xref: /linux/drivers/i2c/busses/i2c-exynos5.c (revision e814f3fd16acfb7f9966773953de8f740a1e3202)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * i2c-exynos5.c - Samsung Exynos5 I2C Controller Driver
4  *
5  * Copyright (C) 2013 Samsung Electronics Co., Ltd.
6 */
7 
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 
11 #include <linux/i2c.h>
12 #include <linux/time.h>
13 #include <linux/interrupt.h>
14 #include <linux/delay.h>
15 #include <linux/errno.h>
16 #include <linux/err.h>
17 #include <linux/platform_device.h>
18 #include <linux/clk.h>
19 #include <linux/slab.h>
20 #include <linux/io.h>
21 #include <linux/of.h>
22 #include <linux/spinlock.h>
23 
24 /*
25  * HSI2C controller from Samsung supports 2 modes of operation
26  * 1. Auto mode: Where in master automatically controls the whole transaction
27  * 2. Manual mode: Software controls the transaction by issuing commands
28  *    START, READ, WRITE, STOP, RESTART in I2C_MANUAL_CMD register.
29  *
30  * Operation mode can be selected by setting AUTO_MODE bit in I2C_CONF register
31  *
32  * Special bits are available for both modes of operation to set commands
33  * and for checking transfer status
34  */
35 
36 /* Register Map */
37 #define HSI2C_CTL		0x00
38 #define HSI2C_FIFO_CTL		0x04
39 #define HSI2C_TRAILIG_CTL	0x08
40 #define HSI2C_CLK_CTL		0x0C
41 #define HSI2C_CLK_SLOT		0x10
42 #define HSI2C_INT_ENABLE	0x20
43 #define HSI2C_INT_STATUS	0x24
44 #define HSI2C_ERR_STATUS	0x2C
45 #define HSI2C_FIFO_STATUS	0x30
46 #define HSI2C_TX_DATA		0x34
47 #define HSI2C_RX_DATA		0x38
48 #define HSI2C_CONF		0x40
49 #define HSI2C_AUTO_CONF		0x44
50 #define HSI2C_TIMEOUT		0x48
51 #define HSI2C_MANUAL_CMD	0x4C
52 #define HSI2C_TRANS_STATUS	0x50
53 #define HSI2C_TIMING_HS1	0x54
54 #define HSI2C_TIMING_HS2	0x58
55 #define HSI2C_TIMING_HS3	0x5C
56 #define HSI2C_TIMING_FS1	0x60
57 #define HSI2C_TIMING_FS2	0x64
58 #define HSI2C_TIMING_FS3	0x68
59 #define HSI2C_TIMING_SLA	0x6C
60 #define HSI2C_ADDR		0x70
61 
62 /* I2C_CTL Register bits */
63 #define HSI2C_FUNC_MODE_I2C			(1u << 0)
64 #define HSI2C_MASTER				(1u << 3)
65 #define HSI2C_RXCHON				(1u << 6)
66 #define HSI2C_TXCHON				(1u << 7)
67 #define HSI2C_SW_RST				(1u << 31)
68 
69 /* I2C_FIFO_CTL Register bits */
70 #define HSI2C_RXFIFO_EN				(1u << 0)
71 #define HSI2C_TXFIFO_EN				(1u << 1)
72 #define HSI2C_RXFIFO_TRIGGER_LEVEL(x)		((x) << 4)
73 #define HSI2C_TXFIFO_TRIGGER_LEVEL(x)		((x) << 16)
74 
75 /* I2C_TRAILING_CTL Register bits */
76 #define HSI2C_TRAILING_COUNT			(0xf)
77 
78 /* I2C_INT_EN Register bits */
79 #define HSI2C_INT_TX_ALMOSTEMPTY_EN		(1u << 0)
80 #define HSI2C_INT_RX_ALMOSTFULL_EN		(1u << 1)
81 #define HSI2C_INT_TRAILING_EN			(1u << 6)
82 
83 /* I2C_INT_STAT Register bits */
84 #define HSI2C_INT_TX_ALMOSTEMPTY		(1u << 0)
85 #define HSI2C_INT_RX_ALMOSTFULL			(1u << 1)
86 #define HSI2C_INT_TX_UNDERRUN			(1u << 2)
87 #define HSI2C_INT_TX_OVERRUN			(1u << 3)
88 #define HSI2C_INT_RX_UNDERRUN			(1u << 4)
89 #define HSI2C_INT_RX_OVERRUN			(1u << 5)
90 #define HSI2C_INT_TRAILING			(1u << 6)
91 #define HSI2C_INT_I2C				(1u << 9)
92 
93 #define HSI2C_INT_TRANS_DONE			(1u << 7)
94 #define HSI2C_INT_TRANS_ABORT			(1u << 8)
95 #define HSI2C_INT_NO_DEV_ACK			(1u << 9)
96 #define HSI2C_INT_NO_DEV			(1u << 10)
97 #define HSI2C_INT_TIMEOUT			(1u << 11)
98 #define HSI2C_INT_I2C_TRANS			(HSI2C_INT_TRANS_DONE |	\
99 						HSI2C_INT_TRANS_ABORT |	\
100 						HSI2C_INT_NO_DEV_ACK |	\
101 						HSI2C_INT_NO_DEV |	\
102 						HSI2C_INT_TIMEOUT)
103 
104 /* I2C_FIFO_STAT Register bits */
105 #define HSI2C_RX_FIFO_EMPTY			(1u << 24)
106 #define HSI2C_RX_FIFO_FULL			(1u << 23)
