xref: /linux/drivers/i2c/busses/i2c-bcm-iproc.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 // Copyright (C) 2014 Broadcom Corporation
3 
4 #include <linux/delay.h>
5 #include <linux/i2c.h>
6 #include <linux/interrupt.h>
7 #include <linux/io.h>
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/of.h>
11 #include <linux/platform_device.h>
12 #include <linux/slab.h>
13 
14 #define IDM_CTRL_DIRECT_OFFSET       0x00
15 #define CFG_OFFSET                   0x00
16 #define CFG_RESET_SHIFT              31
17 #define CFG_EN_SHIFT                 30
18 #define CFG_SLAVE_ADDR_0_SHIFT       28
19 #define CFG_M_RETRY_CNT_SHIFT        16
20 #define CFG_M_RETRY_CNT_MASK         0x0f
21 
22 #define TIM_CFG_OFFSET               0x04
23 #define TIM_CFG_MODE_400_SHIFT       31
24 #define TIM_RAND_SLAVE_STRETCH_SHIFT      24
25 #define TIM_RAND_SLAVE_STRETCH_MASK       0x7f
26 #define TIM_PERIODIC_SLAVE_STRETCH_SHIFT  16
27 #define TIM_PERIODIC_SLAVE_STRETCH_MASK   0x7f
28 
29 #define S_CFG_SMBUS_ADDR_OFFSET           0x08
30 #define S_CFG_EN_NIC_SMB_ADDR3_SHIFT      31
31 #define S_CFG_NIC_SMB_ADDR3_SHIFT         24
32 #define S_CFG_NIC_SMB_ADDR3_MASK          0x7f
33 #define S_CFG_EN_NIC_SMB_ADDR2_SHIFT      23
34 #define S_CFG_NIC_SMB_ADDR2_SHIFT         16
35 #define S_CFG_NIC_SMB_ADDR2_MASK          0x7f
36 #define S_CFG_EN_NIC_SMB_ADDR1_SHIFT      15
37 #define S_CFG_NIC_SMB_ADDR1_SHIFT         8
38 #define S_CFG_NIC_SMB_ADDR1_MASK          0x7f
39 #define S_CFG_EN_NIC_SMB_ADDR0_SHIFT      7
40 #define S_CFG_NIC_SMB_ADDR0_SHIFT         0
41 #define S_CFG_NIC_SMB_ADDR0_MASK          0x7f
42 
43 #define M_FIFO_CTRL_OFFSET           0x0c
44 #define M_FIFO_RX_FLUSH_SHIFT        31
45 #define M_FIFO_TX_FLUSH_SHIFT        30
46 #define M_FIFO_RX_CNT_SHIFT          16
47 #define M_FIFO_RX_CNT_MASK           0x7f
48 #define M_FIFO_RX_THLD_SHIFT         8
49 #define M_FIFO_RX_THLD_MASK          0x3f
50 
51 #define S_FIFO_CTRL_OFFSET           0x10
52 #define S_FIFO_RX_FLUSH_SHIFT        31
53 #define S_FIFO_TX_FLUSH_SHIFT        30
54 #define S_FIFO_RX_CNT_SHIFT          16
55 #define S_FIFO_RX_CNT_MASK           0x7f
56 #define S_FIFO_RX_THLD_SHIFT         8
57 #define S_FIFO_RX_THLD_MASK          0x3f
58 
59 #define M_CMD_OFFSET                 0x30
60 #define M_CMD_START_BUSY_SHIFT       31
61 #define M_CMD_STATUS_SHIFT           25
62 #define M_CMD_STATUS_MASK            0x07
63 #define M_CMD_STATUS_SUCCESS         0x0
64 #define M_CMD_STATUS_LOST_ARB        0x1
65 #define M_CMD_STATUS_NACK_ADDR       0x2
66 #define M_CMD_STATUS_NACK_DATA       0x3
67 #define M_CMD_STATUS_TIMEOUT         0x4
68 #define M_CMD_STATUS_FIFO_UNDERRUN   0x5
69 #define M_CMD_STATUS_RX_FIFO_FULL    0x6
70 #define M_CMD_PROTOCOL_SHIFT         9
71 #define M_CMD_PROTOCOL_MASK          0xf
72 #define M_CMD_PROTOCOL_QUICK         0x0
73 #define M_CMD_PROTOCOL_BLK_WR        0x7
74 #define M_CMD_PROTOCOL_BLK_RD        0x8
75 #define M_CMD_PROTOCOL_PROCESS       0xa
76 #define M_CMD_PEC_SHIFT              8
77 #define M_CMD_RD_CNT_SHIFT           0
78 #define M_CMD_RD_CNT_MASK            0xff
79 
80 #define S_CMD_OFFSET                 0x34
81 #define S_CMD_START_BUSY_SHIFT       31
82 #define S_CMD_STATUS_SHIFT           23
83 #define S_CMD_STATUS_MASK            0x07
84 #define S_CMD_STATUS_SUCCESS         0x0
85 #define S_CMD_STATUS_TIMEOUT         0x5
86 #define S_CMD_STATUS_MASTER_ABORT    0x7
87 
88 #define IE_OFFSET                    0x38
89 #define IE_M_RX_FIFO_FULL_SHIFT      31
90 #define IE_M_RX_THLD_SHIFT           30
91 #define IE_M_START_BUSY_SHIFT        28
92 #define IE_M_TX_UNDERRUN_SHIFT       27
93 #define IE_S_RX_FIFO_FULL_SHIFT      26
94 #define IE_S_RX_THLD_SHIFT           25
95 #define IE_S_RX_EVENT_SHIFT          24
96 #define IE_S_START_BUSY_SHIFT        23
97 #define IE_S_TX_UNDERRUN_SHIFT       22
98 #define IE_S_RD_EVENT_SHIFT          21
99 
100 #define IS_OFFSET                    0x3c
101 #define IS_M_RX_FIFO_FULL_SHIFT      31
102 #define IS_M_RX_THLD_SHIFT           30
103 #define IS_M_START_BUSY_SHIFT        28
104 #define IS_M_TX_UNDERRUN_SHIFT       27
105 #define IS_S_RX_FIFO_FULL_SHIFT      26
106 #define IS_S_RX_THLD_SHIFT           25
107 #define IS_S_RX_EVENT_SHIFT          24
108 #define IS_S_START_BUSY_SHIFT        23
109 #define IS_S_TX_UNDERRUN_SHIFT       22
110 #define IS_S_RD_EVENT_SHIFT          21
111 
112 #define M_TX_OFFSET                  0x40
113 #define M_TX_WR_STATUS_SHIFT         31
114 #define M_TX_DATA_SHIFT              0
115 #define M_TX_DATA_MASK               0xff
116 
117 #define M_RX_OFFSET                  0x44
118 #define M_RX_STATUS_SHIFT            30
119 #define M_RX_STATUS_MASK             0x03
120 #define M_RX_PEC_ERR_SHIFT           29
121 #define M_RX_DATA_SHIFT              0
122 #define M_RX_DATA_MASK               0xff
123 
124 #define S_TX_OFFSET                  0x48
125 #define S_TX_WR_STATUS_SHIFT         31
126 #define S_TX_DATA_SHIFT              0
127 #define S_TX_DATA_MASK               0xff
128 
129 #define S_RX_OFFSET                  0x4c
130 #define S_RX_STATUS_SHIFT            30
131 #define S_RX_STATUS_MASK             0x03
132 #define S_RX_PEC_ERR_SHIFT           29
133 #define S_RX_DATA_SHIFT              0
134 #define S_RX_DATA_MASK               0xff
135 
136 #define I2C_TIMEOUT_MSEC             50000
137 #define M_TX_RX_FIFO_SIZE            64
138 #define M_RX_FIFO_MAX_THLD_VALUE     (M_TX_RX_FIFO_SIZE - 1)
139 
140 #define M_RX_MAX_READ_LEN            255
141 #define M_RX_FIFO_THLD_VALUE         50
142 
143 #define IE_M_ALL_INTERRUPT_SHIFT     27
144 #define IE_M_ALL_INTERRUPT_MASK      0x1e
145 
146 #define SLAVE_READ_WRITE_BIT_MASK    0x1
147 #define SLAVE_READ_WRITE_BIT_SHIFT   0x1
148 #define SLAVE_MAX_SIZE_TRANSACTION   64
149 #define SLAVE_CLOCK_STRETCH_TIME     25
150 
151 #define IE_S_ALL_INTERRUPT_SHIFT     21
152 #define IE_S_ALL_INTERRUPT_MASK      0x3f
153 /*
154  * It takes ~18us to reading 10bytes of data, hence to keep tasklet
155  * running for less time, max slave read per tasklet is set to 10 bytes.
