xref: /linux/drivers/i2c/busses/i2c-nomadik.c (revision 08ec212c0f92cbf30e3ecc7349f18151714041d6)
1 /*
2  * Copyright (C) 2009 ST-Ericsson SA
3  * Copyright (C) 2009 STMicroelectronics
4  *
5  * I2C master mode controller driver, used in Nomadik 8815
6  * and Ux500 platforms.
7  *
8  * Author: Srinidhi Kasagar <srinidhi.kasagar@stericsson.com>
9  * Author: Sachin Verma <sachin.verma@st.com>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License version 2, as
13  * published by the Free Software Foundation.
14  */
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/amba/bus.h>
18 #include <linux/atomic.h>
19 #include <linux/slab.h>
20 #include <linux/interrupt.h>
21 #include <linux/i2c.h>
22 #include <linux/err.h>
23 #include <linux/clk.h>
24 #include <linux/io.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/platform_data/i2c-nomadik.h>
27 #include <linux/of.h>
28 #include <linux/of_i2c.h>
29 
30 #define DRIVER_NAME "nmk-i2c"
31 
32 /* I2C Controller register offsets */
33 #define I2C_CR		(0x000)
34 #define I2C_SCR		(0x004)
35 #define I2C_HSMCR	(0x008)
36 #define I2C_MCR		(0x00C)
37 #define I2C_TFR		(0x010)
38 #define I2C_SR		(0x014)
39 #define I2C_RFR		(0x018)
40 #define I2C_TFTR	(0x01C)
41 #define I2C_RFTR	(0x020)
42 #define I2C_DMAR	(0x024)
43 #define I2C_BRCR	(0x028)
44 #define I2C_IMSCR	(0x02C)
45 #define I2C_RISR	(0x030)
46 #define I2C_MISR	(0x034)
47 #define I2C_ICR		(0x038)
48 
49 /* Control registers */
50 #define I2C_CR_PE		(0x1 << 0)	/* Peripheral Enable */
51 #define I2C_CR_OM		(0x3 << 1)	/* Operating mode */
52 #define I2C_CR_SAM		(0x1 << 3)	/* Slave addressing mode */
53 #define I2C_CR_SM		(0x3 << 4)	/* Speed mode */
54 #define I2C_CR_SGCM		(0x1 << 6)	/* Slave general call mode */
55 #define I2C_CR_FTX		(0x1 << 7)	/* Flush Transmit */
56 #define I2C_CR_FRX		(0x1 << 8)	/* Flush Receive */
57 #define I2C_CR_DMA_TX_EN	(0x1 << 9)	/* DMA Tx enable */
58 #define I2C_CR_DMA_RX_EN	(0x1 << 10)	/* DMA Rx Enable */
59 #define I2C_CR_DMA_SLE		(0x1 << 11)	/* DMA sync. logic enable */
60 #define I2C_CR_LM		(0x1 << 12)	/* Loopback mode */
61 #define I2C_CR_FON		(0x3 << 13)	/* Filtering on */
62 #define I2C_CR_FS		(0x3 << 15)	/* Force stop enable */
63 
64 /* Master controller (MCR) register */
65 #define I2C_MCR_OP		(0x1 << 0)	/* Operation */
66 #define I2C_MCR_A7		(0x7f << 1)	/* 7-bit address */
67 #define I2C_MCR_EA10		(0x7 << 8)	/* 10-bit Extended address */
68 #define I2C_MCR_SB		(0x1 << 11)	/* Extended address */
69 #define I2C_MCR_AM		(0x3 << 12)	/* Address type */
70 #define I2C_MCR_STOP		(0x1 << 14)	/* Stop condition */
71 #define I2C_MCR_LENGTH		(0x7ff << 15)	/* Transaction length */
72 
73 /* Status register (SR) */
74 #define I2C_SR_OP		(0x3 << 0)	/* Operation */
75 #define I2C_SR_STATUS		(0x3 << 2)	/* controller status */
76 #define I2C_SR_CAUSE		(0x7 << 4)	/* Abort cause */
77 #define I2C_SR_TYPE		(0x3 << 7)	/* Receive type */
78 #define I2C_SR_LENGTH		(0x7ff << 9)	/* Transfer length */
79 
80 /* Interrupt mask set/clear (IMSCR) bits */
81 #define I2C_IT_TXFE		(0x1 << 0)
82 #define I2C_IT_TXFNE		(0x1 << 1)
83 #define I2C_IT_TXFF		(0x1 << 2)
84 #define I2C_IT_TXFOVR		(0x1 << 3)
85 #define I2C_IT_RXFE		(0x1 << 4)
86 #define I2C_IT_RXFNF		(0x1 << 5)
87 #define I2C_IT_RXFF		(0x1 << 6)
88 #define I2C_IT_RFSR		(0x1 << 16)
89 #define I2C_IT_RFSE		(0x1 << 17)
90 #define I2C_IT_WTSR		(0x1 << 18)
91 #define I2C_IT_MTD		(0x1 << 19)
92 #define I2C_IT_STD		(0x1 << 20)
93 #define I2C_IT_MAL		(0x1 << 24)
94 #define I2C_IT_BERR		(0x1 << 25)
95 #define I2C_IT_MTDWS		(0x1 << 28)
96 
97 #define GEN_MASK(val, mask, sb)  (((val) << (sb)) & (mask))
98 
99 /* some bits in ICR are reserved */
100 #define I2C_CLEAR_ALL_INTS	0x131f007f
101 
102 /* first three msb bits are reserved */
103 #define IRQ_MASK(mask)		(mask & 0x1fffffff)
104 
105 /* maximum threshold value */
106 #define MAX_I2C_FIFO_THRESHOLD	15
107 
108 enum i2c_status {
109 	I2C_NOP,
110 	I2C_ON_GOING,
111 	I2C_OK,
112 	I2C_ABORT
113 };
114 
115 /* operation */
116 enum i2c_operation {
117 	I2C_NO_OPERATION = 0xff,
118 	I2C_WRITE = 0x00,
119 	I2C_READ = 0x01
120 };
121 
122 /**
123  * struct i2c_nmk_client - client specific data
124  * @slave_adr: 7-bit slave address
125  * @count: no. bytes to be transferred
126  * @buffer: client data buffer
127  * @xfer_bytes: bytes transferred till now
128  * @operation: current I2C operation
129  */
130 struct i2c_nmk_client {
131 	unsigned short		slave_adr;
132 	unsigned long		count;
133 	unsigned char		*buffer;
134 	unsigned long		xfer_bytes;
135 	enum i2c_operation	operation;
136 };
137 
138 /**
139  * struct nmk_i2c_dev - private data structure of the controller.
