xref: /linux/drivers/i2c/busses/i2c-mxs.c (revision 881f1bb5e25c8982ed963b2d319fc0fc732e55db)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Freescale MXS I2C bus driver
4  *
5  * Copyright (C) 2012-2013 Marek Vasut <marex@denx.de>
6  * Copyright (C) 2011-2012 Wolfram Sang, Pengutronix e.K.
7  *
8  * based on a (non-working) driver which was:
9  *
10  * Copyright (C) 2009-2010 Freescale Semiconductor, Inc. All Rights Reserved.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/device.h>
15 #include <linux/module.h>
16 #include <linux/i2c.h>
17 #include <linux/err.h>
18 #include <linux/interrupt.h>
19 #include <linux/completion.h>
20 #include <linux/platform_device.h>
21 #include <linux/jiffies.h>
22 #include <linux/io.h>
23 #include <linux/stmp_device.h>
24 #include <linux/of.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/dmaengine.h>
27 #include <linux/dma/mxs-dma.h>
28 
29 #define DRIVER_NAME "mxs-i2c"
30 
31 #define MXS_I2C_CTRL0		(0x00)
32 #define MXS_I2C_CTRL0_SET	(0x04)
33 #define MXS_I2C_CTRL0_CLR	(0x08)
34 
35 #define MXS_I2C_CTRL0_SFTRST			0x80000000
36 #define MXS_I2C_CTRL0_RUN			0x20000000
37 #define MXS_I2C_CTRL0_SEND_NAK_ON_LAST		0x02000000
38 #define MXS_I2C_CTRL0_PIO_MODE			0x01000000
39 #define MXS_I2C_CTRL0_RETAIN_CLOCK		0x00200000
40 #define MXS_I2C_CTRL0_POST_SEND_STOP		0x00100000
41 #define MXS_I2C_CTRL0_PRE_SEND_START		0x00080000
42 #define MXS_I2C_CTRL0_MASTER_MODE		0x00020000
43 #define MXS_I2C_CTRL0_DIRECTION			0x00010000
44 #define MXS_I2C_CTRL0_XFER_COUNT(v)		((v) & 0x0000FFFF)
45 
46 #define MXS_I2C_TIMING0		(0x10)
47 #define MXS_I2C_TIMING1		(0x20)
48 #define MXS_I2C_TIMING2		(0x30)
49 
50 #define MXS_I2C_CTRL1		(0x40)
51 #define MXS_I2C_CTRL1_SET	(0x44)
52 #define MXS_I2C_CTRL1_CLR	(0x48)
53 
54 #define MXS_I2C_CTRL1_CLR_GOT_A_NAK		0x10000000
55 #define MXS_I2C_CTRL1_BUS_FREE_IRQ		0x80
56 #define MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ	0x40
57 #define MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ		0x20
58 #define MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ	0x10
59 #define MXS_I2C_CTRL1_EARLY_TERM_IRQ		0x08
60 #define MXS_I2C_CTRL1_MASTER_LOSS_IRQ		0x04
61 #define MXS_I2C_CTRL1_SLAVE_STOP_IRQ		0x02
62 #define MXS_I2C_CTRL1_SLAVE_IRQ			0x01
63 
64 #define MXS_I2C_STAT		(0x50)
65 #define MXS_I2C_STAT_GOT_A_NAK			0x10000000
66 #define MXS_I2C_STAT_BUS_BUSY			0x00000800
67 #define MXS_I2C_STAT_CLK_GEN_BUSY		0x00000400
68 
69 #define MXS_I2C_DATA(i2c)	((i2c->dev_type == MXS_I2C_V1) ? 0x60 : 0xa0)
70 
71 #define MXS_I2C_DEBUG0_CLR(i2c)	((i2c->dev_type == MXS_I2C_V1) ? 0x78 : 0xb8)
72 
73 #define MXS_I2C_DEBUG0_DMAREQ	0x80000000
74 
75 #define MXS_I2C_IRQ_MASK	(MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ | \
76 				 MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ | \
77 				 MXS_I2C_CTRL1_EARLY_TERM_IRQ | \
78 				 MXS_I2C_CTRL1_MASTER_LOSS_IRQ | \
79 				 MXS_I2C_CTRL1_SLAVE_STOP_IRQ | \
80 				 MXS_I2C_CTRL1_SLAVE_IRQ)
81 
82 
83 #define MXS_CMD_I2C_SELECT	(MXS_I2C_CTRL0_RETAIN_CLOCK |	\
84 				 MXS_I2C_CTRL0_PRE_SEND_START |	\
85 				 MXS_I2C_CTRL0_MASTER_MODE |	\
86 				 MXS_I2C_CTRL0_DIRECTION |	\
87 				 MXS_I2C_CTRL0_XFER_COUNT(1))
88 
89 #define MXS_CMD_I2C_WRITE	(MXS_I2C_CTRL0_PRE_SEND_START |	\
90 				 MXS_I2C_CTRL0_MASTER_MODE |	\
91 				 MXS_I2C_CTRL0_DIRECTION)
92 
93 #define MXS_CMD_I2C_READ	(MXS_I2C_CTRL0_SEND_NAK_ON_LAST | \
94 				 MXS_I2C_CTRL0_MASTER_MODE)
