xref: /linux/drivers/i2c/busses/i2c-nomadik.c (revision 856e7c4b619af622d56b3b454f7bec32a170ac99)
1 /*
2  * Copyright (C) 2009 ST-Ericsson SA
3  * Copyright (C) 2009 STMicroelectronics
4  *
5  * I2C master mode controller driver, used in Nomadik 8815
6  * and Ux500 platforms.
7  *
8  * Author: Srinidhi Kasagar <srinidhi.kasagar@stericsson.com>
9  * Author: Sachin Verma <sachin.verma@st.com>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License version 2, as
13  * published by the Free Software Foundation.
14  */
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/amba/bus.h>
18 #include <linux/slab.h>
19 #include <linux/interrupt.h>
20 #include <linux/i2c.h>
21 #include <linux/err.h>
22 #include <linux/clk.h>
23 #include <linux/io.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/of.h>
26 #include <linux/pinctrl/consumer.h>
27 
28 #define DRIVER_NAME "nmk-i2c"
29 
30 /* I2C Controller register offsets */
31 #define I2C_CR		(0x000)
32 #define I2C_SCR		(0x004)
33 #define I2C_HSMCR	(0x008)
34 #define I2C_MCR		(0x00C)
35 #define I2C_TFR		(0x010)
36 #define I2C_SR		(0x014)
37 #define I2C_RFR		(0x018)
38 #define I2C_TFTR	(0x01C)
39 #define I2C_RFTR	(0x020)
40 #define I2C_DMAR	(0x024)
41 #define I2C_BRCR	(0x028)
42 #define I2C_IMSCR	(0x02C)
43 #define I2C_RISR	(0x030)
44 #define I2C_MISR	(0x034)
45 #define I2C_ICR		(0x038)
46 
47 /* Control registers */
48 #define I2C_CR_PE		(0x1 << 0)	/* Peripheral Enable */
49 #define I2C_CR_OM		(0x3 << 1)	/* Operating mode */
50 #define I2C_CR_SAM		(0x1 << 3)	/* Slave addressing mode */
51 #define I2C_CR_SM		(0x3 << 4)	/* Speed mode */
52 #define I2C_CR_SGCM		(0x1 << 6)	/* Slave general call mode */
53 #define I2C_CR_FTX		(0x1 << 7)	/* Flush Transmit */
54 #define I2C_CR_FRX		(0x1 << 8)	/* Flush Receive */
55 #define I2C_CR_DMA_TX_EN	(0x1 << 9)	/* DMA Tx enable */
56 #define I2C_CR_DMA_RX_EN	(0x1 << 10)	/* DMA Rx Enable */
57 #define I2C_CR_DMA_SLE		(0x1 << 11)	/* DMA sync. logic enable */
58 #define I2C_CR_LM		(0x1 << 12)	/* Loopback mode */
59 #define I2C_CR_FON		(0x3 << 13)	/* Filtering on */
60 #define I2C_CR_FS		(0x3 << 15)	/* Force stop enable */
61 
62 /* Master controller (MCR) register */
63 #define I2C_MCR_OP		(0x1 << 0)	/* Operation */
64 #define I2C_MCR_A7		(0x7f << 1)	/* 7-bit address */
65 #define I2C_MCR_EA10		(0x7 << 8)	/* 10-bit Extended address */
66 #define I2C_MCR_SB		(0x1 << 11)	/* Extended address */
67 #define I2C_MCR_AM		(0x3 << 12)	/* Address type */
68 #define I2C_MCR_STOP		(0x1 << 14)	/* Stop condition */
69 #define I2C_MCR_LENGTH		(0x7ff << 15)	/* Transaction length */
70 
71 /* Status register (SR) */
72 #define I2C_SR_OP		(0x3 << 0)	/* Operation */
73 #define I2C_SR_STATUS		(0x3 << 2)	/* controller status */
74 #define I2C_SR_CAUSE		(0x7 << 4)	/* Abort cause */
75 #define I2C_SR_TYPE		(0x3 << 7)	/* Receive type */
76 #define I2C_SR_LENGTH		(0x7ff << 9)	/* Transfer length */
77 
78 /* Interrupt mask set/clear (IMSCR) bits */
79 #define I2C_IT_TXFE		(0x1 << 0)
80 #define I2C_IT_TXFNE		(0x1 << 1)
81 #define I2C_IT_TXFF		(0x1 << 2)
82 #define I2C_IT_TXFOVR		(0x1 << 3)
83 #define I2C_IT_RXFE		(0x1 << 4)
84 #define I2C_IT_RXFNF		(0x1 << 5)
85 #define I2C_IT_RXFF		(0x1 << 6)
86 #define I2C_IT_RFSR		(0x1 << 16)
87 #define I2C_IT_RFSE		(0x1 << 17)
88 #define I2C_IT_WTSR		(0x1 << 18)
89 #define I2C_IT_MTD		(0x1 << 19)
90 #define I2C_IT_STD		(0x1 << 20)
91 #define I2C_IT_MAL		(0x1 << 24)
92 #define I2C_IT_BERR		(0x1 << 25)
93 #define I2C_IT_MTDWS		(0x1 << 28)
94 
95 #define GEN_MASK(val, mask, sb)  (((val) << (sb)) & (mask))
96 
97 /* some bits in ICR are reserved */
98 #define I2C_CLEAR_ALL_INTS	0x131f007f
99 
100 /* first three msb bits are reserved */
101 #define IRQ_MASK(mask)		(mask & 0x1fffffff)
102 
103 /* maximum threshold value */
104 #define MAX_I2C_FIFO_THRESHOLD	15
105 
106 enum i2c_freq_mode {
107 	I2C_FREQ_MODE_STANDARD,		/* up to 100 Kb/s */
108 	I2C_FREQ_MODE_FAST,		/* up to 400 Kb/s */
109 	I2C_FREQ_MODE_HIGH_SPEED,	/* up to 3.4 Mb/s */
110 	I2C_FREQ_MODE_FAST_PLUS,	/* up to 1 Mb/s */
111 };
112 
113 /**
114  * struct i2c_vendor_data - per-vendor variations
115  * @has_mtdws: variant has the MTDWS bit
116  * @fifodepth: variant FIFO depth
117  */
118 struct i2c_vendor_data {
119 	bool has_mtdws;
120 	u32 fifodepth;
121 };
122 
123 enum i2c_status {
124 	I2C_NOP,
125 	I2C_ON_GOING,
126 	I2C_OK,
127 	I2C_ABORT
128 };
129 
130 /* operation */
131 enum i2c_operation {
132 	I2C_NO_OPERATION = 0xff,
133 	I2C_WRITE = 0x00,
134 	I2C_READ = 0x01
135 };
136 
137 /**
138  * struct i2c_nmk_client - client specific data
139  * @slave_adr: 7-bit slave address
140  * @count: no. bytes to be transferred
141  * @buffer: client data buffer
142  * @xfer_bytes: bytes transferred till now
143  * @operation: current I2C operation
144  */
145 struct i2c_nmk_client {
146 	unsigned short		slave_adr;
147 	unsigned long		count;
148 	unsigned char		*buffer;
149 	unsigned long		xfer_bytes;
150 	enum i2c_operation	operation;
151 };
152 
153 /**
154  * struct nmk_i2c_dev - private data structure of the controller.
