 448 dev_err(&dev->adev->dev, "read from slave 0x%x timed out\n", 449 dev->cli.slave_adr); 450 status = -ETIMEDOUT; 451 } 452 return status; 453 } 454 455 static void fill_tx_fifo(struct nmk_i2c_dev *dev, int no_bytes) 456 { 457 int count; 458 459 for (count = (no_bytes - 2); 460 (count > 0) && 461 (dev->cli.count != 0); 462 count--) { 463 /* write to the Tx FIFO */ 464 writeb(*dev->cli.buffer, 465 dev->virtbase + I2C_TFR); 466 dev->cli.buffer++; 467 dev->cli.count--; 468 dev->cli.xfer_bytes++; 469 } 470 471 } 472 473 /** 474 * write_i2c() - Write data to I2C client. 475 * @dev: private data of I2C Driver 476 * @flags: message flags 477 * 478 * This function writes data to I2C client 479 */ 480 static int write_i2c(struct nmk_i2c_dev *dev, u16 flags) 481 { 482 u32 status = 0; 483 u32 mcr; 484 u32 irq_mask = 0; 485 int timeout; 486 487 mcr = load_i2c_mcr_reg(dev, flags); 488 489 writel(mcr, dev->virtbase + I2C_MCR); 490 491 /* load the current CR value */ 492 writel(readl(dev->virtbase + I2C_CR) | DEFAULT_I2C_REG_CR, 493 dev->virtbase + I2C_CR); 494 495 /* enable the controller */ 496 i2c_set_bit(dev->virtbase + I2C_CR , I2C_CR_PE); 497 498 init_completion(&dev->xfer_complete); 499 500 /* enable interrupts by settings the masks */ 501 irq_mask = (I2C_IT_TXFOVR | I2C_IT_MAL | I2C_IT_BERR); 502 503 /* Fill the TX FIFO with transmit data */ 504 fill_tx_fifo(dev, MAX_I2C_FIFO_THRESHOLD); 505 506 if (dev->cli.count != 0) 507 irq_mask |= I2C_IT_TXFNE; 508 509 /* 510 * check if we want to transfer a single or multiple bytes, if so 511 * set the MTDWS bit (Master Transaction Done Without Stop) 512 * to start repeated start operation 513 */ 514 if (dev->stop) 515 irq_mask |= I2C_IT_MTD; 516 else 517 irq_mask |= I2C_IT_MTDWS; 518 519 irq_mask = I2C_CLEAR_ALL_INTS & IRQ_MASK(irq_mask); 520 521 writel(readl(dev->virtbase + I2C_IMSCR) | irq_mask, 522 dev->virtbase + I2C_IMSCR); 523 524 timeout = wait_for_completion_timeout( 525 &dev->xfer_complete, dev->adap.timeout); 526 527 if (timeout < 0) { 528 dev_err(&dev->adev->dev, 529 "wait_for_completion_timeout " 530 "returned %d waiting for event\n", timeout); 531 status = timeout; 532 } 533 534 if (timeout == 0) { 535 /* Controller timed out */ 536 dev_err(&dev->adev->dev, "write to slave 0x%x timed out\n", 537 dev->cli.slave_adr); 538 status = -ETIMEDOUT; 539 } 540 541 return status; 542 } 543 544 /** 545 * nmk_i2c_xfer_one() - transmit a single I2C message 546 * @dev: device with a message encoded into it 547 * @flags: message flags 548 */ 549 static int nmk_i2c_xfer_one(struct nmk_i2c_dev *dev, u16 flags) 550 { 551 int status; 552 553 if (flags & I2C_M_RD) { 554 /* read operation */ 555 dev->cli.operation = I2C_READ; 556 status = read_i2c(dev, flags); 557 } else { 558 /* write operation */ 559 dev->cli.operation = I2C_WRITE; 560 status = write_i2c(dev, flags); 561 } 562 563 if (status || (dev->result)) { 564 u32 i2c_sr; 565 u32 cause; 566 567 i2c_sr = readl(dev->virtbase + I2C_SR); 568 /* 569 * Check if the controller I2C operation status 570 * is set to ABORT(11b). 571 */ 572 if (((i2c_sr >> 2) & 0x3) == 0x3) { 573 /* get the abort cause */ 574 cause = (i2c_sr >> 4) & 0x7; 575 dev_err(&dev->adev->dev, "%s\n", 576 cause >= ARRAY_SIZE(abort_causes) ? 