xref: /linux/drivers/i2c/busses/i2c-designware-master.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Synopsys DesignWare I2C adapter driver (master only).
4  *
5  * Based on the TI DAVINCI I2C adapter driver.
6  *
7  * Copyright (C) 2006 Texas Instruments.
8  * Copyright (C) 2007 MontaVista Software Inc.
9  * Copyright (C) 2009 Provigent Ltd.
10  */
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/errno.h>
14 #include <linux/export.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/i2c.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/module.h>
20 #include <linux/pinctrl/consumer.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/regmap.h>
23 #include <linux/reset.h>
24 
25 #define DEFAULT_SYMBOL_NAMESPACE	I2C_DW
26 
27 #include "i2c-designware-core.h"
28 
29 #define AMD_TIMEOUT_MIN_US	25
30 #define AMD_TIMEOUT_MAX_US	250
31 #define AMD_MASTERCFG_MASK	GENMASK(15, 0)
32 
33 static void i2c_dw_configure_fifo_master(struct dw_i2c_dev *dev)
34 {
35 	/* Configure Tx/Rx FIFO threshold levels */
36 	regmap_write(dev->map, DW_IC_TX_TL, dev->tx_fifo_depth / 2);
37 	regmap_write(dev->map, DW_IC_RX_TL, 0);
38 
39 	/* Configure the I2C master */
40 	regmap_write(dev->map, DW_IC_CON, dev->master_cfg);
41 }
42 
43 static int i2c_dw_set_timings_master(struct dw_i2c_dev *dev)
44 {
45 	unsigned int comp_param1;
46 	u32 sda_falling_time, scl_falling_time;
47 	struct i2c_timings *t = &dev->timings;
48 	const char *fp_str = "";
49 	u32 ic_clk;
50 	int ret;
51 
52 	ret = i2c_dw_acquire_lock(dev);
53 	if (ret)
54 		return ret;
55 
56 	ret = regmap_read(dev->map, DW_IC_COMP_PARAM_1, &comp_param1);
57 	i2c_dw_release_lock(dev);
58 	if (ret)
59 		return ret;
60 
61 	/* Set standard and fast speed dividers for high/low periods */
62 	sda_falling_time = t->sda_fall_ns ?: 300; /* ns */
63 	scl_falling_time = t->scl_fall_ns ?: 300; /* ns */
64 
65 	/* Calculate SCL timing parameters for standard mode if not set */
66 	if (!dev->ss_hcnt || !dev->ss_lcnt) {
67 		ic_clk = i2c_dw_clk_rate(dev);
68 		dev->ss_hcnt =
69 			i2c_dw_scl_hcnt(dev,
70 					DW_IC_SS_SCL_HCNT,
71 					ic_clk,
72 					4000,	/* tHD;STA = tHIGH = 4.0 us */
73 					sda_falling_time,
74 					0);	/* No offset */
75 		dev->ss_lcnt =
76 			i2c_dw_scl_lcnt(dev,
77 					DW_IC_SS_SCL_LCNT,
78 					ic_clk,
79 					4700,	/* tLOW = 4.7 us */
80 					scl_falling_time,
81 					0);	/* No offset */
82 	}
83 	dev_dbg(dev->dev, "Standard Mode HCNT:LCNT = %d:%d\n",
84 		dev->ss_hcnt, dev->ss_lcnt);
85 
86 	/*
87 	 * Set SCL timing parameters for fast mode or fast mode plus. Only
88 	 * difference is the timing parameter values since the registers are
89 	 * the same.
90 	 */
91 	if (t->bus_freq_hz == I2C_MAX_FAST_MODE_PLUS_FREQ) {
92 		/*
93 		 * Check are Fast Mode Plus parameters available. Calculate
94 		 * SCL timing parameters for Fast Mode Plus if not set.
95 		 */
96 		if (dev->fp_hcnt && dev->fp_lcnt) {
97 			dev->fs_hcnt = dev->fp_hcnt;
98 			dev->fs_lcnt = dev->fp_lcnt;
99 		} else {
100 			ic_clk = i2c_dw_clk_rate(dev);
101 			dev->fs_hcnt =
102 				i2c_dw_scl_hcnt(dev,
103 						DW_IC_FS_SCL_HCNT,
104 						ic_clk,
105 						260,	/* tHIGH = 260 ns */
106 						sda_falling_time,
107 						0);	/* No offset */
108 			dev->fs_lcnt =
109 				i2c_dw_scl_lcnt(dev,
110 						DW_IC_FS_SCL_LCNT,
111 						ic_clk,
112 						500,	/* tLOW = 500 ns */
113 						scl_falling_time,
114 						0);	/* No offset */
115 		}
116 		fp_str = " Plus";
117 	}
118 	/*
119 	 * Calculate SCL timing parameters for fast mode if not set. They are
120 	 * needed also in high speed mode.