107 #define HSI2C_RX_FIFO_LVL(x)			((x >> 16) & 0x7f)
108 #define HSI2C_TX_FIFO_EMPTY			(1u << 8)
109 #define HSI2C_TX_FIFO_FULL			(1u << 7)
110 #define HSI2C_TX_FIFO_LVL(x)			((x >> 0) & 0x7f)
111 
112 /* I2C_CONF Register bits */
113 #define HSI2C_AUTO_MODE				(1u << 31)
114 #define HSI2C_10BIT_ADDR_MODE			(1u << 30)
115 #define HSI2C_HS_MODE				(1u << 29)
116 
117 /* I2C_AUTO_CONF Register bits */
118 #define HSI2C_READ_WRITE			(1u << 16)
119 #define HSI2C_STOP_AFTER_TRANS			(1u << 17)
120 #define HSI2C_MASTER_RUN			(1u << 31)
121 
122 /* I2C_TIMEOUT Register bits */
123 #define HSI2C_TIMEOUT_EN			(1u << 31)
124 #define HSI2C_TIMEOUT_MASK			0xff
125 
126 /* I2C_MANUAL_CMD register bits */
127 #define HSI2C_CMD_READ_DATA			(1u << 4)
128 #define HSI2C_CMD_SEND_STOP			(1u << 2)
129 
130 /* I2C_TRANS_STATUS register bits */
131 #define HSI2C_MASTER_BUSY			(1u << 17)
132 #define HSI2C_SLAVE_BUSY			(1u << 16)
133 
134 /* I2C_TRANS_STATUS register bits for Exynos5 variant */
135 #define HSI2C_TIMEOUT_AUTO			(1u << 4)
136 #define HSI2C_NO_DEV				(1u << 3)
137 #define HSI2C_NO_DEV_ACK			(1u << 2)
138 #define HSI2C_TRANS_ABORT			(1u << 1)
139 #define HSI2C_TRANS_DONE			(1u << 0)
140 
141 /* I2C_TRANS_STATUS register bits for Exynos7 variant */
142 #define HSI2C_MASTER_ST_MASK			0xf
143 #define HSI2C_MASTER_ST_IDLE			0x0
144 #define HSI2C_MASTER_ST_START			0x1
145 #define HSI2C_MASTER_ST_RESTART			0x2
146 #define HSI2C_MASTER_ST_STOP			0x3
147 #define HSI2C_MASTER_ST_MASTER_ID		0x4
148 #define HSI2C_MASTER_ST_ADDR0			0x5
149 #define HSI2C_MASTER_ST_ADDR1			0x6
150 #define HSI2C_MASTER_ST_ADDR2			0x7
151 #define HSI2C_MASTER_ST_ADDR_SR			0x8
152 #define HSI2C_MASTER_ST_READ			0x9
153 #define HSI2C_MASTER_ST_WRITE			0xa
154 #define HSI2C_MASTER_ST_NO_ACK			0xb
155 #define HSI2C_MASTER_ST_LOSE			0xc
156 #define HSI2C_MASTER_ST_WAIT			0xd
157 #define HSI2C_MASTER_ST_WAIT_CMD		0xe
158 
159 /* I2C_ADDR register bits */
160 #define HSI2C_SLV_ADDR_SLV(x)			((x & 0x3ff) << 0)
161 #define HSI2C_SLV_ADDR_MAS(x)			((x & 0x3ff) << 10)
162 #define HSI2C_MASTER_ID(x)			((x & 0xff) << 24)
163 #define MASTER_ID(x)				((x & 0x7) + 0x08)
164 
165 #define EXYNOS5_I2C_TIMEOUT (msecs_to_jiffies(100))
166 
167 enum i2c_type_exynos {
168 	I2C_TYPE_EXYNOS5,
169 	I2C_TYPE_EXYNOS7,
170 	I2C_TYPE_EXYNOSAUTOV9,
171 	I2C_TYPE_EXYNOS8895,
172 };
173 
174 struct exynos5_i2c {
175 	struct i2c_adapter	adap;
176 
177 	struct i2c_msg		*msg;
178 	struct completion	msg_complete;
179 	unsigned int		msg_ptr;
180 
181 	unsigned int		irq;
182 
183 	void __iomem		*regs;
184 	struct clk		*clk;		/* operating clock */
185 	struct clk		*pclk;		/* bus clock */
186 	struct device		*dev;
187 	int			state;
188 
189 	spinlock_t		lock;		/* IRQ synchronization */
190 
191 	/*
192 	 * Since the TRANS_DONE bit is cleared on read, and we may read it
193 	 * either during an IRQ or after a transaction, keep track of its
194 	 * state here.
195 	 */
196 	int			trans_done;
197 
198 	/*
199 	 * Called from atomic context, don't use interrupts.
200 	 */
201 	unsigned int		atomic;
202 
203 	/* Controller operating frequency */
204 	unsigned int		op_clock;
205 
206 	/* Version of HS-I2C Hardware */
207 	const struct exynos_hsi2c_variant *variant;
208 };
209 
210 /**
211  * struct exynos_hsi2c_variant - platform specific HSI2C driver data
212  * @fifo_depth: the fifo depth supported by the HSI2C module
213  * @hw: the hardware variant of Exynos I2C controller
214  *
215  * Specifies platform specific configuration of HSI2C module.
216  * Note: A structure for driver specific platform data is used for future
217  * expansion of its usage.
