1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * This driver implements I2C master functionality using the LSI API2C 4 * controller. 5 * 6 * NOTE: The controller has a limitation in that it can only do transfers of 7 * maximum 255 bytes at a time. If a larger transfer is attempted, error code 8 * (-EINVAL) is returned. 9 */ 10 #include <linux/clk.h> 11 #include <linux/clkdev.h> 12 #include <linux/delay.h> 13 #include <linux/err.h> 14 #include <linux/i2c.h> 15 #include <linux/init.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/io.h> 19 #include <linux/kernel.h> 20 #include <linux/platform_device.h> 21 22 #define SCL_WAIT_TIMEOUT_NS 25000000 23 #define I2C_XFER_TIMEOUT (msecs_to_jiffies(250)) 24 #define I2C_STOP_TIMEOUT (msecs_to_jiffies(100)) 25 #define FIFO_SIZE 8 26 #define SEQ_LEN 2 27 28 #define GLOBAL_CONTROL 0x00 29 #define GLOBAL_MST_EN BIT(0) 30 #define GLOBAL_SLV_EN BIT(1) 31 #define GLOBAL_IBML_EN BIT(2) 32 #define INTERRUPT_STATUS 0x04 33 #define INTERRUPT_ENABLE 0x08 34 #define INT_SLV BIT(1) 35 #define INT_MST BIT(0) 36 #define WAIT_TIMER_CONTROL 0x0c 37 #define WT_EN BIT(15) 38 #define WT_VALUE(_x) ((_x) & 0x7fff) 39 #define IBML_TIMEOUT 0x10 40 #define IBML_LOW_MEXT 0x14 41 #define IBML_LOW_SEXT 0x18 42 #define TIMER_CLOCK_DIV 0x1c 43 #define I2C_BUS_MONITOR 0x20 44 #define BM_SDAC BIT(3) 45 #define BM_SCLC BIT(2) 46 #define BM_SDAS BIT(1) 47 #define BM_SCLS BIT(0) 48 #define SOFT_RESET 0x24 49 #define MST_COMMAND 0x28 50 #define CMD_BUSY (1<<3) 51 #define CMD_MANUAL (0x00 | CMD_BUSY) 52 #define CMD_AUTO (0x01 | CMD_BUSY) 53 #define CMD_SEQUENCE (0x02 | CMD_BUSY) 54 #define MST_RX_XFER 0x2c 55 #define MST_TX_XFER 0x30 56 #define MST_ADDR_1 0x34 57 #define MST_ADDR_2 0x38 58 #define MST_DATA 0x3c 59 #define MST_TX_FIFO 0x40 60 #define MST_RX_FIFO 0x44 61 #define MST_INT_ENABLE 0x48 62 #define MST_INT_STATUS 0x4c 63 #define MST_STATUS_RFL (1 << 13) /* RX FIFO serivce */ 64 #define MST_STATUS_TFL (1 << 12) /* TX FIFO service */ 65 #define MST_STATUS_SNS (1 << 11) /* Manual mode done */ 66 #define MST_STATUS_SS (1 << 10) /* Automatic mode done */ 67 #define MST_STATUS_SCC (1 << 9) /* Stop complete */ 68 #define MST_STATUS_IP (1 << 8) /* Invalid parameter */ 69 #define MST_STATUS_TSS (1 << 7) /* Timeout */ 70 #define MST_STATUS_AL (1 << 6) /* Arbitration lost */ 71 #define MST_STATUS_ND (1 << 5) /* NAK on data phase */ 72 #define MST_STATUS_NA (1 << 4) /* NAK on address phase */ 73 #define MST_STATUS_NAK (MST_STATUS_NA | \ 74 MST_STATUS_ND) 75 #define MST_STATUS_ERR (MST_STATUS_NAK | \ 76 MST_STATUS_AL | \ 77 MST_STATUS_IP) 78 #define MST_TX_BYTES_XFRD 0x50 79 #define MST_RX_BYTES_XFRD 0x54 80 #define SLV_ADDR_DEC_CTL 0x58 81 #define SLV_ADDR_DEC_GCE BIT(0) /* ACK to General Call Address from own master (loopback) */ 82 #define SLV_ADDR_DEC_OGCE BIT(1) /* ACK to General Call Address from external masters */ 83 #define SLV_ADDR_DEC_SA1E BIT(2) /* ACK to addr_1 enabled */ 84 #define SLV_ADDR_DEC_SA1M BIT(3) /* 10-bit addressing for addr_1 enabled */ 85 #define SLV_ADDR_DEC_SA2E BIT(4) /* ACK to addr_2 enabled */ 86 #define SLV_ADDR_DEC_SA2M BIT(5) /* 10-bit addressing for addr_2 enabled */ 87 #define SLV_ADDR_1 0x5c 88 #define SLV_ADDR_2 0x60 89 #define SLV_RX_CTL 0x64 90 #define SLV_RX_ACSA1 BIT(0) /* Generate