155  * @vendor: vendor data for this variant.
156  * @adev: parent amba device.
157  * @adap: corresponding I2C adapter.
158  * @irq: interrupt line for the controller.
159  * @virtbase: virtual io memory area.
160  * @clk: hardware i2c block clock.
161  * @cli: holder of client specific data.
162  * @clk_freq: clock frequency for the operation mode
163  * @tft: Tx FIFO Threshold in bytes
164  * @rft: Rx FIFO Threshold in bytes
165  * @timeout Slave response timeout (ms)
166  * @sm: speed mode
167  * @stop: stop condition.
168  * @xfer_complete: acknowledge completion for a I2C message.
169  * @result: controller propogated result.
170  */
171 struct nmk_i2c_dev {
172 	struct i2c_vendor_data		*vendor;
173 	struct amba_device		*adev;
174 	struct i2c_adapter		adap;
175 	int				irq;
176 	void __iomem			*virtbase;
177 	struct clk			*clk;
178 	struct i2c_nmk_client		cli;
179 	u32				clk_freq;
180 	unsigned char			tft;
181 	unsigned char			rft;
182 	int				timeout;
183 	enum i2c_freq_mode		sm;
184 	int				stop;
185 	struct completion		xfer_complete;
186 	int				result;
187 };
188 
189 /* controller's abort causes */
190 static const char *abort_causes[] = {
191 	"no ack received after address transmission",
192 	"no ack received during data phase",
193 	"ack received after xmission of master code",
194 	"master lost arbitration",
195 	"slave restarts",
196 	"slave reset",
197 	"overflow, maxsize is 2047 bytes",
198 };
199 
200 static inline void i2c_set_bit(void __iomem *reg, u32 mask)
201 {
202 	writel(readl(reg) | mask, reg);
203 }
204 
205 static inline void i2c_clr_bit(void __iomem *reg, u32 mask)
206 {
207 	writel(readl(reg) & ~mask, reg);
208 }
209 
210 /**
211  * flush_i2c_fifo() - This function flushes the I2C FIFO
212  * @dev: private data of I2C Driver
213  *
214  * This function flushes the I2C Tx and Rx FIFOs. It returns
215  * 0 on successful flushing of FIFO
216  */
217 static int flush_i2c_fifo(struct nmk_i2c_dev *dev)
218 {
219 #define LOOP_ATTEMPTS 10
220 	int i;
221 	unsigned long timeout;
222 
223 	/*
224 	 * flush the transmit and receive FIFO. The flushing
225 	 * operation takes several cycles before to be completed.
226 	 * On the completion, the I2C internal logic clears these
227 	 * bits, until then no one must access Tx, Rx FIFO and
228 	 * should poll on these bits waiting for the completion.