218  */
219 struct exynos_hsi2c_variant {
220 	unsigned int		fifo_depth;
221 	enum i2c_type_exynos	hw;
222 };
223 
224 static const struct exynos_hsi2c_variant exynos5250_hsi2c_data = {
225 	.fifo_depth	= 64,
226 	.hw		= I2C_TYPE_EXYNOS5,
227 };
228 
229 static const struct exynos_hsi2c_variant exynos5260_hsi2c_data = {
230 	.fifo_depth	= 16,
231 	.hw		= I2C_TYPE_EXYNOS5,
232 };
233 
234 static const struct exynos_hsi2c_variant exynos7_hsi2c_data = {
235 	.fifo_depth	= 16,
236 	.hw		= I2C_TYPE_EXYNOS7,
237 };
238 
239 static const struct exynos_hsi2c_variant exynosautov9_hsi2c_data = {
240 	.fifo_depth	= 64,
241 	.hw		= I2C_TYPE_EXYNOSAUTOV9,
242 };
243 
244 static const struct exynos_hsi2c_variant exynos8895_hsi2c_data = {
245 	.fifo_depth	= 64,
246 	.hw		= I2C_TYPE_EXYNOS8895,
247 };
248 
249 static const struct of_device_id exynos5_i2c_match[] = {
250 	{
251 		.compatible = "samsung,exynos5-hsi2c",
252 		.data = &exynos5250_hsi2c_data
253 	}, {
254 		.compatible = "samsung,exynos5250-hsi2c",
255 		.data = &exynos5250_hsi2c_data
256 	}, {
257 		.compatible = "samsung,exynos5260-hsi2c",
258 		.data = &exynos5260_hsi2c_data
259 	}, {
260 		.compatible = "samsung,exynos7-hsi2c",
261 		.data = &exynos7_hsi2c_data
262 	}, {
263 		.compatible = "samsung,exynosautov9-hsi2c",
264 		.data = &exynosautov9_hsi2c_data
265 	}, {
266 		.compatible = "samsung,exynos8895-hsi2c",
267 		.data = &exynos8895_hsi2c_data
268 	}, {},
269 };
270 MODULE_DEVICE_TABLE(of, exynos5_i2c_match);
271 
272 static void exynos5_i2c_clr_pend_irq(struct exynos5_i2c *i2c)
273 {
274 	writel(readl(i2c->regs + HSI2C_INT_STATUS),
275 				i2c->regs + HSI2C_INT_STATUS);
276 }
277 
278 /*
279  * exynos5_i2c_set_timing: updates the registers with appropriate
280  * timing values calculated
281  *
282  * Timing values for operation are calculated against 100kHz, 400kHz
283  * or 1MHz controller operating frequency.
284  *
285  * Returns 0 on success, -EINVAL if the cycle length cannot
286  * be calculated.
287  */
288 static int exynos5_i2c_set_timing(struct exynos5_i2c *i2c, bool hs_timings)
289 {
290 	u32 i2c_timing_s1;
291 	u32 i2c_timing_s2;
292 	u32 i2c_timing_s3;
293 	u32 i2c_timing_sla;
294 	unsigned int t_start_su, t_start_hd;
295 	unsigned int t_stop_su;
296 	unsigned int t_data_su, t_data_hd;
297 	unsigned int t_scl_l, t_scl_h;
298 	unsigned int t_sr_release;
299 	unsigned int t_ftl_cycle;
300 	unsigned int clkin = clk_get_rate(i2c->clk);
301 	unsigned int op_clk = hs_timings ? i2c->op_clock :
302 		(i2c->op_clock >= I2C_MAX_FAST_MODE_PLUS_FREQ) ? I2C_MAX_STANDARD_MODE_FREQ :
303 		i2c->op_clock;
304 	int div, clk_cycle, temp;
305 
306 	/*
307 	 * In case of HSI2C controllers in ExynosAutoV9:
308 	 *
309 	 * FSCL = IPCLK / ((CLK_DIV + 1) * 16)
310 	 * T_SCL_LOW = IPCLK * (CLK_DIV + 1) * (N + M)
311 	 *   [N : number of 0's in the TSCL_H_HS]
312 	 *   [M : number of 0's in the TSCL_L_HS]
313 	 * T_SCL_HIGH = IPCLK * (CLK_DIV + 1) * (N + M)
314 	 *   [N : number of 1's in the TSCL_H_HS]
315 	 *   [M : number of 1's in the TSCL_L_HS]
316 	 *
317 	 * Result of (N + M) is always 8.
318 	 * In general case, we don't need to control timing_s1 and timing_s2.
319 	 */
320 	if (i2c->variant->hw == I2C_TYPE_EXYNOSAUTOV9) {
321 		div = ((clkin / (16 * i2c->op_clock)) - 1);
322 		i2c_timing_s3 = div << 16;
323 		if (hs_timings)
324 			writel(i2c_timing_s3, i2c->regs + HSI2C_TIMING_HS3);
325 		else
326 			writel(i2c_timing_s3, i2c->regs + HSI2C_TIMING_FS3);
327 
328 		return 0;
329 	}
330 
331 	/*
332 	 * In case of HSI2C controller in Exynos5 series
333 	 * FPCLK / FI2C =
334 	 * (CLK_DIV + 1) * (TSCLK_L + TSCLK_H + 2) + 8 + 2 * FLT_CYCLE
335 	 *
336 	 * In case of HSI2C controllers in Exynos7 series
337 	 * FPCLK / FI2C =
338 	 * (CLK_DIV + 1) * (TSCLK_L + TSCLK_H + 2) + 8 + FLT_CYCLE
339 	 *
340 	 * clk_cycle := TSCLK_L + TSCLK_H
341 	 * temp := (CLK_DIV + 1) * (clk_cycle + 2)
342 	 *
343 	 * In case of HSI2C controllers in Exynos8895
344 	 * FPCLK / FI2C =
345 	 * (CLK_DIV + 1) * (TSCLK_L + TSCLK_H + 2) +
346 	 * 2 * ((FLT_CYCLE + 3) - (FLT_CYCLE + 3) % (CLK_DIV + 1))
347 	 *
348 	 * clk_cycle := TSCLK_L + TSCLK_H
349 	 * temp := (FPCLK / FI2C) - (FLT_CYCLE + 3) * 2
350 	 *
351 	 * Constraints: 4 <= temp, 0 <= CLK_DIV < 256, 2 <= clk_cycle <= 510
352 	 *
353 	 * To split SCL clock into low, high periods appropriately, one
354 	 * proportion factor for each I2C mode is used, which is calculated
355 	 * using this formula.
356 	 * ```
357 	 * ((t_low_min + (scl_clock - t_low_min - t_high_min) / 2) / scl_clock)
358 	 * ```
359 	 * where:
360 	 * t_low_min is the minimal value of low period of the SCL clock in us;
361 	 * t_high_min is the minimal value of high period of the SCL clock in us;
362 	 * scl_clock is converted from SCL clock frequency into us.