156  */
157 #define MAX_SLAVE_RX_PER_INT         10
158 
159 enum i2c_slave_read_status {
160 	I2C_SLAVE_RX_FIFO_EMPTY = 0,
161 	I2C_SLAVE_RX_START,
162 	I2C_SLAVE_RX_DATA,
163 	I2C_SLAVE_RX_END,
164 };
165 
166 enum bus_speed_index {
167 	I2C_SPD_100K = 0,
168 	I2C_SPD_400K,
169 };
170 
171 enum bcm_iproc_i2c_type {
172 	IPROC_I2C,
173 	IPROC_I2C_NIC
174 };
175 
176 struct bcm_iproc_i2c_dev {
177 	struct device *device;
178 	enum bcm_iproc_i2c_type type;
179 	int irq;
180 
181 	void __iomem *base;
182 	void __iomem *idm_base;
183 
184 	u32 ape_addr_mask;
185 
186 	/* lock for indirect access through IDM */
187 	spinlock_t idm_lock;
188 
189 	struct i2c_adapter adapter;
190 	unsigned int bus_speed;
191 
192 	struct completion done;
193 	int xfer_is_done;
194 
195 	struct i2c_msg *msg;
196 
197 	struct i2c_client *slave;
198 
199 	/* bytes that have been transferred */
200 	unsigned int tx_bytes;
201 	/* bytes that have been read */
202 	unsigned int rx_bytes;
203 	unsigned int thld_bytes;
204 
205 	bool slave_rx_only;
206 	bool rx_start_rcvd;
207 	bool slave_read_complete;
208 	u32 tx_underrun;
209 	u32 slave_int_mask;
210 	struct tasklet_struct slave_rx_tasklet;
211 };
212 
213 /* tasklet to process slave rx data */
214 static void slave_rx_tasklet_fn(unsigned long);
215 
216 /*
217  * Can be expanded in the future if more interrupt status bits are utilized
218  */
219 #define ISR_MASK (BIT(IS_M_START_BUSY_SHIFT) | BIT(IS_M_TX_UNDERRUN_SHIFT)\
220 		| BIT(IS_M_RX_THLD_SHIFT))
221 
222 #define ISR_MASK_SLAVE (BIT(IS_S_START_BUSY_SHIFT)\
223 		| BIT(IS_S_RX_EVENT_SHIFT) | BIT(IS_S_RD_EVENT_SHIFT)\
224 		| BIT(IS_S_TX_UNDERRUN_SHIFT) | BIT(IS_S_RX_FIFO_FULL_SHIFT)\
225 		| BIT(IS_S_RX_THLD_SHIFT))
226 
227 static int bcm_iproc_i2c_reg_slave(struct i2c_client *slave);
228 static int bcm_iproc_i2c_unreg_slave(struct i2c_client *slave);
229 static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c,
230 					 bool enable);
231 
232 static inline u32 iproc_i2c_rd_reg(struct bcm_iproc_i2c_dev *iproc_i2c,
233 				   u32 offset)
234 {
235 	u32 val;
236 	unsigned long flags;
237 
238 	if (iproc_i2c->idm_base) {
239 		spin_lock_irqsave(&iproc_i2c->idm_lock, flags);
240 		writel(iproc_i2c->ape_addr_mask,
241 		       iproc_i2c->idm_base + IDM_CTRL_DIRECT_OFFSET);
242 		val = readl(iproc_i2c->base + offset);
243 		spin_unlock_irqrestore(&iproc_i2c->idm_lock, flags);
244 	} else {
245 		val = readl(iproc_i2c->base + offset);
246 	}
247 
248 	return val;
249 }
250 
251 static inline void iproc_i2c_wr_reg(struct bcm_iproc_i2c_dev *iproc_i2c,
252 				    u32 offset, u32 val)
253 {
254 	unsigned long flags;
255 
256 	if (iproc_i2c->idm_base) {
257 		spin_lock_irqsave(&iproc_i2c->idm_lock, flags);
258 		writel(iproc_i2c->ape_addr_mask,
259 		       iproc_i2c->idm_base + IDM_CTRL_DIRECT_OFFSET);
260 		writel(val, iproc_i2c->base + offset);
261 		spin_unlock_irqrestore(&iproc_i2c->idm_lock, flags);
262 	} else {
263 		writel(val, iproc_i2c->base + offset);
264 	}
265 }
266 
267 static void bcm_iproc_i2c_slave_init(
268 	struct bcm_iproc_i2c_dev *iproc_i2c, bool need_reset)
269 {
270 	u32 val;
271 
272 	iproc_i2c->tx_underrun = 0;
273 	if (need_reset) {
274 		/* put controller in reset */
275 		val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
276 		val |= BIT(CFG_RESET_SHIFT);
277 		iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
278 
279 		/* wait 100 usec per spec */
280 		udelay(100);
281 
282 		/* bring controller out of reset */
283 		val &= ~(BIT(CFG_RESET_SHIFT));
284 		iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
285 	}
286 
287 	/* flush TX/RX FIFOs */
288 	val = (BIT(S_FIFO_RX_FLUSH_SHIFT) | BIT(S_FIFO_TX_FLUSH_SHIFT));
289 	iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, val);
290 
291 	/* Maximum slave stretch time */
292 	val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
293 	val &= ~(TIM_RAND_SLAVE_STRETCH_MASK << TIM_RAND_SLAVE_STRETCH_SHIFT);
294 	val |= (SLAVE_CLOCK_STRETCH_TIME << TIM_RAND_SLAVE_STRETCH_SHIFT);
295 	iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
296 
297 	/* Configure the slave address */
298 	val = iproc_i2c_rd_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET);
299 	val |= BIT(S_CFG_EN_NIC_SMB_ADDR3_SHIFT);
300 	val &= ~(S_CFG_NIC_SMB_ADDR3_MASK << S_CFG_NIC_SMB_ADDR3_SHIFT);
301 	val |= (iproc_i2c->slave->addr << S_CFG_NIC_SMB_ADDR3_SHIFT);
