xref: /linux/drivers/i2c/busses/i2c-img-scb.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * I2C adapter for the IMG Serial Control Bus (SCB) IP block.
4  *
5  * Copyright (C) 2009, 2010, 2012, 2014 Imagination Technologies Ltd.
6  *
7  * There are three ways that this I2C controller can be driven:
8  *
9  * - Raw control of the SDA and SCK signals.
10  *
11  *   This corresponds to MODE_RAW, which takes control of the signals
12  *   directly for a certain number of clock cycles (the INT_TIMING
13  *   interrupt can be used for timing).
14  *
15  * - Atomic commands. A low level I2C symbol (such as generate
16  *   start/stop/ack/nack bit, generate byte, receive byte, and receive
17  *   ACK) is given to the hardware, with detection of completion by bits
18  *   in the LINESTAT register.
19  *
20  *   This mode of operation is used by MODE_ATOMIC, which uses an I2C
21  *   state machine in the interrupt handler to compose/react to I2C
22  *   transactions using atomic mode commands, and also by MODE_SEQUENCE,
23  *   which emits a simple fixed sequence of atomic mode commands.
24  *
25  *   Due to software control, the use of atomic commands usually results
26  *   in suboptimal use of the bus, with gaps between the I2C symbols while
27  *   the driver decides what to do next.
28  *
29  * - Automatic mode. A bus address, and whether to read/write is
30  *   specified, and the hardware takes care of the I2C state machine,
31  *   using a FIFO to send/receive bytes of data to an I2C slave. The
32  *   driver just has to keep the FIFO drained or filled in response to the
33  *   appropriate FIFO interrupts.
34  *
35  *   This corresponds to MODE_AUTOMATIC, which manages the FIFOs and deals
36  *   with control of repeated start bits between I2C messages.
37  *
38  *   Use of automatic mode and the FIFO can make much more efficient use
39  *   of the bus compared to individual atomic commands, with potentially
40  *   no wasted time between I2C symbols or I2C messages.
41  *
42  * In most cases MODE_AUTOMATIC is used, however if any of the messages in
43  * a transaction are zero byte writes (e.g. used by i2cdetect for probing
44  * the bus), MODE_ATOMIC must be used since automatic mode is normally
45  * started by the writing of data into the FIFO.
46  *
47  * The other modes are used in specific circumstances where MODE_ATOMIC and
48  * MODE_AUTOMATIC aren't appropriate. MODE_RAW is used to implement a bus
49  * recovery routine. MODE_SEQUENCE is used to reset the bus and make sure
50  * it is in a sane state.
51  *
52  * Notice that the driver implements a timer-based timeout mechanism.
53  * The reason for this mechanism is to reduce the number of interrupts
54  * received in automatic mode.
55  *
56  * The driver would get a slave event and transaction done interrupts for
57  * each atomic mode command that gets completed. However, these events are
58  * not needed in automatic mode, becase those atomic mode commands are
59  * managed automatically by the hardware.
60  *
61  * In practice, normal I2C transactions will be complete well before you
62  * get the timer interrupt, as the timer is re-scheduled during FIFO
63  * maintenance and disabled after the transaction is complete.
64  *
65  * In this way normal automatic mode operation isn't impacted by
66  * unnecessary interrupts, but the exceptional abort condition can still be
67  * detected (with a slight delay).
68  */
69 
70 #include <linux/bitops.h>
71 #include <linux/clk.h>
72 #include <linux/completion.h>
73 #include <linux/err.h>
74 #include <linux/i2c.h>
75 #include <linux/init.h>
76 #include <linux/interrupt.h>
77 #include <linux/io.h>
78 #include <linux/kernel.h>
79 #include <linux/module.h>
80 #include <linux/of_platform.h>
81 #include <linux/platform_device.h>
82 #include <linux/pm_runtime.h>
83 #include <linux/slab.h>
84 #include <linux/timer.h>
85 
86 /* Register offsets */
87 
88 #define SCB_STATUS_REG			0x00
89 #define SCB_OVERRIDE_REG		0x04
90 #define SCB_READ_ADDR_REG		0x08
91 #define SCB_READ_COUNT_REG		0x0c
92 #define SCB_WRITE_ADDR_REG		0x10
93 #define SCB_READ_DATA_REG		0x14
94 #define SCB_WRITE_DATA_REG		0x18
95 #define SCB_FIFO_STATUS_REG		0x1c
96 #define SCB_CONTROL_SOFT_RESET		0x1f
97 #define SCB_CLK_SET_REG			0x3c
98 #define SCB_INT_STATUS_REG		0x40
99 #define SCB_INT_CLEAR_REG		0x44
100 #define SCB_INT_MASK_REG		0x48
101 #define SCB_CONTROL_REG			0x4c
102 #define SCB_TIME_TPL_REG		0x50
103 #define SCB_TIME_TPH_REG		0x54
104 #define SCB_TIME_TP2S_REG		0x58
105 #define SCB_TIME_TBI_REG		0x60
106 #define SCB_TIME_TSL_REG		0x64
107 #define SCB_TIME_TDL_REG		0x68
108 #define SCB_TIME_TSDL_REG		0x6c
109 #define SCB_TIME_TSDH_REG		0x70
110 #define SCB_READ_XADDR_REG		0x74
111 #define SCB_WRITE_XADDR_REG		0x78
112 #define SCB_WRITE_COUNT_REG		0x7c
113 #define SCB_CORE_REV_REG		0x80
114 #define SCB_TIME_TCKH_REG		0x84
115 #define SCB_TIME_TCKL_REG		0x88
116 #define SCB_FIFO_FLUSH_REG		0x8c
117 #define SCB_READ_FIFO_REG		0x94
118 #define SCB_CLEAR_REG			0x98
119 
120 /* SCB_CONTROL_REG bits */
121 
122 #define SCB_CONTROL_CLK_ENABLE		0x1e0
123 #define SCB_CONTROL_TRANSACTION_HALT	0x200
124 
125 #define FIFO_READ_FULL			BIT(0)
126 #define FIFO_READ_EMPTY			BIT(1)
127 #define FIFO_WRITE_FULL			BIT(2)
128 #define FIFO_WRITE_EMPTY		BIT(3)
129 
130 /* SCB_CLK_SET_REG bits */
131 #define SCB_FILT_DISABLE		BIT(31)
132 #define SCB_FILT_BYPASS			BIT(30)
133 #define SCB_FILT_INC_MASK		0x7f
134 #define SCB_FILT_INC_SHIFT		16
135 #define SCB_INC_MASK			0x7f
136 #define SCB_INC_SHIFT			8
137 
138 /* SCB_INT_*_REG bits */
139 
140 #define INT_BUS_INACTIVE		BIT(0)
141 #define INT_UNEXPECTED_START		BIT(1)
142 #define INT_SCLK_LOW_TIMEOUT		BIT(2)
143 #define INT_SDAT_LOW_TIMEOUT		BIT(3)
144 #define INT_WRITE_ACK_ERR		BIT(4)
145 #define INT_ADDR_ACK_ERR		BIT(5)
146 #define INT_FIFO_FULL			BIT(9)
147 #define INT_FIFO_FILLING		BIT(10)
148 #define INT_FIFO_EMPTY			BIT(11)
149 #define INT_FIFO_EMPTYING		BIT(12)
150 #define INT_TRANSACTION_DONE		BIT(15)
151 #define INT_SLAVE_EVENT			BIT(16)
152 #define INT_MASTER_HALTED		BIT(17)
153 #define INT_TIMING			BIT(18)
154 #define INT_STOP_DETECTED		BIT(19)
155 
156 #define INT_FIFO_FULL_FILLING	(INT_FIFO_FULL  | INT_FIFO_FILLING)
157 
158 /* Level interrupts need clearing after handling instead of before */
159 #define INT_LEVEL			0x01e00
160 
161 /* Don't allow any interrupts while the clock may be off */
162 #define INT_ENABLE_MASK_INACTIVE	0x00000
163 
164 /* Interrupt masks for the different driver modes */