363 	 *
364 	 * Below are the proportion factors for these I2C modes:
365 	 *                t_low_min, t_high_min, scl_clock, proportion
366 	 * Standard Mode:     4.7us,      4.0us,      10us,      0.535
367 	 * Fast Mode:         1.3us,      0.6us,     2.5us,       0.64
368 	 * Fast-Plus Mode:    0.5us,     0.26us,       1us,       0.62
369 	 *
370 	 */
371 	t_ftl_cycle = (readl(i2c->regs + HSI2C_CONF) >> 16) & 0x7;
372 	if (i2c->variant->hw == I2C_TYPE_EXYNOS8895)
373 		temp = clkin / op_clk - (t_ftl_cycle + 3) * 2;
374 	else if (i2c->variant->hw == I2C_TYPE_EXYNOS7)
375 		temp = clkin / op_clk - 8 - t_ftl_cycle;
376 	else
377 		temp = clkin / op_clk - 8 - (t_ftl_cycle * 2);
378 	div = temp / 512;
379 
380 	if (i2c->variant->hw == I2C_TYPE_EXYNOS8895)
381 		clk_cycle = (temp + ((t_ftl_cycle + 3) % (div + 1)) * 2) /
382 			    (div + 1) - 2;
383 	else
384 		clk_cycle = temp / (div + 1) - 2;
385 	if (temp < 4 || div >= 256 || clk_cycle < 2) {
386 		dev_err(i2c->dev, "%s clock set-up failed\n",
387 			hs_timings ? "HS" : "FS");
388 		return -EINVAL;
389 	}
390 
391 	/*
392 	 * Scale clk_cycle to get t_scl_l using the proption factors for individual I2C modes.
393 	 */
394 	if (op_clk <= I2C_MAX_STANDARD_MODE_FREQ)
395 		t_scl_l = clk_cycle * 535 / 1000;
396 	else if (op_clk <= I2C_MAX_FAST_MODE_FREQ)
397 		t_scl_l = clk_cycle * 64 / 100;
398 	else
399 		t_scl_l = clk_cycle * 62 / 100;
400 
401 	if (t_scl_l > 0xFF)
402 		t_scl_l = 0xFF;
403 	t_scl_h = clk_cycle - t_scl_l;
404 	t_start_su = t_scl_l;
405 	t_start_hd = t_scl_l;
406 	t_stop_su = t_scl_l;
407 	t_data_su = t_scl_l / 2;
408 	t_data_hd = t_scl_l / 2;
409 	t_sr_release = clk_cycle;
410 
411 	i2c_timing_s1 = t_start_su << 24 | t_start_hd << 16 | t_stop_su << 8;
412 	i2c_timing_s2 = t_data_su << 24 | t_scl_l << 8 | t_scl_h << 0;
413 	i2c_timing_s3 = div << 16 | t_sr_release << 0;
414 	i2c_timing_sla = t_data_hd << 0;
415 
416 	dev_dbg(i2c->dev, "tSTART_SU: %X, tSTART_HD: %X, tSTOP_SU: %X\n",
417 		t_start_su, t_start_hd, t_stop_su);
418 	dev_dbg(i2c->dev, "tDATA_SU: %X, tSCL_L: %X, tSCL_H: %X\n",
419 		t_data_su, t_scl_l, t_scl_h);
420 	dev_dbg(i2c->dev, "nClkDiv: %X, tSR_RELEASE: %X\n",
421 		div, t_sr_release);
422 	dev_dbg(i2c->dev, "tDATA_HD: %X\n", t_data_hd);
423 
424 	if (hs_timings) {
425 		writel(i2c_timing_s1, i2c->regs + HSI2C_TIMING_HS1);
426 		writel(i2c_timing_s2, i2c->regs + HSI2C_TIMING_HS2);
427 		writel(i2c_timing_s3, i2c->regs + HSI2C_TIMING_HS3);
428 	} else {
429 		writel(i2c_timing_s1, i2c->regs + HSI2C_TIMING_FS1);
430 		writel(i2c_timing_s2, i2c->regs + HSI2C_TIMING_FS2);
431 		writel(i2c_timing_s3, i2c->regs + HSI2C_TIMING_FS3);
432 	}
433 	writel(i2c_timing_sla, i2c->regs + HSI2C_TIMING_SLA);
434 
435 	return 0;
436 }
437 
438 static int exynos5_hsi2c_clock_setup(struct exynos5_i2c *i2c)
439 {
440 	/* always set Fast Speed timings */
441 	int ret = exynos5_i2c_set_timing(i2c, false);
442 
443 	if (ret < 0 || i2c->op_clock < I2C_MAX_FAST_MODE_PLUS_FREQ)
444 		return ret;
445 
446 	return exynos5_i2c_set_timing(i2c, true);
447 }
448 
449 /*
450  * exynos5_i2c_init: configures the controller for I2C functionality
451  * Programs I2C controller for Master mode operation
452  */
453 static void exynos5_i2c_init(struct exynos5_i2c *i2c)
454 {
455 	u32 i2c_conf = readl(i2c->regs + HSI2C_CONF);
456 	u32 i2c_timeout = readl(i2c->regs + HSI2C_TIMEOUT);
457 
458 	/* Clear to disable Timeout */
459 	i2c_timeout &= ~HSI2C_TIMEOUT_EN;
460 	writel(i2c_timeout, i2c->regs + HSI2C_TIMEOUT);
461 
462 	writel((HSI2C_FUNC_MODE_I2C | HSI2C_MASTER),
463 					i2c->regs + HSI2C_CTL);
464 	writel(HSI2C_TRAILING_COUNT, i2c->regs + HSI2C_TRAILIG_CTL);
465 
466 	if (i2c->op_clock >= I2C_MAX_FAST_MODE_PLUS_FREQ) {
467 		writel(HSI2C_MASTER_ID(MASTER_ID(i2c->adap.nr)),
468 					i2c->regs + HSI2C_ADDR);
469 		i2c_conf |= HSI2C_HS_MODE;
470 	}
471 
472 	writel(i2c_conf | HSI2C_AUTO_MODE, i2c->regs + HSI2C_CONF);
473 }
474 
475 static void exynos5_i2c_reset(struct exynos5_i2c *i2c)
476 {
477 	u32 i2c_ctl;
478 
479 	/* Set and clear the bit for reset */
480 	i2c_ctl = readl(i2c->regs + HSI2C_CTL);
481 	i2c_ctl |= HSI2C_SW_RST;
482 	writel(i2c_ctl, i2c->regs + HSI2C_CTL);
483 
484 	i2c_ctl = readl(i2c->regs + HSI2C_CTL);
485 	i2c_ctl &= ~HSI2C_SW_RST;
486 	writel(i2c_ctl, i2c->regs + HSI2C_CTL);
487 
488 	/* We don't expect calculations to fail during the run */
489 	exynos5_hsi2c_clock_setup(i2c);
490 	/* Initialize the configure registers */
491 	exynos5_i2c_init(i2c);
492 }
493 
494 /*
495  * exynos5_i2c_irq: top level IRQ servicing routine
496  *
497  * INT_STATUS registers gives the interrupt details. Further,
498  * FIFO_STATUS or TRANS_STATUS registers are to be check for detailed
499  * state of the bus.