302 	iproc_i2c_wr_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET, val);
303 
304 	/* clear all pending slave interrupts */
305 	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, ISR_MASK_SLAVE);
306 
307 	/* Enable interrupt register to indicate a valid byte in receive fifo */
308 	val = BIT(IE_S_RX_EVENT_SHIFT);
309 	/* Enable interrupt register to indicate Slave Rx FIFO Full */
310 	val |= BIT(IE_S_RX_FIFO_FULL_SHIFT);
311 	/* Enable interrupt register to indicate a Master read transaction */
312 	val |= BIT(IE_S_RD_EVENT_SHIFT);
313 	/* Enable interrupt register for the Slave BUSY command */
314 	val |= BIT(IE_S_START_BUSY_SHIFT);
315 	iproc_i2c->slave_int_mask = val;
316 	iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
317 }
318 
319 static bool bcm_iproc_i2c_check_slave_status
320 	(struct bcm_iproc_i2c_dev *iproc_i2c, u32 status)
321 {
322 	u32 val;
323 	bool recover = false;
324 
325 	/* check slave transmit status only if slave is transmitting */
326 	if (!iproc_i2c->slave_rx_only) {
327 		val = iproc_i2c_rd_reg(iproc_i2c, S_CMD_OFFSET);
328 		/* status is valid only when START_BUSY is cleared */
329 		if (!(val & BIT(S_CMD_START_BUSY_SHIFT))) {
330 			val = (val >> S_CMD_STATUS_SHIFT) & S_CMD_STATUS_MASK;
331 			if (val == S_CMD_STATUS_TIMEOUT ||
332 			    val == S_CMD_STATUS_MASTER_ABORT) {
333 				dev_warn(iproc_i2c->device,
334 					 (val == S_CMD_STATUS_TIMEOUT) ?
335 					 "slave random stretch time timeout\n" :
336 					 "Master aborted read transaction\n");
337 				recover = true;
338 			}
339 		}
340 	}
341 
342 	/* RX_EVENT is not valid when START_BUSY is set */
343 	if ((status & BIT(IS_S_RX_EVENT_SHIFT)) &&
344 	    (status & BIT(IS_S_START_BUSY_SHIFT))) {
345 		dev_warn(iproc_i2c->device, "Slave aborted read transaction\n");
346 		recover = true;
347 	}
348 
349 	if (recover) {
350 		/* re-initialize i2c for recovery */
351 		bcm_iproc_i2c_enable_disable(iproc_i2c, false);
352 		bcm_iproc_i2c_slave_init(iproc_i2c, true);
353 		bcm_iproc_i2c_enable_disable(iproc_i2c, true);
354 	}
355 
356 	return recover;
357 }
358 
359 static void bcm_iproc_i2c_slave_read(struct bcm_iproc_i2c_dev *iproc_i2c)
360 {
361 	u8 rx_data, rx_status;
362 	u32 rx_bytes = 0;
363 	u32 val;
364 
365 	while (rx_bytes < MAX_SLAVE_RX_PER_INT) {
366 		val = iproc_i2c_rd_reg(iproc_i2c, S_RX_OFFSET);
367 		rx_status = (val >> S_RX_STATUS_SHIFT) & S_RX_STATUS_MASK;
368 		rx_data = ((val >> S_RX_DATA_SHIFT) & S_RX_DATA_MASK);
369 
370 		if (rx_status == I2C_SLAVE_RX_START) {
371 			/* Start of SMBUS Master write */
372 			i2c_slave_event(iproc_i2c->slave,
373 					I2C_SLAVE_WRITE_REQUESTED, &rx_data);
374 			iproc_i2c->rx_start_rcvd = true;
375 			iproc_i2c->slave_read_complete = false;
376 		} else if (rx_status == I2C_SLAVE_RX_DATA &&
377 			   iproc_i2c->rx_start_rcvd) {
378 			/* Middle of SMBUS Master write */
379 			i2c_slave_event(iproc_i2c->slave,
380 					I2C_SLAVE_WRITE_RECEIVED, &rx_data);
381 		} else if (rx_status == I2C_SLAVE_RX_END &&
382 			   iproc_i2c->rx_start_rcvd) {
383 			/* End of SMBUS Master write */
384 			if (iproc_i2c->slave_rx_only)
385 				i2c_slave_event(iproc_i2c->slave,
386 						I2C_SLAVE_WRITE_RECEIVED,
387 						&rx_data);
388 
389 			i2c_slave_event(iproc_i2c->slave, I2C_SLAVE_STOP,
390 					&rx_data);
391 		} else if (rx_status == I2C_SLAVE_RX_FIFO_EMPTY) {
392 			iproc_i2c->rx_start_rcvd = false;
393 			iproc_i2c->slave_read_complete = true;
394 			break;
395 		}
396 
397 		rx_bytes++;
398 	}
399 }
400 
401 static void slave_rx_tasklet_fn(unsigned long data)
402 {
403 	struct bcm_iproc_i2c_dev *iproc_i2c = (struct bcm_iproc_i2c_dev *)data;
404 	u32 int_clr;
405 
406 	bcm_iproc_i2c_slave_read(iproc_i2c);
407 
408 	/* clear pending IS_S_RX_EVENT_SHIFT interrupt */
409 	int_clr = BIT(IS_S_RX_EVENT_SHIFT);
410 
411 	if (!iproc_i2c->slave_rx_only && iproc_i2c->slave_read_complete) {
412 		/*
413 		 * In case of single byte master-read request,
414 		 * IS_S_TX_UNDERRUN_SHIFT event is generated before
415 		 * IS_S_START_BUSY_SHIFT event. Hence start slave data send
416 		 * from first IS_S_TX_UNDERRUN_SHIFT event.
417 		 *
418 		 * This means don't send any data from slave when
419 		 * IS_S_RD_EVENT_SHIFT event is generated else it will increment
420 		 * eeprom or other backend slave driver read pointer twice.