121 	 */
122 	if (!dev->fs_hcnt || !dev->fs_lcnt) {
123 		ic_clk = i2c_dw_clk_rate(dev);
124 		dev->fs_hcnt =
125 			i2c_dw_scl_hcnt(dev,
126 					DW_IC_FS_SCL_HCNT,
127 					ic_clk,
128 					600,	/* tHD;STA = tHIGH = 0.6 us */
129 					sda_falling_time,
130 					0);	/* No offset */
131 		dev->fs_lcnt =
132 			i2c_dw_scl_lcnt(dev,
133 					DW_IC_FS_SCL_LCNT,
134 					ic_clk,
135 					1300,	/* tLOW = 1.3 us */
136 					scl_falling_time,
137 					0);	/* No offset */
138 	}
139 	dev_dbg(dev->dev, "Fast Mode%s HCNT:LCNT = %d:%d\n",
140 		fp_str, dev->fs_hcnt, dev->fs_lcnt);
141 
142 	/* Check is high speed possible and fall back to fast mode if not */
143 	if ((dev->master_cfg & DW_IC_CON_SPEED_MASK) ==
144 		DW_IC_CON_SPEED_HIGH) {
145 		if ((comp_param1 & DW_IC_COMP_PARAM_1_SPEED_MODE_MASK)
146 			!= DW_IC_COMP_PARAM_1_SPEED_MODE_HIGH) {
147 			dev_err(dev->dev, "High Speed not supported!\n");
148 			t->bus_freq_hz = I2C_MAX_FAST_MODE_FREQ;
149 			dev->master_cfg &= ~DW_IC_CON_SPEED_MASK;
150 			dev->master_cfg |= DW_IC_CON_SPEED_FAST;
151 			dev->hs_hcnt = 0;
152 			dev->hs_lcnt = 0;
153 		} else if (!dev->hs_hcnt || !dev->hs_lcnt) {
154 			u32 t_high, t_low;
155 
156 			/*
157 			 * The legal values stated in the databook for bus
158 			 * capacitance are only 100pF and 400pF.
159 			 * If dev->bus_capacitance_pF is greater than or equals
160 			 * to 400, t_high and t_low are assumed to be
161 			 * appropriate values for 400pF, otherwise 100pF.
162 			 */
163 			if (dev->bus_capacitance_pF >= 400) {
164 				/* assume bus capacitance is 400pF */
165 				t_high = dev->clk_freq_optimized ? 160 : 120;
166 				t_low = 320;
167 			} else {
168 				/* assume bus capacitance is 100pF */
169 				t_high = 60;
170 				t_low = dev->clk_freq_optimized ? 120 : 160;
171 			}
172 
173 			ic_clk = i2c_dw_clk_rate(dev);
174 			dev->hs_hcnt =
175 				i2c_dw_scl_hcnt(dev,
176 						DW_IC_HS_SCL_HCNT,
177 						ic_clk,
178 						t_high,
179 						sda_falling_time,
180 						0);	/* No offset */
181 			dev->hs_lcnt =
182 				i2c_dw_scl_lcnt(dev,
183 						DW_IC_HS_SCL_LCNT,
184 						ic_clk,
185 						t_low,
186 						scl_falling_time,
187 						0);	/* No offset */
188 		}
189 		dev_dbg(dev->dev, "High Speed Mode HCNT:LCNT = %d:%d\n",
190 			dev->hs_hcnt, dev->hs_lcnt);
191 	}
192 
193 	ret = i2c_dw_set_sda_hold(dev);
194 	if (ret)
195 		return ret;
196 
197 	dev_dbg(dev->dev, "Bus speed: %s\n", i2c_freq_mode_string(t->bus_freq_hz));
198 	return 0;
199 }
200 
201 /**
202  * i2c_dw_init_master() - Initialize the DesignWare I2C master hardware
203  * @dev: device private data
204  *
205  * This functions configures and enables the I2C master.
206  * This function is called during I2C init function, and in case of timeout at
207  * run time.
208  *
209  * Return: 0 on success, or negative errno otherwise.
210  */
211 static int i2c_dw_init_master(struct dw_i2c_dev *dev)
212 {
213 	int ret;
214 
215 	ret = i2c_dw_acquire_lock(dev);
216 	if (ret)
217 		return ret;
218 
219 	/* Disable the adapter */
220 	__i2c_dw_disable(dev);
221 
222 	/* Write standard speed timing parameters */
223 	regmap_write(dev->map, DW_IC_SS_SCL_HCNT, dev->ss_hcnt);
224 	regmap_write(dev->map, DW_IC_SS_SCL_LCNT, dev->ss_lcnt);
225 
226 	/* Write fast mode/fast mode plus timing parameters */
227 	regmap_write(dev->map, DW_IC_FS_SCL_HCNT, dev->fs_hcnt);
228 	regmap_write(dev->map, DW_IC_FS_SCL_LCNT, dev->fs_lcnt);
229 
230 	/* Write high speed timing parameters if supported */
231 	if (dev->hs_hcnt && dev->hs_lcnt) {
232 		regmap_write(dev->map, DW_IC_HS_SCL_HCNT, dev->hs_hcnt);
233 		regmap_write(dev->map, DW_IC_HS_SCL_LCNT, dev->hs_lcnt);
234 	}
235 
236 	/* Write SDA hold time if supported */
237 	if (dev->sda_hold_time)
238 		regmap_write(dev->map, DW_IC_SDA_HOLD, dev->sda_hold_time);
239 
240 	i2c_dw_configure_fifo_master(dev);
241 	i2c_dw_release_lock(dev);
242 
243 	return 0;
244 }
245 
246 static void i2c_dw_xfer_init(struct dw_i2c_dev *dev)
247 {
248 	struct i2c_msg *msgs = dev->msgs;
249 	u32 ic_con = 0, ic_tar = 0;
250 	unsigned int dummy;
251 
252 	/* Disable the adapter */
253 	__i2c_dw_disable(dev);
254 
255 	/* If the slave address is ten bit address, enable 10BITADDR */
256 	if (msgs[dev->msg_write_idx].flags & I2C_M_TEN) {
257 		ic_con = DW_IC_CON_10BITADDR_MASTER;
258 		/*
259 		 * If I2C_DYNAMIC_TAR_UPDATE is set, the 10-bit addressing
260 		 * mode has to be enabled via bit 12 of IC_TAR register.
261 		 * We set it always as I2C_DYNAMIC_TAR_UPDATE can't be
262 		 * detected from registers.
263 		 */
264 		ic_tar = DW_IC_TAR_10BITADDR_MASTER;
265 	}
266 
267 	regmap_update_bits(dev->map, DW_IC_CON, DW_IC_CON_10BITADDR_MASTER,
268 			   ic_con);
269 
270 	/*
271 	 * Set the slave (target) address and enable 10-bit addressing mode
272 	 * if applicable.