500  */
501 static irqreturn_t exynos5_i2c_irq(int irqno, void *dev_id)
502 {
503 	struct exynos5_i2c *i2c = dev_id;
504 	u32 fifo_level, int_status, fifo_status, trans_status;
505 	unsigned char byte;
506 	int len = 0;
507 
508 	i2c->state = -EINVAL;
509 
510 	spin_lock(&i2c->lock);
511 
512 	int_status = readl(i2c->regs + HSI2C_INT_STATUS);
513 	writel(int_status, i2c->regs + HSI2C_INT_STATUS);
514 
515 	/* handle interrupt related to the transfer status */
516 	switch (i2c->variant->hw) {
517 	case I2C_TYPE_EXYNOSAUTOV9:
518 		fallthrough;
519 	case I2C_TYPE_EXYNOS8895:
520 		fallthrough;
521 	case I2C_TYPE_EXYNOS7:
522 		if (int_status & HSI2C_INT_TRANS_DONE) {
523 			i2c->trans_done = 1;
524 			i2c->state = 0;
525 		} else if (int_status & HSI2C_INT_TRANS_ABORT) {
526 			dev_dbg(i2c->dev, "Deal with arbitration lose\n");
527 			i2c->state = -EAGAIN;
528 			goto stop;
529 		} else if (int_status & HSI2C_INT_NO_DEV_ACK) {
530 			dev_dbg(i2c->dev, "No ACK from device\n");
531 			i2c->state = -ENXIO;
532 			goto stop;
533 		} else if (int_status & HSI2C_INT_NO_DEV) {
534 			dev_dbg(i2c->dev, "No device\n");
535 			i2c->state = -ENXIO;
536 			goto stop;
537 		} else if (int_status & HSI2C_INT_TIMEOUT) {
538 			dev_dbg(i2c->dev, "Accessing device timed out\n");
539 			i2c->state = -ETIMEDOUT;
540 			goto stop;
541 		}
542 
543 		break;
544 	case I2C_TYPE_EXYNOS5:
545 		if (!(int_status & HSI2C_INT_I2C))
546 			break;
547 
548 		trans_status = readl(i2c->regs + HSI2C_TRANS_STATUS);
549 		if (trans_status & HSI2C_NO_DEV_ACK) {
550 			dev_dbg(i2c->dev, "No ACK from device\n");
551 			i2c->state = -ENXIO;
552 			goto stop;
553 		} else if (trans_status & HSI2C_NO_DEV) {
554 			dev_dbg(i2c->dev, "No device\n");
555 			i2c->state = -ENXIO;
556 			goto stop;
557 		} else if (trans_status & HSI2C_TRANS_ABORT) {
558 			dev_dbg(i2c->dev, "Deal with arbitration lose\n");
559 			i2c->state = -EAGAIN;
560 			goto stop;
561 		} else if (trans_status & HSI2C_TIMEOUT_AUTO) {
562 			dev_dbg(i2c->dev, "Accessing device timed out\n");
563 			i2c->state = -ETIMEDOUT;
564 			goto stop;
565 		} else if (trans_status & HSI2C_TRANS_DONE) {
566 			i2c->trans_done = 1;
567 			i2c->state = 0;
568 		}
569 
570 		break;
571 	}
572 
573 	if ((i2c->msg->flags & I2C_M_RD) && (int_status &
574 			(HSI2C_INT_TRAILING | HSI2C_INT_RX_ALMOSTFULL))) {
575 		fifo_status = readl(i2c->regs + HSI2C_FIFO_STATUS);
576 		fifo_level = HSI2C_RX_FIFO_LVL(fifo_status);
577 		len = min(fifo_level, i2c->msg->len - i2c->msg_ptr);
578 
579 		while (len > 0) {
580 			byte = (unsigned char)
581 				readl(i2c->regs + HSI2C_RX_DATA);
582 			i2c->msg->buf[i2c->msg_ptr++] = byte;
583 			len--;
584 		}
585 		i2c->state = 0;
586 	} else if (int_status & HSI2C_INT_TX_ALMOSTEMPTY) {
587 		fifo_status = readl(i2c->regs + HSI2C_FIFO_STATUS);
588 		fifo_level = HSI2C_TX_FIFO_LVL(fifo_status);
589 
590 		len = i2c->variant->fifo_depth - fifo_level;
591 		if (len > (i2c->msg->len - i2c->msg_ptr)) {
592 			u32 int_en = readl(i2c->regs + HSI2C_INT_ENABLE);
593 
594 			int_en &= ~HSI2C_INT_TX_ALMOSTEMPTY_EN;
595 			writel(int_en, i2c->regs + HSI2C_INT_ENABLE);
596 			len = i2c->msg->len - i2c->msg_ptr;
597 		}
598 
599 		while (len > 0) {
600 			byte = i2c->msg->buf[i2c->msg_ptr++];
601 			writel(byte, i2c->regs + HSI2C_TX_DATA);
602 			len--;
603 		}
604 		i2c->state = 0;
605 	}
606 
607  stop:
608 	if ((i2c->trans_done && (i2c->msg->len == i2c->msg_ptr)) ||
609 	    (i2c->state < 0)) {
610 		writel(0, i2c->regs + HSI2C_INT_ENABLE);
611 		exynos5_i2c_clr_pend_irq(i2c);
612 		complete(&i2c->msg_complete);
613 	}
614 
615 	spin_unlock(&i2c->lock);
616 
617 	return IRQ_HANDLED;
618 }
619 
620 /*
621  * exynos5_i2c_wait_bus_idle
622  *
623  * Wait for the bus to go idle, indicated by the MASTER_BUSY bit being
624  * cleared.