421 		 */
422 		iproc_i2c->tx_underrun = 0;
423 		iproc_i2c->slave_int_mask |= BIT(IE_S_TX_UNDERRUN_SHIFT);
424 
425 		/* clear IS_S_RD_EVENT_SHIFT interrupt */
426 		int_clr |= BIT(IS_S_RD_EVENT_SHIFT);
427 	}
428 
429 	/* clear slave interrupt */
430 	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, int_clr);
431 	/* enable slave interrupts */
432 	iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, iproc_i2c->slave_int_mask);
433 }
434 
435 static bool bcm_iproc_i2c_slave_isr(struct bcm_iproc_i2c_dev *iproc_i2c,
436 				    u32 status)
437 {
438 	u32 val;
439 	u8 value;
440 
441 
442 	if (status & BIT(IS_S_TX_UNDERRUN_SHIFT)) {
443 		iproc_i2c->tx_underrun++;
444 		if (iproc_i2c->tx_underrun == 1)
445 			/* Start of SMBUS for Master Read */
446 			i2c_slave_event(iproc_i2c->slave,
447 					I2C_SLAVE_READ_REQUESTED,
448 					&value);
449 		else
450 			/* Master read other than start */
451 			i2c_slave_event(iproc_i2c->slave,
452 					I2C_SLAVE_READ_PROCESSED,
453 					&value);
454 
455 		iproc_i2c_wr_reg(iproc_i2c, S_TX_OFFSET, value);
456 		/* start transfer */
457 		val = BIT(S_CMD_START_BUSY_SHIFT);
458 		iproc_i2c_wr_reg(iproc_i2c, S_CMD_OFFSET, val);
459 
460 		/* clear interrupt */
461 		iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET,
462 				 BIT(IS_S_TX_UNDERRUN_SHIFT));
463 	}
464 
465 	/* Stop received from master in case of master read transaction */
466 	if (status & BIT(IS_S_START_BUSY_SHIFT)) {
467 		/*
468 		 * Disable interrupt for TX FIFO becomes empty and
469 		 * less than PKT_LENGTH bytes were output on the SMBUS
470 		 */
471 		iproc_i2c->slave_int_mask &= ~BIT(IE_S_TX_UNDERRUN_SHIFT);
472 		val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
473 		val &= ~BIT(IE_S_TX_UNDERRUN_SHIFT);
474 		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
475 
476 		/* End of SMBUS for Master Read */
477 		val = BIT(S_TX_WR_STATUS_SHIFT);
478 		iproc_i2c_wr_reg(iproc_i2c, S_TX_OFFSET, val);
479 
480 		val = BIT(S_CMD_START_BUSY_SHIFT);
481 		iproc_i2c_wr_reg(iproc_i2c, S_CMD_OFFSET, val);
482 
483 		/* flush TX FIFOs */
484 		val = iproc_i2c_rd_reg(iproc_i2c, S_FIFO_CTRL_OFFSET);
485 		val |= (BIT(S_FIFO_TX_FLUSH_SHIFT));
486 		iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, val);
487 
488 		i2c_slave_event(iproc_i2c->slave, I2C_SLAVE_STOP, &value);
489 
490 		/* clear interrupt */
491 		iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET,
492 				 BIT(IS_S_START_BUSY_SHIFT));
493 	}
494 
495 	/* if the controller has been reset, immediately return from the ISR */
496 	if (bcm_iproc_i2c_check_slave_status(iproc_i2c, status))
497 		return true;
498 
499 	/*
500 	 * Slave events in case of master-write, master-write-read and,
501 	 * master-read
502 	 *
503 	 * Master-write     : only IS_S_RX_EVENT_SHIFT event
504 	 * Master-write-read: both IS_S_RX_EVENT_SHIFT and IS_S_RD_EVENT_SHIFT
505 	 *                    events
506 	 * Master-read      : both IS_S_RX_EVENT_SHIFT and IS_S_RD_EVENT_SHIFT
507 	 *                    events or only IS_S_RD_EVENT_SHIFT
508 	 *
509 	 * iproc has a slave rx fifo size of 64 bytes. Rx fifo full interrupt
510 	 * (IS_S_RX_FIFO_FULL_SHIFT) will be generated when RX fifo becomes
511 	 * full. This can happen if Master issues write requests of more than
512 	 * 64 bytes.
513 	 */
514 	if (status & BIT(IS_S_RX_EVENT_SHIFT) ||
515 	    status & BIT(IS_S_RD_EVENT_SHIFT) ||
516 	    status & BIT(IS_S_RX_FIFO_FULL_SHIFT)) {
517 		/* disable slave interrupts */
518 		val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
519 		val &= ~iproc_i2c->slave_int_mask;
520 		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
521 
522 		if (status & BIT(IS_S_RD_EVENT_SHIFT))
523 			/* Master-write-read request */
524 			iproc_i2c->slave_rx_only = false;
525 		else
526 			/* Master-write request only */
527 			iproc_i2c->slave_rx_only = true;
528 
529 		/* schedule tasklet to read data later */
530 		tasklet_schedule(&iproc_i2c->slave_rx_tasklet);
531 
532 		/* clear IS_S_RX_FIFO_FULL_SHIFT interrupt */
533 		if (status & BIT(IS_S_RX_FIFO_FULL_SHIFT)) {
534 			val = BIT(IS_S_RX_FIFO_FULL_SHIFT);
535 			iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, val);
536 		}
537 	}
538 
539 	return true;
540 }
541 
542 static void bcm_iproc_i2c_read_valid_bytes(struct bcm_iproc_i2c_dev *iproc_i2c)
543 {
544 	struct i2c_msg *msg = iproc_i2c->msg;
545 	uint32_t val;
546 
547 	/* Read valid data from RX FIFO */
548 	while (iproc_i2c->rx_bytes < msg->len) {
549 		val = iproc_i2c_rd_reg(iproc_i2c, M_RX_OFFSET);
550 
551 		/* rx fifo empty */
552 		if (!((val >> M_RX_STATUS_SHIFT) & M_RX_STATUS_MASK))
553 			break;
554 
555 		msg->buf[iproc_i2c->rx_bytes] =
556 			(val >> M_RX_DATA_SHIFT) & M_RX_DATA_MASK;
557 		iproc_i2c->rx_bytes++;
558 	}
559 }
560 
561 static void bcm_iproc_i2c_send(struct bcm_iproc_i2c_dev *iproc_i2c)
562 {
563 	struct i2c_msg *msg = iproc_i2c->msg;
564 	unsigned int tx_bytes = msg->len - iproc_i2c->tx_bytes;
565 	unsigned int i;
566 	u32 val;
567 
568 	/* can only fill up to the FIFO size */
569 	tx_bytes = min_t(unsigned int, tx_bytes, M_TX_RX_FIFO_SIZE);
570 	for (i = 0; i < tx_bytes; i++) {
571 		/* start from where we left over */
572 		unsigned int idx = iproc_i2c->tx_bytes + i;
573 
574 		val = msg->buf[idx];
575 
576 		/* mark the last byte */
577 		if (idx == msg->len - 1) {
578 			val |= BIT(M_TX_WR_STATUS_SHIFT);
579 
580 			if (iproc_i2c->irq) {
581 				u32 tmp;
582 
583 				/*
584 				 * Since this is the last byte, we should now
585 				 * disable TX FIFO underrun interrupt
586 				 */
587 				tmp = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
588 				tmp &= ~BIT(IE_M_TX_UNDERRUN_SHIFT);
589 				iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET,
590 						 tmp);
591 			}
592 		}
593 
594 		/* load data into TX FIFO */
595 		iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
596 	}
597 
598 	/* update number of transferred bytes */
599 	iproc_i2c->tx_bytes += tx_bytes;
600 }
601 
602 static void bcm_iproc_i2c_read(struct bcm_iproc_i2c_dev *iproc_i2c)
603 {
604 	struct i2c_msg *msg = iproc_i2c->msg;
605 	u32 bytes_left, val;
606 
607 	bcm_iproc_i2c_read_valid_bytes(iproc_i2c);
608 	bytes_left = msg->len - iproc_i2c->rx_bytes;
609 	if (bytes_left == 0) {
610 		if (iproc_i2c->irq) {
611 			/* finished reading all data, disable rx thld event */
612 			val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
613 			val &= ~BIT(IS_M_RX_THLD_SHIFT);
614 			iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
615 		}
616 	} else if (bytes_left < iproc_i2c->thld_bytes) {
617 		/* set bytes left as threshold */
618 		val = iproc_i2c_rd_reg(iproc_i2c, M_FIFO_CTRL_OFFSET);
619 		val &= ~(M_FIFO_RX_THLD_MASK << M_FIFO_RX_THLD_SHIFT);
620 		val |= (bytes_left << M_FIFO_RX_THLD_SHIFT);
621 		iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
622 		iproc_i2c->thld_bytes = bytes_left;
623 	}
624 	/*
625 	 * bytes_left >= iproc_i2c->thld_bytes,
626 	 * hence no need to change the THRESHOLD SET.