273 	 */
274 	regmap_write(dev->map, DW_IC_TAR,
275 		     msgs[dev->msg_write_idx].addr | ic_tar);
276 
277 	/* Enforce disabled interrupts (due to HW issues) */
278 	__i2c_dw_write_intr_mask(dev, 0);
279 
280 	/* Enable the adapter */
281 	__i2c_dw_enable(dev);
282 
283 	/* Dummy read to avoid the register getting stuck on Bay Trail */
284 	regmap_read(dev->map, DW_IC_ENABLE_STATUS, &dummy);
285 
286 	/* Clear and enable interrupts */
287 	regmap_read(dev->map, DW_IC_CLR_INTR, &dummy);
288 	__i2c_dw_write_intr_mask(dev, DW_IC_INTR_MASTER_MASK);
289 }
290 
291 /*
292  * This function waits for the controller to be idle before disabling I2C
293  * When the controller is not in the IDLE state, the MST_ACTIVITY bit
294  * (IC_STATUS[5]) is set.
295  *
296  * Values:
297  * 0x1 (ACTIVE): Controller not idle
298  * 0x0 (IDLE): Controller is idle
299  *
300  * The function is called after completing the current transfer.
301  *
302  * Returns:
303  * False when the controller is in the IDLE state.
304  * True when the controller is in the ACTIVE state.
305  */
306 static bool i2c_dw_is_controller_active(struct dw_i2c_dev *dev)
307 {
308 	u32 status;
309 
310 	regmap_read(dev->map, DW_IC_STATUS, &status);
311 	if (!(status & DW_IC_STATUS_MASTER_ACTIVITY))
312 		return false;
313 
314 	return regmap_read_poll_timeout(dev->map, DW_IC_STATUS, status,
315 				       !(status & DW_IC_STATUS_MASTER_ACTIVITY),
316 				       1100, 20000) != 0;
317 }
318 
319 static int i2c_dw_check_stopbit(struct dw_i2c_dev *dev)
320 {
321 	u32 val;
322 	int ret;
323 
324 	ret = regmap_read_poll_timeout(dev->map, DW_IC_INTR_STAT, val,
325 				       !(val & DW_IC_INTR_STOP_DET),
326 					1100, 20000);
327 	if (ret)
328 		dev_err(dev->dev, "i2c timeout error %d\n", ret);
329 
330 	return ret;
331 }
332 
333 static int i2c_dw_status(struct dw_i2c_dev *dev)
334 {
335 	int status;
336 
337 	status = i2c_dw_wait_bus_not_busy(dev);
338 	if (status)
339 		return status;
340 
341 	return i2c_dw_check_stopbit(dev);
342 }
343 
344 /*
345  * Initiate and continue master read/write transaction with polling
346  * based transfer routine afterward write messages into the Tx buffer.
347  */
348 static int amd_i2c_dw_xfer_quirk(struct i2c_adapter *adap, struct i2c_msg *msgs, int num_msgs)
349 {
350 	struct dw_i2c_dev *dev = i2c_get_adapdata(adap);
351 	int msg_wrt_idx, msg_itr_lmt, buf_len, data_idx;
352 	int cmd = 0, status;
353 	u8 *tx_buf;
354 	unsigned int val;
355 
356 	/*
357 	 * In order to enable the interrupt for UCSI i.e. AMD NAVI GPU card,
358 	 * it is mandatory to set the right value in specific register
359 	 * (offset:0x474) as per the hardware IP specification.
360 	 */
361 	regmap_write(dev->map, AMD_UCSI_INTR_REG, AMD_UCSI_INTR_EN);
362 
363 	dev->msgs = msgs;
364 	dev->msgs_num = num_msgs;
365 	i2c_dw_xfer_init(dev);
366 
367 	/* Initiate messages read/write transaction */
368 	for (msg_wrt_idx = 0; msg_wrt_idx < num_msgs; msg_wrt_idx++) {
369 		tx_buf = msgs[msg_wrt_idx].buf;
370 		buf_len = msgs[msg_wrt_idx].len;
371 
372 		if (!(msgs[msg_wrt_idx].flags & I2C_M_RD))
373 			regmap_write(dev->map, DW_IC_TX_TL, buf_len - 1);
374 		/*
375 		 * Initiate the i2c read/write transaction of buffer length,
376 		 * and poll for bus busy status. For the last message transfer,
377 		 * update the command with stop bit enable.
378 		 */
379 		for (msg_itr_lmt = buf_len; msg_itr_lmt > 0; msg_itr_lmt--) {
380 			if (msg_wrt_idx == num_msgs - 1 && msg_itr_lmt == 1)
381 				cmd |= BIT(9);
382 
383 			if (msgs[msg_wrt_idx].flags & I2C_M_RD) {
384 				/* Due to hardware bug, need to write the same command twice. */
385 				regmap_write(dev->map, DW_IC_DATA_CMD, 0x100);
386 				regmap_write(dev->map, DW_IC_DATA_CMD, 0x100 | cmd);
387 				if (cmd) {
388 					regmap_write(dev->map, DW_IC_TX_TL, 2 * (buf_len - 1));
389 					regmap_write(dev->map, DW_IC_RX_TL, 2 * (buf_len - 1));
390 					/*
391 					 * Need to check the stop bit. However, it cannot be
392 					 * detected from the registers so we check it always
393 					 * when read/write the last byte.