625  *
626  * Returns -EBUSY if the bus cannot be bought to idle
627  */
628 static int exynos5_i2c_wait_bus_idle(struct exynos5_i2c *i2c)
629 {
630 	unsigned long stop_time;
631 	u32 trans_status;
632 
633 	/* wait for 100 milli seconds for the bus to be idle */
634 	stop_time = jiffies + msecs_to_jiffies(100) + 1;
635 	do {
636 		trans_status = readl(i2c->regs + HSI2C_TRANS_STATUS);
637 		if (!(trans_status & HSI2C_MASTER_BUSY))
638 			return 0;
639 
640 		usleep_range(50, 200);
641 	} while (time_before(jiffies, stop_time));
642 
643 	return -EBUSY;
644 }
645 
646 static void exynos5_i2c_bus_recover(struct exynos5_i2c *i2c)
647 {
648 	u32 val;
649 
650 	val = readl(i2c->regs + HSI2C_CTL) | HSI2C_RXCHON;
651 	writel(val, i2c->regs + HSI2C_CTL);
652 	val = readl(i2c->regs + HSI2C_CONF) & ~HSI2C_AUTO_MODE;
653 	writel(val, i2c->regs + HSI2C_CONF);
654 
655 	/*
656 	 * Specification says master should send nine clock pulses. It can be
657 	 * emulated by sending manual read command (nine pulses for read eight
658 	 * bits + one pulse for NACK).
659 	 */
660 	writel(HSI2C_CMD_READ_DATA, i2c->regs + HSI2C_MANUAL_CMD);
661 	exynos5_i2c_wait_bus_idle(i2c);
662 	writel(HSI2C_CMD_SEND_STOP, i2c->regs + HSI2C_MANUAL_CMD);
663 	exynos5_i2c_wait_bus_idle(i2c);
664 
665 	val = readl(i2c->regs + HSI2C_CTL) & ~HSI2C_RXCHON;
666 	writel(val, i2c->regs + HSI2C_CTL);
667 	val = readl(i2c->regs + HSI2C_CONF) | HSI2C_AUTO_MODE;
668 	writel(val, i2c->regs + HSI2C_CONF);
669 }
670 
671 static void exynos5_i2c_bus_check(struct exynos5_i2c *i2c)
672 {
673 	unsigned long timeout;
674 
675 	if (i2c->variant->hw == I2C_TYPE_EXYNOS5)
676 		return;
677 
678 	/*
679 	 * HSI2C_MASTER_ST_LOSE state (in Exynos7 and ExynosAutoV9 variants)
680 	 * before transaction indicates that bus is stuck (SDA is low).
681 	 * In such case bus recovery can be performed.
682 	 */
683 	timeout = jiffies + msecs_to_jiffies(100);
684 	for (;;) {
685 		u32 st = readl(i2c->regs + HSI2C_TRANS_STATUS);
686 
687 		if ((st & HSI2C_MASTER_ST_MASK) != HSI2C_MASTER_ST_LOSE)
688 			return;
689 
690 		if (time_is_before_jiffies(timeout))
691 			return;
692 
693 		exynos5_i2c_bus_recover(i2c);
694 	}
695 }
696 
697 /*
698  * exynos5_i2c_message_start: Configures the bus and starts the xfer
699  * i2c: struct exynos5_i2c pointer for the current bus
700  * stop: Enables stop after transfer if set. Set for last transfer of
701  *       in the list of messages.
702  *
703  * Configures the bus for read/write function
704  * Sets chip address to talk to, message length to be sent.
705  * Enables appropriate interrupts and sends start xfer command.
706  */
707 static void exynos5_i2c_message_start(struct exynos5_i2c *i2c, int stop)
708 {
709 	u32 i2c_ctl;
710 	u32 int_en = 0;
711 	u32 i2c_auto_conf = 0;
712 	u32 i2c_addr = 0;
713 	u32 fifo_ctl;
714 	unsigned long flags;
715 	unsigned short trig_lvl;
716 
717 	if (i2c->variant->hw == I2C_TYPE_EXYNOS5)
718 		int_en |= HSI2C_INT_I2C;
719 	else
720 		int_en |= HSI2C_INT_I2C_TRANS;
721 
722 	i2c_ctl = readl(i2c->regs + HSI2C_CTL);
723 	i2c_ctl &= ~(HSI2C_TXCHON | HSI2C_RXCHON);
724 	fifo_ctl = HSI2C_RXFIFO_EN | HSI2C_TXFIFO_EN;
725 
726 	if (i2c->msg->flags & I2C_M_RD) {
727 		i2c_ctl |= HSI2C_RXCHON;
728 
729 		i2c_auto_conf |= HSI2C_READ_WRITE;
730 
731 		trig_lvl = (i2c->msg->len > i2c->variant->fifo_depth) ?
732 			(i2c->variant->fifo_depth * 3 / 4) : i2c->msg->len;
733 		fifo_ctl |= HSI2C_RXFIFO_TRIGGER_LEVEL(trig_lvl);
734 
735 		int_en |= (HSI2C_INT_RX_ALMOSTFULL_EN |
736 			HSI2C_INT_TRAILING_EN);
737 	} else {
738 		i2c_ctl |= HSI2C_TXCHON;
739 
740 		trig_lvl = (i2c->msg->len > i2c->variant->fifo_depth) ?