165 
166 #define INT_ENABLE_MASK_RAW		INT_TIMING
167 
168 #define INT_ENABLE_MASK_ATOMIC		(INT_TRANSACTION_DONE | \
169 					 INT_SLAVE_EVENT      | \
170 					 INT_ADDR_ACK_ERR     | \
171 					 INT_WRITE_ACK_ERR)
172 
173 #define INT_ENABLE_MASK_AUTOMATIC	(INT_SCLK_LOW_TIMEOUT | \
174 					 INT_ADDR_ACK_ERR     | \
175 					 INT_WRITE_ACK_ERR    | \
176 					 INT_FIFO_FULL        | \
177 					 INT_FIFO_FILLING     | \
178 					 INT_FIFO_EMPTY       | \
179 					 INT_MASTER_HALTED    | \
180 					 INT_STOP_DETECTED)
181 
182 #define INT_ENABLE_MASK_WAITSTOP	(INT_SLAVE_EVENT      | \
183 					 INT_ADDR_ACK_ERR     | \
184 					 INT_WRITE_ACK_ERR)
185 
186 /* SCB_STATUS_REG fields */
187 
188 #define LINESTAT_SCLK_LINE_STATUS	BIT(0)
189 #define LINESTAT_SCLK_EN		BIT(1)
190 #define LINESTAT_SDAT_LINE_STATUS	BIT(2)
191 #define LINESTAT_SDAT_EN		BIT(3)
192 #define LINESTAT_DET_START_STATUS	BIT(4)
193 #define LINESTAT_DET_STOP_STATUS	BIT(5)
194 #define LINESTAT_DET_ACK_STATUS		BIT(6)
195 #define LINESTAT_DET_NACK_STATUS	BIT(7)
196 #define LINESTAT_BUS_IDLE		BIT(8)
197 #define LINESTAT_T_DONE_STATUS		BIT(9)
198 #define LINESTAT_SCLK_OUT_STATUS	BIT(10)
199 #define LINESTAT_SDAT_OUT_STATUS	BIT(11)
200 #define LINESTAT_GEN_LINE_MASK_STATUS	BIT(12)
201 #define LINESTAT_START_BIT_DET		BIT(13)
202 #define LINESTAT_STOP_BIT_DET		BIT(14)
203 #define LINESTAT_ACK_DET		BIT(15)
204 #define LINESTAT_NACK_DET		BIT(16)
205 #define LINESTAT_INPUT_HELD_V		BIT(17)
206 #define LINESTAT_ABORT_DET		BIT(18)
207 #define LINESTAT_ACK_OR_NACK_DET	(LINESTAT_ACK_DET | LINESTAT_NACK_DET)
208 #define LINESTAT_INPUT_DATA		0xff000000
209 #define LINESTAT_INPUT_DATA_SHIFT	24
210 
211 #define LINESTAT_CLEAR_SHIFT		13
212 #define LINESTAT_LATCHED		(0x3f << LINESTAT_CLEAR_SHIFT)
213 
214 /* SCB_OVERRIDE_REG fields */
215 
216 #define OVERRIDE_SCLK_OVR		BIT(0)
217 #define OVERRIDE_SCLKEN_OVR		BIT(1)
218 #define OVERRIDE_SDAT_OVR		BIT(2)
219 #define OVERRIDE_SDATEN_OVR		BIT(3)
220 #define OVERRIDE_MASTER			BIT(9)
221 #define OVERRIDE_LINE_OVR_EN		BIT(10)
222 #define OVERRIDE_DIRECT			BIT(11)
223 #define OVERRIDE_CMD_SHIFT		4
224 #define OVERRIDE_CMD_MASK		0x1f
225 #define OVERRIDE_DATA_SHIFT		24
226 
227 #define OVERRIDE_SCLK_DOWN		(OVERRIDE_LINE_OVR_EN | \
228 					 OVERRIDE_SCLKEN_OVR)
229 #define OVERRIDE_SCLK_UP		(OVERRIDE_LINE_OVR_EN | \
230 					 OVERRIDE_SCLKEN_OVR | \
231 					 OVERRIDE_SCLK_OVR)
232 #define OVERRIDE_SDAT_DOWN		(OVERRIDE_LINE_OVR_EN | \
233 					 OVERRIDE_SDATEN_OVR)
234 #define OVERRIDE_SDAT_UP		(OVERRIDE_LINE_OVR_EN | \
235 					 OVERRIDE_SDATEN_OVR | \
236 					 OVERRIDE_SDAT_OVR)
237 
238 /* OVERRIDE_CMD values */
239 
240 #define CMD_PAUSE			0x00
241 #define CMD_GEN_DATA			0x01
242 #define CMD_GEN_START			0x02
243 #define CMD_GEN_STOP			0x03
244 #define CMD_GEN_ACK			0x04
245 #define CMD_GEN_NACK			0x05
246 #define CMD_RET_DATA			0x08
247 #define CMD_RET_ACK			0x09
248 
249 /* Fixed timing values */
250 
251 #define TIMEOUT_TBI			0x0
252 #define TIMEOUT_TSL			0xffff
253 #define TIMEOUT_TDL			0x0
254 
255 /* Transaction timeout */
256 
257 #define IMG_I2C_TIMEOUT			(msecs_to_jiffies(1000))
258 
259 /*
260  * Worst incs are 1 (inaccurate) and 16*256 (irregular).
261  * So a sensible inc is the logarithmic mean: 64 (2^6), which is
262  * in the middle of the valid range (0-127).
263  */
264 #define SCB_OPT_INC		64
265 
266 /* Setup the clock enable filtering for 25 ns */
267 #define SCB_FILT_GLITCH		25
268 
269 /*
270  * Bits to return from interrupt handler functions for different modes.
271  * This delays completion until we've finished with the registers, so that the
272  * function waiting for completion can safely disable the clock to save power.
273  */
274 #define ISR_COMPLETE_M		BIT(31)
275 #define ISR_FATAL_M		BIT(30)
276 #define ISR_WAITSTOP		BIT(29)
277 #define ISR_STATUS_M		0x0000ffff	/* contains +ve errno */
278 #define ISR_COMPLETE(err)	(ISR_COMPLETE_M | (ISR_STATUS_M & (err)))
279 #define ISR_FATAL(err)		(ISR_COMPLETE(err) | ISR_FATAL_M)
280 
281 #define IMG_I2C_PM_TIMEOUT	1000 /* ms */
282 
283 enum img_i2c_mode {
284 	MODE_INACTIVE,
285 	MODE_RAW,
286 	MODE_ATOMIC,
287 	MODE_AUTOMATIC,
288 	MODE_SEQUENCE,
289 	MODE_FATAL,
290 	MODE_WAITSTOP,
291 	MODE_SUSPEND,
292 };
293 
294 /* Timing parameters for i2c modes (in ns) */
295 struct img_i2c_timings {
296 	const char *name;
297 	unsigned int max_bitrate;
298 	unsigned int tckh, tckl, tsdh, tsdl;
299 	unsigned int tp2s, tpl, tph;
300 };
301 
302 /* The timings array must be ordered from slower to faster */
303 static struct img_i2c_timings timings[] = {
304 	/* Standard mode */
305 	{
306 		.name = "standard",
307 		.max_bitrate = I2C_MAX_STANDARD_MODE_FREQ,
308 		.tckh = 4000,
309 		.tckl = 4700,
310 		.tsdh = 4700,
311 		.tsdl = 8700,
312 		.tp2s = 4700,
313 		.tpl = 4700,
314 		.tph = 4000,
315 	},
316 	/* Fast mode */
317 	{
318 		.name = "fast",
319 		.max_bitrate = I2C_MAX_FAST_MODE_FREQ,
320 		.tckh = 600,
321 		.tckl = 1300,
322 		.tsdh = 600,
323 		.tsdl = 1200,
324 		.tp2s = 1300,
325 		.tpl = 600,
326 		.tph = 600,
327 	},
328 };
329 
330 /* Reset dance */
331 static u8 img_i2c_reset_seq[] = { CMD_GEN_START,
332 				  CMD_GEN_DATA, 0xff,
333 				  CMD_RET_ACK,
334 				  CMD_GEN_START,
335 				  CMD_GEN_STOP,
336 				  0 };
337 /* Just issue a stop (after an abort condition) */
338 static u8 img_i2c_stop_seq[] = {  CMD_GEN_STOP,
339 				  0 };
340 
341 /* We're interested in different interrupts depending on the mode */
342 static unsigned int img_i2c_int_enable_by_mode[] = {
343 	[MODE_INACTIVE]  = INT_ENABLE_MASK_INACTIVE,
344 	[MODE_RAW]       = INT_ENABLE_MASK_RAW,
345 	[MODE_ATOMIC]    = INT_ENABLE_MASK_ATOMIC,
346 	[MODE_AUTOMATIC] = INT_ENABLE_MASK_AUTOMATIC,
347 	[MODE_SEQUENCE]  = INT_ENABLE_MASK_ATOMIC,
348 	[MODE_FATAL]     = 0,
349 	[MODE_WAITSTOP]  = INT_ENABLE_MASK_WAITSTOP,
350 	[MODE_SUSPEND]   = 0,
351 };
352 
353 /* Atomic command names */
354 static const char * const img_i2c_atomic_cmd_names[] = {
355 	[CMD_PAUSE]	= "PAUSE",
356 	[CMD_GEN_DATA]	= "GEN_DATA",
357 	[CMD_GEN_START]	= "GEN_START",
358 	[CMD_GEN_STOP]	= "GEN_STOP",
359 	[CMD_GEN_ACK]	= "GEN_ACK",
360 	[CMD_GEN_NACK]	= "GEN_NACK",
361 	[CMD_RET_DATA]	= "RET_DATA",
362 	[CMD_RET_ACK]	= "RET_ACK",
363 };
364 
365 struct img_i2c {
366 	struct i2c_adapter adap;
367 
368 	void __iomem *base;
369 
370 	/*
371 	 * The scb core clock is used to get the input frequency, and to disable
372 	 * it after every set of transactions to save some power.