627 	 * It will remain as iproc_i2c->thld_bytes itself
628 	 */
629 }
630 
631 static void bcm_iproc_i2c_process_m_event(struct bcm_iproc_i2c_dev *iproc_i2c,
632 					  u32 status)
633 {
634 	/* TX FIFO is empty and we have more data to send */
635 	if (status & BIT(IS_M_TX_UNDERRUN_SHIFT))
636 		bcm_iproc_i2c_send(iproc_i2c);
637 
638 	/* RX FIFO threshold is reached and data needs to be read out */
639 	if (status & BIT(IS_M_RX_THLD_SHIFT))
640 		bcm_iproc_i2c_read(iproc_i2c);
641 
642 	/* transfer is done */
643 	if (status & BIT(IS_M_START_BUSY_SHIFT)) {
644 		iproc_i2c->xfer_is_done = 1;
645 		if (iproc_i2c->irq)
646 			complete(&iproc_i2c->done);
647 	}
648 }
649 
650 static irqreturn_t bcm_iproc_i2c_isr(int irq, void *data)
651 {
652 	struct bcm_iproc_i2c_dev *iproc_i2c = data;
653 	u32 slave_status;
654 	u32 status;
655 	bool ret;
656 
657 	status = iproc_i2c_rd_reg(iproc_i2c, IS_OFFSET);
658 	/* process only slave interrupt which are enabled */
659 	slave_status = status & iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET) &
660 		       ISR_MASK_SLAVE;
661 
662 	if (slave_status) {
663 		ret = bcm_iproc_i2c_slave_isr(iproc_i2c, slave_status);
664 		if (ret)
665 			return IRQ_HANDLED;
666 		else
667 			return IRQ_NONE;
668 	}
669 
670 	status &= ISR_MASK;
671 	if (!status)
672 		return IRQ_NONE;
673 
674 	/* process all master based events */
675 	bcm_iproc_i2c_process_m_event(iproc_i2c, status);
676 	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status);
677 
678 	return IRQ_HANDLED;
679 }
680 
681 static int bcm_iproc_i2c_init(struct bcm_iproc_i2c_dev *iproc_i2c)
682 {
683 	u32 val;
684 
685 	/* put controller in reset */
686 	val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
687 	val |= BIT(CFG_RESET_SHIFT);
688 	val &= ~(BIT(CFG_EN_SHIFT));
689 	iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
690 
691 	/* wait 100 usec per spec */
692 	udelay(100);
693 
694 	/* bring controller out of reset */
695 	val &= ~(BIT(CFG_RESET_SHIFT));
696 	iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
697 
698 	/* flush TX/RX FIFOs and set RX FIFO threshold to zero */
699 	val = (BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT));
700 	iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
701 	/* disable all interrupts */
702 	val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
703 	val &= ~(IE_M_ALL_INTERRUPT_MASK <<
704 			IE_M_ALL_INTERRUPT_SHIFT);
705 	iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
706 
707 	/* clear all pending interrupts */
708 	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, 0xffffffff);
709 
710 	return 0;
711 }
712 
713 static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c,
714 					 bool enable)
715 {
716 	u32 val;
717 
718 	val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
719 	if (enable)
720 		val |= BIT(CFG_EN_SHIFT);
721 	else
722 		val &= ~BIT(CFG_EN_SHIFT);
723 	iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
724 }
725 
726 static int bcm_iproc_i2c_check_status(struct bcm_iproc_i2c_dev *iproc_i2c,
727 				      struct i2c_msg *msg)
728 {
729 	u32 val;
730 
731 	val = iproc_i2c_rd_reg(iproc_i2c, M_CMD_OFFSET);
732 	val = (val >> M_CMD_STATUS_SHIFT) & M_CMD_STATUS_MASK;
733 
734 	switch (val) {
735 	case M_CMD_STATUS_SUCCESS:
736 		return 0;
737 
738 	case M_CMD_STATUS_LOST_ARB:
739 		dev_dbg(iproc_i2c->device, "lost bus arbitration\n");
740 		return -EAGAIN;
741 
742 	case M_CMD_STATUS_NACK_ADDR:
743 		dev_dbg(iproc_i2c->device, "NAK addr:0x%02x\n", msg->addr);
744 		return -ENXIO;
745 
746 	case M_CMD_STATUS_NACK_DATA:
747 		dev_dbg(iproc_i2c->device, "NAK data\n");
748 		return -ENXIO;
749 
750 	case M_CMD_STATUS_TIMEOUT:
751 		dev_dbg(iproc_i2c->device, "bus timeout\n");
752 		return -ETIMEDOUT;
753 
754 	case M_CMD_STATUS_FIFO_UNDERRUN:
755 		dev_dbg(iproc_i2c->device, "FIFO under-run\n");
756 		return -ENXIO;
757 
758 	case M_CMD_STATUS_RX_FIFO_FULL:
759 		dev_dbg(iproc_i2c->device, "RX FIFO full\n");
760 		return -ETIMEDOUT;
761 
762 	default:
763 		dev_dbg(iproc_i2c->device, "unknown error code=%d\n", val);
764 
765 		/* re-initialize i2c for recovery */
766 		bcm_iproc_i2c_enable_disable(iproc_i2c, false);
767 		bcm_iproc_i2c_init(iproc_i2c);
768 		bcm_iproc_i2c_enable_disable(iproc_i2c, true);
769 
770 		return -EIO;
771 	}
772 }
773 
774 static int bcm_iproc_i2c_xfer_wait(struct bcm_iproc_i2c_dev *iproc_i2c,
775 				   struct i2c_msg *msg,
776 				   u32 cmd)
777 {
778 	unsigned long time_left = msecs_to_jiffies(I2C_TIMEOUT_MSEC);
779 	u32 val, status;
780 	int ret;
781 
782 	iproc_i2c_wr_reg(iproc_i2c, M_CMD_OFFSET, cmd);
783 
784 	if (iproc_i2c->irq) {
785 		time_left = wait_for_completion_timeout(&iproc_i2c->done,
786 							time_left);
787 		/* disable all interrupts */
788 		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
789 		/* read it back to flush the write */
790 		iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
791 		/* make sure the interrupt handler isn't running */