229 	 */
230 	writel((I2C_CR_FTX | I2C_CR_FRX), dev->virtbase + I2C_CR);
231 
232 	for (i = 0; i < LOOP_ATTEMPTS; i++) {
233 		timeout = jiffies + dev->adap.timeout;
234 
235 		while (!time_after(jiffies, timeout)) {
236 			if ((readl(dev->virtbase + I2C_CR) &
237 				(I2C_CR_FTX | I2C_CR_FRX)) == 0)
238 					return 0;
239 		}
240 	}
241 
242 	dev_err(&dev->adev->dev,
243 		"flushing operation timed out giving up after %d attempts",
244 		LOOP_ATTEMPTS);
245 
246 	return -ETIMEDOUT;
247 }
248 
249 /**
250  * disable_all_interrupts() - Disable all interrupts of this I2c Bus
251  * @dev: private data of I2C Driver
252  */
253 static void disable_all_interrupts(struct nmk_i2c_dev *dev)
254 {
255 	u32 mask = IRQ_MASK(0);
256 	writel(mask, dev->virtbase + I2C_IMSCR);
257 }
258 
259 /**
260  * clear_all_interrupts() - Clear all interrupts of I2C Controller
261  * @dev: private data of I2C Driver
262  */
263 static void clear_all_interrupts(struct nmk_i2c_dev *dev)
264 {
265 	u32 mask;
266 	mask = IRQ_MASK(I2C_CLEAR_ALL_INTS);
267 	writel(mask, dev->virtbase + I2C_ICR);
268 }
269 
270 /**
271  * init_hw() - initialize the I2C hardware
272  * @dev: private data of I2C Driver
273  */
274 static int init_hw(struct nmk_i2c_dev *dev)
275 {
276 	int stat;
277 
278 	stat = flush_i2c_fifo(dev);
279 	if (stat)
280 		goto exit;
281 
282 	/* disable the controller */
283 	i2c_clr_bit(dev->virtbase + I2C_CR , I2C_CR_PE);
284 
285 	disable_all_interrupts(dev);
286 
287 	clear_all_interrupts(dev);
288 
289 	dev->cli.operation = I2C_NO_OPERATION;
290 
291 exit:
292 	return stat;
293 }
294 
295 /* enable peripheral, master mode operation */
296 #define DEFAULT_I2C_REG_CR	((1 << 1) | I2C_CR_PE)
297 
298 /**
299  * load_i2c_mcr_reg() - load the MCR register
300  * @dev: private data of controller
301  * @flags: message flags
302  */
303 static u32 load_i2c_mcr_reg(struct nmk_i2c_dev *dev, u16 flags)
304 {
305 	u32 mcr = 0;
306 	unsigned short slave_adr_3msb_bits;
307 
308 	mcr |= GEN_MASK(dev->cli.slave_adr, I2C_MCR_A7, 1);
309 
310 	if (unlikely(flags & I2C_M_TEN)) {
311 		/* 10-bit address transaction */
312 		mcr |= GEN_MASK(2, I2C_MCR_AM, 12);
313 		/*
314 		 * Get the top 3 bits.
315 		 * EA10 represents extended address in MCR. This includes
316 		 * the extension (MSB bits) of the 7 bit address loaded
317 		 * in A7
318 		 */
319 		slave_adr_3msb_bits = (dev->cli.slave_adr >> 7) & 0x7;
320 
321 		mcr |= GEN_MASK(slave_adr_3msb_bits, I2C_MCR_EA10, 8);
322 	} else {
323 		/* 7-bit address transaction */
324 		mcr |= GEN_MASK(1, I2C_MCR_AM, 12);
325 	}
326 
327 	/* start byte procedure not applied */
328 	mcr |= GEN_MASK(0, I2C_MCR_SB, 11);
329 
330 	/* check the operation, master read/write? */
331 	if (dev->cli.operation == I2C_WRITE)
332 		mcr |= GEN_MASK(I2C_WRITE, I2C_MCR_OP, 0);
333 	else
334 		mcr |= GEN_MASK(I2C_READ, I2C_MCR_OP, 0);
335 
336 	/* stop or repeated start? */
337 	if (dev->stop)
338 		mcr |= GEN_MASK(1, I2C_MCR_STOP, 14);
339 	else
340 		mcr &= ~(GEN_MASK(1, I2C_MCR_STOP, 14));
341 
342 	mcr |= GEN_MASK(dev->cli.count, I2C_MCR_LENGTH, 15);
343 
344 	return mcr;
345 }
346 
347 /**
348  * setup_i2c_controller() - setup the controller
349  * @dev: private data of controller
350  */
351 static void setup_i2c_controller(struct nmk_i2c_dev *dev)
352 {
353 	u32 brcr1, brcr2;
354 	u32 i2c_clk, div;
355 	u32 ns;
356 	u16 slsu;
357 
358 	writel(0x0, dev->virtbase + I2C_CR);
359 	writel(0x0, dev->virtbase + I2C_HSMCR);
360 	writel(0x0, dev->virtbase + I2C_TFTR);
361 	writel(0x0, dev->virtbase + I2C_RFTR);
362 	writel(0x0, dev->virtbase + I2C_DMAR);
363 
364 	i2c_clk = clk_get_rate(dev->clk);
365 
366 	/*
367 	 * set the slsu:
368 	 *
369 	 * slsu defines the data setup time after SCL clock
370 	 * stretching in terms of i2c clk cycles + 1 (zero means
371 	 * "wait one cycle"), the needed setup time for the three
372 	 * modes are 250ns, 100ns, 10ns respectively.
373 	 *
374 	 * As the time for one cycle T in nanoseconds is
375 	 * T = (1/f) * 1000000000 =>
376 	 * slsu = cycles / (1000000000 / f) + 1
377 	 */
378 	ns = DIV_ROUND_UP_ULL(1000000000ULL, i2c_clk);
379 	switch (dev->sm) {
380 	case I2C_FREQ_MODE_FAST:
381 	case I2C_FREQ_MODE_FAST_PLUS:
382 		slsu = DIV_ROUND_UP(100, ns); /* Fast */
383 		break;
384 	case I2C_FREQ_MODE_HIGH_SPEED:
385 		slsu = DIV_ROUND_UP(10, ns); /* High */
386 		break;
387 	case I2C_FREQ_MODE_STANDARD:
388 	default:
389 		slsu = DIV_ROUND_UP(250, ns); /* Standard */
390 		break;
391 	}
392 	slsu += 1;
393 
394 	dev_dbg(&dev->adev->dev, "calculated SLSU = %04x\n", slsu);
395 	writel(slsu << 16, dev->virtbase + I2C_SCR);
396 
397 	/*
398 	 * The spec says, in case of std. mode the divider is
399 	 * 2 whereas it is 3 for fast and fastplus mode of
400 	 * operation. TODO - high speed support.