373 	 */
374 	struct clk *scb_clk, *sys_clk;
375 	unsigned int bitrate;
376 	bool need_wr_rd_fence;
377 
378 	/* state */
379 	struct completion msg_complete;
380 	spinlock_t lock;	/* lock before doing anything with the state */
381 	struct i2c_msg msg;
382 
383 	/* After the last transaction, wait for a stop bit */
384 	bool last_msg;
385 	int msg_status;
386 
387 	enum img_i2c_mode mode;
388 	u32 int_enable;		/* depends on mode */
389 	u32 line_status;	/* line status over command */
390 
391 	/*
392 	 * To avoid slave event interrupts in automatic mode, use a timer to
393 	 * poll the abort condition if we don't get an interrupt for too long.
394 	 */
395 	struct timer_list check_timer;
396 	bool t_halt;
397 
398 	/* atomic mode state */
399 	bool at_t_done;
400 	bool at_slave_event;
401 	int at_cur_cmd;
402 	u8 at_cur_data;
403 
404 	/* Sequence: either reset or stop. See img_i2c_sequence. */
405 	u8 *seq;
406 
407 	/* raw mode */
408 	unsigned int raw_timeout;
409 };
410 
411 static int img_i2c_runtime_suspend(struct device *dev);
412 static int img_i2c_runtime_resume(struct device *dev);
413 
414 static void img_i2c_writel(struct img_i2c *i2c, u32 offset, u32 value)
415 {
416 	writel(value, i2c->base + offset);
417 }
418 
419 static u32 img_i2c_readl(struct img_i2c *i2c, u32 offset)
420 {
421 	return readl(i2c->base + offset);
422 }
423 
424 /*
425  * The code to read from the master read fifo, and write to the master
426  * write fifo, checks a bit in an SCB register before every byte to
427  * ensure that the fifo is not full (write fifo) or empty (read fifo).
428  * Due to clock domain crossing inside the SCB block the updated value
429  * of this bit is only visible after 2 cycles.
430  *
431  * The scb_wr_rd_fence() function does 2 dummy writes (to the read-only
432  * revision register), and it's called after reading from or writing to the
433  * fifos to ensure that subsequent reads of the fifo status bits do not read
434  * stale values.
435  */
436 static void img_i2c_wr_rd_fence(struct img_i2c *i2c)
437 {
438 	if (i2c->need_wr_rd_fence) {
439 		img_i2c_writel(i2c, SCB_CORE_REV_REG, 0);
440 		img_i2c_writel(i2c, SCB_CORE_REV_REG, 0);
441 	}
442 }
443 
444 static void img_i2c_switch_mode(struct img_i2c *i2c, enum img_i2c_mode mode)
445 {
446 	i2c->mode = mode;
447 	i2c->int_enable = img_i2c_int_enable_by_mode[mode];
448 	i2c->line_status = 0;
449 }
450 
451 static void img_i2c_raw_op(struct img_i2c *i2c)
452 {
453 	i2c->raw_timeout = 0;
454 	img_i2c_writel(i2c, SCB_OVERRIDE_REG,
455 		OVERRIDE_SCLKEN_OVR |
456 		OVERRIDE_SDATEN_OVR |
457 		OVERRIDE_MASTER |
458 		OVERRIDE_LINE_OVR_EN |
459 		OVERRIDE_DIRECT |
460 		((i2c->at_cur_cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) |
461 		(i2c->at_cur_data << OVERRIDE_DATA_SHIFT));
462 }
463 
464 static const char *img_i2c_atomic_op_name(unsigned int cmd)
465 {
466 	if (unlikely(cmd >= ARRAY_SIZE(img_i2c_atomic_cmd_names)))
467 		return "UNKNOWN";
468 	return img_i2c_atomic_cmd_names[cmd];
469 }
470 
471 /* Send a single atomic mode command to the hardware */
472 static void img_i2c_atomic_op(struct img_i2c *i2c, int cmd, u8 data)
473 {
474 	i2c->at_cur_cmd = cmd;
475 	i2c->at_cur_data = data;
476 
477 	/* work around lack of data setup time when generating data */
478 	if (cmd == CMD_GEN_DATA && i2c->mode == MODE_ATOMIC) {
479 		u32 line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
480 
481 		if (line_status & LINESTAT_SDAT_LINE_STATUS && !(data & 0x80)) {
482 			/* hold the data line down for a moment */
483 			img_i2c_switch_mode(i2c, MODE_RAW);
484 			img_i2c_raw_op(i2c);
485 			return;
486 		}
487 	}
488 
489 	dev_dbg(i2c->adap.dev.parent,
490 		"atomic cmd=%s (%d) data=%#x\n",
491 		img_i2c_atomic_op_name(cmd), cmd, data);
492 	i2c->at_t_done = (cmd == CMD_RET_DATA || cmd == CMD_RET_ACK);
493 	i2c->at_slave_event = false;
494 	i2c->line_status = 0;
495 
496 	img_i2c_writel(i2c, SCB_OVERRIDE_REG,
497 		((cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) |
498 		OVERRIDE_MASTER |
499 		OVERRIDE_DIRECT |
500 		(data << OVERRIDE_DATA_SHIFT));
501 }
502 
503 /* Start a transaction in atomic mode */
504 static void img_i2c_atomic_start(struct img_i2c *i2c)
505 {
506 	img_i2c_switch_mode(i2c, MODE_ATOMIC);
507 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
508 	img_i2c_atomic_op(i2c, CMD_GEN_START, 0x00);
509 }
510 
511 static void img_i2c_soft_reset(struct img_i2c *i2c)
512 {
513 	i2c->t_halt = false;
514 	img_i2c_writel(i2c, SCB_CONTROL_REG, 0);
515 	img_i2c_writel(i2c, SCB_CONTROL_REG,
516 		       SCB_CONTROL_CLK_ENABLE | SCB_CONTROL_SOFT_RESET);
517 }
518 
519 /*
520  * Enable or release transaction halt for control of repeated starts.
521  * In version 3.3 of the IP when transaction halt is set, an interrupt
522  * will be generated after each byte of a transfer instead of after
523  * every transfer but before the stop bit.
524  * Due to this behaviour we have to be careful that every time we
525  * release the transaction halt we have to re-enable it straight away
526  * so that we only process a single byte, not doing so will result in
527  * all remaining bytes been processed and a stop bit being issued,
528  * which will prevent us having a repeated start.