792 		synchronize_irq(iproc_i2c->irq);
793 
794 	} else { /* polling mode */
795 		unsigned long timeout = jiffies + time_left;
796 
797 		do {
798 			status = iproc_i2c_rd_reg(iproc_i2c,
799 						  IS_OFFSET) & ISR_MASK;
800 			bcm_iproc_i2c_process_m_event(iproc_i2c, status);
801 			iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status);
802 
803 			if (time_after(jiffies, timeout)) {
804 				time_left = 0;
805 				break;
806 			}
807 
808 			cpu_relax();
809 			cond_resched();
810 		} while (!iproc_i2c->xfer_is_done);
811 	}
812 
813 	if (!time_left && !iproc_i2c->xfer_is_done) {
814 		dev_err(iproc_i2c->device, "transaction timed out\n");
815 
816 		/* flush both TX/RX FIFOs */
817 		val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT);
818 		iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
819 		return -ETIMEDOUT;
820 	}
821 
822 	ret = bcm_iproc_i2c_check_status(iproc_i2c, msg);
823 	if (ret) {
824 		/* flush both TX/RX FIFOs */
825 		val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT);
826 		iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
827 		return ret;
828 	}
829 
830 	return 0;
831 }
832 
833 /*
834  * If 'process_call' is true, then this is a multi-msg transfer that requires
835  * a repeated start between the messages.
836  * More specifically, it must be a write (reg) followed by a read (data).
837  * The i2c quirks are set to enforce this rule.
838  */
839 static int bcm_iproc_i2c_xfer_internal(struct bcm_iproc_i2c_dev *iproc_i2c,
840 					struct i2c_msg *msgs, bool process_call)
841 {
842 	int i;
843 	u8 addr;
844 	u32 val, tmp, val_intr_en;
845 	unsigned int tx_bytes;
846 	struct i2c_msg *msg = &msgs[0];
847 
848 	/* check if bus is busy */
849 	if (!!(iproc_i2c_rd_reg(iproc_i2c,
850 				M_CMD_OFFSET) & BIT(M_CMD_START_BUSY_SHIFT))) {
851 		dev_warn(iproc_i2c->device, "bus is busy\n");
852 		return -EBUSY;
853 	}
854 
855 	iproc_i2c->msg = msg;
856 
857 	/* format and load slave address into the TX FIFO */
858 	addr = i2c_8bit_addr_from_msg(msg);
859 	iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, addr);
860 
861 	/*
862 	 * For a write transaction, load data into the TX FIFO. Only allow
863 	 * loading up to TX FIFO size - 1 bytes of data since the first byte
864 	 * has been used up by the slave address
865 	 */
866 	tx_bytes = min_t(unsigned int, msg->len, M_TX_RX_FIFO_SIZE - 1);
867 	if (!(msg->flags & I2C_M_RD)) {
868 		for (i = 0; i < tx_bytes; i++) {
869 			val = msg->buf[i];
870 
871 			/* mark the last byte */
872 			if (!process_call && (i == msg->len - 1))
873 				val |= BIT(M_TX_WR_STATUS_SHIFT);
874 
875 			iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
876 		}
877 		iproc_i2c->tx_bytes = tx_bytes;
878 	}
879 
880 	/* Process the read message if this is process call */
881 	if (process_call) {
882 		msg++;
883 		iproc_i2c->msg = msg;  /* point to second msg */
884 
885 		/*
886 		 * The last byte to be sent out should be a slave
887 		 * address with read operation
888 		 */
889 		addr = i2c_8bit_addr_from_msg(msg);
890 		/* mark it the last byte out */
891 		val = addr | BIT(M_TX_WR_STATUS_SHIFT);
892 		iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
893 	}
894 
895 	/* mark as incomplete before starting the transaction */
896 	if (iproc_i2c->irq)
897 		reinit_completion(&iproc_i2c->done);
898 
899 	iproc_i2c->xfer_is_done = 0;
900 
901 	/*
902 	 * Enable the "start busy" interrupt, which will be triggered after the
903 	 * transaction is done, i.e., the internal start_busy bit, transitions
904 	 * from 1 to 0.
905 	 */
906 	val_intr_en = BIT(IE_M_START_BUSY_SHIFT);
907 
908 	/*
909 	 * If TX data size is larger than the TX FIFO, need to enable TX
910 	 * underrun interrupt, which will be triggerred when the TX FIFO is
911 	 * empty. When that happens we can then pump more data into the FIFO
912 	 */
913 	if (!process_call && !(msg->flags & I2C_M_RD) &&
914 	    msg->len > iproc_i2c->tx_bytes)
915 		val_intr_en |= BIT(IE_M_TX_UNDERRUN_SHIFT);
916 
917 	/*
918 	 * Now we can activate the transfer. For a read operation, specify the
919 	 * number of bytes to read
920 	 */
921 	val = BIT(M_CMD_START_BUSY_SHIFT);
922 
923 	if (msg->len == 0) {
924 		/* SMBUS QUICK Command (Read/Write) */
925 		val |= (M_CMD_PROTOCOL_QUICK << M_CMD_PROTOCOL_SHIFT);
926 	} else if (msg->flags & I2C_M_RD) {
927 		u32 protocol;
928 
929 		iproc_i2c->rx_bytes = 0;
930 		if (msg->len > M_RX_FIFO_MAX_THLD_VALUE)
931 			iproc_i2c->thld_bytes = M_RX_FIFO_THLD_VALUE;
932 		else
933 			iproc_i2c->thld_bytes = msg->len;
934 
935 		/* set threshold value */
936 		tmp = iproc_i2c_rd_reg(iproc_i2c, M_FIFO_CTRL_OFFSET);
937 		tmp &= ~(M_FIFO_RX_THLD_MASK << M_FIFO_RX_THLD_SHIFT);
938 		tmp |= iproc_i2c->thld_bytes << M_FIFO_RX_THLD_SHIFT;
939 		iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, tmp);
940 
941 		/* enable the RX threshold interrupt */
942 		val_intr_en |= BIT(IE_M_RX_THLD_SHIFT);
943 
944 		protocol = process_call ?