95 
96 enum mxs_i2c_devtype {
97 	MXS_I2C_UNKNOWN = 0,
98 	MXS_I2C_V1,
99 	MXS_I2C_V2,
100 };
101 
102 /**
103  * struct mxs_i2c_dev - per device, private MXS-I2C data
104  *
105  * @dev: driver model device node
106  * @dev_type: distinguish i.MX23/i.MX28 features
107  * @regs: IO registers pointer
108  * @cmd_complete: completion object for transaction wait
109  * @cmd_err: error code for last transaction
110  * @adapter: i2c subsystem adapter node
111  */
112 struct mxs_i2c_dev {
113 	struct device *dev;
114 	enum mxs_i2c_devtype dev_type;
115 	void __iomem *regs;
116 	struct completion cmd_complete;
117 	int cmd_err;
118 	struct i2c_adapter adapter;
119 
120 	uint32_t timing0;
121 	uint32_t timing1;
122 	uint32_t timing2;
123 
124 	/* DMA support components */
125 	struct dma_chan			*dmach;
126 	uint32_t			pio_data[2];
127 	uint32_t			addr_data;
128 	struct scatterlist		sg_io[2];
129 	bool				dma_read;
130 };
131 
132 static int mxs_i2c_reset(struct mxs_i2c_dev *i2c)
133 {
134 	int ret = stmp_reset_block(i2c->regs);
135 	if (ret)
136 		return ret;
137 
138 	/*
139 	 * Configure timing for the I2C block. The I2C TIMING2 register has to
140 	 * be programmed with this particular magic number. The rest is derived
141 	 * from the XTAL speed and requested I2C speed.
142 	 *
143 	 * For details, see i.MX233 [25.4.2 - 25.4.4] and i.MX28 [27.5.2 - 27.5.4].
144 	 */
145 	writel(i2c->timing0, i2c->regs + MXS_I2C_TIMING0);
146 	writel(i2c->timing1, i2c->regs + MXS_I2C_TIMING1);
147 	writel(i2c->timing2, i2c->regs + MXS_I2C_TIMING2);
148 
149 	writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET);
150 
151 	return 0;
152 }
153 
154 static void mxs_i2c_dma_finish(struct mxs_i2c_dev *i2c)
155 {
156 	if (i2c->dma_read) {
157 		dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
158 		dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
159 	} else {
160 		dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
161 	}
162 }
163 
164 static void mxs_i2c_dma_irq_callback(void *param)
165 {
166 	struct mxs_i2c_dev *i2c = param;
167 
168 	complete(&i2c->cmd_complete);
169 	mxs_i2c_dma_finish(i2c);
170 }
171 
172 static int mxs_i2c_dma_setup_xfer(struct i2c_adapter *adap,
173 			struct i2c_msg *msg, u8 *buf, uint32_t flags)
174 {
175 	struct dma_async_tx_descriptor *desc;
176 	struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
177 
178 	i2c->addr_data = i2c_8bit_addr_from_msg(msg);
179 
180 	if (msg->flags & I2C_M_RD) {
181 		i2c->dma_read = true;
182 
183 		/*
184 		 * SELECT command.
185 		 */
186 
187 		/* Queue the PIO register write transfer. */
188 		i2c->pio_data[0] = MXS_CMD_I2C_SELECT;
189 		desc = dmaengine_prep_slave_sg(i2c->dmach,
190 					(struct scatterlist *)&i2c->pio_data[0],
191 					1, DMA_TRANS_NONE, 0);
192 		if (!desc) {
193 			dev_err(i2c->dev,
194 				"Failed to get PIO reg. write descriptor.\n");
195 			goto select_init_pio_fail;
196 		}
197 
198 		/* Queue the DMA data transfer. */
199 		sg_init_one(&i2c->sg_io[0], &i2c->addr_data, 1);
200 		dma_map_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
201 		desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[0], 1,
202 					DMA_MEM_TO_DEV,
203 					DMA_PREP_INTERRUPT |
204 					MXS_DMA_CTRL_WAIT4END);
205 		if (!desc) {
206 			dev_err(i2c->dev,
207 				"Failed to get DMA data write descriptor.\n");
208 			goto select_init_dma_fail;
209 		}
210 
211 		/*
212 		 * READ command.