401 	 */
402 	div = (dev->clk_freq > 100000) ? 3 : 2;
403 
404 	/*
405 	 * generate the mask for baud rate counters. The controller
406 	 * has two baud rate counters. One is used for High speed
407 	 * operation, and the other is for std, fast mode, fast mode
408 	 * plus operation. Currently we do not supprt high speed mode
409 	 * so set brcr1 to 0.
410 	 */
411 	brcr1 = 0 << 16;
412 	brcr2 = (i2c_clk/(dev->clk_freq * div)) & 0xffff;
413 
414 	/* set the baud rate counter register */
415 	writel((brcr1 | brcr2), dev->virtbase + I2C_BRCR);
416 
417 	/*
418 	 * set the speed mode. Currently we support
419 	 * only standard and fast mode of operation
420 	 * TODO - support for fast mode plus (up to 1Mb/s)
421 	 * and high speed (up to 3.4 Mb/s)
422 	 */
423 	if (dev->sm > I2C_FREQ_MODE_FAST) {
424 		dev_err(&dev->adev->dev,
425 			"do not support this mode defaulting to std. mode\n");
426 		brcr2 = i2c_clk/(100000 * 2) & 0xffff;
427 		writel((brcr1 | brcr2), dev->virtbase + I2C_BRCR);
428 		writel(I2C_FREQ_MODE_STANDARD << 4,
429 				dev->virtbase + I2C_CR);
430 	}
431 	writel(dev->sm << 4, dev->virtbase + I2C_CR);
432 
433 	/* set the Tx and Rx FIFO threshold */
434 	writel(dev->tft, dev->virtbase + I2C_TFTR);
435 	writel(dev->rft, dev->virtbase + I2C_RFTR);
436 }
437 
438 /**
439  * read_i2c() - Read from I2C client device
440  * @dev: private data of I2C Driver
441  * @flags: message flags
442  *
443  * This function reads from i2c client device when controller is in
444  * master mode. There is a completion timeout. If there is no transfer
445  * before timeout error is returned.
446  */
447 static int read_i2c(struct nmk_i2c_dev *dev, u16 flags)
448 {
449 	int status = 0;
450 	u32 mcr, irq_mask;
451 	unsigned long timeout;
452 
453 	mcr = load_i2c_mcr_reg(dev, flags);
454 	writel(mcr, dev->virtbase + I2C_MCR);
455 
456 	/* load the current CR value */
457 	writel(readl(dev->virtbase + I2C_CR) | DEFAULT_I2C_REG_CR,
458 			dev->virtbase + I2C_CR);
459 
460 	/* enable the controller */
461 	i2c_set_bit(dev->virtbase + I2C_CR, I2C_CR_PE);
462 
463 	init_completion(&dev->xfer_complete);
464 
465 	/* enable interrupts by setting the mask */
466 	irq_mask = (I2C_IT_RXFNF | I2C_IT_RXFF |
467 			I2C_IT_MAL | I2C_IT_BERR);
468 
469 	if (dev->stop || !dev->vendor->has_mtdws)
470 		irq_mask |= I2C_IT_MTD;
471 	else
472 		irq_mask |= I2C_IT_MTDWS;
473 
474 	irq_mask = I2C_CLEAR_ALL_INTS & IRQ_MASK(irq_mask);
475 
476 	writel(readl(dev->virtbase + I2C_IMSCR) | irq_mask,
477 			dev->virtbase + I2C_IMSCR);
478 
479 	timeout = wait_for_completion_timeout(
480 		&dev->xfer_complete, dev->adap.timeout);
481 
482 	if (timeout == 0) {
483 		/* Controller timed out */
484 		dev_err(&dev->adev->dev, "read from slave 0x%x timed out\n",
485 				dev->cli.slave_adr);
486 		status = -ETIMEDOUT;
487 	}
488 	return status;
489 }
490 
491 static void fill_tx_fifo(struct nmk_i2c_dev *dev, int no_bytes)
492 {
493 	int count;
494 
495 	for (count = (no_bytes - 2);
496 			(count > 0) &&
497 			(dev->cli.count != 0);
498 			count--) {
499 		/* write to the Tx FIFO */
500 		writeb(*dev->cli.buffer,
501 			dev->virtbase + I2C_TFR);
502 		dev->cli.buffer++;
503 		dev->cli.count--;
504 		dev->cli.xfer_bytes++;
505 	}
506 
507 }
508 
509 /**
510  * write_i2c() - Write data to I2C client.