140  * @adev: parent amba device.
141  * @adap: corresponding I2C adapter.
142  * @irq: interrupt line for the controller.
143  * @virtbase: virtual io memory area.
144  * @clk: hardware i2c block clock.
145  * @cfg: machine provided controller configuration.
146  * @cli: holder of client specific data.
147  * @stop: stop condition.
148  * @xfer_complete: acknowledge completion for a I2C message.
149  * @result: controller propogated result.
150  * @busy: Busy doing transfer.
151  */
152 struct nmk_i2c_dev {
153 	struct amba_device		*adev;
154 	struct i2c_adapter		adap;
155 	int				irq;
156 	void __iomem			*virtbase;
157 	struct clk			*clk;
158 	struct nmk_i2c_controller	cfg;
159 	struct i2c_nmk_client		cli;
160 	int				stop;
161 	struct completion		xfer_complete;
162 	int				result;
163 	bool				busy;
164 };
165 
166 /* controller's abort causes */
167 static const char *abort_causes[] = {
168 	"no ack received after address transmission",
169 	"no ack received during data phase",
170 	"ack received after xmission of master code",
171 	"master lost arbitration",
172 	"slave restarts",
173 	"slave reset",
174 	"overflow, maxsize is 2047 bytes",
175 };
176 
177 static inline void i2c_set_bit(void __iomem *reg, u32 mask)
178 {
179 	writel(readl(reg) | mask, reg);
180 }
181 
182 static inline void i2c_clr_bit(void __iomem *reg, u32 mask)
183 {
184 	writel(readl(reg) & ~mask, reg);
185 }
186 
187 /**
188  * flush_i2c_fifo() - This function flushes the I2C FIFO
189  * @dev: private data of I2C Driver
190  *
191  * This function flushes the I2C Tx and Rx FIFOs. It returns
192  * 0 on successful flushing of FIFO
193  */
194 static int flush_i2c_fifo(struct nmk_i2c_dev *dev)
195 {
196 #define LOOP_ATTEMPTS 10
197 	int i;
198 	unsigned long timeout;
199 
200 	/*
201 	 * flush the transmit and receive FIFO. The flushing
202 	 * operation takes several cycles before to be completed.
203 	 * On the completion, the I2C internal logic clears these
204 	 * bits, until then no one must access Tx, Rx FIFO and
205 	 * should poll on these bits waiting for the completion.
206 	 */
207 	writel((I2C_CR_FTX | I2C_CR_FRX), dev->virtbase + I2C_CR);
208 
209 	for (i = 0; i < LOOP_ATTEMPTS; i++) {
210 		timeout = jiffies + dev->adap.timeout;
211 
212 		while (!time_after(jiffies, timeout)) {
213 			if ((readl(dev->virtbase + I2C_CR) &
214 				(I2C_CR_FTX | I2C_CR_FRX)) == 0)
215 					return 0;
216 		}
217 	}
218 
219 	dev_err(&dev->adev->dev,
220 		"flushing operation timed out giving up after %d attempts",
221 		LOOP_ATTEMPTS);
222 
223 	return -ETIMEDOUT;
224 }
225 
226 /**
227  * disable_all_interrupts() - Disable all interrupts of this I2c Bus
228  * @dev: private data of I2C Driver
229  */
230 static void disable_all_interrupts(struct nmk_i2c_dev *dev)
231 {
232 	u32 mask = IRQ_MASK(0);
233 	writel(mask, dev->virtbase + I2C_IMSCR);
234 }
235 
236 /**
237  * clear_all_interrupts() - Clear all interrupts of I2C Controller
238  * @dev: private data of I2C Driver
239  */
240 static void clear_all_interrupts(struct nmk_i2c_dev *dev)
241 {
242 	u32 mask;
243 	mask = IRQ_MASK(I2C_CLEAR_ALL_INTS);
244 	writel(mask, dev->virtbase + I2C_ICR);
245 }
246 
247 /**
248  * init_hw() - initialize the I2C hardware
249  * @dev: private data of I2C Driver
250  */
251 static int init_hw(struct nmk_i2c_dev *dev)
252 {
253 	int stat;
254 
255 	stat = flush_i2c_fifo(dev);
256 	if (stat)
257 		goto exit;
258 
259 	/* disable the controller */
260 	i2c_clr_bit(dev->virtbase + I2C_CR , I2C_CR_PE);
261 
262 	disable_all_interrupts(dev);
263 
264 	clear_all_interrupts(dev);
265 
266 	dev->cli.operation = I2C_NO_OPERATION;
267 
268 exit:
269 	return stat;
270 }
271 
272 /* enable peripheral, master mode operation */
273 #define DEFAULT_I2C_REG_CR	((1 << 1) | I2C_CR_PE)
274 
275 /**
276  * load_i2c_mcr_reg() - load the MCR register
277  * @dev: private data of controller
278  * @flags: message flags
279  */
280 static u32 load_i2c_mcr_reg(struct nmk_i2c_dev *dev, u16 flags)
281 {
282 	u32 mcr = 0;
283 	unsigned short slave_adr_3msb_bits;
284 
285 	mcr |= GEN_MASK(dev->cli.slave_adr, I2C_MCR_A7, 1);
286 
287 	if (unlikely(flags & I2C_M_TEN)) {
288 		/* 10-bit address transaction */
289 		mcr |= GEN_MASK(2, I2C_MCR_AM, 12);
290 		/*
291 		 * Get the top 3 bits.