213 		 */
214 
215 		/* Queue the PIO register write transfer. */
216 		i2c->pio_data[1] = flags | MXS_CMD_I2C_READ |
217 				MXS_I2C_CTRL0_XFER_COUNT(msg->len);
218 		desc = dmaengine_prep_slave_sg(i2c->dmach,
219 					(struct scatterlist *)&i2c->pio_data[1],
220 					1, DMA_TRANS_NONE, DMA_PREP_INTERRUPT);
221 		if (!desc) {
222 			dev_err(i2c->dev,
223 				"Failed to get PIO reg. write descriptor.\n");
224 			goto select_init_dma_fail;
225 		}
226 
227 		/* Queue the DMA data transfer. */
228 		sg_init_one(&i2c->sg_io[1], buf, msg->len);
229 		dma_map_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
230 		desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[1], 1,
231 					DMA_DEV_TO_MEM,
232 					DMA_PREP_INTERRUPT |
233 					MXS_DMA_CTRL_WAIT4END);
234 		if (!desc) {
235 			dev_err(i2c->dev,
236 				"Failed to get DMA data write descriptor.\n");
237 			goto read_init_dma_fail;
238 		}
239 	} else {
240 		i2c->dma_read = false;
241 
242 		/*
243 		 * WRITE command.
244 		 */
245 
246 		/* Queue the PIO register write transfer. */
247 		i2c->pio_data[0] = flags | MXS_CMD_I2C_WRITE |
248 				MXS_I2C_CTRL0_XFER_COUNT(msg->len + 1);
249 		desc = dmaengine_prep_slave_sg(i2c->dmach,
250 					(struct scatterlist *)&i2c->pio_data[0],
251 					1, DMA_TRANS_NONE, 0);
252 		if (!desc) {
253 			dev_err(i2c->dev,
254 				"Failed to get PIO reg. write descriptor.\n");
255 			goto write_init_pio_fail;
256 		}
257 
258 		/* Queue the DMA data transfer. */
259 		sg_init_table(i2c->sg_io, 2);
260 		sg_set_buf(&i2c->sg_io[0], &i2c->addr_data, 1);
261 		sg_set_buf(&i2c->sg_io[1], buf, msg->len);
262 		dma_map_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
263 		desc = dmaengine_prep_slave_sg(i2c->dmach, i2c->sg_io, 2,
264 					DMA_MEM_TO_DEV,
265 					DMA_PREP_INTERRUPT |
266 					MXS_DMA_CTRL_WAIT4END);
267 		if (!desc) {
268 			dev_err(i2c->dev,
269 				"Failed to get DMA data write descriptor.\n");
270 			goto write_init_dma_fail;
271 		}
272 	}
273 
274 	/*
275 	 * The last descriptor must have this callback,
276 	 * to finish the DMA transaction.
277 	 */
278 	desc->callback = mxs_i2c_dma_irq_callback;
279 	desc->callback_param = i2c;
280 
281 	/* Start the transfer. */
282 	dmaengine_submit(desc);
283 	dma_async_issue_pending(i2c->dmach);
284 	return 0;
285 
286 /* Read failpath. */
287 read_init_dma_fail:
288 	dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
289 select_init_dma_fail:
290 	dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
291 select_init_pio_fail:
292 	dmaengine_terminate_sync(i2c->dmach);
293 	return -EINVAL;
294 
295 /* Write failpath. */
296 write_init_dma_fail:
297 	dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
298 write_init_pio_fail:
299 	dmaengine_terminate_sync(i2c->dmach);
300 	return -EINVAL;
301 }
302 
303 static int mxs_i2c_pio_wait_xfer_end(struct mxs_i2c_dev *i2c)
304 {
305 	unsigned long timeout = jiffies + msecs_to_jiffies(1000);
306 
307 	while (readl(i2c->regs + MXS_I2C_CTRL0) & MXS_I2C_CTRL0_RUN) {
308 		if (readl(i2c->regs + MXS_I2C_CTRL1) &
309 				MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
310 			return -ENXIO;
311 		if (time_after(jiffies, timeout))
312 			return -ETIMEDOUT;
313 		cond_resched();
314 	}
315 
316 	return 0;
317 }
318 
319 static int mxs_i2c_pio_check_error_state(struct mxs_i2c_dev *i2c)
320 {
321 	u32 state;
322 
323 	state = readl(i2c->regs + MXS_I2C_CTRL1_CLR) & MXS_I2C_IRQ_MASK;
324 
325 	if (state & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
326 		i2c->cmd_err = -ENXIO;
327 	else if (state & (MXS_I2C_CTRL1_EARLY_TERM_IRQ |
328 			  MXS_I2C_CTRL1_MASTER_LOSS_IRQ |
329 			  MXS_I2C_CTRL1_SLAVE_STOP_IRQ |
330 			  MXS_I2C_CTRL1_SLAVE_IRQ))
331 		i2c->cmd_err = -EIO;
332 
333 	return i2c->cmd_err;
334 }
335 
336 static void mxs_i2c_pio_trigger_cmd(struct mxs_i2c_dev *i2c, u32 cmd)
337 {
338 	u32 reg;
339 
340 	writel(cmd, i2c->regs + MXS_I2C_CTRL0);
341 
342 	/* readback makes sure the write is latched into hardware */
343 	reg = readl(i2c->regs + MXS_I2C_CTRL0);
344 	reg |= MXS_I2C_CTRL0_RUN;
345 	writel(reg, i2c->regs + MXS_I2C_CTRL0);
346 }
347 
348 /*
349  * Start WRITE transaction on the I2C bus. By studying i.MX23 datasheet,
350  * CTRL0::PIO_MODE bit description clarifies the order in which the registers
351  * must be written during PIO mode operation. First, the CTRL0 register has
352  * to be programmed with all the necessary bits but the RUN bit. Then the
353  * payload has to be written into the DATA register. Finally, the transmission
354  * is executed by setting the RUN bit in CTRL0.