945 				M_CMD_PROTOCOL_PROCESS : M_CMD_PROTOCOL_BLK_RD;
946 
947 		val |= (protocol << M_CMD_PROTOCOL_SHIFT) |
948 		       (msg->len << M_CMD_RD_CNT_SHIFT);
949 	} else {
950 		val |= (M_CMD_PROTOCOL_BLK_WR << M_CMD_PROTOCOL_SHIFT);
951 	}
952 
953 	if (iproc_i2c->irq)
954 		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val_intr_en);
955 
956 	return bcm_iproc_i2c_xfer_wait(iproc_i2c, msg, val);
957 }
958 
959 static int bcm_iproc_i2c_xfer(struct i2c_adapter *adapter,
960 			      struct i2c_msg msgs[], int num)
961 {
962 	struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(adapter);
963 	bool process_call = false;
964 	int ret;
965 
966 	if (num == 2) {
967 		/* Repeated start, use process call */
968 		process_call = true;
969 		if (msgs[1].flags & I2C_M_NOSTART) {
970 			dev_err(iproc_i2c->device, "Invalid repeated start\n");
971 			return -EOPNOTSUPP;
972 		}
973 	}
974 
975 	ret = bcm_iproc_i2c_xfer_internal(iproc_i2c, msgs, process_call);
976 	if (ret) {
977 		dev_dbg(iproc_i2c->device, "xfer failed\n");
978 		return ret;
979 	}
980 
981 	return num;
982 }
983 
984 static uint32_t bcm_iproc_i2c_functionality(struct i2c_adapter *adap)
985 {
986 	u32 val;
987 
988 	val = I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
989 
990 	if (adap->algo->reg_slave)
991 		val |= I2C_FUNC_SLAVE;
992 
993 	return val;
994 }
995 
996 static struct i2c_algorithm bcm_iproc_algo = {
997 	.master_xfer = bcm_iproc_i2c_xfer,
998 	.functionality = bcm_iproc_i2c_functionality,
999 	.reg_slave = bcm_iproc_i2c_reg_slave,
1000 	.unreg_slave = bcm_iproc_i2c_unreg_slave,
1001 };
1002 
1003 static const struct i2c_adapter_quirks bcm_iproc_i2c_quirks = {
1004 	.flags = I2C_AQ_COMB_WRITE_THEN_READ,
1005 	.max_comb_1st_msg_len = M_TX_RX_FIFO_SIZE,
1006 	.max_read_len = M_RX_MAX_READ_LEN,
1007 };
1008 
1009 static int bcm_iproc_i2c_cfg_speed(struct bcm_iproc_i2c_dev *iproc_i2c)
1010 {
1011 	unsigned int bus_speed;
1012 	u32 val;
1013 	int ret = of_property_read_u32(iproc_i2c->device->of_node,
1014 				       "clock-frequency", &bus_speed);
1015 	if (ret < 0) {
1016 		dev_info(iproc_i2c->device,
1017 			"unable to interpret clock-frequency DT property\n");
1018 		bus_speed = I2C_MAX_STANDARD_MODE_FREQ;
1019 	}
1020 
1021 	if (bus_speed < I2C_MAX_STANDARD_MODE_FREQ) {
1022 		dev_err(iproc_i2c->device, "%d Hz bus speed not supported\n",
1023 			bus_speed);
1024 		dev_err(iproc_i2c->device,
1025 			"valid speeds are 100khz and 400khz\n");
1026 		return -EINVAL;
1027 	} else if (bus_speed < I2C_MAX_FAST_MODE_FREQ) {
1028 		bus_speed = I2C_MAX_STANDARD_MODE_FREQ;
1029 	} else {
1030 		bus_speed = I2C_MAX_FAST_MODE_FREQ;
1031 	}
1032 
1033 	iproc_i2c->bus_speed = bus_speed;
1034 	val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
1035 	val &= ~BIT(TIM_CFG_MODE_400_SHIFT);
1036 	val |= (bus_speed == I2C_MAX_FAST_MODE_FREQ) << TIM_CFG_MODE_400_SHIFT;
1037 	iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
1038 
1039 	dev_info(iproc_i2c->device, "bus set to %u Hz\n", bus_speed);
1040 
1041 	return 0;
1042 }
1043 
1044 static int bcm_iproc_i2c_probe(struct platform_device *pdev)
1045 {
1046 	int irq, ret = 0;
1047 	struct bcm_iproc_i2c_dev *iproc_i2c;
1048 	struct i2c_adapter *adap;
1049 
1050 	iproc_i2c = devm_kzalloc(&pdev->dev, sizeof(*iproc_i2c),
1051 				 GFP_KERNEL);
1052 	if (!iproc_i2c)
1053 		return -ENOMEM;
1054 
1055 	platform_set_drvdata(pdev, iproc_i2c);
1056 	iproc_i2c->device = &pdev->dev;
1057 	iproc_i2c->type =
1058 		(enum bcm_iproc_i2c_type)of_device_get_match_data(&pdev->dev);
1059 	init_completion(&iproc_i2c->done);
1060 
1061 	iproc_i2c->base = devm_platform_ioremap_resource(pdev, 0);
1062 	if (IS_ERR(iproc_i2c->base))
1063 		return PTR_ERR(iproc_i2c->base);
1064 
1065 	if (iproc_i2c->type == IPROC_I2C_NIC) {
1066 		iproc_i2c->idm_base = devm_platform_ioremap_resource(pdev, 1);
1067 		if (IS_ERR(iproc_i2c->idm_base))
1068 			return PTR_ERR(iproc_i2c->idm_base);
1069 
1070 		ret = of_property_read_u32(iproc_i2c->device->of_node,
1071 					   "brcm,ape-hsls-addr-mask",
1072 					   &iproc_i2c->ape_addr_mask);
1073 		if (ret < 0) {
1074 			dev_err(iproc_i2c->device,
1075 				"'brcm,ape-hsls-addr-mask' missing\n");
1076 			return -EINVAL;
1077 		}
1078 
1079 		spin_lock_init(&iproc_i2c->idm_lock);
1080 
1081 		/* no slave support */
1082 		bcm_iproc_algo.reg_slave = NULL;
1083 		bcm_iproc_algo.unreg_slave = NULL;
1084 	}
1085 
1086 	ret = bcm_iproc_i2c_init(iproc_i2c);
1087 	if (ret)
1088 		return ret;
1089 
1090 	ret = bcm_iproc_i2c_cfg_speed(iproc_i2c);
1091 	if (ret)
1092 		return ret;
1093 
1094 	irq = platform_get_irq(pdev, 0);
1095 	if (irq > 0) {
1096 		ret = devm_request_irq(iproc_i2c->device, irq,
1097 				       bcm_iproc_i2c_isr, 0, pdev->name,
1098 				       iproc_i2c);
1099 		if (ret < 0) {
1100 			dev_err(iproc_i2c->device,
1101 				"unable to request irq %i\n", irq);
1102 			return ret;
1103 		}
1104 
1105 		iproc_i2c->irq = irq;
1106 	} else {
1107 		dev_warn(iproc_i2c->device,
1108 			 "no irq resource, falling back to poll mode\n");
1109 	}
1110 
1111 	bcm_iproc_i2c_enable_disable(iproc_i2c, true);
1112 