394 					 */
395 					status = i2c_dw_status(dev);
396 					if (status)
397 						return status;
398 
399 					for (data_idx = 0; data_idx < buf_len; data_idx++) {
400 						regmap_read(dev->map, DW_IC_DATA_CMD, &val);
401 						tx_buf[data_idx] = val;
402 					}
403 					status = i2c_dw_check_stopbit(dev);
404 					if (status)
405 						return status;
406 				}
407 			} else {
408 				regmap_write(dev->map, DW_IC_DATA_CMD, *tx_buf++ | cmd);
409 				usleep_range(AMD_TIMEOUT_MIN_US, AMD_TIMEOUT_MAX_US);
410 			}
411 		}
412 		status = i2c_dw_check_stopbit(dev);
413 		if (status)
414 			return status;
415 	}
416 
417 	return 0;
418 }
419 
420 /*
421  * Initiate (and continue) low level master read/write transaction.
422  * This function is only called from i2c_dw_isr(), and pumping i2c_msg
423  * messages into the tx buffer.  Even if the size of i2c_msg data is
424  * longer than the size of the tx buffer, it handles everything.
425  */
426 static void
427 i2c_dw_xfer_msg(struct dw_i2c_dev *dev)
428 {
429 	struct i2c_msg *msgs = dev->msgs;
430 	u32 intr_mask;
431 	int tx_limit, rx_limit;
432 	u32 addr = msgs[dev->msg_write_idx].addr;
433 	u32 buf_len = dev->tx_buf_len;
434 	u8 *buf = dev->tx_buf;
435 	bool need_restart = false;
436 	unsigned int flr;
437 
438 	intr_mask = DW_IC_INTR_MASTER_MASK;
439 
440 	for (; dev->msg_write_idx < dev->msgs_num; dev->msg_write_idx++) {
441 		u32 flags = msgs[dev->msg_write_idx].flags;
442 
443 		/*
444 		 * If target address has changed, we need to
445 		 * reprogram the target address in the I2C
446 		 * adapter when we are done with this transfer.
447 		 */
448 		if (msgs[dev->msg_write_idx].addr != addr) {
449 			dev_err(dev->dev,
450 				"%s: invalid target address\n", __func__);
451 			dev->msg_err = -EINVAL;
452 			break;
453 		}
454 
455 		if (!(dev->status & STATUS_WRITE_IN_PROGRESS)) {
456 			/* new i2c_msg */
457 			buf = msgs[dev->msg_write_idx].buf;
458 			buf_len = msgs[dev->msg_write_idx].len;
459 
460 			/*
461 			 * If both IC_EMPTYFIFO_HOLD_MASTER_EN and
462 			 * IC_RESTART_EN are set, we must manually
463 			 * set restart bit between messages.
464 			 */
465 			if ((dev->master_cfg & DW_IC_CON_RESTART_EN) &&
466 					(dev->msg_write_idx > 0))
467 				need_restart = true;
468 		}
469 
470 		regmap_read(dev->map, DW_IC_TXFLR, &flr);
471 		tx_limit = dev->tx_fifo_depth - flr;
472 
473 		regmap_read(dev->map, DW_IC_RXFLR, &flr);
474 		rx_limit = dev->rx_fifo_depth - flr;
475 
476 		while (buf_len > 0 && tx_limit > 0 && rx_limit > 0) {
477 			u32 cmd = 0;
478 
479 			/*
480 			 * If IC_EMPTYFIFO_HOLD_MASTER_EN is set we must
481 			 * manually set the stop bit. However, it cannot be
482 			 * detected from the registers so we set it always
483 			 * when writing/reading the last byte.
484 			 */
485 
486 			/*
487 			 * i2c-core always sets the buffer length of
488 			 * I2C_FUNC_SMBUS_BLOCK_DATA to 1. The length will
489 			 * be adjusted when receiving the first byte.
490 			 * Thus we can't stop the transaction here.
491 			 */
492 			if (dev->msg_write_idx == dev->msgs_num - 1 &&
493 			    buf_len == 1 && !(flags & I2C_M_RECV_LEN))
494 				cmd |= BIT(9);
495 
496 			if (need_restart) {
497 				cmd |= BIT(10);
498 				need_restart = false;
499 			}
500 
501 			if (msgs[dev->msg_write_idx].flags & I2C_M_RD) {
502 
503 				/* Avoid rx buffer overrun */
504 				if (dev->rx_outstanding >= dev->rx_fifo_depth)
505 					break;
506 
507 				regmap_write(dev->map, DW_IC_DATA_CMD,
508 					     cmd | 0x100);
509 				rx_limit--;
510 				dev->rx_outstanding++;
511 			} else {
512 				regmap_write(dev->map, DW_IC_DATA_CMD,
513 					     cmd | *buf++);
514 			}
515 			tx_limit--; buf_len--;
516 		}
517 
518 		dev->tx_buf = buf;
519 		dev->tx_buf_len = buf_len;
520 
521 		/*
522 		 * Because we don't know the buffer length in the
523 		 * I2C_FUNC_SMBUS_BLOCK_DATA case, we can't stop the
524 		 * transaction here. Also disable the TX_EMPTY IRQ
525 		 * while waiting for the data length byte to avoid the
526 		 * bogus interrupts flood.
527 		 */
528 		if (flags & I2C_M_RECV_LEN) {
529 			dev->status |= STATUS_WRITE_IN_PROGRESS;
530 			intr_mask &= ~DW_IC_INTR_TX_EMPTY;
531 			break;
532 		} else if (buf_len > 0) {
533 			/* more bytes to be written */
534 			dev->status |= STATUS_WRITE_IN_PROGRESS;
535 			break;
536 		} else
537 			dev->status &= ~STATUS_WRITE_IN_PROGRESS;
538 	}
539 
540 	/*
541 	 * If i2c_msg index search is completed, we don't need TX_EMPTY
542 	 * interrupt any more.