355  */
356 static void mxs_i2c_pio_trigger_write_cmd(struct mxs_i2c_dev *i2c, u32 cmd,
357 					  u32 data)
358 {
359 	writel(cmd, i2c->regs + MXS_I2C_CTRL0);
360 
361 	if (i2c->dev_type == MXS_I2C_V1)
362 		writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_SET);
363 
364 	writel(data, i2c->regs + MXS_I2C_DATA(i2c));
365 	writel(MXS_I2C_CTRL0_RUN, i2c->regs + MXS_I2C_CTRL0_SET);
366 }
367 
368 static int mxs_i2c_pio_setup_xfer(struct i2c_adapter *adap,
369 			struct i2c_msg *msg, uint32_t flags)
370 {
371 	struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
372 	uint32_t addr_data = i2c_8bit_addr_from_msg(msg);
373 	uint32_t data = 0;
374 	int i, ret, xlen = 0, xmit = 0;
375 	uint32_t start;
376 
377 	/* Mute IRQs coming from this block. */
378 	writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_CLR);
379 
380 	/*
381 	 * MX23 idea:
382 	 * - Enable CTRL0::PIO_MODE (1 << 24)
383 	 * - Enable CTRL1::ACK_MODE (1 << 27)
384 	 *
385 	 * WARNING! The MX23 is broken in some way, even if it claims
386 	 * to support PIO, when we try to transfer any amount of data
387 	 * that is not aligned to 4 bytes, the DMA engine will have
388 	 * bits in DEBUG1::DMA_BYTES_ENABLES still set even after the
389 	 * transfer. This in turn will mess up the next transfer as
390 	 * the block it emit one byte write onto the bus terminated
391 	 * with a NAK+STOP. A possible workaround is to reset the IP
392 	 * block after every PIO transmission, which might just work.
393 	 *
394 	 * NOTE: The CTRL0::PIO_MODE description is important, since
395 	 * it outlines how the PIO mode is really supposed to work.
396 	 */
397 	if (msg->flags & I2C_M_RD) {
398 		/*
399 		 * PIO READ transfer:
400 		 *
401 		 * This transfer MUST be limited to 4 bytes maximum. It is not
402 		 * possible to transfer more than four bytes via PIO, since we
403 		 * can not in any way make sure we can read the data from the
404 		 * DATA register fast enough. Besides, the RX FIFO is only four
405 		 * bytes deep, thus we can only really read up to four bytes at
406 		 * time. Finally, there is no bit indicating us that new data
407 		 * arrived at the FIFO and can thus be fetched from the DATA
408 		 * register.
409 		 */
410 		BUG_ON(msg->len > 4);
411 
412 		/* SELECT command. */
413 		mxs_i2c_pio_trigger_write_cmd(i2c, MXS_CMD_I2C_SELECT,
414 					      addr_data);
415 
416 		ret = mxs_i2c_pio_wait_xfer_end(i2c);
417 		if (ret) {
418 			dev_dbg(i2c->dev,
419 				"PIO: Failed to send SELECT command!\n");
420 			goto cleanup;
421 		}
422 
423 		/* READ command. */
424 		mxs_i2c_pio_trigger_cmd(i2c,
425 					MXS_CMD_I2C_READ | flags |
426 					MXS_I2C_CTRL0_XFER_COUNT(msg->len));
427 
428 		ret = mxs_i2c_pio_wait_xfer_end(i2c);
429 		if (ret) {
430 			dev_dbg(i2c->dev,
431 				"PIO: Failed to send READ command!\n");
432 			goto cleanup;
433 		}
434 
435 		data = readl(i2c->regs + MXS_I2C_DATA(i2c));
436 		for (i = 0; i < msg->len; i++) {
437 			msg->buf[i] = data & 0xff;
438 			data >>= 8;
439 		}
440 	} else {
441 		/*
442 		 * PIO WRITE transfer:
443 		 *
444 		 * The code below implements clock stretching to circumvent
445 		 * the possibility of kernel not being able to supply data
446 		 * fast enough. It is possible to transfer arbitrary amount
447 		 * of data using PIO write.