511  * @dev: private data of I2C Driver
512  * @flags: message flags
513  *
514  * This function writes data to I2C client
515  */
516 static int write_i2c(struct nmk_i2c_dev *dev, u16 flags)
517 {
518 	u32 status = 0;
519 	u32 mcr, irq_mask;
520 	unsigned long timeout;
521 
522 	mcr = load_i2c_mcr_reg(dev, flags);
523 
524 	writel(mcr, dev->virtbase + I2C_MCR);
525 
526 	/* load the current CR value */
527 	writel(readl(dev->virtbase + I2C_CR) | DEFAULT_I2C_REG_CR,
528 			dev->virtbase + I2C_CR);
529 
530 	/* enable the controller */
531 	i2c_set_bit(dev->virtbase + I2C_CR , I2C_CR_PE);
532 
533 	init_completion(&dev->xfer_complete);
534 
535 	/* enable interrupts by settings the masks */
536 	irq_mask = (I2C_IT_TXFOVR | I2C_IT_MAL | I2C_IT_BERR);
537 
538 	/* Fill the TX FIFO with transmit data */
539 	fill_tx_fifo(dev, MAX_I2C_FIFO_THRESHOLD);
540 
541 	if (dev->cli.count != 0)
542 		irq_mask |= I2C_IT_TXFNE;
543 
544 	/*
545 	 * check if we want to transfer a single or multiple bytes, if so
546 	 * set the MTDWS bit (Master Transaction Done Without Stop)
547 	 * to start repeated start operation
548 	 */
549 	if (dev->stop || !dev->vendor->has_mtdws)
550 		irq_mask |= I2C_IT_MTD;
551 	else
552 		irq_mask |= I2C_IT_MTDWS;
553 
554 	irq_mask = I2C_CLEAR_ALL_INTS & IRQ_MASK(irq_mask);
555 
556 	writel(readl(dev->virtbase + I2C_IMSCR) | irq_mask,
557 			dev->virtbase + I2C_IMSCR);
558 
559 	timeout = wait_for_completion_timeout(
560 		&dev->xfer_complete, dev->adap.timeout);
561 
562 	if (timeout == 0) {
563 		/* Controller timed out */
564 		dev_err(&dev->adev->dev, "write to slave 0x%x timed out\n",
565 				dev->cli.slave_adr);
566 		status = -ETIMEDOUT;
567 	}
568 
569 	return status;
570 }
571 
572 /**
573  * nmk_i2c_xfer_one() - transmit a single I2C message
574  * @dev: device with a message encoded into it
575  * @flags: message flags
576  */
577 static int nmk_i2c_xfer_one(struct nmk_i2c_dev *dev, u16 flags)
578 {
579 	int status;
580 
581 	if (flags & I2C_M_RD) {
582 		/* read operation */
583 		dev->cli.operation = I2C_READ;
584 		status = read_i2c(dev, flags);
585 	} else {
586 		/* write operation */
587 		dev->cli.operation = I2C_WRITE;
588 		status = write_i2c(dev, flags);
589 	}
590 
591 	if (status || (dev->result)) {
592 		u32 i2c_sr;
593 		u32 cause;
594 
595 		i2c_sr = readl(dev->virtbase + I2C_SR);
596 		/*
597 		 * Check if the controller I2C operation status
598 		 * is set to ABORT(11b).
599 		 */
600 		if (((i2c_sr >> 2) & 0x3) == 0x3) {
601 			/* get the abort cause */
602 			cause =	(i2c_sr >> 4) & 0x7;
603 			dev_err(&dev->adev->dev, "%s\n",
604 				cause >= ARRAY_SIZE(abort_causes) ?
605 				"unknown reason" :
606 				abort_causes[cause]);
607 		}
608 
609 		(void) init_hw(dev);
610 
611 		status = status ? status : dev->result;
612 	}
613 
614 	return status;
615 }
616 
617 /**
618  * nmk_i2c_xfer() - I2C transfer function used by kernel framework
619  * @i2c_adap: Adapter pointer to the controller
620  * @msgs: Pointer to data to be written.
621  * @num_msgs: Number of messages to be executed
622  *
623  * This is the function called by the generic kernel i2c_transfer()
624  * or i2c_smbus...() API calls. Note that this code is protected by the
625  * semaphore set in the kernel i2c_transfer() function.
626  *
627  * NOTE:
628  * READ TRANSFER : We impose a restriction of the first message to be the
629  *		index message for any read transaction.
630  *		- a no index is coded as '0',
631  *		- 2byte big endian index is coded as '3'
632  *		!!! msg[0].buf holds the actual index.
633  *		This is compatible with generic messages of smbus emulator
634  *		that send a one byte index.
635  *		eg. a I2C transation to read 2 bytes from index 0
636  *			idx = 0;
637  *			msg[0].addr = client->addr;
638  *			msg[0].flags = 0x0;
639  *			msg[0].len = 1;
640  *			msg[0].buf = &idx;
641  *
642  *			msg[1].addr = client->addr;
643  *			msg[1].flags = I2C_M_RD;
644  *			msg[1].len = 2;
645  *			msg[1].buf = rd_buff
646  *			i2c_transfer(adap, msg, 2);
647  *
648  * WRITE TRANSFER : The I2C standard interface interprets all data as payload.
649  *		If you want to emulate an SMBUS write transaction put the
650  *		index as first byte(or first and second) in the payload.
651  *		eg. a I2C transation to write 2 bytes from index 1
652  *			wr_buff[0] = 0x1;
653  *			wr_buff[1] = 0x23;
654  *			wr_buff[2] = 0x46;
655  *			msg[0].flags = 0x0;
656  *			msg[0].len = 3;
657  *			msg[0].buf = wr_buff;
658  *			i2c_transfer(adap, msg, 1);
659  *
660  * To read or write a block of data (multiple bytes) using SMBUS emulation
661  * please use the i2c_smbus_read_i2c_block_data()
662  * or i2c_smbus_write_i2c_block_data() API
663  */
664 static int nmk_i2c_xfer(struct i2c_adapter *i2c_adap,
665 		struct i2c_msg msgs[], int num_msgs)
666 {
667 	int status = 0;
668 	int i;
669 	struct nmk_i2c_dev *dev = i2c_get_adapdata(i2c_adap);
670 	int j;
671 
672 	pm_runtime_get_sync(&dev->adev->dev);
673 
674 	/* Attempt three times to send the message queue */
675 	for (j = 0; j < 3; j++) {
676 		/* setup the i2c controller */
677 		setup_i2c_controller(dev);
678 
679 		for (i = 0; i < num_msgs; i++) {
680 			dev->cli.slave_adr	= msgs[i].addr;
681 			dev->cli.buffer		= msgs[i].buf;
682 			dev->cli.count		= msgs[i].len;
683 			dev->stop = (i < (num_msgs - 1)) ? 0 : 1;
684 			dev->result = 0;
685 
686 			status = nmk_i2c_xfer_one(dev, msgs[i].flags);
687 			if (status != 0)
688 				break;
689 		}
690 		if (status == 0)
691 			break;
692 	}
693 
694 	pm_runtime_put_sync(&dev->adev->dev);
695 
696 	/* return the no. messages processed */
697 	if (status)
698 		return status;
699 	else
700 		return num_msgs;
701 }
702 
703 /**
704  * disable_interrupts() - disable the interrupts
705  * @dev: private data of controller
706  * @irq: interrupt number
707  */
708 static int disable_interrupts(struct nmk_i2c_dev *dev, u32 irq)
709 {
710 	irq = IRQ_MASK(irq);
711 	writel(readl(dev->virtbase + I2C_IMSCR) & ~(I2C_CLEAR_ALL_INTS & irq),
712 			dev->virtbase + I2C_IMSCR);
713 	return 0;
714 }
715 
716 /**
717  * i2c_irq_handler() - interrupt routine
718  * @irq: interrupt number
719  * @arg: data passed to the handler
720  *
721  * This is the interrupt handler for the i2c driver. Currently
722  * it handles the major interrupts like Rx & Tx FIFO management
723  * interrupts, master transaction interrupts, arbitration and
724  * bus error interrupts. The rest of the interrupts are treated as
725  * unhandled.