543 	 */
544 	if (dev->msg_write_idx == dev->msgs_num)
545 		intr_mask &= ~DW_IC_INTR_TX_EMPTY;
546 
547 	if (dev->msg_err)
548 		intr_mask = 0;
549 
550 	__i2c_dw_write_intr_mask(dev, intr_mask);
551 }
552 
553 static u8
554 i2c_dw_recv_len(struct dw_i2c_dev *dev, u8 len)
555 {
556 	struct i2c_msg *msgs = dev->msgs;
557 	u32 flags = msgs[dev->msg_read_idx].flags;
558 	unsigned int intr_mask;
559 
560 	/*
561 	 * Adjust the buffer length and mask the flag
562 	 * after receiving the first byte.
563 	 */
564 	len += (flags & I2C_CLIENT_PEC) ? 2 : 1;
565 	dev->tx_buf_len = len - min_t(u8, len, dev->rx_outstanding);
566 	msgs[dev->msg_read_idx].len = len;
567 	msgs[dev->msg_read_idx].flags &= ~I2C_M_RECV_LEN;
568 
569 	/*
570 	 * Received buffer length, re-enable TX_EMPTY interrupt
571 	 * to resume the SMBUS transaction.
572 	 */
573 	__i2c_dw_read_intr_mask(dev, &intr_mask);
574 	intr_mask |= DW_IC_INTR_TX_EMPTY;
575 	__i2c_dw_write_intr_mask(dev, intr_mask);
576 
577 	return len;
578 }
579 
580 static void
581 i2c_dw_read(struct dw_i2c_dev *dev)
582 {
583 	struct i2c_msg *msgs = dev->msgs;
584 	unsigned int rx_valid;
585 
586 	for (; dev->msg_read_idx < dev->msgs_num; dev->msg_read_idx++) {
587 		unsigned int tmp;
588 		u32 len;
589 		u8 *buf;
590 
591 		if (!(msgs[dev->msg_read_idx].flags & I2C_M_RD))
592 			continue;
593 
594 		if (!(dev->status & STATUS_READ_IN_PROGRESS)) {
595 			len = msgs[dev->msg_read_idx].len;
596 			buf = msgs[dev->msg_read_idx].buf;
597 		} else {
598 			len = dev->rx_buf_len;
599 			buf = dev->rx_buf;
600 		}
601 
602 		regmap_read(dev->map, DW_IC_RXFLR, &rx_valid);
603 
604 		for (; len > 0 && rx_valid > 0; len--, rx_valid--) {
605 			u32 flags = msgs[dev->msg_read_idx].flags;
606 
607 			regmap_read(dev->map, DW_IC_DATA_CMD, &tmp);
608 			tmp &= DW_IC_DATA_CMD_DAT;
609 			/* Ensure length byte is a valid value */
610 			if (flags & I2C_M_RECV_LEN) {
611 				/*
612 				 * if IC_EMPTYFIFO_HOLD_MASTER_EN is set, which cannot be
613 				 * detected from the registers, the controller can be
614 				 * disabled if the STOP bit is set. But it is only set
615 				 * after receiving block data response length in
616 				 * I2C_FUNC_SMBUS_BLOCK_DATA case. That needs to read
617 				 * another byte with STOP bit set when the block data
618 				 * response length is invalid to complete the transaction.
619 				 */
620 				if (!tmp || tmp > I2C_SMBUS_BLOCK_MAX)
621 					tmp = 1;
622 
623 				len = i2c_dw_recv_len(dev, tmp);
624 			}
625 			*buf++ = tmp;
626 			dev->rx_outstanding--;
627 		}
628 
629 		if (len > 0) {
630 			dev->status |= STATUS_READ_IN_PROGRESS;
631 			dev->rx_buf_len = len;
632 			dev->rx_buf = buf;
633 			return;
634 		} else
635 			dev->status &= ~STATUS_READ_IN_PROGRESS;
636 	}
637 }
638 
639 static u32 i2c_dw_read_clear_intrbits(struct dw_i2c_dev *dev)
640 {
641 	unsigned int stat, dummy;
642 
643 	/*
644 	 * The IC_INTR_STAT register just indicates "enabled" interrupts.
645 	 * The unmasked raw version of interrupt status bits is available
646 	 * in the IC_RAW_INTR_STAT register.
647 	 *
648 	 * That is,
649 	 *   stat = readl(IC_INTR_STAT);
650 	 * equals to,
651 	 *   stat = readl(IC_RAW_INTR_STAT) & readl(IC_INTR_MASK);
652 	 *
653 	 * The raw version might be useful for debugging purposes.
654 	 */
655 	if (!(dev->flags & ACCESS_POLLING)) {
656 		regmap_read(dev->map, DW_IC_INTR_STAT, &stat);
657 	} else {
658 		regmap_read(dev->map, DW_IC_RAW_INTR_STAT, &stat);
659 		stat &= dev->sw_mask;
660 	}
661 
662 	/*
663 	 * Do not use the IC_CLR_INTR register to clear interrupts, or
664 	 * you'll miss some interrupts, triggered during the period from
665 	 * readl(IC_INTR_STAT) to readl(IC_CLR_INTR).
666 	 *
667 	 * Instead, use the separately-prepared IC_CLR_* registers.
668 	 */
669 	if (stat & DW_IC_INTR_RX_UNDER)
670 		regmap_read(dev->map, DW_IC_CLR_RX_UNDER, &dummy);
671 	if (stat & DW_IC_INTR_RX_OVER)
672 		regmap_read(dev->map, DW_IC_CLR_RX_OVER, &dummy);
673 	if (stat & DW_IC_INTR_TX_OVER)
674 		regmap_read(dev->map, DW_IC_CLR_TX_OVER, &dummy);
675 	if (stat & DW_IC_INTR_RD_REQ)
676 		regmap_read(dev->map, DW_IC_CLR_RD_REQ, &dummy);
677 	if (stat & DW_IC_INTR_TX_ABRT) {
678 		/*
679 		 * The IC_TX_ABRT_SOURCE register is cleared whenever
680 		 * the IC_CLR_TX_ABRT is read.  Preserve it beforehand.