448 		 */
449 
450 		/*
451 		 * The LSB of data buffer is the first byte blasted across
452 		 * the bus. Higher order bytes follow. Thus the following
453 		 * filling schematic.
454 		 */
455 
456 		data = addr_data << 24;
457 
458 		/* Start the transfer with START condition. */
459 		start = MXS_I2C_CTRL0_PRE_SEND_START;
460 
461 		/* If the transfer is long, use clock stretching. */
462 		if (msg->len > 3)
463 			start |= MXS_I2C_CTRL0_RETAIN_CLOCK;
464 
465 		for (i = 0; i < msg->len; i++) {
466 			data >>= 8;
467 			data |= (msg->buf[i] << 24);
468 
469 			xmit = 0;
470 
471 			/* This is the last transfer of the message. */
472 			if (i + 1 == msg->len) {
473 				/* Add optional STOP flag. */
474 				start |= flags;
475 				/* Remove RETAIN_CLOCK bit. */
476 				start &= ~MXS_I2C_CTRL0_RETAIN_CLOCK;
477 				xmit = 1;
478 			}
479 
480 			/* Four bytes are ready in the "data" variable. */
481 			if ((i & 3) == 2)
482 				xmit = 1;
483 
484 			/* Nothing interesting happened, continue stuffing. */
485 			if (!xmit)
486 				continue;
487 
488 			/*
489 			 * Compute the size of the transfer and shift the
490 			 * data accordingly.
491 			 *
492 			 * i = (4k + 0) .... xlen = 2
493 			 * i = (4k + 1) .... xlen = 3
494 			 * i = (4k + 2) .... xlen = 4
495 			 * i = (4k + 3) .... xlen = 1
496 			 */
497 
498 			if ((i % 4) == 3)
499 				xlen = 1;
500 			else
501 				xlen = (i % 4) + 2;
502 
503 			data >>= (4 - xlen) * 8;
504 
505 			dev_dbg(i2c->dev,
506 				"PIO: len=%i pos=%i total=%i [W%s%s%s]\n",
507 				xlen, i, msg->len,
508 				start & MXS_I2C_CTRL0_PRE_SEND_START ? "S" : "",
509 				start & MXS_I2C_CTRL0_POST_SEND_STOP ? "E" : "",
510 				start & MXS_I2C_CTRL0_RETAIN_CLOCK ? "C" : "");
511 
512 			writel(MXS_I2C_DEBUG0_DMAREQ,
513 			       i2c->regs + MXS_I2C_DEBUG0_CLR(i2c));
514 
515 			mxs_i2c_pio_trigger_write_cmd(i2c,
516 				start | MXS_I2C_CTRL0_MASTER_MODE |
517 				MXS_I2C_CTRL0_DIRECTION |
518 				MXS_I2C_CTRL0_XFER_COUNT(xlen), data);
519 
520 			/* The START condition is sent only once. */
521 			start &= ~MXS_I2C_CTRL0_PRE_SEND_START;
522 
523 			/* Wait for the end of the transfer. */
524 			ret = mxs_i2c_pio_wait_xfer_end(i2c);
525 			if (ret) {
526 				dev_dbg(i2c->dev,
527 					"PIO: Failed to finish WRITE cmd!\n");
528 				break;
529 			}
530 
531 			/* Check NAK here. */
532 			ret = readl(i2c->regs + MXS_I2C_STAT) &
533 				    MXS_I2C_STAT_GOT_A_NAK;
534 			if (ret) {
535 				ret = -ENXIO;
536 				goto cleanup;
537 			}
538 		}
539 	}
540 
541 	/* make sure we capture any occurred error into cmd_err */
542 	ret = mxs_i2c_pio_check_error_state(i2c);
543 
544 cleanup:
545 	/* Clear any dangling IRQs and re-enable interrupts. */
546 	writel(MXS_I2C_IRQ_MASK, i2c->regs + MXS_I2C_CTRL1_CLR);
547 	writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET);
548 
549 	/* Clear the PIO_MODE on i.MX23 */
550 	if (i2c->dev_type == MXS_I2C_V1)
551 		writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_CLR);
552 
553 	return ret;
554 }
555 
556 /*
557  * Low level master read/write transaction.