726  */
727 static irqreturn_t i2c_irq_handler(int irq, void *arg)
728 {
729 	struct nmk_i2c_dev *dev = arg;
730 	u32 tft, rft;
731 	u32 count;
732 	u32 misr, src;
733 
734 	/* load Tx FIFO and Rx FIFO threshold values */
735 	tft = readl(dev->virtbase + I2C_TFTR);
736 	rft = readl(dev->virtbase + I2C_RFTR);
737 
738 	/* read interrupt status register */
739 	misr = readl(dev->virtbase + I2C_MISR);
740 
741 	src = __ffs(misr);
742 	switch ((1 << src)) {
743 
744 	/* Transmit FIFO nearly empty interrupt */
745 	case I2C_IT_TXFNE:
746 	{
747 		if (dev->cli.operation == I2C_READ) {
748 			/*
749 			 * in read operation why do we care for writing?
750 			 * so disable the Transmit FIFO interrupt
751 			 */
752 			disable_interrupts(dev, I2C_IT_TXFNE);
753 		} else {
754 			fill_tx_fifo(dev, (MAX_I2C_FIFO_THRESHOLD - tft));
755 			/*
756 			 * if done, close the transfer by disabling the
757 			 * corresponding TXFNE interrupt
758 			 */
759 			if (dev->cli.count == 0)
760 				disable_interrupts(dev,	I2C_IT_TXFNE);
761 		}
762 	}
763 	break;
764 
765 	/*
766 	 * Rx FIFO nearly full interrupt.
767 	 * This is set when the numer of entries in Rx FIFO is
768 	 * greater or equal than the threshold value programmed
769 	 * in RFT
770 	 */
771 	case I2C_IT_RXFNF:
772 		for (count = rft; count > 0; count--) {
773 			/* Read the Rx FIFO */
774 			*dev->cli.buffer = readb(dev->virtbase + I2C_RFR);
775 			dev->cli.buffer++;
776 		}
777 		dev->cli.count -= rft;
778 		dev->cli.xfer_bytes += rft;
779 		break;
780 
781 	/* Rx FIFO full */
782 	case I2C_IT_RXFF:
783 		for (count = MAX_I2C_FIFO_THRESHOLD; count > 0; count--) {
784 			*dev->cli.buffer = readb(dev->virtbase + I2C_RFR);
785 			dev->cli.buffer++;
786 		}
787 		dev->cli.count -= MAX_I2C_FIFO_THRESHOLD;
788 		dev->cli.xfer_bytes += MAX_I2C_FIFO_THRESHOLD;
789 		break;
790 
791 	/* Master Transaction Done with/without stop */
792 	case I2C_IT_MTD:
793 	case I2C_IT_MTDWS:
794 		if (dev->cli.operation == I2C_READ) {
795 			while (!(readl(dev->virtbase + I2C_RISR)
796 				 & I2C_IT_RXFE)) {
797 				if (dev->cli.count == 0)
798 					break;
799 				*dev->cli.buffer =
800 					readb(dev->virtbase + I2C_RFR);
801 				dev->cli.buffer++;
802 				dev->cli.count--;
803 				dev->cli.xfer_bytes++;
804 			}
805 		}
806 
807 		disable_all_interrupts(dev);
808 		clear_all_interrupts(dev);
809 
810 		if (dev->cli.count) {
811 			dev->result = -EIO;
812 			dev_err(&dev->adev->dev,
813 				"%lu bytes still remain to be xfered\n",
814 				dev->cli.count);
815 			(void) init_hw(dev);
816 		}
817 		complete(&dev->xfer_complete);
818 
819 		break;
820 
821 	/* Master Arbitration lost interrupt */
822 	case I2C_IT_MAL:
823 		dev->result = -EIO;
824 		(void) init_hw(dev);
825 
826 		i2c_set_bit(dev->virtbase + I2C_ICR, I2C_IT_MAL);
827 		complete(&dev->xfer_complete);
828 
829 		break;
830 
831 	/*
832 	 * Bus Error interrupt.
833 	 * This happens when an unexpected start/stop condition occurs
834 	 * during the transaction.