529  */
530 static void img_i2c_transaction_halt(struct img_i2c *i2c, bool t_halt)
531 {
532 	u32 val;
533 
534 	if (i2c->t_halt == t_halt)
535 		return;
536 	i2c->t_halt = t_halt;
537 	val = img_i2c_readl(i2c, SCB_CONTROL_REG);
538 	if (t_halt)
539 		val |= SCB_CONTROL_TRANSACTION_HALT;
540 	else
541 		val &= ~SCB_CONTROL_TRANSACTION_HALT;
542 	img_i2c_writel(i2c, SCB_CONTROL_REG, val);
543 }
544 
545 /* Drain data from the FIFO into the buffer (automatic mode) */
546 static void img_i2c_read_fifo(struct img_i2c *i2c)
547 {
548 	while (i2c->msg.len) {
549 		u32 fifo_status;
550 		u8 data;
551 
552 		img_i2c_wr_rd_fence(i2c);
553 		fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG);
554 		if (fifo_status & FIFO_READ_EMPTY)
555 			break;
556 
557 		data = img_i2c_readl(i2c, SCB_READ_DATA_REG);
558 		*i2c->msg.buf = data;
559 
560 		img_i2c_writel(i2c, SCB_READ_FIFO_REG, 0xff);
561 		i2c->msg.len--;
562 		i2c->msg.buf++;
563 	}
564 }
565 
566 /* Fill the FIFO with data from the buffer (automatic mode) */
567 static void img_i2c_write_fifo(struct img_i2c *i2c)
568 {
569 	while (i2c->msg.len) {
570 		u32 fifo_status;
571 
572 		img_i2c_wr_rd_fence(i2c);
573 		fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG);
574 		if (fifo_status & FIFO_WRITE_FULL)
575 			break;
576 
577 		img_i2c_writel(i2c, SCB_WRITE_DATA_REG, *i2c->msg.buf);
578 		i2c->msg.len--;
579 		i2c->msg.buf++;
580 	}
581 
582 	/* Disable fifo emptying interrupt if nothing more to write */
583 	if (!i2c->msg.len)
584 		i2c->int_enable &= ~INT_FIFO_EMPTYING;
585 }
586 
587 /* Start a read transaction in automatic mode */
588 static void img_i2c_read(struct img_i2c *i2c)
589 {
590 	img_i2c_switch_mode(i2c, MODE_AUTOMATIC);
591 	if (!i2c->last_msg)
592 		i2c->int_enable |= INT_SLAVE_EVENT;
593 
594 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
595 	img_i2c_writel(i2c, SCB_READ_ADDR_REG, i2c->msg.addr);
596 	img_i2c_writel(i2c, SCB_READ_COUNT_REG, i2c->msg.len);
597 
598 	mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
599 }
600 
601 /* Start a write transaction in automatic mode */
602 static void img_i2c_write(struct img_i2c *i2c)
603 {
604 	img_i2c_switch_mode(i2c, MODE_AUTOMATIC);
605 	if (!i2c->last_msg)
606 		i2c->int_enable |= INT_SLAVE_EVENT;
607 
608 	img_i2c_writel(i2c, SCB_WRITE_ADDR_REG, i2c->msg.addr);
609 	img_i2c_writel(i2c, SCB_WRITE_COUNT_REG, i2c->msg.len);
610 
611 	mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
612 	img_i2c_write_fifo(i2c);
613 
614 	/* img_i2c_write_fifo() may modify int_enable */
615 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
616 }
617 
618 /*
619  * Indicate that the transaction is complete. This is called from the
620  * ISR to wake up the waiting thread, after which the ISR must not
621  * access any more SCB registers.
622  */
623 static void img_i2c_complete_transaction(struct img_i2c *i2c, int status)
624 {
625 	img_i2c_switch_mode(i2c, MODE_INACTIVE);
626 	if (status) {
627 		i2c->msg_status = status;
628 		img_i2c_transaction_halt(i2c, false);
629 	}
630 	complete(&i2c->msg_complete);
631 }
632 
633 static unsigned int img_i2c_raw_atomic_delay_handler(struct img_i2c *i2c,
634 					u32 int_status, u32 line_status)
635 {
636 	/* Stay in raw mode for this, so we don't just loop infinitely */
637 	img_i2c_atomic_op(i2c, i2c->at_cur_cmd, i2c->at_cur_data);
638 	img_i2c_switch_mode(i2c, MODE_ATOMIC);
639 	return 0;
640 }
641 
642 static unsigned int img_i2c_raw(struct img_i2c *i2c, u32 int_status,
643 				u32 line_status)
644 {
645 	if (int_status & INT_TIMING) {
646 		if (i2c->raw_timeout == 0)
647 			return img_i2c_raw_atomic_delay_handler(i2c,
648 				int_status, line_status);
649 		--i2c->raw_timeout;
650 	}
651 	return 0;
652 }
653 
654 static unsigned int img_i2c_sequence(struct img_i2c *i2c, u32 int_status)
655 {
656 	static const unsigned int continue_bits[] = {
657 		[CMD_GEN_START] = LINESTAT_START_BIT_DET,
658 		[CMD_GEN_DATA]  = LINESTAT_INPUT_HELD_V,
659 		[CMD_RET_ACK]   = LINESTAT_ACK_DET | LINESTAT_NACK_DET,
660 		[CMD_RET_DATA]  = LINESTAT_INPUT_HELD_V,
661 		[CMD_GEN_STOP]  = LINESTAT_STOP_BIT_DET,
662 	};
663 	int next_cmd = -1;
664 	u8 next_data = 0x00;
665 
666 	if (int_status & INT_SLAVE_EVENT)
667 		i2c->at_slave_event = true;
668 	if (int_status & INT_TRANSACTION_DONE)
669 		i2c->at_t_done = true;
670 
671 	if (!i2c->at_slave_event || !i2c->at_t_done)
672 		return 0;
673 
674 	/* wait if no continue bits are set */
675 	if (i2c->at_cur_cmd >= 0 &&
676 	    i2c->at_cur_cmd < ARRAY_SIZE(continue_bits)) {
677 		unsigned int cont_bits = continue_bits[i2c->at_cur_cmd];
678 
679 		if (cont_bits) {
680 			cont_bits |= LINESTAT_ABORT_DET;
681 			if (!(i2c->line_status & cont_bits))
682 				return 0;
683 		}
684 	}
685 
686 	/* follow the sequence of commands in i2c->seq */
687 	next_cmd = *i2c->seq;
688 	/* stop on a nil */
689 	if (!next_cmd) {
690 		img_i2c_writel(i2c, SCB_OVERRIDE_REG, 0);
691 		return ISR_COMPLETE(0);
692 	}
693 	/* when generating data, the next byte is the data */
694 	if (next_cmd == CMD_GEN_DATA) {
695 		++i2c->seq;
696 		next_data = *i2c->seq;
697 	}
698 	++i2c->seq;
699 	img_i2c_atomic_op(i2c, next_cmd, next_data);
700 
701 	return 0;
702 }
703 
704 static void img_i2c_reset_start(struct img_i2c *i2c)
705 {
706 	/* Initiate the magic dance */
707 	img_i2c_switch_mode(i2c, MODE_SEQUENCE);
708 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
709 	i2c->seq = img_i2c_reset_seq;
710 	i2c->at_slave_event = true;
711 	i2c->at_t_done = true;
712 	i2c->at_cur_cmd = -1;
713 
714 	/* img_i2c_reset_seq isn't empty so the following won't fail */
715 	img_i2c_sequence(i2c, 0);
716 }
717 
718 static void img_i2c_stop_start(struct img_i2c *i2c)
719 {
720 	/* Initiate a stop bit sequence */
721 	img_i2c_switch_mode(i2c, MODE_SEQUENCE);
722 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
723 	i2c->seq = img_i2c_stop_seq;
724 	i2c->at_slave_event = true;
725 	i2c->at_t_done = true;
726 	i2c->at_cur_cmd = -1;
727 
728 	/* img_i2c_stop_seq isn't empty so the following won't fail */
729 	img_i2c_sequence(i2c, 0);
730 }
731 
732 static unsigned int img_i2c_atomic(struct img_i2c *i2c,