558  */
559 static int mxs_i2c_xfer_msg(struct i2c_adapter *adap, struct i2c_msg *msg,
560 				int stop)
561 {
562 	struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
563 	int ret;
564 	int flags;
565 	u8 *dma_buf;
566 	int use_pio = 0;
567 	unsigned long time_left;
568 
569 	flags = stop ? MXS_I2C_CTRL0_POST_SEND_STOP : 0;
570 
571 	dev_dbg(i2c->dev, "addr: 0x%04x, len: %d, flags: 0x%x, stop: %d\n",
572 		msg->addr, msg->len, msg->flags, stop);
573 
574 	/*
575 	 * The MX28 I2C IP block can only do PIO READ for transfer of to up
576 	 * 4 bytes of length. The write transfer is not limited as it can use
577 	 * clock stretching to avoid FIFO underruns.
578 	 */
579 	if ((msg->flags & I2C_M_RD) && (msg->len <= 4))
580 		use_pio = 1;
581 	if (!(msg->flags & I2C_M_RD) && (msg->len < 7))
582 		use_pio = 1;
583 
584 	i2c->cmd_err = 0;
585 	if (use_pio) {
586 		ret = mxs_i2c_pio_setup_xfer(adap, msg, flags);
587 		/* No need to reset the block if NAK was received. */
588 		if (ret && (ret != -ENXIO))
589 			mxs_i2c_reset(i2c);
590 	} else {
591 		dma_buf = i2c_get_dma_safe_msg_buf(msg, 1);
592 		if (!dma_buf)
593 			return -ENOMEM;
594 
595 		reinit_completion(&i2c->cmd_complete);
596 		ret = mxs_i2c_dma_setup_xfer(adap, msg, dma_buf, flags);
597 		if (ret) {
598 			i2c_put_dma_safe_msg_buf(dma_buf, msg, false);
599 			return ret;
600 		}
601 
602 		time_left = wait_for_completion_timeout(&i2c->cmd_complete,
603 						msecs_to_jiffies(1000));
604 		i2c_put_dma_safe_msg_buf(dma_buf, msg, true);
605 		if (!time_left)
606 			goto timeout;
607 
608 		ret = i2c->cmd_err;
609 	}
610 
611 	if (ret == -ENXIO) {
612 		/*
613 		 * If the transfer fails with a NAK from the slave the
614 		 * controller halts until it gets told to return to idle state.
615 		 */
616 		writel(MXS_I2C_CTRL1_CLR_GOT_A_NAK,
617 		       i2c->regs + MXS_I2C_CTRL1_SET);
618 	}
619 
620 	/*
621 	 * WARNING!
622 	 * The i.MX23 is strange. After each and every operation, it's I2C IP
623 	 * block must be reset, otherwise the IP block will misbehave. This can
624 	 * be observed on the bus by the block sending out one single byte onto
625 	 * the bus. In case such an error happens, bit 27 will be set in the
626 	 * DEBUG0 register. This bit is not documented in the i.MX23 datasheet
627 	 * and is marked as "TBD" instead. To reset this bit to a correct state,
628 	 * reset the whole block. Since the block reset does not take long, do
629 	 * reset the block after every transfer to play safe.
630 	 */
631 	if (i2c->dev_type == MXS_I2C_V1)
632 		mxs_i2c_reset(i2c);
633 
634 	dev_dbg(i2c->dev, "Done with err=%d\n", ret);
635 
636 	return ret;
637 
638 timeout:
639 	dev_dbg(i2c->dev, "Timeout!\n");
640 	mxs_i2c_dma_finish(i2c);
641 	ret = mxs_i2c_reset(i2c);
642 	if (ret)
643 		return ret;
644 
645 	return -ETIMEDOUT;
646 }
647 
648 static int mxs_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[],
649 			int num)
650 {
651 	int i;
652 	int err;
653 
654 	for (i = 0; i < num; i++) {
655 		err = mxs_i2c_xfer_msg(adap, &msgs[i], i == (num - 1));
656 		if (err)
657 			return err;
658 	}
659 
660 	return num;
661 }
662 
663 static u32 mxs_i2c_func(struct i2c_adapter *adap)
664 {
665 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
666 }
667 
668 static irqreturn_t mxs_i2c_isr(int this_irq, void *dev_id)
669 {
670 	struct mxs_i2c_dev *i2c = dev_id;
671 	u32 stat = readl(i2c->regs + MXS_I2C_CTRL1) & MXS_I2C_IRQ_MASK;
672 
673 	if (!stat)
674 		return IRQ_NONE;
675 
676 	if (stat & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