835 	 */
836 	case I2C_IT_BERR:
837 		dev->result = -EIO;
838 		/* get the status */
839 		if (((readl(dev->virtbase + I2C_SR) >> 2) & 0x3) == I2C_ABORT)
840 			(void) init_hw(dev);
841 
842 		i2c_set_bit(dev->virtbase + I2C_ICR, I2C_IT_BERR);
843 		complete(&dev->xfer_complete);
844 
845 		break;
846 
847 	/*
848 	 * Tx FIFO overrun interrupt.
849 	 * This is set when a write operation in Tx FIFO is performed and
850 	 * the Tx FIFO is full.
851 	 */
852 	case I2C_IT_TXFOVR:
853 		dev->result = -EIO;
854 		(void) init_hw(dev);
855 
856 		dev_err(&dev->adev->dev, "Tx Fifo Over run\n");
857 		complete(&dev->xfer_complete);
858 
859 		break;
860 
861 	/* unhandled interrupts by this driver - TODO*/
862 	case I2C_IT_TXFE:
863 	case I2C_IT_TXFF:
864 	case I2C_IT_RXFE:
865 	case I2C_IT_RFSR:
866 	case I2C_IT_RFSE:
867 	case I2C_IT_WTSR:
868 	case I2C_IT_STD:
869 		dev_err(&dev->adev->dev, "unhandled Interrupt\n");
870 		break;
871 	default:
872 		dev_err(&dev->adev->dev, "spurious Interrupt..\n");
873 		break;
874 	}
875 
876 	return IRQ_HANDLED;
877 }
878 
879 #ifdef CONFIG_PM_SLEEP
880 static int nmk_i2c_suspend_late(struct device *dev)
881 {
882 	int ret;
883 
884 	ret = pm_runtime_force_suspend(dev);
885 	if (ret)
886 		return ret;
887 
888 	pinctrl_pm_select_sleep_state(dev);
889 	return 0;
890 }
891 
892 static int nmk_i2c_resume_early(struct device *dev)
893 {
894 	return pm_runtime_force_resume(dev);
895 }
896 #endif
897 
898 #ifdef CONFIG_PM
899 static int nmk_i2c_runtime_suspend(struct device *dev)
900 {
901 	struct amba_device *adev = to_amba_device(dev);
902 	struct nmk_i2c_dev *nmk_i2c = amba_get_drvdata(adev);
903 
904 	clk_disable_unprepare(nmk_i2c->clk);
905 	pinctrl_pm_select_idle_state(dev);
906 	return 0;
907 }
908 
909 static int nmk_i2c_runtime_resume(struct device *dev)
910 {
911 	struct amba_device *adev = to_amba_device(dev);
912 	struct nmk_i2c_dev *nmk_i2c = amba_get_drvdata(adev);
913 	int ret;
914 
915 	ret = clk_prepare_enable(nmk_i2c->clk);
916 	if (ret) {
917 		dev_err(dev, "can't prepare_enable clock\n");
918 		return ret;
919 	}
920 
921 	pinctrl_pm_select_default_state(dev);
922 
923 	ret = init_hw(nmk_i2c);
924 	if (ret) {
925 		clk_disable_unprepare(nmk_i2c->clk);
926 		pinctrl_pm_select_idle_state(dev);
927 	}
928 
929 	return ret;
930 }
931 #endif
932 
933 static const struct dev_pm_ops nmk_i2c_pm = {
934 	SET_LATE_SYSTEM_SLEEP_PM_OPS(nmk_i2c_suspend_late, nmk_i2c_resume_early)
935 	SET_RUNTIME_PM_OPS(nmk_i2c_runtime_suspend,
936 			nmk_i2c_runtime_resume,
937 			NULL)
938 };
939 
940 static unsigned int nmk_i2c_functionality(struct i2c_adapter *adap)
941 {
942 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_10BIT_ADDR;
943 }
944 
945 static const struct i2c_algorithm nmk_i2c_algo = {
946 	.master_xfer	= nmk_i2c_xfer,
947 	.functionality	= nmk_i2c_functionality
948 };
949 
950 static void nmk_i2c_of_probe(struct device_node *np,
951 			     struct nmk_i2c_dev *nmk)
952 {
953 	/* Default to 100 kHz if no frequency is given in the node */
954 	if (of_property_read_u32(np, "clock-frequency", &nmk->clk_freq))
955 		nmk->clk_freq = 100000;
956 
957 	/* This driver only supports 'standard' and 'fast' modes of operation. */
958 	if (nmk->clk_freq <= 100000)
959 		nmk->sm = I2C_FREQ_MODE_STANDARD;
960 	else
961 		nmk->sm = I2C_FREQ_MODE_FAST;
962 	nmk->tft = 1; /* Tx FIFO threshold */
963 	nmk->rft = 8; /* Rx FIFO threshold */
964 	nmk->timeout = 200; /* Slave response timeout(ms) */
965 }
966 
967 static int nmk_i2c_probe(struct amba_device *adev, const struct amba_id *id)
968 {
969 	int ret = 0;
970 	struct device_node *np = adev->dev.of_node;
971 	struct nmk_i2c_dev	*dev;
972 	struct i2c_adapter *adap;
973 	struct i2c_vendor_data *vendor = id->data;
974 	u32 max_fifo_threshold = (vendor->fifodepth / 2) - 1;
975 
976 	dev = devm_kzalloc(&adev->dev, sizeof(struct nmk_i2c_dev), GFP_KERNEL);
977 	if (!dev) {
978 		dev_err(&adev->dev, "cannot allocate memory\n");
979 		ret = -ENOMEM;
980 		goto err_no_mem;