292 		 * EA10 represents extended address in MCR. This includes
293 		 * the extension (MSB bits) of the 7 bit address loaded
294 		 * in A7
295 		 */
296 		slave_adr_3msb_bits = (dev->cli.slave_adr >> 7) & 0x7;
297 
298 		mcr |= GEN_MASK(slave_adr_3msb_bits, I2C_MCR_EA10, 8);
299 	} else {
300 		/* 7-bit address transaction */
301 		mcr |= GEN_MASK(1, I2C_MCR_AM, 12);
302 	}
303 
304 	/* start byte procedure not applied */
305 	mcr |= GEN_MASK(0, I2C_MCR_SB, 11);
306 
307 	/* check the operation, master read/write? */
308 	if (dev->cli.operation == I2C_WRITE)
309 		mcr |= GEN_MASK(I2C_WRITE, I2C_MCR_OP, 0);
310 	else
311 		mcr |= GEN_MASK(I2C_READ, I2C_MCR_OP, 0);
312 
313 	/* stop or repeated start? */
314 	if (dev->stop)
315 		mcr |= GEN_MASK(1, I2C_MCR_STOP, 14);
316 	else
317 		mcr &= ~(GEN_MASK(1, I2C_MCR_STOP, 14));
318 
319 	mcr |= GEN_MASK(dev->cli.count, I2C_MCR_LENGTH, 15);
320 
321 	return mcr;
322 }
323 
324 /**
325  * setup_i2c_controller() - setup the controller
326  * @dev: private data of controller
327  */
328 static void setup_i2c_controller(struct nmk_i2c_dev *dev)
329 {
330 	u32 brcr1, brcr2;
331 	u32 i2c_clk, div;
332 
333 	writel(0x0, dev->virtbase + I2C_CR);
334 	writel(0x0, dev->virtbase + I2C_HSMCR);
335 	writel(0x0, dev->virtbase + I2C_TFTR);
336 	writel(0x0, dev->virtbase + I2C_RFTR);
337 	writel(0x0, dev->virtbase + I2C_DMAR);
338 
339 	/*
340 	 * set the slsu:
341 	 *
342 	 * slsu defines the data setup time after SCL clock
343 	 * stretching in terms of i2c clk cycles. The
344 	 * needed setup time for the three modes are 250ns,
345 	 * 100ns, 10ns respectively thus leading to the values
346 	 * of 14, 6, 2 for a 48 MHz i2c clk.
347 	 */
348 	writel(dev->cfg.slsu << 16, dev->virtbase + I2C_SCR);
349 
350 	i2c_clk = clk_get_rate(dev->clk);
351 
352 	/*
353 	 * The spec says, in case of std. mode the divider is
354 	 * 2 whereas it is 3 for fast and fastplus mode of
355 	 * operation. TODO - high speed support.
356 	 */
357 	div = (dev->cfg.clk_freq > 100000) ? 3 : 2;
358 
359 	/*
360 	 * generate the mask for baud rate counters. The controller
361 	 * has two baud rate counters. One is used for High speed
362 	 * operation, and the other is for std, fast mode, fast mode
363 	 * plus operation. Currently we do not supprt high speed mode
364 	 * so set brcr1 to 0.
365 	 */
366 	brcr1 = 0 << 16;
367 	brcr2 = (i2c_clk/(dev->cfg.clk_freq * div)) & 0xffff;
368 
369 	/* set the baud rate counter register */
370 	writel((brcr1 | brcr2), dev->virtbase + I2C_BRCR);
371 
372 	/*
373 	 * set the speed mode. Currently we support
374 	 * only standard and fast mode of operation
375 	 * TODO - support for fast mode plus (up to 1Mb/s)
376 	 * and high speed (up to 3.4 Mb/s)
377 	 */
378 	if (dev->cfg.sm > I2C_FREQ_MODE_FAST) {
379 		dev_err(&dev->adev->dev,
380 			"do not support this mode defaulting to std. mode\n");
381 		brcr2 = i2c_clk/(100000 * 2) & 0xffff;
382 		writel((brcr1 | brcr2), dev->virtbase + I2C_BRCR);
383 		writel(I2C_FREQ_MODE_STANDARD << 4,
384 				dev->virtbase + I2C_CR);
385 	}
386 	writel(dev->cfg.sm << 4, dev->virtbase + I2C_CR);
387 
388 	/* set the Tx and Rx FIFO threshold */
389 	writel(dev->cfg.tft, dev->virtbase + I2C_TFTR);
390 	writel(dev->cfg.rft, dev->virtbase + I2C_RFTR);
391 }
392 
393 /**
394  * read_i2c() - Read from I2C client device
395  * @dev: private data of I2C Driver
396  * @flags: message flags
397  *
398  * This function reads from i2c client device when controller is in
399  * master mode. There is a completion timeout. If there is no transfer
400  * before timeout error is returned.