677 		i2c->cmd_err = -ENXIO;
678 	else if (stat & (MXS_I2C_CTRL1_EARLY_TERM_IRQ |
679 		    MXS_I2C_CTRL1_MASTER_LOSS_IRQ |
680 		    MXS_I2C_CTRL1_SLAVE_STOP_IRQ | MXS_I2C_CTRL1_SLAVE_IRQ))
681 		/* MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ is only for slaves */
682 		i2c->cmd_err = -EIO;
683 
684 	writel(stat, i2c->regs + MXS_I2C_CTRL1_CLR);
685 
686 	return IRQ_HANDLED;
687 }
688 
689 static const struct i2c_algorithm mxs_i2c_algo = {
690 	.master_xfer = mxs_i2c_xfer,
691 	.functionality = mxs_i2c_func,
692 };
693 
694 static const struct i2c_adapter_quirks mxs_i2c_quirks = {
695 	.flags = I2C_AQ_NO_ZERO_LEN,
696 };
697 
698 static void mxs_i2c_derive_timing(struct mxs_i2c_dev *i2c, uint32_t speed)
699 {
700 	/* The I2C block clock runs at 24MHz */
701 	const uint32_t clk = 24000000;
702 	uint32_t divider;
703 	uint16_t high_count, low_count, rcv_count, xmit_count;
704 	uint32_t bus_free, leadin;
705 	struct device *dev = i2c->dev;
706 
707 	divider = DIV_ROUND_UP(clk, speed);
708 
709 	if (divider < 25) {
710 		/*
711 		 * limit the divider, so that min(low_count, high_count)
712 		 * is >= 1
713 		 */
714 		divider = 25;
715 		dev_warn(dev,
716 			"Speed too high (%u.%03u kHz), using %u.%03u kHz\n",
717 			speed / 1000, speed % 1000,
718 			clk / divider / 1000, clk / divider % 1000);
719 	} else if (divider > 1897) {
720 		/*
721 		 * limit the divider, so that max(low_count, high_count)
722 		 * cannot exceed 1023
723 		 */
724 		divider = 1897;
725 		dev_warn(dev,
726 			"Speed too low (%u.%03u kHz), using %u.%03u kHz\n",
727 			speed / 1000, speed % 1000,
728 			clk / divider / 1000, clk / divider % 1000);
729 	}
730 
731 	/*
732 	 * The I2C spec specifies the following timing data:
733 	 *                          standard mode  fast mode Bitfield name
734 	 * tLOW (SCL LOW period)     4700 ns        1300 ns
735 	 * tHIGH (SCL HIGH period)   4000 ns         600 ns
736 	 * tSU;DAT (data setup time)  250 ns         100 ns
737 	 * tHD;STA (START hold time) 4000 ns         600 ns
738 	 * tBUF (bus free time)      4700 ns        1300 ns
739 	 *
740 	 * The hardware (of the i.MX28 at least) seems to add 2 additional
741 	 * clock cycles to the low_count and 7 cycles to the high_count.
742 	 * This is compensated for by subtracting the respective constants
743 	 * from the values written to the timing registers.
744 	 */
745 	if (speed > I2C_MAX_STANDARD_MODE_FREQ) {
746 		/* fast mode */
747 		low_count = DIV_ROUND_CLOSEST(divider * 13, (13 + 6));
748 		high_count = DIV_ROUND_CLOSEST(divider * 6, (13 + 6));
749 		leadin = DIV_ROUND_UP(600 * (clk / 1000000), 1000);
750 		bus_free = DIV_ROUND_UP(1300 * (clk / 1000000), 1000);
751 	} else {
752 		/* normal mode */
753 		low_count = DIV_ROUND_CLOSEST(divider * 47, (47 + 40));
754 		high_count = DIV_ROUND_CLOSEST(divider * 40, (47 + 40));
755 		leadin = DIV_ROUND_UP(4700 * (clk / 1000000), 1000);
756 		bus_free = DIV_ROUND_UP(4700 * (clk / 1000000), 1000);
757 	}
758 	rcv_count = high_count * 3 / 8;
759 	xmit_count = low_count * 3 / 8;
760 
761 	dev_dbg(dev,
762 		"speed=%u(actual %u) divider=%u low=%u high=%u xmit=%u rcv=%u leadin=%u bus_free=%u\n",
763 		speed, clk / divider, divider, low_count, high_count,
764 		xmit_count, rcv_count, leadin, bus_free);
765 
766 	low_count -= 2;
767 	high_count -= 7;
768 	i2c->timing0 = (high_count << 16) | rcv_count;
769 	i2c->timing1 = (low_count << 16) | xmit_count;
770 	i2c->timing2 = (bus_free << 16 | leadin);
771 }
772 