1113 	adap = &iproc_i2c->adapter;
1114 	i2c_set_adapdata(adap, iproc_i2c);
1115 	snprintf(adap->name, sizeof(adap->name),
1116 		"Broadcom iProc (%s)",
1117 		of_node_full_name(iproc_i2c->device->of_node));
1118 	adap->algo = &bcm_iproc_algo;
1119 	adap->quirks = &bcm_iproc_i2c_quirks;
1120 	adap->dev.parent = &pdev->dev;
1121 	adap->dev.of_node = pdev->dev.of_node;
1122 
1123 	return i2c_add_adapter(adap);
1124 }
1125 
1126 static void bcm_iproc_i2c_remove(struct platform_device *pdev)
1127 {
1128 	struct bcm_iproc_i2c_dev *iproc_i2c = platform_get_drvdata(pdev);
1129 
1130 	if (iproc_i2c->irq) {
1131 		/*
1132 		 * Make sure there's no pending interrupt when we remove the
1133 		 * adapter
1134 		 */
1135 		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
1136 		iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
1137 		synchronize_irq(iproc_i2c->irq);
1138 	}
1139 
1140 	i2c_del_adapter(&iproc_i2c->adapter);
1141 	bcm_iproc_i2c_enable_disable(iproc_i2c, false);
1142 }
1143 
1144 static int bcm_iproc_i2c_suspend(struct device *dev)
1145 {
1146 	struct bcm_iproc_i2c_dev *iproc_i2c = dev_get_drvdata(dev);
1147 
1148 	if (iproc_i2c->irq) {
1149 		/*
1150 		 * Make sure there's no pending interrupt when we go into
1151 		 * suspend
1152 		 */
1153 		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
1154 		iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
1155 		synchronize_irq(iproc_i2c->irq);
1156 	}
1157 
1158 	/* now disable the controller */
1159 	bcm_iproc_i2c_enable_disable(iproc_i2c, false);
1160 
1161 	return 0;
1162 }
1163 
1164 static int bcm_iproc_i2c_resume(struct device *dev)
1165 {
1166 	struct bcm_iproc_i2c_dev *iproc_i2c = dev_get_drvdata(dev);
1167 	int ret;
1168 	u32 val;
1169 
1170 	/*
1171 	 * Power domain could have been shut off completely in system deep
1172 	 * sleep, so re-initialize the block here
1173 	 */
1174 	ret = bcm_iproc_i2c_init(iproc_i2c);
1175 	if (ret)
1176 		return ret;
1177 
1178 	/* configure to the desired bus speed */
1179 	val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
1180 	val &= ~BIT(TIM_CFG_MODE_400_SHIFT);
1181 	val |= (iproc_i2c->bus_speed == I2C_MAX_FAST_MODE_FREQ) << TIM_CFG_MODE_400_SHIFT;
1182 	iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
1183 
1184 	bcm_iproc_i2c_enable_disable(iproc_i2c, true);
1185 
1186 	return 0;
1187 }
1188 
1189 static const struct dev_pm_ops bcm_iproc_i2c_pm_ops = {
1190 	.suspend_late = &bcm_iproc_i2c_suspend,
1191 	.resume_early = &bcm_iproc_i2c_resume
1192 };
1193 
1194 static int bcm_iproc_i2c_reg_slave(struct i2c_client *slave)
1195 {
1196 	struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(slave->adapter);
1197 
1198 	if (iproc_i2c->slave)
1199 		return -EBUSY;
1200 
1201 	if (slave->flags & I2C_CLIENT_TEN)
1202 		return -EAFNOSUPPORT;
1203 
1204 	iproc_i2c->slave = slave;
1205 
1206 	tasklet_init(&iproc_i2c->slave_rx_tasklet, slave_rx_tasklet_fn,
1207 		     (unsigned long)iproc_i2c);
1208 
1209 	bcm_iproc_i2c_slave_init(iproc_i2c, false);
1210 	return 0;
1211 }
1212 
1213 static int bcm_iproc_i2c_unreg_slave(struct i2c_client *slave)
1214 {
1215 	u32 tmp;
1216 	struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(slave->adapter);
1217 
1218 	if (!iproc_i2c->slave)
1219 		return -EINVAL;
1220 
1221 	disable_irq(iproc_i2c->irq);
1222 
1223 	tasklet_kill(&iproc_i2c->slave_rx_tasklet);
1224 
1225 	/* disable all slave interrupts */
1226 	tmp = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
1227 	tmp &= ~(IE_S_ALL_INTERRUPT_MASK <<
1228 			IE_S_ALL_INTERRUPT_SHIFT);
1229 	iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, tmp);
1230 
1231 	/* Erase the slave address programmed */
1232 	tmp = iproc_i2c_rd_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET);
1233 	tmp &= ~BIT(S_CFG_EN_NIC_SMB_ADDR3_SHIFT);
1234 	iproc_i2c_wr_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET, tmp);
1235 
1236 	/* flush TX/RX FIFOs */
1237 	tmp = (BIT(S_FIFO_RX_FLUSH_SHIFT) | BIT(S_FIFO_TX_FLUSH_SHIFT));
1238 	iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, tmp);
1239 
1240 	/* clear all pending slave interrupts */
1241 	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, ISR_MASK_SLAVE);
1242 
1243 	iproc_i2c->slave = NULL;
1244 
1245 	enable_irq(iproc_i2c->irq);
1246 
1247 	return 0;
1248 }
1249 
1250 static const struct of_device_id bcm_iproc_i2c_of_match[] = {
1251 	{
1252 		.compatible = "brcm,iproc-i2c",
1253 		.data = (int *)IPROC_I2C,
1254 	}, {
1255 		.compatible = "brcm,iproc-nic-i2c",
1256 		.data = (int *)IPROC_I2C_NIC,
1257 	},
1258 	{ /* sentinel */ }
1259 };
1260 MODULE_DEVICE_TABLE(of, bcm_iproc_i2c_of_match);
1261 
1262 static struct platform_driver bcm_iproc_i2c_driver = {
1263 	.driver = {
1264 		.name = "bcm-iproc-i2c",
1265 		.of_match_table = bcm_iproc_i2c_of_match,
1266 		.pm = pm_sleep_ptr(&bcm_iproc_i2c_pm_ops),
1267 	},
1268 	.probe = bcm_iproc_i2c_probe,
1269 	.remove_new = bcm_iproc_i2c_remove,
1270 };
1271 module_platform_driver(bcm_iproc_i2c_driver);
1272 
1273 MODULE_AUTHOR("Ray Jui <rjui@broadcom.com>");
1274 MODULE_DESCRIPTION("Broadcom iProc I2C Driver");
1275 MODULE_LICENSE("GPL v2");
1276