741 			(i2c->variant->fifo_depth * 1 / 4) : i2c->msg->len;
742 		fifo_ctl |= HSI2C_TXFIFO_TRIGGER_LEVEL(trig_lvl);
743 
744 		int_en |= HSI2C_INT_TX_ALMOSTEMPTY_EN;
745 	}
746 
747 	i2c_addr = HSI2C_SLV_ADDR_MAS(i2c->msg->addr);
748 
749 	if (i2c->op_clock >= I2C_MAX_FAST_MODE_PLUS_FREQ)
750 		i2c_addr |= HSI2C_MASTER_ID(MASTER_ID(i2c->adap.nr));
751 
752 	writel(i2c_addr, i2c->regs + HSI2C_ADDR);
753 
754 	writel(fifo_ctl, i2c->regs + HSI2C_FIFO_CTL);
755 	writel(i2c_ctl, i2c->regs + HSI2C_CTL);
756 
757 	exynos5_i2c_bus_check(i2c);
758 
759 	/*
760 	 * Enable interrupts before starting the transfer so that we don't
761 	 * miss any INT_I2C interrupts.
762 	 */
763 	spin_lock_irqsave(&i2c->lock, flags);
764 	writel(int_en, i2c->regs + HSI2C_INT_ENABLE);
765 
766 	if (stop == 1)
767 		i2c_auto_conf |= HSI2C_STOP_AFTER_TRANS;
768 	i2c_auto_conf |= i2c->msg->len;
769 	i2c_auto_conf |= HSI2C_MASTER_RUN;
770 	writel(i2c_auto_conf, i2c->regs + HSI2C_AUTO_CONF);
771 	spin_unlock_irqrestore(&i2c->lock, flags);
772 }
773 
774 static bool exynos5_i2c_poll_irqs_timeout(struct exynos5_i2c *i2c,
775 					  unsigned long timeout)
776 {
777 	unsigned long time_left = jiffies + timeout;
778 
779 	while (time_before(jiffies, time_left) &&
780 	       !((i2c->trans_done && (i2c->msg->len == i2c->msg_ptr)) ||
781 	         (i2c->state < 0))) {
782 		while (readl(i2c->regs + HSI2C_INT_ENABLE) &
783 		       readl(i2c->regs + HSI2C_INT_STATUS))
784 			exynos5_i2c_irq(i2c->irq, i2c);
785 		usleep_range(100, 200);
786 	}
787 	return time_before(jiffies, time_left);
788 }
789 
790 static int exynos5_i2c_xfer_msg(struct exynos5_i2c *i2c,
791 			      struct i2c_msg *msgs, int stop)
792 {
793 	unsigned long time_left;
794 	int ret;
795 
796 	i2c->msg = msgs;
797 	i2c->msg_ptr = 0;
798 	i2c->trans_done = 0;
799 
800 	reinit_completion(&i2c->msg_complete);
801 
802 	exynos5_i2c_message_start(i2c, stop);
803 
804 	if (!i2c->atomic)
805 		time_left = wait_for_completion_timeout(&i2c->msg_complete,
806 							EXYNOS5_I2C_TIMEOUT);
807 	else
808 		time_left = exynos5_i2c_poll_irqs_timeout(i2c,
809 							  EXYNOS5_I2C_TIMEOUT);
810 
811 	if (time_left == 0)
812 		ret = -ETIMEDOUT;
813 	else
814 		ret = i2c->state;
815 
816 	/*
817 	 * If this is the last message to be transfered (stop == 1)
818 	 * Then check if the bus can be brought back to idle.
819 	 */
820 	if (ret == 0 && stop)
821 		ret = exynos5_i2c_wait_bus_idle(i2c);
822 
823 	if (ret < 0) {
824 		exynos5_i2c_reset(i2c);
825 		if (ret == -ETIMEDOUT)
826 			dev_warn(i2c->dev, "%s timeout\n",
827 				 (msgs->flags & I2C_M_RD) ? "rx" : "tx");
828 	}
829 
830 	/* Return the state as in interrupt routine */
831 	return ret;
832 }
833 
834 static int exynos5_i2c_xfer(struct i2c_adapter *adap,
835 			struct i2c_msg *msgs, int num)
836 {
837 	struct exynos5_i2c *i2c = adap->algo_data;
838 	int i, ret;
839 
840 	ret = clk_enable(i2c->pclk);
841 	if (ret)
842 		return ret;
843 
844 	ret = clk_enable(i2c->clk);
845 	if (ret)
846 		goto err_pclk;
847 
848 	for (i = 0; i < num; ++i) {
849 		ret = exynos5_i2c_xfer_msg(i2c, msgs + i, i + 1 == num);
850 		if (ret)
851 			break;
852 	}
853 
854 	clk_disable(i2c->clk);
855 err_pclk:
856 	clk_disable(i2c->pclk);
857 
858 	return ret ?: num;
859 }
860 
861 static int exynos5_i2c_xfer_atomic(struct i2c_adapter *adap,
862 				   struct i2c_msg *msgs, int num)
863 {
864 	struct exynos5_i2c *i2c = adap->algo_data;
865 	int ret;
866 
867 	disable_irq(i2c->irq);
868 	i2c->atomic = true;
869 	ret = exynos5_i2c_xfer(adap, msgs, num);
870 	i2c->atomic = false;
871 	enable_irq(i2c->irq);
872 
873 	return ret;
874 }
875 
876 static u32 exynos5_i2c_func(struct i2c_adapter *adap)
877 {
878 	return I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK);
879 }
880 
881 static const struct i2c_algorithm exynos5_i2c_algorithm = {
882 	.master_xfer		= exynos5_i2c_xfer,
883 	.master_xfer_atomic	= exynos5_i2c_xfer_atomic,
884 	.functionality		= exynos5_i2c_func,
885 };
886 
887 static int exynos5_i2c_probe(struct platform_device *pdev)
888 {
889 	struct device_node *np = pdev->dev.of_node;
890 	struct exynos5_i2c *i2c;
891 	int ret;
892 
893 	i2c = devm_kzalloc(&pdev->dev, sizeof(struct exynos5_i2c), GFP_KERNEL);