733 				   u32 int_status,
734 				   u32 line_status)
735 {
736 	int next_cmd = -1;
737 	u8 next_data = 0x00;
738 
739 	if (int_status & INT_SLAVE_EVENT)
740 		i2c->at_slave_event = true;
741 	if (int_status & INT_TRANSACTION_DONE)
742 		i2c->at_t_done = true;
743 
744 	if (!i2c->at_slave_event || !i2c->at_t_done)
745 		goto next_atomic_cmd;
746 	if (i2c->line_status & LINESTAT_ABORT_DET) {
747 		dev_dbg(i2c->adap.dev.parent, "abort condition detected\n");
748 		next_cmd = CMD_GEN_STOP;
749 		i2c->msg_status = -EIO;
750 		goto next_atomic_cmd;
751 	}
752 
753 	/* i2c->at_cur_cmd may have completed */
754 	switch (i2c->at_cur_cmd) {
755 	case CMD_GEN_START:
756 		next_cmd = CMD_GEN_DATA;
757 		next_data = i2c_8bit_addr_from_msg(&i2c->msg);
758 		break;
759 	case CMD_GEN_DATA:
760 		if (i2c->line_status & LINESTAT_INPUT_HELD_V)
761 			next_cmd = CMD_RET_ACK;
762 		break;
763 	case CMD_RET_ACK:
764 		if (i2c->line_status & LINESTAT_ACK_DET ||
765 		    (i2c->line_status & LINESTAT_NACK_DET &&
766 		    i2c->msg.flags & I2C_M_IGNORE_NAK)) {
767 			if (i2c->msg.len == 0) {
768 				next_cmd = CMD_GEN_STOP;
769 			} else if (i2c->msg.flags & I2C_M_RD) {
770 				next_cmd = CMD_RET_DATA;
771 			} else {
772 				next_cmd = CMD_GEN_DATA;
773 				next_data = *i2c->msg.buf;
774 				--i2c->msg.len;
775 				++i2c->msg.buf;
776 			}
777 		} else if (i2c->line_status & LINESTAT_NACK_DET) {
778 			i2c->msg_status = -EIO;
779 			next_cmd = CMD_GEN_STOP;
780 		}
781 		break;
782 	case CMD_RET_DATA:
783 		if (i2c->line_status & LINESTAT_INPUT_HELD_V) {
784 			*i2c->msg.buf = (i2c->line_status &
785 						LINESTAT_INPUT_DATA)
786 					>> LINESTAT_INPUT_DATA_SHIFT;
787 			--i2c->msg.len;
788 			++i2c->msg.buf;
789 			if (i2c->msg.len)
790 				next_cmd = CMD_GEN_ACK;
791 			else
792 				next_cmd = CMD_GEN_NACK;
793 		}
794 		break;
795 	case CMD_GEN_ACK:
796 		if (i2c->line_status & LINESTAT_ACK_DET) {
797 			next_cmd = CMD_RET_DATA;
798 		} else {
799 			i2c->msg_status = -EIO;
800 			next_cmd = CMD_GEN_STOP;
801 		}
802 		break;
803 	case CMD_GEN_NACK:
804 		next_cmd = CMD_GEN_STOP;
805 		break;
806 	case CMD_GEN_STOP:
807 		img_i2c_writel(i2c, SCB_OVERRIDE_REG, 0);
808 		return ISR_COMPLETE(0);
809 	default:
810 		dev_err(i2c->adap.dev.parent, "bad atomic command %d\n",
811 			i2c->at_cur_cmd);
812 		i2c->msg_status = -EIO;
813 		next_cmd = CMD_GEN_STOP;
814 		break;
815 	}
816 
817 next_atomic_cmd:
818 	if (next_cmd != -1) {
819 		/* don't actually stop unless we're the last transaction */
820 		if (next_cmd == CMD_GEN_STOP && !i2c->msg_status &&
821 						!i2c->last_msg)
822 			return ISR_COMPLETE(0);
823 		img_i2c_atomic_op(i2c, next_cmd, next_data);
824 	}
825 	return 0;
826 }
827 
828 /*
829  * Timer function to check if something has gone wrong in automatic mode (so we
830  * don't have to handle so many interrupts just to catch an exception).
831  */
832 static void img_i2c_check_timer(struct timer_list *t)
833 {
834 	struct img_i2c *i2c = from_timer(i2c, t, check_timer);
835 	unsigned long flags;
836 	unsigned int line_status;
837 
838 	spin_lock_irqsave(&i2c->lock, flags);
839 	line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
840 
841 	/* check for an abort condition */
842 	if (line_status & LINESTAT_ABORT_DET) {
843 		dev_dbg(i2c->adap.dev.parent,
844 			"abort condition detected by check timer\n");
845 		/* enable slave event interrupt mask to trigger irq */
846 		img_i2c_writel(i2c, SCB_INT_MASK_REG,
847 			       i2c->int_enable | INT_SLAVE_EVENT);
848 	}
849 
850 	spin_unlock_irqrestore(&i2c->lock, flags);
851 }
852 
853 static unsigned int img_i2c_auto(struct img_i2c *i2c,
854 				 unsigned int int_status,
855 				 unsigned int line_status)
856 {
857 	if (int_status & (INT_WRITE_ACK_ERR | INT_ADDR_ACK_ERR))
858 		return ISR_COMPLETE(EIO);
859 
860 	if (line_status & LINESTAT_ABORT_DET) {
861 		dev_dbg(i2c->adap.dev.parent, "abort condition detected\n");
862 		/* empty the read fifo */
863 		if ((i2c->msg.flags & I2C_M_RD) &&
864 		    (int_status & INT_FIFO_FULL_FILLING))
865 			img_i2c_read_fifo(i2c);
866 		/* use atomic mode and try to force a stop bit */
867 		i2c->msg_status = -EIO;
868 		img_i2c_stop_start(i2c);
869 		return 0;
870 	}
871 
872 	/* Enable transaction halt on start bit */
873 	if (!i2c->last_msg && line_status & LINESTAT_START_BIT_DET) {
874 		img_i2c_transaction_halt(i2c, !i2c->last_msg);
875 		/* we're no longer interested in the slave event */
876 		i2c->int_enable &= ~INT_SLAVE_EVENT;
877 	}
878 
879 	mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
880 
881 	if (int_status & INT_STOP_DETECTED) {
882 		/* Drain remaining data in FIFO and complete transaction */
883 		if (i2c->msg.flags & I2C_M_RD)
884 			img_i2c_read_fifo(i2c);
885 		return ISR_COMPLETE(0);
886 	}
887 
888 	if (i2c->msg.flags & I2C_M_RD) {
889 		if (int_status & (INT_FIFO_FULL_FILLING | INT_MASTER_HALTED)) {
890 			img_i2c_read_fifo(i2c);
891 			if (i2c->msg.len == 0)
892 				return ISR_WAITSTOP;
893 		}
894 	} else {
895 		if (int_status & (INT_FIFO_EMPTY | INT_MASTER_HALTED)) {
896 			if ((int_status & INT_FIFO_EMPTY) &&
897 			    i2c->msg.len == 0)
898 				return ISR_WAITSTOP;
899 			img_i2c_write_fifo(i2c);
900 		}
901 	}
902 	if (int_status & INT_MASTER_HALTED) {
903 		/*
904 		 * Release and then enable transaction halt, to
905 		 * allow only a single byte to proceed.
906 		 */
907 		img_i2c_transaction_halt(i2c, false);
908 		img_i2c_transaction_halt(i2c, !i2c->last_msg);
909 	}
910 
911 	return 0;
912 }
913 
914 static irqreturn_t img_i2c_isr(int irq, void *dev_id)
915 {
916 	struct img_i2c *i2c = dev_id;
917 	u32 int_status, line_status;
918 	/* We handle transaction completion AFTER accessing registers */
919 	unsigned int hret;
920 
921 	/* Read interrupt status register. */
922 	int_status = img_i2c_readl(i2c, SCB_INT_STATUS_REG);
923 	/* Clear detected interrupts. */
924 	img_i2c_writel(i2c, SCB_INT_CLEAR_REG, int_status);
925 
926 	/*
927 	 * Read line status and clear it until it actually is clear.  We have
928 	 * to be careful not to lose any line status bits that get latched.