577 "unknown reason" : 578 abort_causes[cause]); 579 } 580 581 (void) init_hw(dev); 582 583 status = status ? status : dev->result; 584 } 585 586 return status; 587 } 588 589 /** 590 * nmk_i2c_xfer() - I2C transfer function used by kernel framework 591 * @i2c_adap: Adapter pointer to the controller 592 * @msgs: Pointer to data to be written. 593 * @num_msgs: Number of messages to be executed 594 * 595 * This is the function called by the generic kernel i2c_transfer() 596 * or i2c_smbus...() API calls. Note that this code is protected by the 597 * semaphore set in the kernel i2c_transfer() function. 598 * 599 * NOTE: 600 * READ TRANSFER : We impose a restriction of the first message to be the 601 * index message for any read transaction. 602 * - a no index is coded as '0', 603 * - 2byte big endian index is coded as '3' 604 * !!! msg[0].buf holds the actual index. 605 * This is compatible with generic messages of smbus emulator 606 * that send a one byte index. 607 * eg. a I2C transation to read 2 bytes from index 0 608 * idx = 0; 609 * msg[0].addr = client->addr; 610 * msg[0].flags = 0x0; 611 * msg[0].len = 1; 612 * msg[0].buf = &idx; 613 * 614 * msg[1].addr = client->addr; 615 * msg[1].flags = I2C_M_RD; 616 * msg[1].len = 2; 617 * msg[1].buf = rd_buff 618 * i2c_transfer(adap, msg, 2); 619 * 620 * WRITE TRANSFER : The I2C standard interface interprets all data as payload. 621 * If you want to emulate an SMBUS write transaction put the 622 * index as first byte(or first and second) in the payload. 623 * eg. a I2C transation to write 2 bytes from index 1 624 * wr_buff[0] = 0x1; 625 * wr_buff[1] = 0x23; 626 * wr_buff[2] = 0x46; 627 * msg[0].flags = 0x0; 628 * msg[0].len = 3; 629 * msg[0].buf = wr_buff; 630 * i2c_transfer(adap, msg, 1); 631 * 632 * To read or write a block of data (multiple bytes) using SMBUS emulation 633 * please use the i2c_smbus_read_i2c_block_data() 634 * or i2c_smbus_write_i2c_block_data() API 635 */ 636 static int nmk_i2c_xfer(struct i2c_adapter *i2c_adap, 637 struct i2c_msg msgs[], int num_msgs) 638 { 639 int status; 640 int i; 641 struct nmk_i2c_dev *dev = i2c_get_adapdata(i2c_adap); 642 int j; 643 644 dev->busy = true; 645 646 if (dev->regulator) 647 regulator_enable(dev->regulator); 648 pm_runtime_get_sync(&dev->adev->dev); 649 650 clk_enable(dev->clk); 651 652 status = init_hw(dev); 653 if (status) 654 goto out; 655 656 /* Attempt three times to send the message queue */ 657 for (j = 0; j < 3; j++) { 658 /* setup the i2c controller */ 659 setup_i2c_controller(dev); 660 661 for (i = 0; i < num_msgs; i++) { 662 dev->cli.slave_adr = msgs[i].addr; 663 dev->cli.buffer = msgs[i].buf; 664 dev->cli.count = msgs[i].len; 665 dev->stop = (i < (num_msgs - 1)) ? 0 : 1; 666 dev->result = 0; 667 668 status = nmk_i2c_xfer_one(dev, msgs[i].flags); 669 if (status != 0) 670 break; 671 } 672 if (status == 0) 673 break; 674 } 675 676 out: 677 clk_disable(dev->clk); 678 pm_runtime_put_sync(&dev->adev->dev); 679 if (dev->regulator) 680 regulator_disable(dev->regulator); 681 682 dev->busy = false; 683 684 /* return the no. messages processed */ 685 if (status) 686 return status; 687 else 688 return num_msgs; 689 } 690 691 /** 692 * disable_interrupts() - disable the interrupts 693 * @dev: private data of controller 694 * @irq: interrupt number 695 */ 696 static int disable_interrupts(struct nmk_i2c_dev *dev, u32 irq) 697 { 698 irq = IRQ_MASK(irq); 699 writel(readl(dev->virtbase + I2C_IMSCR) & ~(I2C_CLEAR_ALL_INTS & irq), 700 dev->virtbase + I2C_IMSCR); 701 return 0; 702 } 703 704 /** 705 * i2c_irq_handler() - interrupt routine 706 * @irq: interrupt number 707 * @arg: data passed to the handler 708 * 709 * This is the interrupt handler for the i2c driver. Currently 710 * it handles the major interrupts like Rx & Tx FIFO management 711 * interrupts, master transaction interrupts, arbitration and 712 * bus error interrupts. The rest of the interrupts are treated as 713 * unhandled. 