894 	if (!i2c)
895 		return -ENOMEM;
896 
897 	if (of_property_read_u32(np, "clock-frequency", &i2c->op_clock))
898 		i2c->op_clock = I2C_MAX_STANDARD_MODE_FREQ;
899 
900 	strscpy(i2c->adap.name, "exynos5-i2c", sizeof(i2c->adap.name));
901 	i2c->adap.owner   = THIS_MODULE;
902 	i2c->adap.algo    = &exynos5_i2c_algorithm;
903 	i2c->adap.retries = 3;
904 
905 	i2c->dev = &pdev->dev;
906 	i2c->clk = devm_clk_get(&pdev->dev, "hsi2c");
907 	if (IS_ERR(i2c->clk)) {
908 		dev_err(&pdev->dev, "cannot get clock\n");
909 		return -ENOENT;
910 	}
911 
912 	i2c->pclk = devm_clk_get_optional(&pdev->dev, "hsi2c_pclk");
913 	if (IS_ERR(i2c->pclk)) {
914 		return dev_err_probe(&pdev->dev, PTR_ERR(i2c->pclk),
915 				     "cannot get pclk");
916 	}
917 
918 	ret = clk_prepare_enable(i2c->pclk);
919 	if (ret)
920 		return ret;
921 
922 	ret = clk_prepare_enable(i2c->clk);
923 	if (ret)
924 		goto err_pclk;
925 
926 	i2c->regs = devm_platform_ioremap_resource(pdev, 0);
927 	if (IS_ERR(i2c->regs)) {
928 		ret = PTR_ERR(i2c->regs);
929 		goto err_clk;
930 	}
931 
932 	i2c->adap.dev.of_node = np;
933 	i2c->adap.algo_data = i2c;
934 	i2c->adap.dev.parent = &pdev->dev;
935 
936 	/* Clear pending interrupts from u-boot or misc causes */
937 	exynos5_i2c_clr_pend_irq(i2c);
938 
939 	spin_lock_init(&i2c->lock);
940 	init_completion(&i2c->msg_complete);
941 
942 	i2c->irq = ret = platform_get_irq(pdev, 0);
943 	if (ret < 0)
944 		goto err_clk;
945 
946 	ret = devm_request_irq(&pdev->dev, i2c->irq, exynos5_i2c_irq,
947 			       IRQF_NO_SUSPEND, dev_name(&pdev->dev), i2c);
948 	if (ret != 0) {
949 		dev_err(&pdev->dev, "cannot request HS-I2C IRQ %d\n", i2c->irq);
950 		goto err_clk;
951 	}
952 
953 	i2c->variant = of_device_get_match_data(&pdev->dev);
954 
955 	ret = exynos5_hsi2c_clock_setup(i2c);
956 	if (ret)
957 		goto err_clk;
958 
959 	exynos5_i2c_reset(i2c);
960 
961 	ret = i2c_add_adapter(&i2c->adap);
962 	if (ret < 0)
963 		goto err_clk;
964 
965 	platform_set_drvdata(pdev, i2c);
966 
967 	clk_disable(i2c->clk);
968 	clk_disable(i2c->pclk);
969 
970 	return 0;
971 
972  err_clk:
973 	clk_disable_unprepare(i2c->clk);
974 
975  err_pclk:
976 	clk_disable_unprepare(i2c->pclk);
977 	return ret;
978 }
979 
980 static void exynos5_i2c_remove(struct platform_device *pdev)
981 {
982 	struct exynos5_i2c *i2c = platform_get_drvdata(pdev);
983 
984 	i2c_del_adapter(&i2c->adap);
985 
986 	clk_unprepare(i2c->clk);
987 	clk_unprepare(i2c->pclk);
988 }
989 
990 static int exynos5_i2c_suspend_noirq(struct device *dev)
991 {
992 	struct exynos5_i2c *i2c = dev_get_drvdata(dev);
993 
994 	i2c_mark_adapter_suspended(&i2c->adap);
995 	clk_unprepare(i2c->clk);
996 	clk_unprepare(i2c->pclk);
997 
998 	return 0;
999 }
1000 
1001 static int exynos5_i2c_resume_noirq(struct device *dev)
1002 {
1003 	struct exynos5_i2c *i2c = dev_get_drvdata(dev);
1004 	int ret = 0;
1005 
1006 	ret = clk_prepare_enable(i2c->pclk);
1007 	if (ret)
1008 		return ret;
1009 
1010 	ret = clk_prepare_enable(i2c->clk);
1011 	if (ret)
1012 		goto err_pclk;
1013 
1014 	ret = exynos5_hsi2c_clock_setup(i2c);
1015 	if (ret)
1016 		goto err_clk;
1017 
1018 	exynos5_i2c_init(i2c);
1019 	clk_disable(i2c->clk);
1020 	clk_disable(i2c->pclk);
1021 	i2c_mark_adapter_resumed(&i2c->adap);
1022 
1023 	return 0;
1024 
1025 err_clk:
1026 	clk_disable_unprepare(i2c->clk);
1027 err_pclk:
1028 	clk_disable_unprepare(i2c->pclk);
1029 	return ret;
1030 }
1031 
1032 static const struct dev_pm_ops exynos5_i2c_dev_pm_ops = {
1033 	NOIRQ_SYSTEM_SLEEP_PM_OPS(exynos5_i2c_suspend_noirq,
1034 				  exynos5_i2c_resume_noirq)
1035 };
1036 
1037 static struct platform_driver exynos5_i2c_driver = {
1038 	.probe		= exynos5_i2c_probe,
1039 	.remove		= exynos5_i2c_remove,
1040 	.driver		= {
1041 		.name	= "exynos5-hsi2c",
1042 		.pm	= pm_sleep_ptr(&exynos5_i2c_dev_pm_ops),
1043 		.of_match_table = exynos5_i2c_match,
1044 	},
1045 };
1046 
1047 module_platform_driver(exynos5_i2c_driver);
1048 
1049 MODULE_DESCRIPTION("Exynos5 HS-I2C Bus driver");
1050 MODULE_AUTHOR("Naveen Krishna Chatradhi <ch.naveen@samsung.com>");
1051 MODULE_AUTHOR("Taekgyun Ko <taeggyun.ko@samsung.com>");
1052 MODULE_LICENSE("GPL v2");
1053