401  */
402 static int read_i2c(struct nmk_i2c_dev *dev, u16 flags)
403 {
404 	u32 status = 0;
405 	u32 mcr;
406 	u32 irq_mask = 0;
407 	int timeout;
408 
409 	mcr = load_i2c_mcr_reg(dev, flags);
410 	writel(mcr, dev->virtbase + I2C_MCR);
411 
412 	/* load the current CR value */
413 	writel(readl(dev->virtbase + I2C_CR) | DEFAULT_I2C_REG_CR,
414 			dev->virtbase + I2C_CR);
415 
416 	/* enable the controller */
417 	i2c_set_bit(dev->virtbase + I2C_CR, I2C_CR_PE);
418 
419 	init_completion(&dev->xfer_complete);
420 
421 	/* enable interrupts by setting the mask */
422 	irq_mask = (I2C_IT_RXFNF | I2C_IT_RXFF |
423 			I2C_IT_MAL | I2C_IT_BERR);
424 
425 	if (dev->stop)
426 		irq_mask |= I2C_IT_MTD;
427 	else
428 		irq_mask |= I2C_IT_MTDWS;
429 
430 	irq_mask = I2C_CLEAR_ALL_INTS & IRQ_MASK(irq_mask);
431 
432 	writel(readl(dev->virtbase + I2C_IMSCR) | irq_mask,
433 			dev->virtbase + I2C_IMSCR);
434 
435 	timeout = wait_for_completion_timeout(
436 		&dev->xfer_complete, dev->adap.timeout);
437 
438 	if (timeout < 0) {
439 		dev_err(&dev->adev->dev,
440 			"wait_for_completion_timeout "
441 			"returned %d waiting for event\n", timeout);
442 		status = timeout;
443 	}
444 
445 	if (timeout == 0) {
446 		/* Controller timed out */
447 		dev_err(&dev->adev->dev, "read from slave 0x%x timed out\n",
448 				dev->cli.slave_adr);
449 		status = -ETIMEDOUT;
450 	}
451 	return status;
452 }
453 
454 static void fill_tx_fifo(struct nmk_i2c_dev *dev, int no_bytes)
455 {
456 	int count;
457 
458 	for (count = (no_bytes - 2);
459 			(count > 0) &&
460 			(dev->cli.count != 0);
461 			count--) {
462 		/* write to the Tx FIFO */
463 		writeb(*dev->cli.buffer,
464 			dev->virtbase + I2C_TFR);
465 		dev->cli.buffer++;
466 		dev->cli.count--;
467 		dev->cli.xfer_bytes++;
468 	}
469 
470 }
471 
472 /**
473  * write_i2c() - Write data to I2C client.
474  * @dev: private data of I2C Driver
475  * @flags: message flags
476  *
477  * This function writes data to I2C client
478  */
479 static int write_i2c(struct nmk_i2c_dev *dev, u16 flags)
480 {
481 	u32 status = 0;
482 	u32 mcr;
483 	u32 irq_mask = 0;
484 	int timeout;
485 
486 	mcr = load_i2c_mcr_reg(dev, flags);
487 
488 	writel(mcr, dev->virtbase + I2C_MCR);
489 
490 	/* load the current CR value */
491 	writel(readl(dev->virtbase + I2C_CR) | DEFAULT_I2C_REG_CR,
492 			dev->virtbase + I2C_CR);
493 
494 	/* enable the controller */
495 	i2c_set_bit(dev->virtbase + I2C_CR , I2C_CR_PE);
496 
497 	init_completion(&dev->xfer_complete);
498 
499 	/* enable interrupts by settings the masks */
500 	irq_mask = (I2C_IT_TXFOVR | I2C_IT_MAL | I2C_IT_BERR);
501 
502 	/* Fill the TX FIFO with transmit data */
503 	fill_tx_fifo(dev, MAX_I2C_FIFO_THRESHOLD);
504 
505 	if (dev->cli.count != 0)
506 		irq_mask |= I2C_IT_TXFNE;
507 
508 	/*
509 	 * check if we want to transfer a single or multiple bytes, if so
510 	 * set the MTDWS bit (Master Transaction Done Without Stop)
511 	 * to start repeated start operation
512 	 */
513 	if (dev->stop)
514 		irq_mask |= I2C_IT_MTD;
515 	else
516 		irq_mask |= I2C_IT_MTDWS;
517 
518 	irq_mask = I2C_CLEAR_ALL_INTS & IRQ_MASK(irq_mask);
519 
520 	writel(readl(dev->virtbase + I2C_IMSCR) | irq_mask,
521 			dev->virtbase + I2C_IMSCR);
522 
523 	timeout = wait_for_completion_timeout(
524 		&dev->xfer_complete, dev->adap.timeout);
525 
526 	if (timeout < 0) {
527 		dev_err(&dev->adev->dev,
528 			"wait_for_completion_timeout "
529 			"returned %d waiting for event\n", timeout);
530 		status = timeout;
531 	}
532 
533 	if (timeout == 0) {
534 		/* Controller timed out */
535 		dev_err(&dev->adev->dev, "write to slave 0x%x timed out\n",
536 				dev->cli.slave_adr);
537 		status = -ETIMEDOUT;
538 	}
539 
540 	return status;
541 }
542 
543 /**
544  * nmk_i2c_xfer_one() - transmit a single I2C message
545  * @dev: device with a message encoded into it
546  * @flags: message flags
547  */
548 static int nmk_i2c_xfer_one(struct nmk_i2c_dev *dev, u16 flags)
549 {
550 	int status;
551 
552 	if (flags & I2C_M_RD) {
553 		/* read operation */
554 		dev->cli.operation = I2C_READ;
555 		status = read_i2c(dev, flags);
556 	} else {
557 		/* write operation */
558 		dev->cli.operation = I2C_WRITE;
559 		status = write_i2c(dev, flags);
560 	}
561 
562 	if (status || (dev->result)) {
563 		u32 i2c_sr;
564 		u32 cause;
565 
566 		i2c_sr = readl(dev->virtbase + I2C_SR);
567 		/*
568 		 * Check if the controller I2C operation status
569 		 * is set to ABORT(11b).