714 */ 715 static irqreturn_t i2c_irq_handler(int irq, void *arg) 716 { 717 struct nmk_i2c_dev *dev = arg; 718 u32 tft, rft; 719 u32 count; 720 u32 misr; 721 u32 src = 0; 722 723 /* load Tx FIFO and Rx FIFO threshold values */ 724 tft = readl(dev->virtbase + I2C_TFTR); 725 rft = readl(dev->virtbase + I2C_RFTR); 726 727 /* read interrupt status register */ 728 misr = readl(dev->virtbase + I2C_MISR); 729 730 src = __ffs(misr); 731 switch ((1 << src)) { 732 733 /* Transmit FIFO nearly empty interrupt */ 734 case I2C_IT_TXFNE: 735 { 736 if (dev->cli.operation == I2C_READ) { 737 /* 738 * in read operation why do we care for writing? 739 * so disable the Transmit FIFO interrupt 740 */ 741 disable_interrupts(dev, I2C_IT_TXFNE); 742 } else { 743 fill_tx_fifo(dev, (MAX_I2C_FIFO_THRESHOLD - tft)); 744 /* 745 * if done, close the transfer by disabling the 746 * corresponding TXFNE interrupt 747 */ 748 if (dev->cli.count == 0) 749 disable_interrupts(dev, I2C_IT_TXFNE); 750 } 751 } 752 break; 753 754 /* 755 * Rx FIFO nearly full interrupt. 756 * This is set when the numer of entries in Rx FIFO is 757 * greater or equal than the threshold value programmed 758 * in RFT 759 */ 760 case I2C_IT_RXFNF: 761 for (count = rft; count > 0; count--) { 762 /* Read the Rx FIFO */ 763 *dev->cli.buffer = readb(dev->virtbase + I2C_RFR); 764 dev->cli.buffer++; 765 } 766 dev->cli.count -= rft; 767 dev->cli.xfer_bytes += rft; 768 break; 769 770 /* Rx FIFO full */ 771 case I2C_IT_RXFF: 772 for (count = MAX_I2C_FIFO_THRESHOLD; count > 0; count--) { 773 *dev->cli.buffer = readb(dev->virtbase + I2C_RFR); 774 dev->cli.buffer++; 775 } 776 dev->cli.count -= MAX_I2C_FIFO_THRESHOLD; 777 dev->cli.xfer_bytes += MAX_I2C_FIFO_THRESHOLD; 778 break; 779 780 /* Master Transaction Done with/without stop */ 781 case I2C_IT_MTD: 782 case I2C_IT_MTDWS: 783 if (dev->cli.operation == I2C_READ) { 784 while (!(readl(dev->virtbase + I2C_RISR) 785 & I2C_IT_RXFE)) { 786 if (dev->cli.count == 0) 787 break; 788 *dev->cli.buffer = 789 readb(dev->virtbase + I2C_RFR); 790 dev->cli.buffer++; 791 dev->cli.count--; 792 dev->cli.xfer_bytes++; 793 } 794 } 795 796 disable_all_interrupts(dev); 797 clear_all_interrupts(dev); 798 799 if (dev->cli.count) { 800 dev->result = -EIO; 801 dev_err(&dev->adev->dev, 802 "%lu bytes still remain to be xfered\n", 803 dev->cli.count); 804 (void) init_hw(dev); 805 } 806 complete(&dev->xfer_complete); 807 808 break; 809 810 /* Master Arbitration lost interrupt */ 811 case I2C_IT_MAL: 812 dev->result = -EIO; 813 (void) init_hw(dev); 814 815 i2c_set_bit(dev->virtbase + I2C_ICR, I2C_IT_MAL); 816 complete(&dev->xfer_complete); 817 818 break; 819 820 /* 821 * Bus Error interrupt. 822 * This happens when an unexpected start/stop condition occurs 823 * during the transaction. 