681 		 */
682 		regmap_read(dev->map, DW_IC_TX_ABRT_SOURCE, &dev->abort_source);
683 		regmap_read(dev->map, DW_IC_CLR_TX_ABRT, &dummy);
684 	}
685 	if (stat & DW_IC_INTR_RX_DONE)
686 		regmap_read(dev->map, DW_IC_CLR_RX_DONE, &dummy);
687 	if (stat & DW_IC_INTR_ACTIVITY)
688 		regmap_read(dev->map, DW_IC_CLR_ACTIVITY, &dummy);
689 	if ((stat & DW_IC_INTR_STOP_DET) &&
690 	    ((dev->rx_outstanding == 0) || (stat & DW_IC_INTR_RX_FULL)))
691 		regmap_read(dev->map, DW_IC_CLR_STOP_DET, &dummy);
692 	if (stat & DW_IC_INTR_START_DET)
693 		regmap_read(dev->map, DW_IC_CLR_START_DET, &dummy);
694 	if (stat & DW_IC_INTR_GEN_CALL)
695 		regmap_read(dev->map, DW_IC_CLR_GEN_CALL, &dummy);
696 
697 	return stat;
698 }
699 
700 static void i2c_dw_process_transfer(struct dw_i2c_dev *dev, unsigned int stat)
701 {
702 	if (stat & DW_IC_INTR_TX_ABRT) {
703 		dev->cmd_err |= DW_IC_ERR_TX_ABRT;
704 		dev->status &= ~STATUS_MASK;
705 		dev->rx_outstanding = 0;
706 
707 		/*
708 		 * Anytime TX_ABRT is set, the contents of the tx/rx
709 		 * buffers are flushed. Make sure to skip them.
710 		 */
711 		__i2c_dw_write_intr_mask(dev, 0);
712 		goto tx_aborted;
713 	}
714 
715 	if (stat & DW_IC_INTR_RX_FULL)
716 		i2c_dw_read(dev);
717 
718 	if (stat & DW_IC_INTR_TX_EMPTY)
719 		i2c_dw_xfer_msg(dev);
720 
721 	/*
722 	 * No need to modify or disable the interrupt mask here.
723 	 * i2c_dw_xfer_msg() will take care of it according to
724 	 * the current transmit status.
725 	 */
726 
727 tx_aborted:
728 	if (((stat & (DW_IC_INTR_TX_ABRT | DW_IC_INTR_STOP_DET)) || dev->msg_err) &&
729 	     (dev->rx_outstanding == 0))
730 		complete(&dev->cmd_complete);
731 	else if (unlikely(dev->flags & ACCESS_INTR_MASK)) {
732 		/* Workaround to trigger pending interrupt */
733 		__i2c_dw_read_intr_mask(dev, &stat);
734 		__i2c_dw_write_intr_mask(dev, 0);
735 		__i2c_dw_write_intr_mask(dev, stat);
736 	}
737 }
738 
739 /*
740  * Interrupt service routine. This gets called whenever an I2C master interrupt
741  * occurs.
742  */
743 static irqreturn_t i2c_dw_isr(int this_irq, void *dev_id)
744 {
745 	struct dw_i2c_dev *dev = dev_id;
746 	unsigned int stat, enabled;
747 
748 	regmap_read(dev->map, DW_IC_ENABLE, &enabled);
749 	regmap_read(dev->map, DW_IC_RAW_INTR_STAT, &stat);
750 	if (!enabled || !(stat & ~DW_IC_INTR_ACTIVITY))
751 		return IRQ_NONE;
752 	if (pm_runtime_suspended(dev->dev) || stat == GENMASK(31, 0))
753 		return IRQ_NONE;
754 	dev_dbg(dev->dev, "enabled=%#x stat=%#x\n", enabled, stat);
755 
756 	stat = i2c_dw_read_clear_intrbits(dev);
757 
758 	if (!(dev->status & STATUS_ACTIVE)) {
759 		/*
760 		 * Unexpected interrupt in driver point of view. State
761 		 * variables are either unset or stale so acknowledge and
762 		 * disable interrupts for suppressing further interrupts if
763 		 * interrupt really came from this HW (E.g. firmware has left
764 		 * the HW active).
765 		 */
766 		__i2c_dw_write_intr_mask(dev, 0);
767 		return IRQ_HANDLED;
768 	}
769 
770 	i2c_dw_process_transfer(dev, stat);
771 
772 	return IRQ_HANDLED;
773 }
774 
775 static int i2c_dw_wait_transfer(struct dw_i2c_dev *dev)
776 {
777 	unsigned long timeout = dev->adapter.timeout;
778 	unsigned int stat;
779 	int ret;
780 
781 	if (!(dev->flags & ACCESS_POLLING)) {
782 		ret = wait_for_completion_timeout(&dev->cmd_complete, timeout);
783 	} else {
784 		timeout += jiffies;
785 		do {
786 			ret = try_wait_for_completion(&dev->cmd_complete);
787 			if (ret)
788 				break;
789 
790 			stat = i2c_dw_read_clear_intrbits(dev);
791 			if (stat)
792 				i2c_dw_process_transfer(dev, stat);
793 			else
794 				/* Try save some power */
795 				usleep_range(3, 25);
796 		} while (time_before(jiffies, timeout));
797 	}
798 
799 	return ret ? 0 : -ETIMEDOUT;
800 }
801 
802 /*
803  * Prepare controller for a transaction and call i2c_dw_xfer_msg.