570 		 */
571 		if (((i2c_sr >> 2) & 0x3) == 0x3) {
572 			/* get the abort cause */
573 			cause =	(i2c_sr >> 4) & 0x7;
574 			dev_err(&dev->adev->dev, "%s\n",
575 				cause >= ARRAY_SIZE(abort_causes) ?
576 				"unknown reason" :
577 				abort_causes[cause]);
578 		}
579 
580 		(void) init_hw(dev);
581 
582 		status = status ? status : dev->result;
583 	}
584 
585 	return status;
586 }
587 
588 /**
589  * nmk_i2c_xfer() - I2C transfer function used by kernel framework
590  * @i2c_adap: Adapter pointer to the controller
591  * @msgs: Pointer to data to be written.
592  * @num_msgs: Number of messages to be executed
593  *
594  * This is the function called by the generic kernel i2c_transfer()
595  * or i2c_smbus...() API calls. Note that this code is protected by the
596  * semaphore set in the kernel i2c_transfer() function.
597  *
598  * NOTE:
599  * READ TRANSFER : We impose a restriction of the first message to be the
600  *		index message for any read transaction.
601  *		- a no index is coded as '0',
602  *		- 2byte big endian index is coded as '3'
603  *		!!! msg[0].buf holds the actual index.
604  *		This is compatible with generic messages of smbus emulator
605  *		that send a one byte index.
606  *		eg. a I2C transation to read 2 bytes from index 0
607  *			idx = 0;
608  *			msg[0].addr = client->addr;
609  *			msg[0].flags = 0x0;
610  *			msg[0].len = 1;
611  *			msg[0].buf = &idx;
612  *
613  *			msg[1].addr = client->addr;
614  *			msg[1].flags = I2C_M_RD;
615  *			msg[1].len = 2;
616  *			msg[1].buf = rd_buff
617  *			i2c_transfer(adap, msg, 2);
618  *
619  * WRITE TRANSFER : The I2C standard interface interprets all data as payload.
620  *		If you want to emulate an SMBUS write transaction put the
621  *		index as first byte(or first and second) in the payload.
622  *		eg. a I2C transation to write 2 bytes from index 1
623  *			wr_buff[0] = 0x1;
624  *			wr_buff[1] = 0x23;
625  *			wr_buff[2] = 0x46;
626  *			msg[0].flags = 0x0;
627  *			msg[0].len = 3;
628  *			msg[0].buf = wr_buff;
629  *			i2c_transfer(adap, msg, 1);
630  *
631  * To read or write a block of data (multiple bytes) using SMBUS emulation
632  * please use the i2c_smbus_read_i2c_block_data()
633  * or i2c_smbus_write_i2c_block_data() API
634  */
635 static int nmk_i2c_xfer(struct i2c_adapter *i2c_adap,
636 		struct i2c_msg msgs[], int num_msgs)
637 {
638 	int status;
639 	int i;
640 	struct nmk_i2c_dev *dev = i2c_get_adapdata(i2c_adap);
641 	int j;
642 
643 	dev->busy = true;
644 
645 	pm_runtime_get_sync(&dev->adev->dev);
646 
647 	clk_enable(dev->clk);
648 
649 	status = init_hw(dev);
650 	if (status)
651 		goto out;
652 
653 	/* Attempt three times to send the message queue */
654 	for (j = 0; j < 3; j++) {
655 		/* setup the i2c controller */
656 		setup_i2c_controller(dev);
657 
658 		for (i = 0; i < num_msgs; i++) {
659 			dev->cli.slave_adr	= msgs[i].addr;
660 			dev->cli.buffer		= msgs[i].buf;
661 			dev->cli.count		= msgs[i].len;
662 			dev->stop = (i < (num_msgs - 1)) ? 0 : 1;
663 			dev->result = 0;
664 
665 			status = nmk_i2c_xfer_one(dev, msgs[i].flags);
666 			if (status != 0)
667 				break;
668 		}
669 		if (status == 0)
670 			break;
671 	}
672 
673 out:
674 	clk_disable(dev->clk);
675 	pm_runtime_put_sync(&dev->adev->dev);
676 
677 	dev->busy = false;
678 
679 	/* return the no. messages processed */
680 	if (status)
681 		return status;
682 	else
683 		return num_msgs;
684 }
685 
686 /**
687  * disable_interrupts() - disable the interrupts
688  * @dev: private data of controller
689  * @irq: interrupt number
690  */
691 static int disable_interrupts(struct nmk_i2c_dev *dev, u32 irq)
692 {
693 	irq = IRQ_MASK(irq);
694 	writel(readl(dev->virtbase + I2C_IMSCR) & ~(I2C_CLEAR_ALL_INTS & irq),
695 			dev->virtbase + I2C_IMSCR);
696 	return 0;
697 }
698 
699 /**
700  * i2c_irq_handler() - interrupt routine
701  * @irq: interrupt number
702  * @arg: data passed to the handler
703  *
704  * This is the interrupt handler for the i2c driver. Currently
705  * it handles the major interrupts like Rx & Tx FIFO management
706  * interrupts, master transaction interrupts, arbitration and
707  * bus error interrupts. The rest of the interrupts are treated as
708  * unhandled.