824 */ 825 case I2C_IT_BERR: 826 dev->result = -EIO; 827 /* get the status */ 828 if (((readl(dev->virtbase + I2C_SR) >> 2) & 0x3) == I2C_ABORT) 829 (void) init_hw(dev); 830 831 i2c_set_bit(dev->virtbase + I2C_ICR, I2C_IT_BERR); 832 complete(&dev->xfer_complete); 833 834 break; 835 836 /* 837 * Tx FIFO overrun interrupt. 838 * This is set when a write operation in Tx FIFO is performed and 839 * the Tx FIFO is full. 840 */ 841 case I2C_IT_TXFOVR: 842 dev->result = -EIO; 843 (void) init_hw(dev); 844 845 dev_err(&dev->adev->dev, "Tx Fifo Over run\n"); 846 complete(&dev->xfer_complete); 847 848 break; 849 850 /* unhandled interrupts by this driver - TODO*/ 851 case I2C_IT_TXFE: 852 case I2C_IT_TXFF: 853 case I2C_IT_RXFE: 854 case I2C_IT_RFSR: 855 case I2C_IT_RFSE: 856 case I2C_IT_WTSR: 857 case I2C_IT_STD: 858 dev_err(&dev->adev->dev, "unhandled Interrupt\n"); 859 break; 860 default: 861 dev_err(&dev->adev->dev, "spurious Interrupt..\n"); 862 break; 863 } 864 865 return IRQ_HANDLED; 866 } 867 868 869 #ifdef CONFIG_PM 870 static int nmk_i2c_suspend(struct device *dev) 871 { 872 struct amba_device *adev = to_amba_device(dev); 873 struct nmk_i2c_dev *nmk_i2c = amba_get_drvdata(adev); 874 875 if (nmk_i2c->busy) 876 return -EBUSY; 877 878 return 0; 879 } 880 881 static int nmk_i2c_resume(struct device *dev) 882 { 883 return 0; 884 } 885 #else 886 #define nmk_i2c_suspend NULL 887 #define nmk_i2c_resume NULL 888 #endif 889 890 /* 891 * We use noirq so that we suspend late and resume before the wakeup interrupt 892 * to ensure that we do the !pm_runtime_suspended() check in resume before 893 * there has been a regular pm runtime resume (via pm_runtime_get_sync()). 894 */ 895 static const struct dev_pm_ops nmk_i2c_pm = { 896 .suspend_noirq = nmk_i2c_suspend, 897 .resume_noirq = nmk_i2c_resume, 898 }; 899 900 static unsigned int nmk_i2c_functionality(struct i2c_adapter *adap) 901 { 902 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_10BIT_ADDR; 903 } 904 905 static const struct i2c_algorithm nmk_i2c_algo = { 906 .master_xfer = nmk_i2c_xfer, 907 .functionality = nmk_i2c_functionality 908 }; 909 910 static struct nmk_i2c_controller u8500_i2c = { 911 /* 912 * Slave data setup time; 250ns, 100ns, and 10ns, which 913 * is 14, 6 and 2 respectively for a 48Mhz i2c clock. 914 */ 915 .slsu = 0xe, 916 .tft = 1, /* Tx FIFO threshold */ 917 .rft = 8, /* Rx FIFO threshold */ 918 .clk_freq = 400000, /* fast mode operation */ 919 .timeout = 200, /* Slave response timeout(ms) */ 920 .sm = I2C_FREQ_MODE_FAST, 921 }; 922 923 static atomic_t adapter_id = ATOMIC_INIT(0); 924 925 static int nmk_i2c_probe(struct amba_device *adev, const struct amba_id *id) 926 { 927 int ret = 0; 928 struct nmk_i2c_controller *pdata = adev->dev.platform_data; 929 struct nmk_i2c_dev *dev; 930 struct i2c_adapter *adap; 931 932 if (!pdata) 933 /* No i2c configuration found, using the default. */ 934 pdata = &u8500_i2c; 935 936 dev = kzalloc(sizeof(struct nmk_i2c_dev), GFP_KERNEL); 937 if (!dev) { 938 dev_err(&adev->dev, "cannot allocate memory\n"); 939 ret = -ENOMEM; 940 goto err_no_mem; 941 } 942 dev->busy = false; 943 dev->adev = adev; 944 amba_set_drvdata(adev, dev); 945 946 dev->virtbase = ioremap(adev->res.start, resource_size(&adev->res)); 947 if (!dev->virtbase) { 948 ret = -ENOMEM; 949 goto err_no_ioremap; 950 } 951 952 dev->irq = adev->irq[0]; 953 ret = request_irq(dev->irq, i2c_irq_handler, 0, 954 DRIVER_NAME, dev); 955 if (ret) { 956 dev_err(&adev->dev, "cannot claim the irq %d\n", dev->irq); 957 