804  */
805 static int
806 i2c_dw_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num)
807 {
808 	struct dw_i2c_dev *dev = i2c_get_adapdata(adap);
809 	int ret;
810 
811 	dev_dbg(dev->dev, "%s: msgs: %d\n", __func__, num);
812 
813 	pm_runtime_get_sync(dev->dev);
814 
815 	switch (dev->flags & MODEL_MASK) {
816 	case MODEL_AMD_NAVI_GPU:
817 		ret = amd_i2c_dw_xfer_quirk(adap, msgs, num);
818 		goto done_nolock;
819 	default:
820 		break;
821 	}
822 
823 	reinit_completion(&dev->cmd_complete);
824 	dev->msgs = msgs;
825 	dev->msgs_num = num;
826 	dev->cmd_err = 0;
827 	dev->msg_write_idx = 0;
828 	dev->msg_read_idx = 0;
829 	dev->msg_err = 0;
830 	dev->status = 0;
831 	dev->abort_source = 0;
832 	dev->rx_outstanding = 0;
833 
834 	ret = i2c_dw_acquire_lock(dev);
835 	if (ret)
836 		goto done_nolock;
837 
838 	ret = i2c_dw_wait_bus_not_busy(dev);
839 	if (ret < 0)
840 		goto done;
841 
842 	/* Start the transfers */
843 	i2c_dw_xfer_init(dev);
844 
845 	/* Wait for tx to complete */
846 	ret = i2c_dw_wait_transfer(dev);
847 	if (ret) {
848 		dev_err(dev->dev, "controller timed out\n");
849 		/* i2c_dw_init_master() implicitly disables the adapter */
850 		i2c_recover_bus(&dev->adapter);
851 		i2c_dw_init_master(dev);
852 		goto done;
853 	}
854 
855 	/*
856 	 * This happens rarely (~1:500) and is hard to reproduce. Debug trace
857 	 * showed that IC_STATUS had value of 0x23 when STOP_DET occurred,
858 	 * if disable IC_ENABLE.ENABLE immediately that can result in
859 	 * IC_RAW_INTR_STAT.MASTER_ON_HOLD holding SCL low. Check if
860 	 * controller is still ACTIVE before disabling I2C.
861 	 */
862 	if (i2c_dw_is_controller_active(dev))
863 		dev_err(dev->dev, "controller active\n");
864 
865 	/*
866 	 * We must disable the adapter before returning and signaling the end
867 	 * of the current transfer. Otherwise the hardware might continue
868 	 * generating interrupts which in turn causes a race condition with
869 	 * the following transfer. Needs some more investigation if the
870 	 * additional interrupts are a hardware bug or this driver doesn't
871 	 * handle them correctly yet.
872 	 */
873 	__i2c_dw_disable_nowait(dev);
874 
875 	if (dev->msg_err) {
876 		ret = dev->msg_err;
877 		goto done;
878 	}
879 
880 	/* No error */
881 	if (likely(!dev->cmd_err && !dev->status)) {
882 		ret = num;
883 		goto done;
884 	}
885 
886 	/* We have an error */
887 	if (dev->cmd_err == DW_IC_ERR_TX_ABRT) {
888 		ret = i2c_dw_handle_tx_abort(dev);
889 		goto done;
890 	}
891 
892 	if (dev->status)
893 		dev_err(dev->dev,
894 			"transfer terminated early - interrupt latency too high?\n");
895 
896 	ret = -EIO;
897 
898 done:
899 	i2c_dw_release_lock(dev);
900 
901 done_nolock:
902 	pm_runtime_mark_last_busy(dev->dev);
903 	pm_runtime_put_autosuspend(dev->dev);
904 
905 	return ret;
906 }
907 
908 static const struct i2c_algorithm i2c_dw_algo = {
909 	.master_xfer = i2c_dw_xfer,
910 	.functionality = i2c_dw_func,
911 };
912 
913 static const struct i2c_adapter_quirks i2c_dw_quirks = {
914 	.flags = I2C_AQ_NO_ZERO_LEN,
915 };
916 
917 void i2c_dw_configure_master(struct dw_i2c_dev *dev)
918 {
919 	struct i2c_timings *t = &dev->timings;
920 
921 	dev->functionality = I2C_FUNC_10BIT_ADDR | DW_IC_DEFAULT_FUNCTIONALITY;
922 
923 	dev->master_cfg = DW_IC_CON_MASTER | DW_IC_CON_SLAVE_DISABLE |
924 			  DW_IC_CON_RESTART_EN;
925 
926 	dev->mode = DW_IC_MASTER;
927 
928 	switch (t->bus_freq_hz) {
929 	case I2C_MAX_STANDARD_MODE_FREQ:
930 		dev->master_cfg |= DW_IC_CON_SPEED_STD;
931 		break;
932 	case I2C_MAX_HIGH_SPEED_MODE_FREQ:
933 		dev->master_cfg |= DW_IC_CON_SPEED_HIGH;
934 		break;
935 	default:
936 		dev->master_cfg |= DW_IC_CON_SPEED_FAST;
937 	}
938 }
939 EXPORT_SYMBOL_GPL(i2c_dw_configure_master);
940 
941 static void i2c_dw_prepare_recovery(struct i2c_adapter *adap)
942 {
943 	struct dw_i2c_dev *dev = i2c_get_adapdata(adap);
944 
945 	i2c_dw_disable(dev);
946 	reset_control_assert(dev->rst);
947 	i2c_dw_prepare_clk(dev, false);
948 }
949 
950 static void i2c_dw_unprepare_recovery(struct i2c_adapter *adap)
951 {
952 	struct dw_i2c_dev *dev = i2c_get_adapdata(adap);
953 
954 	i2c_dw_prepare_clk(dev, true);
955 	reset_control_deassert(dev->rst);
956 	i2c_dw_init_master(dev);