709  */
710 static irqreturn_t i2c_irq_handler(int irq, void *arg)
711 {
712 	struct nmk_i2c_dev *dev = arg;
713 	u32 tft, rft;
714 	u32 count;
715 	u32 misr;
716 	u32 src = 0;
717 
718 	/* load Tx FIFO and Rx FIFO threshold values */
719 	tft = readl(dev->virtbase + I2C_TFTR);
720 	rft = readl(dev->virtbase + I2C_RFTR);
721 
722 	/* read interrupt status register */
723 	misr = readl(dev->virtbase + I2C_MISR);
724 
725 	src = __ffs(misr);
726 	switch ((1 << src)) {
727 
728 	/* Transmit FIFO nearly empty interrupt */
729 	case I2C_IT_TXFNE:
730 	{
731 		if (dev->cli.operation == I2C_READ) {
732 			/*
733 			 * in read operation why do we care for writing?
734 			 * so disable the Transmit FIFO interrupt
735 			 */
736 			disable_interrupts(dev, I2C_IT_TXFNE);
737 		} else {
738 			fill_tx_fifo(dev, (MAX_I2C_FIFO_THRESHOLD - tft));
739 			/*
740 			 * if done, close the transfer by disabling the
741 			 * corresponding TXFNE interrupt
742 			 */
743 			if (dev->cli.count == 0)
744 				disable_interrupts(dev,	I2C_IT_TXFNE);
745 		}
746 	}
747 	break;
748 
749 	/*
750 	 * Rx FIFO nearly full interrupt.
751 	 * This is set when the numer of entries in Rx FIFO is
752 	 * greater or equal than the threshold value programmed
753 	 * in RFT
754 	 */
755 	case I2C_IT_RXFNF:
756 		for (count = rft; count > 0; count--) {
757 			/* Read the Rx FIFO */
758 			*dev->cli.buffer = readb(dev->virtbase + I2C_RFR);
759 			dev->cli.buffer++;
760 		}
761 		dev->cli.count -= rft;
762 		dev->cli.xfer_bytes += rft;
763 		break;
764 
765 	/* Rx FIFO full */
766 	case I2C_IT_RXFF:
767 		for (count = MAX_I2C_FIFO_THRESHOLD; count > 0; count--) {
768 			*dev->cli.buffer = readb(dev->virtbase + I2C_RFR);
769 			dev->cli.buffer++;
770 		}
771 		dev->cli.count -= MAX_I2C_FIFO_THRESHOLD;
772 		dev->cli.xfer_bytes += MAX_I2C_FIFO_THRESHOLD;
773 		break;
774 
775 	/* Master Transaction Done with/without stop */
776 	case I2C_IT_MTD:
777 	case I2C_IT_MTDWS:
778 		if (dev->cli.operation == I2C_READ) {
779 			while (!(readl(dev->virtbase + I2C_RISR)
780 				 & I2C_IT_RXFE)) {
781 				if (dev->cli.count == 0)
782 					break;
783 				*dev->cli.buffer =
784 					readb(dev->virtbase + I2C_RFR);
785 				dev->cli.buffer++;
786 				dev->cli.count--;
787 				dev->cli.xfer_bytes++;
788 			}
789 		}
790 
791 		disable_all_interrupts(dev);
792 		clear_all_interrupts(dev);
793 
794 		if (dev->cli.count) {
795 			dev->result = -EIO;
796 			dev_err(&dev->adev->dev,
797 				"%lu bytes still remain to be xfered\n",
798 				dev->cli.count);
799 			(void) init_hw(dev);
800 		}
801 		complete(&dev->xfer_complete);
802 
803 		break;
804 
805 	/* Master Arbitration lost interrupt */
806 	case I2C_IT_MAL:
807 		dev->result = -EIO;
808 		(void) init_hw(dev);
809 
810 		i2c_set_bit(dev->virtbase + I2C_ICR, I2C_IT_MAL);
811 		complete(&dev->xfer_complete);
812 
813 		break;
814 
815 	/*
816 	 * Bus Error interrupt.
817 	 * This happens when an unexpected start/stop condition occurs
818 	 * during the transaction.