773 static int mxs_i2c_get_ofdata(struct mxs_i2c_dev *i2c)
774 {
775 	uint32_t speed;
776 	struct device *dev = i2c->dev;
777 	struct device_node *node = dev->of_node;
778 	int ret;
779 
780 	ret = of_property_read_u32(node, "clock-frequency", &speed);
781 	if (ret) {
782 		dev_warn(dev, "No I2C speed selected, using 100kHz\n");
783 		speed = I2C_MAX_STANDARD_MODE_FREQ;
784 	}
785 
786 	mxs_i2c_derive_timing(i2c, speed);
787 
788 	return 0;
789 }
790 
791 static const struct of_device_id mxs_i2c_dt_ids[] = {
792 	{ .compatible = "fsl,imx23-i2c", .data = (void *)MXS_I2C_V1, },
793 	{ .compatible = "fsl,imx28-i2c", .data = (void *)MXS_I2C_V2, },
794 	{ /* sentinel */ }
795 };
796 MODULE_DEVICE_TABLE(of, mxs_i2c_dt_ids);
797 
798 static int mxs_i2c_probe(struct platform_device *pdev)
799 {
800 	struct device *dev = &pdev->dev;
801 	struct mxs_i2c_dev *i2c;
802 	struct i2c_adapter *adap;
803 	int err, irq;
804 
805 	i2c = devm_kzalloc(dev, sizeof(*i2c), GFP_KERNEL);
806 	if (!i2c)
807 		return -ENOMEM;
808 
809 	i2c->dev_type = (uintptr_t)of_device_get_match_data(&pdev->dev);
810 
811 	i2c->regs = devm_platform_ioremap_resource(pdev, 0);
812 	if (IS_ERR(i2c->regs))
813 		return PTR_ERR(i2c->regs);
814 
815 	irq = platform_get_irq(pdev, 0);
816 	if (irq < 0)
817 		return irq;
818 
819 	err = devm_request_irq(dev, irq, mxs_i2c_isr, 0, dev_name(dev), i2c);
820 	if (err)
821 		return err;
822 
823 	i2c->dev = dev;
824 
825 	init_completion(&i2c->cmd_complete);
826 
827 	if (dev->of_node) {
828 		err = mxs_i2c_get_ofdata(i2c);
829 		if (err)
830 			return err;
831 	}
832 
833 	/* Setup the DMA */
834 	i2c->dmach = dma_request_chan(dev, "rx-tx");
835 	if (IS_ERR(i2c->dmach)) {
836 		return dev_err_probe(dev, PTR_ERR(i2c->dmach),
837 				     "Failed to request dma\n");
838 	}
839 
840 	platform_set_drvdata(pdev, i2c);
841 
842 	/* Do reset to enforce correct startup after pinmuxing */
843 	err = mxs_i2c_reset(i2c);
844 	if (err)
845 		return err;
846 
847 	adap = &i2c->adapter;
848 	strscpy(adap->name, "MXS I2C adapter", sizeof(adap->name));
849 	adap->owner = THIS_MODULE;
850 	adap->algo = &mxs_i2c_algo;
851 	adap->quirks = &mxs_i2c_quirks;
852 	adap->dev.parent = dev;
853 	adap->nr = pdev->id;
854 	adap->dev.of_node = pdev->dev.of_node;
855 	i2c_set_adapdata(adap, i2c);
856 	err = i2c_add_numbered_adapter(adap);
857 	if (err) {
858 		writel(MXS_I2C_CTRL0_SFTRST,
859 				i2c->regs + MXS_I2C_CTRL0_SET);
860 		return err;
861 	}
862 
863 	return 0;
864 }
865 
866 static void mxs_i2c_remove(struct platform_device *pdev)
867 {
868 	struct mxs_i2c_dev *i2c = platform_get_drvdata(pdev);
869 
870 	i2c_del_adapter(&i2c->adapter);
871 
872 	if (i2c->dmach)
873 		dma_release_channel(i2c->dmach);
874 
875 	writel(MXS_I2C_CTRL0_SFTRST, i2c->regs + MXS_I2C_CTRL0_SET);
876 }
877 
878 static struct platform_driver mxs_i2c_driver = {
879 	.driver = {
880 		   .name = DRIVER_NAME,
881 		   .of_match_table = mxs_i2c_dt_ids,
882 		   },
883 	.probe = mxs_i2c_probe,
884 	.remove_new = mxs_i2c_remove,
885 };
886 
887 static int __init mxs_i2c_init(void)
888 {
889 	return platform_driver_register(&mxs_i2c_driver);
890 }
891 subsys_initcall(mxs_i2c_init);
892 
893 static void __exit mxs_i2c_exit(void)
894 {
895 	platform_driver_unregister(&mxs_i2c_driver);
896 }
897 module_exit(mxs_i2c_exit);
898 
899 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
900 MODULE_AUTHOR("Wolfram Sang <kernel@pengutronix.de>");
901 MODULE_DESCRIPTION("MXS I2C Bus Driver");
902 MODULE_LICENSE("GPL");
903 MODULE_ALIAS("platform:" DRIVER_NAME);
904