929 	 */
930 	line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
931 	if (line_status & LINESTAT_LATCHED) {
932 		img_i2c_writel(i2c, SCB_CLEAR_REG,
933 			      (line_status & LINESTAT_LATCHED)
934 				>> LINESTAT_CLEAR_SHIFT);
935 		img_i2c_wr_rd_fence(i2c);
936 	}
937 
938 	spin_lock(&i2c->lock);
939 
940 	/* Keep track of line status bits received */
941 	i2c->line_status &= ~LINESTAT_INPUT_DATA;
942 	i2c->line_status |= line_status;
943 
944 	/*
945 	 * Certain interrupts indicate that sclk low timeout is not
946 	 * a problem. If any of these are set, just continue.
947 	 */
948 	if ((int_status & INT_SCLK_LOW_TIMEOUT) &&
949 	    !(int_status & (INT_SLAVE_EVENT |
950 			    INT_FIFO_EMPTY |
951 			    INT_FIFO_FULL))) {
952 		dev_crit(i2c->adap.dev.parent,
953 			 "fatal: clock low timeout occurred %s addr 0x%02x\n",
954 			 (i2c->msg.flags & I2C_M_RD) ? "reading" : "writing",
955 			 i2c->msg.addr);
956 		hret = ISR_FATAL(EIO);
957 		goto out;
958 	}
959 
960 	if (i2c->mode == MODE_ATOMIC)
961 		hret = img_i2c_atomic(i2c, int_status, line_status);
962 	else if (i2c->mode == MODE_AUTOMATIC)
963 		hret = img_i2c_auto(i2c, int_status, line_status);
964 	else if (i2c->mode == MODE_SEQUENCE)
965 		hret = img_i2c_sequence(i2c, int_status);
966 	else if (i2c->mode == MODE_WAITSTOP && (int_status & INT_SLAVE_EVENT) &&
967 			 (line_status & LINESTAT_STOP_BIT_DET))
968 		hret = ISR_COMPLETE(0);
969 	else if (i2c->mode == MODE_RAW)
970 		hret = img_i2c_raw(i2c, int_status, line_status);
971 	else
972 		hret = 0;
973 
974 	/* Clear detected level interrupts. */
975 	img_i2c_writel(i2c, SCB_INT_CLEAR_REG, int_status & INT_LEVEL);
976 
977 out:
978 	if (hret & ISR_WAITSTOP) {
979 		/*
980 		 * Only wait for stop on last message.
981 		 * Also we may already have detected the stop bit.
982 		 */
983 		if (!i2c->last_msg || i2c->line_status & LINESTAT_STOP_BIT_DET)
984 			hret = ISR_COMPLETE(0);
985 		else
986 			img_i2c_switch_mode(i2c, MODE_WAITSTOP);
987 	}
988 
989 	/* now we've finished using regs, handle transaction completion */
990 	if (hret & ISR_COMPLETE_M) {
991 		int status = -(hret & ISR_STATUS_M);
992 
993 		img_i2c_complete_transaction(i2c, status);
994 		if (hret & ISR_FATAL_M)
995 			img_i2c_switch_mode(i2c, MODE_FATAL);
996 	}
997 
998 	/* Enable interrupts (int_enable may be altered by changing mode) */
999 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
1000 
1001 	spin_unlock(&i2c->lock);
1002 
1003 	return IRQ_HANDLED;
1004 }
1005 
1006 /* Force a bus reset sequence and wait for it to complete */
1007 static int img_i2c_reset_bus(struct img_i2c *i2c)
1008 {
1009 	unsigned long flags;
1010 	unsigned long time_left;
1011 
1012 	spin_lock_irqsave(&i2c->lock, flags);
1013 	reinit_completion(&i2c->msg_complete);
1014 	img_i2c_reset_start(i2c);
1015 	spin_unlock_irqrestore(&i2c->lock, flags);
1016 
1017 	time_left = wait_for_completion_timeout(&i2c->msg_complete,
1018 					      IMG_I2C_TIMEOUT);
1019 	if (time_left == 0)
1020 		return -ETIMEDOUT;
1021 	return 0;
1022 }
1023 
1024 static int img_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
1025 			int num)
1026 {
1027 	struct img_i2c *i2c = i2c_get_adapdata(adap);
1028 	bool atomic = false;
1029 	int i, ret;
1030 	unsigned long time_left;
1031 
1032 	if (i2c->mode == MODE_SUSPEND) {
1033 		WARN(1, "refusing to service transaction in suspended state\n");
1034 		return -EIO;
1035 	}
1036 
1037 	if (i2c->mode == MODE_FATAL)
1038 		return -EIO;
1039 
1040 	for (i = 0; i < num; i++) {
1041 		/*
1042 		 * 0 byte reads are not possible because the slave could try
1043 		 * and pull the data line low, preventing a stop bit.
1044 		 */
1045 		if (!msgs[i].len && msgs[i].flags & I2C_M_RD)
1046 			return -EIO;
1047 		/*
1048 		 * 0 byte writes are possible and used for probing, but we
1049 		 * cannot do them in automatic mode, so use atomic mode
1050 		 * instead.
1051 		 *
1052 		 * Also, the I2C_M_IGNORE_NAK mode can only be implemented
1053 		 * in atomic mode.
1054 		 */
1055 		if (!msgs[i].len ||
1056 		    (msgs[i].flags & I2C_M_IGNORE_NAK))
1057 			atomic = true;
1058 	}
1059 
1060 	ret = pm_runtime_resume_and_get(adap->dev.parent);
1061 	if (ret < 0)
1062 		return ret;
1063 
1064 	for (i = 0; i < num; i++) {
1065 		struct i2c_msg *msg = &msgs[i];
1066 		unsigned long flags;
1067 
1068 		spin_lock_irqsave(&i2c->lock, flags);
1069 
1070 		/*
1071 		 * Make a copy of the message struct. We mustn't modify the
1072 		 * original or we'll confuse drivers and i2c-dev.
1073 		 */
1074 		i2c->msg = *msg;
1075 		i2c->msg_status = 0;
1076 
1077 		/*
1078 		 * After the last message we must have waited for a stop bit.
1079 		 * Not waiting can cause problems when the clock is disabled
1080 		 * before the stop bit is sent, and the linux I2C interface
1081 		 * requires separate transfers not to joined with repeated
1082 		 * start.
1083 		 */
1084 		i2c->last_msg = (i == num - 1);
1085 		reinit_completion(&i2c->msg_complete);
1086 
1087 		/*
1088 		 * Clear line status and all interrupts before starting a
1089 		 * transfer, as we may have unserviced interrupts from
1090 		 * previous transfers that might be handled in the context
1091 		 * of the new transfer.
1092 		 */
1093 		img_i2c_writel(i2c, SCB_INT_CLEAR_REG, ~0);
1094 		img_i2c_writel(i2c, SCB_CLEAR_REG, ~0);
1095 
1096 		if (atomic) {
1097 			img_i2c_atomic_start(i2c);
1098 		} else {
1099 			/*
1100 			 * Enable transaction halt if not the last message in
1101 			 * the queue so that we can control repeated starts.
1102 			 */
1103 			img_i2c_transaction_halt(i2c, !i2c->last_msg);
1104 
1105 			if (msg->flags & I2C_M_RD)
1106 				img_i2c_read(i2c);
1107 			else
1108 				img_i2c_write(i2c);
1109 
1110 			/*
1111 			 * Release and then enable transaction halt, to
1112 			 * allow only a single byte to proceed.
1113 			 * This doesn't have an effect on the initial transfer
1114 			 * but will allow the following transfers to start
1115 			 * processing if the previous transfer was marked as
1116 			 * complete while the i2c block was halted.