981 	}
982 	dev->vendor = vendor;
983 	dev->adev = adev;
984 	nmk_i2c_of_probe(np, dev);
985 
986 	if (dev->tft > max_fifo_threshold) {
987 		dev_warn(&adev->dev, "requested TX FIFO threshold %u, adjusted down to %u\n",
988 			 dev->tft, max_fifo_threshold);
989 		dev->tft = max_fifo_threshold;
990 	}
991 
992 	if (dev->rft > max_fifo_threshold) {
993 		dev_warn(&adev->dev, "requested RX FIFO threshold %u, adjusted down to %u\n",
994 			dev->rft, max_fifo_threshold);
995 		dev->rft = max_fifo_threshold;
996 	}
997 
998 	amba_set_drvdata(adev, dev);
999 
1000 	dev->virtbase = devm_ioremap(&adev->dev, adev->res.start,
1001 				resource_size(&adev->res));
1002 	if (!dev->virtbase) {
1003 		ret = -ENOMEM;
1004 		goto err_no_mem;
1005 	}
1006 
1007 	dev->irq = adev->irq[0];
1008 	ret = devm_request_irq(&adev->dev, dev->irq, i2c_irq_handler, 0,
1009 				DRIVER_NAME, dev);
1010 	if (ret) {
1011 		dev_err(&adev->dev, "cannot claim the irq %d\n", dev->irq);
1012 		goto err_no_mem;
1013 	}
1014 
1015 	dev->clk = devm_clk_get(&adev->dev, NULL);
1016 	if (IS_ERR(dev->clk)) {
1017 		dev_err(&adev->dev, "could not get i2c clock\n");
1018 		ret = PTR_ERR(dev->clk);
1019 		goto err_no_mem;
1020 	}
1021 
1022 	ret = clk_prepare_enable(dev->clk);
1023 	if (ret) {
1024 		dev_err(&adev->dev, "can't prepare_enable clock\n");
1025 		goto err_no_mem;
1026 	}
1027 
1028 	init_hw(dev);
1029 
1030 	adap = &dev->adap;
1031 	adap->dev.of_node = np;
1032 	adap->dev.parent = &adev->dev;
1033 	adap->owner = THIS_MODULE;
1034 	adap->class = I2C_CLASS_DEPRECATED;
1035 	adap->algo = &nmk_i2c_algo;
1036 	adap->timeout = msecs_to_jiffies(dev->timeout);
1037 	snprintf(adap->name, sizeof(adap->name),
1038 		 "Nomadik I2C at %pR", &adev->res);
1039 
1040 	i2c_set_adapdata(adap, dev);
1041 
1042 	dev_info(&adev->dev,
1043 		 "initialize %s on virtual base %p\n",
1044 		 adap->name, dev->virtbase);
1045 
1046 	ret = i2c_add_adapter(adap);
1047 	if (ret)
1048 		goto err_no_adap;
1049 
1050 	pm_runtime_put(&adev->dev);
1051 
1052 	return 0;
1053 
1054  err_no_adap:
1055 	clk_disable_unprepare(dev->clk);
1056  err_no_mem:
1057 
1058 	return ret;
1059 }
1060 
1061 static int nmk_i2c_remove(struct amba_device *adev)
1062 {
1063 	struct resource *res = &adev->res;
1064 	struct nmk_i2c_dev *dev = amba_get_drvdata(adev);
1065 
1066 	i2c_del_adapter(&dev->adap);
1067 	flush_i2c_fifo(dev);
1068 	disable_all_interrupts(dev);
1069 	clear_all_interrupts(dev);
1070 	/* disable the controller */
1071 	i2c_clr_bit(dev->virtbase + I2C_CR, I2C_CR_PE);
1072 	clk_disable_unprepare(dev->clk);
1073 	if (res)
1074 		release_mem_region(res->start, resource_size(res));
1075 
1076 	return 0;
1077 }
1078 
1079 static struct i2c_vendor_data vendor_stn8815 = {
1080 	.has_mtdws = false,
1081 	.fifodepth = 16, /* Guessed from TFTR/RFTR = 7 */
1082 };
1083 
1084 static struct i2c_vendor_data vendor_db8500 = {
1085 	.has_mtdws = true,
1086 	.fifodepth = 32, /* Guessed from TFTR/RFTR = 15 */
1087 };
1088 
1089 static const struct amba_id nmk_i2c_ids[] = {
1090 	{
1091 		.id	= 0x00180024,
1092 		.mask	= 0x00ffffff,
1093 		.data	= &vendor_stn8815,
1094 	},
1095 	{
1096 		.id	= 0x00380024,
1097 		.mask	= 0x00ffffff,
1098 		.data	= &vendor_db8500,
1099 	},
1100 	{},
1101 };
1102 
1103 MODULE_DEVICE_TABLE(amba, nmk_i2c_ids);
1104 
1105 static struct amba_driver nmk_i2c_driver = {
1106 	.drv = {
1107 		.owner = THIS_MODULE,
1108 		.name = DRIVER_NAME,
1109 		.pm = &nmk_i2c_pm,
1110 	},
1111 	.id_table = nmk_i2c_ids,
1112 	.probe = nmk_i2c_probe,
1113 	.remove = nmk_i2c_remove,
1114 };
1115 
1116 static int __init nmk_i2c_init(void)
1117 {
1118 	return amba_driver_register(&nmk_i2c_driver);
1119 }
1120 
1121 static void __exit nmk_i2c_exit(void)
1122 {
1123 	amba_driver_unregister(&nmk_i2c_driver);
1124 }
1125 
1126 subsys_initcall(nmk_i2c_init);
1127 module_exit(nmk_i2c_exit);
1128 
1129 MODULE_AUTHOR("Sachin Verma, Srinidhi KASAGAR");
1130 MODULE_DESCRIPTION("Nomadik/Ux500 I2C driver");
1131 MODULE_LICENSE("GPL");
1132