goto err_irq; 958 } 959 960 dev->regulator = regulator_get(&adev->dev, "v-i2c"); 961 if (IS_ERR(dev->regulator)) { 962 dev_warn(&adev->dev, "could not get i2c regulator\n"); 963 dev->regulator = NULL; 964 } 965 966 pm_suspend_ignore_children(&adev->dev, true); 967 968 dev->clk = clk_get(&adev->dev, NULL); 969 if (IS_ERR(dev->clk)) { 970 dev_err(&adev->dev, "could not get i2c clock\n"); 971 ret = PTR_ERR(dev->clk); 972 goto err_no_clk; 973 } 974 975 adap = &dev->adap; 976 adap->dev.parent = &adev->dev; 977 adap->owner = THIS_MODULE; 978 adap->class = I2C_CLASS_HWMON | I2C_CLASS_SPD; 979 adap->algo = &nmk_i2c_algo; 980 adap->timeout = msecs_to_jiffies(pdata->timeout); 981 adap->nr = atomic_read(&adapter_id); 982 snprintf(adap->name, sizeof(adap->name), 983 "Nomadik I2C%d at %pR", adap->nr, &adev->res); 984 atomic_inc(&adapter_id); 985 986 /* fetch the controller configuration from machine */ 987 dev->cfg.clk_freq = pdata->clk_freq; 988 dev->cfg.slsu = pdata->slsu; 989 dev->cfg.tft = pdata->tft; 990 dev->cfg.rft = pdata->rft; 991 dev->cfg.sm = pdata->sm; 992 993 i2c_set_adapdata(adap, dev); 994 995 dev_info(&adev->dev, 996 "initialize %s on virtual base %p\n", 997 adap->name, dev->virtbase); 998 999 ret = i2c_add_numbered_adapter(adap); 1000 if (ret) { 1001 dev_err(&adev->dev, "failed to add adapter\n"); 1002 goto err_add_adap; 1003 } 1004 1005 pm_runtime_put(&adev->dev); 1006 1007 return 0; 1008 1009 err_add_adap: 1010 clk_put(dev->clk); 1011 err_no_clk: 1012 if (dev->regulator) 1013 regulator_put(dev->regulator); 1014 free_irq(dev->irq, dev); 1015 err_irq: 1016 iounmap(dev->virtbase); 1017 err_no_ioremap: 1018 amba_set_drvdata(adev, NULL); 1019 kfree(dev); 1020 err_no_mem: 1021 1022 return ret; 1023 } 1024 1025 static int nmk_i2c_remove(struct amba_device *adev) 1026 { 1027 struct resource *res = &adev->res; 1028 struct nmk_i2c_dev *dev = amba_get_drvdata(adev); 1029 1030 i2c_del_adapter(&dev->adap); 1031 flush_i2c_fifo(dev); 1032 disable_all_interrupts(dev); 1033 clear_all_interrupts(dev); 1034 /* disable the controller */ 1035 i2c_clr_bit(dev->virtbase + I2C_CR, I2C_CR_PE); 1036 free_irq(dev->irq, dev); 1037 iounmap(dev->virtbase); 1038 if (res) 1039 release_mem_region(res->start, resource_size(res)); 1040 clk_put(dev->clk); 1041 if (dev->regulator) 1042 regulator_put(dev->regulator); 1043 pm_runtime_disable(&adev->dev); 1044 amba_set_drvdata(adev, NULL); 1045 kfree(dev); 1046 1047 return 0; 1048 } 1049 1050 static struct amba_id nmk_i2c_ids[] = { 1051 { 1052 .id = 0x00180024, 1053 .mask = 0x00ffffff, 1054 }, 1055 { 1056 .id = 0x00380024, 1057 .mask = 0x00ffffff, 1058 }, 1059 {}, 1060 }; 1061 1062 MODULE_DEVICE_TABLE(amba, nmk_i2c_ids); 1063 1064 static struct amba_driver nmk_i2c_driver = { 1065 .drv = { 1066 .owner = THIS_MODULE, 1067 .name = DRIVER_NAME, 1068 .pm = &nmk_i2c_pm, 1069 }, 1070 .id_table = nmk_i2c_ids, 1071 .probe = nmk_i2c_probe, 1072 .remove = nmk_i2c_remove, 1073 }; 1074 1075 static int __init nmk_i2c_init(void) 1076 { 1077 return amba_driver_register(&nmk_i2c_driver); 1078 } 1079 1080 static void __exit nmk_i2c_exit(void) 1081 { 1082 amba_driver_unregister(&nmk_i2c_driver); 1083 } 1084 1085 subsys_initcall(nmk_i2c_init); 1086 module_exit(nmk_i2c_exit); 1087 1088 MODULE_AUTHOR("Sachin Verma, Srinidhi KASAGAR"); 1089 MODULE_DESCRIPTION("Nomadik/Ux500 I2C driver"); 1090 MODULE_LICENSE("GPL"); 1091