819 	 */
820 	case I2C_IT_BERR:
821 		dev->result = -EIO;
822 		/* get the status */
823 		if (((readl(dev->virtbase + I2C_SR) >> 2) & 0x3) == I2C_ABORT)
824 			(void) init_hw(dev);
825 
826 		i2c_set_bit(dev->virtbase + I2C_ICR, I2C_IT_BERR);
827 		complete(&dev->xfer_complete);
828 
829 		break;
830 
831 	/*
832 	 * Tx FIFO overrun interrupt.
833 	 * This is set when a write operation in Tx FIFO is performed and
834 	 * the Tx FIFO is full.
835 	 */
836 	case I2C_IT_TXFOVR:
837 		dev->result = -EIO;
838 		(void) init_hw(dev);
839 
840 		dev_err(&dev->adev->dev, "Tx Fifo Over run\n");
841 		complete(&dev->xfer_complete);
842 
843 		break;
844 
845 	/* unhandled interrupts by this driver - TODO*/
846 	case I2C_IT_TXFE:
847 	case I2C_IT_TXFF:
848 	case I2C_IT_RXFE:
849 	case I2C_IT_RFSR:
850 	case I2C_IT_RFSE:
851 	case I2C_IT_WTSR:
852 	case I2C_IT_STD:
853 		dev_err(&dev->adev->dev, "unhandled Interrupt\n");
854 		break;
855 	default:
856 		dev_err(&dev->adev->dev, "spurious Interrupt..\n");
857 		break;
858 	}
859 
860 	return IRQ_HANDLED;
861 }
862 
863 
864 #ifdef CONFIG_PM
865 static int nmk_i2c_suspend(struct device *dev)
866 {
867 	struct amba_device *adev = to_amba_device(dev);
868 	struct nmk_i2c_dev *nmk_i2c = amba_get_drvdata(adev);
869 
870 	if (nmk_i2c->busy)
871 		return -EBUSY;
872 
873 	return 0;
874 }
875 
876 static int nmk_i2c_resume(struct device *dev)
877 {
878 	return 0;
879 }
880 #else
881 #define nmk_i2c_suspend	NULL
882 #define nmk_i2c_resume	NULL
883 #endif
884 
885 /*
886  * We use noirq so that we suspend late and resume before the wakeup interrupt
887  * to ensure that we do the !pm_runtime_suspended() check in resume before
888  * there has been a regular pm runtime resume (via pm_runtime_get_sync()).
889  */
890 static const struct dev_pm_ops nmk_i2c_pm = {
891 	.suspend_noirq	= nmk_i2c_suspend,
892 	.resume_noirq	= nmk_i2c_resume,
893 };
894 
895 static unsigned int nmk_i2c_functionality(struct i2c_adapter *adap)
896 {
897 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_10BIT_ADDR;
898 }
899 
900 static const struct i2c_algorithm nmk_i2c_algo = {
901 	.master_xfer	= nmk_i2c_xfer,
902 	.functionality	= nmk_i2c_functionality
903 };
904 
905 static struct nmk_i2c_controller u8500_i2c = {
906 	/*
907 	 * Slave data setup time; 250ns, 100ns, and 10ns, which
908 	 * is 14, 6 and 2 respectively for a 48Mhz i2c clock.
909 	 */
910 	.slsu           = 0xe,
911 	.tft            = 1,      /* Tx FIFO threshold */
912 	.rft            = 8,      /* Rx FIFO threshold */
913 	.clk_freq       = 400000, /* fast mode operation */
914 	.timeout        = 200,    /* Slave response timeout(ms) */
915 	.sm             = I2C_FREQ_MODE_FAST,
916 };
917 
918 static void nmk_i2c_of_probe(struct device_node *np,
919 			struct nmk_i2c_controller *pdata)
920 {
921 	of_property_read_u32(np, "clock-frequency", &pdata->clk_freq);
922 
923 	/* This driver only supports 'standard' and 'fast' modes of operation. */
924 	if (pdata->clk_freq <= 100000)
925 		pdata->sm = I2C_FREQ_MODE_STANDARD;
926 	else
927 		pdata->sm = I2C_FREQ_MODE_FAST;
928 }
929 
930 static atomic_t adapter_id = ATOMIC_INIT(0);
931 
932 static int nmk_i2c_probe(struct amba_device *adev, const struct amba_id *id)
933 {
934 	int ret = 0;
935 	struct nmk_i2c_controller *pdata = adev->dev.platform_data;
936 	struct device_node *np = adev->dev.of_node;
937 	struct nmk_i2c_dev	*dev;
938 	struct i2c_adapter *adap;
939 
940 	if (!pdata) {
941 		if (np) {
942 			pdata = devm_kzalloc(&adev->dev, sizeof(*pdata), GFP_KERNEL);
943 			if (!pdata) {
944 				ret = -ENOMEM;
945 				goto err_no_mem;
946 			}
947 			/* Provide the default configuration as a base. */
948 			memcpy(pdata, &u8500_i2c, sizeof(struct nmk_i2c_controller));
949 			nmk_i2c_of_probe(np, pdata);
950 		} else
951 			/* No i2c configuration found, using the default. */
952 			pdata = &u8500_i2c;
953 	}
954 