1117 			 */
1118 			img_i2c_transaction_halt(i2c, false);
1119 			img_i2c_transaction_halt(i2c, !i2c->last_msg);
1120 		}
1121 		spin_unlock_irqrestore(&i2c->lock, flags);
1122 
1123 		time_left = wait_for_completion_timeout(&i2c->msg_complete,
1124 						      IMG_I2C_TIMEOUT);
1125 		del_timer_sync(&i2c->check_timer);
1126 
1127 		if (time_left == 0)
1128 			i2c->msg_status = -ETIMEDOUT;
1129 
1130 		if (i2c->msg_status)
1131 			break;
1132 	}
1133 
1134 	pm_runtime_mark_last_busy(adap->dev.parent);
1135 	pm_runtime_put_autosuspend(adap->dev.parent);
1136 
1137 	return i2c->msg_status ? i2c->msg_status : num;
1138 }
1139 
1140 static u32 img_i2c_func(struct i2c_adapter *adap)
1141 {
1142 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
1143 }
1144 
1145 static const struct i2c_algorithm img_i2c_algo = {
1146 	.master_xfer = img_i2c_xfer,
1147 	.functionality = img_i2c_func,
1148 };
1149 
1150 static int img_i2c_init(struct img_i2c *i2c)
1151 {
1152 	unsigned int clk_khz, bitrate_khz, clk_period, tckh, tckl, tsdh;
1153 	unsigned int i, data, prescale, inc, int_bitrate, filt;
1154 	struct img_i2c_timings timing;
1155 	u32 rev;
1156 	int ret;
1157 
1158 	ret = pm_runtime_resume_and_get(i2c->adap.dev.parent);
1159 	if (ret < 0)
1160 		return ret;
1161 
1162 	rev = img_i2c_readl(i2c, SCB_CORE_REV_REG);
1163 	if ((rev & 0x00ffffff) < 0x00020200) {
1164 		dev_info(i2c->adap.dev.parent,
1165 			 "Unknown hardware revision (%d.%d.%d.%d)\n",
1166 			 (rev >> 24) & 0xff, (rev >> 16) & 0xff,
1167 			 (rev >> 8) & 0xff, rev & 0xff);
1168 		pm_runtime_mark_last_busy(i2c->adap.dev.parent);
1169 		pm_runtime_put_autosuspend(i2c->adap.dev.parent);
1170 		return -EINVAL;
1171 	}
1172 
1173 	/* Fencing enabled by default. */
1174 	i2c->need_wr_rd_fence = true;
1175 
1176 	/* Determine what mode we're in from the bitrate */
1177 	timing = timings[0];
1178 	for (i = 0; i < ARRAY_SIZE(timings); i++) {
1179 		if (i2c->bitrate <= timings[i].max_bitrate) {
1180 			timing = timings[i];
1181 			break;
1182 		}
1183 	}
1184 	if (i2c->bitrate > timings[ARRAY_SIZE(timings) - 1].max_bitrate) {
1185 		dev_warn(i2c->adap.dev.parent,
1186 			 "requested bitrate (%u) is higher than the max bitrate supported (%u)\n",
1187 			 i2c->bitrate,
1188 			 timings[ARRAY_SIZE(timings) - 1].max_bitrate);
1189 		timing = timings[ARRAY_SIZE(timings) - 1];
1190 		i2c->bitrate = timing.max_bitrate;
1191 	}
1192 
1193 	bitrate_khz = i2c->bitrate / 1000;
1194 	clk_khz = clk_get_rate(i2c->scb_clk) / 1000;
1195 
1196 	/* Find the prescale that would give us that inc (approx delay = 0) */
1197 	prescale = SCB_OPT_INC * clk_khz / (256 * 16 * bitrate_khz);
1198 	prescale = clamp_t(unsigned int, prescale, 1, 8);
1199 	clk_khz /= prescale;
1200 
1201 	/* Setup the clock increment value */
1202 	inc = (256 * 16 * bitrate_khz) / clk_khz;
1203 
1204 	/*
1205 	 * The clock generation logic allows to filter glitches on the bus.
1206 	 * This filter is able to remove bus glitches shorter than 50ns.
1207 	 * If the clock enable rate is greater than 20 MHz, no filtering
1208 	 * is required, so we need to disable it.
1209 	 * If it's between the 20-40 MHz range, there's no need to divide
1210 	 * the clock to get a filter.
1211 	 */
1212 	if (clk_khz < 20000) {
1213 		filt = SCB_FILT_DISABLE;
1214 	} else if (clk_khz < 40000) {
1215 		filt = SCB_FILT_BYPASS;
1216 	} else {
1217 		/* Calculate filter clock */
1218 		filt = (64000 / ((clk_khz / 1000) * SCB_FILT_GLITCH));
1219 
1220 		/* Scale up if needed */
1221 		if (64000 % ((clk_khz / 1000) * SCB_FILT_GLITCH))
1222 			inc++;
1223 
1224 		if (filt > SCB_FILT_INC_MASK)
1225 			filt = SCB_FILT_INC_MASK;
1226 
1227 		filt = (filt & SCB_FILT_INC_MASK) << SCB_FILT_INC_SHIFT;
1228 	}
1229 	data = filt | ((inc & SCB_INC_MASK) << SCB_INC_SHIFT) | (prescale - 1);
1230 	img_i2c_writel(i2c, SCB_CLK_SET_REG, data);
1231 
1232 	/* Obtain the clock period of the fx16 clock in ns */
1233 	clk_period = (256 * 1000000) / (clk_khz * inc);
1234 
1235 	/* Calculate the bitrate in terms of internal clock pulses */
1236 	int_bitrate = 1000000 / (bitrate_khz * clk_period);
1237 	if ((1000000 % (bitrate_khz * clk_period)) >=
1238 	    ((bitrate_khz * clk_period) / 2))
1239 		int_bitrate++;
1240 
1241 	/*
1242 	 * Setup clock duty cycle, start with 50% and adjust TCKH and TCKL
1243 	 * values from there if they don't meet minimum timing requirements
1244 	 */
1245 	tckh = int_bitrate / 2;
1246 	tckl = int_bitrate - tckh;
1247 
1248 	/* Adjust TCKH and TCKL values */
1249 	data = DIV_ROUND_UP(timing.tckl, clk_period);
1250 
1251 	if (tckl < data) {
1252 		tckl = data;
1253 		tckh = int_bitrate - tckl;
1254 	}
1255 
1256 	if (tckh > 0)
1257 		--tckh;
1258 
1259 	if (tckl > 0)
1260 		--tckl;
1261 
1262 	img_i2c_writel(i2c, SCB_TIME_TCKH_REG, tckh);
1263 	img_i2c_writel(i2c, SCB_TIME_TCKL_REG, tckl);
1264 
1265 	/* Setup TSDH value */
1266 	tsdh = DIV_ROUND_UP(timing.tsdh, clk_period);
1267 
1268 	if (tsdh > 1)
1269 		data = tsdh - 1;
1270 	else
1271 		data = 0x01;
1272 	img_i2c_writel(i2c, SCB_TIME_TSDH_REG, data);
1273 
1274 	/* This value is used later */
1275 	tsdh = data;
1276 
1277 	/* Setup TPL value */
1278 	data = timing.tpl / clk_period;
1279 	if (data > 0)
1280 		--data;
1281 	img_i2c_writel(i2c, SCB_TIME_TPL_REG, data);
1282 
1283 	/* Setup TPH value */
1284 	data = timing.tph / clk_period;
1285 	if (data > 0)
1286 		--data;
1287 	img_i2c_writel(i2c, SCB_TIME_TPH_REG, data);
1288 
1289 	/* Setup TSDL value to TPL + TSDH + 2 */
1290 	img_i2c_writel(i2c, SCB_TIME_TSDL_REG, data + tsdh + 2);
1291 
1292 	/* Setup TP2S value */
1293 	data = timing.tp2s / clk_period;
1294 	if (data > 0)
1295 		--data;
1296 	img_i2c_writel(i2c, SCB_TIME_TP2S_REG, data);
1297 
1298 	img_i2c_writel(i2c, SCB_TIME_TBI_REG, TIMEOUT_TBI);
1299 	img_i2c_writel(i2c, SCB_TIME_TSL_REG, TIMEOUT_TSL);