957 }
958 
959 static int i2c_dw_init_recovery_info(struct dw_i2c_dev *dev)
960 {
961 	struct i2c_bus_recovery_info *rinfo = &dev->rinfo;
962 	struct i2c_adapter *adap = &dev->adapter;
963 	struct gpio_desc *gpio;
964 
965 	gpio = devm_gpiod_get_optional(dev->dev, "scl", GPIOD_OUT_HIGH);
966 	if (IS_ERR_OR_NULL(gpio))
967 		return PTR_ERR_OR_ZERO(gpio);
968 
969 	rinfo->scl_gpiod = gpio;
970 
971 	gpio = devm_gpiod_get_optional(dev->dev, "sda", GPIOD_IN);
972 	if (IS_ERR(gpio))
973 		return PTR_ERR(gpio);
974 	rinfo->sda_gpiod = gpio;
975 
976 	rinfo->pinctrl = devm_pinctrl_get(dev->dev);
977 	if (IS_ERR(rinfo->pinctrl)) {
978 		if (PTR_ERR(rinfo->pinctrl) == -EPROBE_DEFER)
979 			return PTR_ERR(rinfo->pinctrl);
980 
981 		rinfo->pinctrl = NULL;
982 		dev_err(dev->dev, "getting pinctrl info failed: bus recovery might not work\n");
983 	} else if (!rinfo->pinctrl) {
984 		dev_dbg(dev->dev, "pinctrl is disabled, bus recovery might not work\n");
985 	}
986 
987 	rinfo->recover_bus = i2c_generic_scl_recovery;
988 	rinfo->prepare_recovery = i2c_dw_prepare_recovery;
989 	rinfo->unprepare_recovery = i2c_dw_unprepare_recovery;
990 	adap->bus_recovery_info = rinfo;
991 
992 	dev_info(dev->dev, "running with GPIO recovery mode! scl%s",
993 		 rinfo->sda_gpiod ? ",sda" : "");
994 
995 	return 0;
996 }
997 
998 int i2c_dw_probe_master(struct dw_i2c_dev *dev)
999 {
1000 	struct i2c_adapter *adap = &dev->adapter;
1001 	unsigned long irq_flags;
1002 	unsigned int ic_con;
1003 	int ret;
1004 
1005 	init_completion(&dev->cmd_complete);
1006 
1007 	dev->init = i2c_dw_init_master;
1008 
1009 	ret = i2c_dw_init_regmap(dev);
1010 	if (ret)
1011 		return ret;
1012 
1013 	ret = i2c_dw_set_timings_master(dev);
1014 	if (ret)
1015 		return ret;
1016 
1017 	ret = i2c_dw_set_fifo_size(dev);
1018 	if (ret)
1019 		return ret;
1020 
1021 	/* Lock the bus for accessing DW_IC_CON */
1022 	ret = i2c_dw_acquire_lock(dev);
1023 	if (ret)
1024 		return ret;
1025 
1026 	/*
1027 	 * On AMD platforms BIOS advertises the bus clear feature
1028 	 * and enables the SCL/SDA stuck low. SMU FW does the
1029 	 * bus recovery process. Driver should not ignore this BIOS
1030 	 * advertisement of bus clear feature.
1031 	 */
1032 	ret = regmap_read(dev->map, DW_IC_CON, &ic_con);
1033 	i2c_dw_release_lock(dev);
1034 	if (ret)
1035 		return ret;
1036 
1037 	if (ic_con & DW_IC_CON_BUS_CLEAR_CTRL)
1038 		dev->master_cfg |= DW_IC_CON_BUS_CLEAR_CTRL;
1039 
1040 	ret = dev->init(dev);
1041 	if (ret)
1042 		return ret;
1043 
1044 	snprintf(adap->name, sizeof(adap->name),
1045 		 "Synopsys DesignWare I2C adapter");
1046 	adap->retries = 3;
1047 	adap->algo = &i2c_dw_algo;
1048 	adap->quirks = &i2c_dw_quirks;
1049 	adap->dev.parent = dev->dev;
1050 	i2c_set_adapdata(adap, dev);
1051 
1052 	if (dev->flags & ACCESS_NO_IRQ_SUSPEND) {
1053 		irq_flags = IRQF_NO_SUSPEND;
1054 	} else {
1055 		irq_flags = IRQF_SHARED | IRQF_COND_SUSPEND;
1056 	}
1057 
1058 	ret = i2c_dw_acquire_lock(dev);
1059 	if (ret)
1060 		return ret;
1061 
1062 	__i2c_dw_write_intr_mask(dev, 0);
1063 	i2c_dw_release_lock(dev);
1064 
1065 	if (!(dev->flags & ACCESS_POLLING)) {
1066 		ret = devm_request_irq(dev->dev, dev->irq, i2c_dw_isr,
1067 				       irq_flags, dev_name(dev->dev), dev);
1068 		if (ret) {
1069 			dev_err(dev->dev, "failure requesting irq %i: %d\n",
1070 				dev->irq, ret);
1071 			return ret;
1072 		}
1073 	}
1074 
1075 	ret = i2c_dw_init_recovery_info(dev);
1076 	if (ret)
1077 		return ret;
1078 
1079 	/*
1080 	 * Increment PM usage count during adapter registration in order to
1081 	 * avoid possible spurious runtime suspend when adapter device is
1082 	 * registered to the device core and immediate resume in case bus has
1083 	 * registered I2C slaves that do I2C transfers in their probe.
1084 	 */
1085 	pm_runtime_get_noresume(dev->dev);
1086 	ret = i2c_add_numbered_adapter(adap);
1087 	if (ret)
1088 		dev_err(dev->dev, "failure adding adapter: %d\n", ret);
1089 	pm_runtime_put_noidle(dev->dev);
1090 
1091 	return ret;
1092 }
1093 EXPORT_SYMBOL_GPL(i2c_dw_probe_master);
1094 
1095 MODULE_DESCRIPTION("Synopsys DesignWare I2C bus master adapter");
1096 MODULE_LICENSE("GPL");
1097 MODULE_IMPORT_NS(I2C_DW_COMMON);
1098