955 	dev = kzalloc(sizeof(struct nmk_i2c_dev), GFP_KERNEL);
956 	if (!dev) {
957 		dev_err(&adev->dev, "cannot allocate memory\n");
958 		ret = -ENOMEM;
959 		goto err_no_mem;
960 	}
961 	dev->busy = false;
962 	dev->adev = adev;
963 	amba_set_drvdata(adev, dev);
964 
965 	dev->virtbase = ioremap(adev->res.start, resource_size(&adev->res));
966 	if (!dev->virtbase) {
967 		ret = -ENOMEM;
968 		goto err_no_ioremap;
969 	}
970 
971 	dev->irq = adev->irq[0];
972 	ret = request_irq(dev->irq, i2c_irq_handler, 0,
973 				DRIVER_NAME, dev);
974 	if (ret) {
975 		dev_err(&adev->dev, "cannot claim the irq %d\n", dev->irq);
976 		goto err_irq;
977 	}
978 
979 	pm_suspend_ignore_children(&adev->dev, true);
980 
981 	dev->clk = clk_get(&adev->dev, NULL);
982 	if (IS_ERR(dev->clk)) {
983 		dev_err(&adev->dev, "could not get i2c clock\n");
984 		ret = PTR_ERR(dev->clk);
985 		goto err_no_clk;
986 	}
987 
988 	adap = &dev->adap;
989 	adap->dev.of_node = np;
990 	adap->dev.parent = &adev->dev;
991 	adap->owner	= THIS_MODULE;
992 	adap->class	= I2C_CLASS_HWMON | I2C_CLASS_SPD;
993 	adap->algo	= &nmk_i2c_algo;
994 	adap->timeout	= msecs_to_jiffies(pdata->timeout);
995 	adap->nr = atomic_read(&adapter_id);
996 	snprintf(adap->name, sizeof(adap->name),
997 		 "Nomadik I2C%d at %pR", adap->nr, &adev->res);
998 	atomic_inc(&adapter_id);
999 
1000 	/* fetch the controller configuration from machine */
1001 	dev->cfg.clk_freq = pdata->clk_freq;
1002 	dev->cfg.slsu	= pdata->slsu;
1003 	dev->cfg.tft	= pdata->tft;
1004 	dev->cfg.rft	= pdata->rft;
1005 	dev->cfg.sm	= pdata->sm;
1006 
1007 	i2c_set_adapdata(adap, dev);
1008 
1009 	dev_info(&adev->dev,
1010 		 "initialize %s on virtual base %p\n",
1011 		 adap->name, dev->virtbase);
1012 
1013 	ret = i2c_add_numbered_adapter(adap);
1014 	if (ret) {
1015 		dev_err(&adev->dev, "failed to add adapter\n");
1016 		goto err_add_adap;
1017 	}
1018 
1019 	of_i2c_register_devices(adap);
1020 
1021 	pm_runtime_put(&adev->dev);
1022 
1023 	return 0;
1024 
1025  err_add_adap:
1026 	clk_put(dev->clk);
1027  err_no_clk:
1028 	free_irq(dev->irq, dev);
1029  err_irq:
1030 	iounmap(dev->virtbase);
1031  err_no_ioremap:
1032 	amba_set_drvdata(adev, NULL);
1033 	kfree(dev);
1034  err_no_mem:
1035 
1036 	return ret;
1037 }
1038 
1039 static int nmk_i2c_remove(struct amba_device *adev)
1040 {
1041 	struct resource *res = &adev->res;
1042 	struct nmk_i2c_dev *dev = amba_get_drvdata(adev);
1043 
1044 	i2c_del_adapter(&dev->adap);
1045 	flush_i2c_fifo(dev);
1046 	disable_all_interrupts(dev);
1047 	clear_all_interrupts(dev);
1048 	/* disable the controller */
1049 	i2c_clr_bit(dev->virtbase + I2C_CR, I2C_CR_PE);
1050 	free_irq(dev->irq, dev);
1051 	iounmap(dev->virtbase);
1052 	if (res)
1053 		release_mem_region(res->start, resource_size(res));
1054 	clk_put(dev->clk);
1055 	pm_runtime_disable(&adev->dev);
1056 	amba_set_drvdata(adev, NULL);
1057 	kfree(dev);
1058 
1059 	return 0;
1060 }
1061 
1062 static struct amba_id nmk_i2c_ids[] = {
1063 	{
1064 		.id	= 0x00180024,
1065 		.mask	= 0x00ffffff,
1066 	},
1067 	{
1068 		.id	= 0x00380024,
1069 		.mask	= 0x00ffffff,
1070 	},
1071 	{},
1072 };
1073 
1074 MODULE_DEVICE_TABLE(amba, nmk_i2c_ids);
1075 
1076 static struct amba_driver nmk_i2c_driver = {
1077 	.drv = {
1078 		.owner = THIS_MODULE,
1079 		.name = DRIVER_NAME,
1080 		.pm = &nmk_i2c_pm,
1081 	},
1082 	.id_table = nmk_i2c_ids,
1083 	.probe = nmk_i2c_probe,
1084 	.remove = nmk_i2c_remove,
1085 };
1086 
1087 static int __init nmk_i2c_init(void)
1088 {
1089 	return amba_driver_register(&nmk_i2c_driver);
1090 }
1091 
1092 static void __exit nmk_i2c_exit(void)
1093 {
1094 	amba_driver_unregister(&nmk_i2c_driver);
1095 }
1096 
1097 subsys_initcall(nmk_i2c_init);
1098 module_exit(nmk_i2c_exit);
1099 
1100 MODULE_AUTHOR("Sachin Verma, Srinidhi KASAGAR");
1101 MODULE_DESCRIPTION("Nomadik/Ux500 I2C driver");
1102 MODULE_LICENSE("GPL");
1103