1300 	img_i2c_writel(i2c, SCB_TIME_TDL_REG, TIMEOUT_TDL);
1301 
1302 	/* Take module out of soft reset and enable clocks */
1303 	img_i2c_soft_reset(i2c);
1304 
1305 	/* Disable all interrupts */
1306 	img_i2c_writel(i2c, SCB_INT_MASK_REG, 0);
1307 
1308 	/* Clear all interrupts */
1309 	img_i2c_writel(i2c, SCB_INT_CLEAR_REG, ~0);
1310 
1311 	/* Clear the scb_line_status events */
1312 	img_i2c_writel(i2c, SCB_CLEAR_REG, ~0);
1313 
1314 	/* Enable interrupts */
1315 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
1316 
1317 	/* Perform a synchronous sequence to reset the bus */
1318 	ret = img_i2c_reset_bus(i2c);
1319 
1320 	pm_runtime_mark_last_busy(i2c->adap.dev.parent);
1321 	pm_runtime_put_autosuspend(i2c->adap.dev.parent);
1322 
1323 	return ret;
1324 }
1325 
1326 static int img_i2c_probe(struct platform_device *pdev)
1327 {
1328 	struct device_node *node = pdev->dev.of_node;
1329 	struct img_i2c *i2c;
1330 	int irq, ret;
1331 	u32 val;
1332 
1333 	i2c = devm_kzalloc(&pdev->dev, sizeof(struct img_i2c), GFP_KERNEL);
1334 	if (!i2c)
1335 		return -ENOMEM;
1336 
1337 	i2c->base = devm_platform_ioremap_resource(pdev, 0);
1338 	if (IS_ERR(i2c->base))
1339 		return PTR_ERR(i2c->base);
1340 
1341 	irq = platform_get_irq(pdev, 0);
1342 	if (irq < 0)
1343 		return irq;
1344 
1345 	i2c->sys_clk = devm_clk_get(&pdev->dev, "sys");
1346 	if (IS_ERR(i2c->sys_clk)) {
1347 		dev_err(&pdev->dev, "can't get system clock\n");
1348 		return PTR_ERR(i2c->sys_clk);
1349 	}
1350 
1351 	i2c->scb_clk = devm_clk_get(&pdev->dev, "scb");
1352 	if (IS_ERR(i2c->scb_clk)) {
1353 		dev_err(&pdev->dev, "can't get core clock\n");
1354 		return PTR_ERR(i2c->scb_clk);
1355 	}
1356 
1357 	ret = devm_request_irq(&pdev->dev, irq, img_i2c_isr, 0,
1358 			       pdev->name, i2c);
1359 	if (ret) {
1360 		dev_err(&pdev->dev, "can't request irq %d\n", irq);
1361 		return ret;
1362 	}
1363 
1364 	/* Set up the exception check timer */
1365 	timer_setup(&i2c->check_timer, img_i2c_check_timer, 0);
1366 
1367 	i2c->bitrate = timings[0].max_bitrate;
1368 	if (!of_property_read_u32(node, "clock-frequency", &val))
1369 		i2c->bitrate = val;
1370 
1371 	i2c_set_adapdata(&i2c->adap, i2c);
1372 	i2c->adap.dev.parent = &pdev->dev;
1373 	i2c->adap.dev.of_node = node;
1374 	i2c->adap.owner = THIS_MODULE;
1375 	i2c->adap.algo = &img_i2c_algo;
1376 	i2c->adap.retries = 5;
1377 	i2c->adap.nr = pdev->id;
1378 	snprintf(i2c->adap.name, sizeof(i2c->adap.name), "IMG SCB I2C");
1379 
1380 	img_i2c_switch_mode(i2c, MODE_INACTIVE);
1381 	spin_lock_init(&i2c->lock);
1382 	init_completion(&i2c->msg_complete);
1383 
1384 	platform_set_drvdata(pdev, i2c);
1385 
1386 	pm_runtime_set_autosuspend_delay(&pdev->dev, IMG_I2C_PM_TIMEOUT);
1387 	pm_runtime_use_autosuspend(&pdev->dev);
1388 	pm_runtime_enable(&pdev->dev);
1389 	if (!pm_runtime_enabled(&pdev->dev)) {
1390 		ret = img_i2c_runtime_resume(&pdev->dev);
1391 		if (ret)
1392 			return ret;
1393 	}
1394 
1395 	ret = img_i2c_init(i2c);
1396 	if (ret)
1397 		goto rpm_disable;
1398 
1399 	ret = i2c_add_numbered_adapter(&i2c->adap);
1400 	if (ret < 0)
1401 		goto rpm_disable;
1402 
1403 	return 0;
1404 
1405 rpm_disable:
1406 	if (!pm_runtime_enabled(&pdev->dev))
1407 		img_i2c_runtime_suspend(&pdev->dev);
1408 	pm_runtime_disable(&pdev->dev);
1409 	pm_runtime_dont_use_autosuspend(&pdev->dev);
1410 	return ret;
1411 }
1412 
1413 static void img_i2c_remove(struct platform_device *dev)
1414 {
1415 	struct img_i2c *i2c = platform_get_drvdata(dev);
1416 
1417 	i2c_del_adapter(&i2c->adap);
1418 	pm_runtime_disable(&dev->dev);
1419 	if (!pm_runtime_status_suspended(&dev->dev))
1420 		img_i2c_runtime_suspend(&dev->dev);
1421 }
1422 
1423 static int img_i2c_runtime_suspend(struct device *dev)
1424 {
1425 	struct img_i2c *i2c = dev_get_drvdata(dev);
1426 
1427 	clk_disable_unprepare(i2c->scb_clk);
1428 	clk_disable_unprepare(i2c->sys_clk);
1429 
1430 	return 0;
1431 }
1432 
1433 static int img_i2c_runtime_resume(struct device *dev)
1434 {
1435 	struct img_i2c *i2c = dev_get_drvdata(dev);
1436 	int ret;
1437 
1438 	ret = clk_prepare_enable(i2c->sys_clk);
1439 	if (ret) {
1440 		dev_err(dev, "Unable to enable sys clock\n");
1441 		return ret;
1442 	}
1443 
1444 	ret = clk_prepare_enable(i2c->scb_clk);
1445 	if (ret) {
1446 		dev_err(dev, "Unable to enable scb clock\n");
1447 		clk_disable_unprepare(i2c->sys_clk);
1448 		return ret;
1449 	}
1450 
1451 	return 0;
1452 }
1453 
1454 static int img_i2c_suspend(struct device *dev)
1455 {
1456 	struct img_i2c *i2c = dev_get_drvdata(dev);
1457 	int ret;
1458 
1459 	ret = pm_runtime_force_suspend(dev);
1460 	if (ret)
1461 		return ret;
1462 
1463 	img_i2c_switch_mode(i2c, MODE_SUSPEND);
1464 
1465 	return 0;
1466 }
1467 
1468 static int img_i2c_resume(struct device *dev)
1469 {
1470 	struct img_i2c *i2c = dev_get_drvdata(dev);
1471 	int ret;
1472 
1473 	ret = pm_runtime_force_resume(dev);
1474 	if (ret)
1475 		return ret;
1476 
1477 	img_i2c_init(i2c);
1478 
1479 	return 0;
1480 }
1481 
1482 static const struct dev_pm_ops img_i2c_pm = {
1483 	RUNTIME_PM_OPS(img_i2c_runtime_suspend, img_i2c_runtime_resume, NULL)
1484 	SYSTEM_SLEEP_PM_OPS(img_i2c_suspend, img_i2c_resume)
1485 };
1486 
1487 static const struct of_device_id img_scb_i2c_match[] = {
1488 	{ .compatible = "img,scb-i2c" },
1489 	{ }
1490 };
1491 MODULE_DEVICE_TABLE(of, img_scb_i2c_match);
1492 
1493 static struct platform_driver img_scb_i2c_driver = {
1494 	.driver = {
1495 		.name		= "img-i2c-scb",
1496 		.of_match_table	= img_scb_i2c_match,
1497 		.pm		= pm_ptr(&img_i2c_pm),
1498 	},
1499 	.probe = img_i2c_probe,
1500 	.remove_new = img_i2c_remove,
1501 };
1502 module_platform_driver(img_scb_i2c_driver);
1503 
1504 MODULE_AUTHOR("James Hogan <jhogan@kernel.org>");
1505 MODULE_DESCRIPTION("IMG host I2C driver");
1506 MODULE_LICENSE("GPL v2");
1507