ACK for writes to addr_1 */ 91 #define SLV_RX_ACSA2 BIT(1) /* Generate ACK for writes to addr_2 */ 92 #define SLV_RX_ACGCA BIT(2) /* ACK data phase transfers to General Call Address */ 93 #define SLV_DATA 0x68 94 #define SLV_RX_FIFO 0x6c 95 #define SLV_FIFO_DV1 BIT(0) /* Data Valid for addr_1 */ 96 #define SLV_FIFO_DV2 BIT(1) /* Data Valid for addr_2 */ 97 #define SLV_FIFO_AS BIT(2) /* (N)ACK Sent */ 98 #define SLV_FIFO_TNAK BIT(3) /* Timeout NACK */ 99 #define SLV_FIFO_STRC BIT(4) /* First byte after start condition received */ 100 #define SLV_FIFO_RSC BIT(5) /* Repeated Start Condition */ 101 #define SLV_FIFO_STPC BIT(6) /* Stop Condition */ 102 #define SLV_FIFO_DV (SLV_FIFO_DV1 | SLV_FIFO_DV2) 103 #define SLV_INT_ENABLE 0x70 104 #define SLV_INT_STATUS 0x74 105 #define SLV_STATUS_RFH BIT(0) /* FIFO service */ 106 #define SLV_STATUS_WTC BIT(1) /* Write transfer complete */ 107 #define SLV_STATUS_SRS1 BIT(2) /* Slave read from addr 1 */ 108 #define SLV_STATUS_SRRS1 BIT(3) /* Repeated start from addr 1 */ 109 #define SLV_STATUS_SRND1 BIT(4) /* Read request not following start condition */ 110 #define SLV_STATUS_SRC1 BIT(5) /* Read canceled */ 111 #define SLV_STATUS_SRAT1 BIT(6) /* Slave Read timed out */ 112 #define SLV_STATUS_SRDRE1 BIT(7) /* Data written after timed out */ 113 #define SLV_READ_DUMMY 0x78 114 #define SCL_HIGH_PERIOD 0x80 115 #define SCL_LOW_PERIOD 0x84 116 #define SPIKE_FLTR_LEN 0x88 117 #define SDA_SETUP_TIME 0x8c 118 #define SDA_HOLD_TIME 0x90 119 120 /** 121 * axxia_i2c_dev - I2C device context 122 * @base: pointer to register struct 123 * @msg: pointer to current message 124 * @msg_r: pointer to current read message (sequence transfer) 125 * @msg_xfrd: number of bytes transferred in tx_fifo 126 * @msg_xfrd_r: number of bytes transferred in rx_fifo 127 * @msg_err: error code for completed message 128 * @msg_complete: xfer completion object 129 * @dev: device reference 130 * @adapter: core i2c abstraction 131 * @i2c_clk: clock reference for i2c input clock 132 * @bus_clk_rate: current i2c bus clock rate 133 * @last: a flag indicating is this is last message in transfer 134 */ 135 struct axxia_i2c_dev { 136 void __iomem *base; 137 struct i2c_msg *msg; 138 struct i2c_msg *msg_r; 139 size_t msg_xfrd; 140 size_t msg_xfrd_r; 141 int msg_err; 142 struct completion msg_complete; 143 struct device *dev; 144 struct i2c_adapter adapter; 145 struct clk *i2c_clk; 146 u32 bus_clk_rate; 147 bool last; 148 struct i2c_client *slave; 149 int irq; 150 }; 151 152 static void i2c_int_disable(struct axxia_i2c_dev *idev, u32 mask) 153 { 154 u32 int_en; 155 156 int_en = readl(idev->base + MST_INT_ENABLE); 157 writel(int_en & ~mask, idev->base + MST_INT_ENABLE); 158 } 159 160 static void i2c_int_enable(struct axxia_i2c_dev *idev, u32 mask) 161 { 162 u32 int_en; 163 164 int_en = readl(idev->base + MST_INT_ENABLE); 165 writel(int_en | mask, idev->base + MST_INT_ENABLE); 166 } 167 168 /** 169 * ns_to_clk - Convert time (ns) to clock cycles for the given clock frequency. 170 */ 171 static u32 ns_to_clk(u64 ns, u32 clk_mhz) 172 { 173 return div_u64(ns * clk_mhz, 1000); 174 } 175 176 static int axxia_i2c_init(struct axxia_i2c_dev *idev) 177 { 178 u32 divisor = clk_get_rate(idev->i2c_clk) / idev->bus_clk_rate; 179 u32 clk_mhz = clk_get_rate(idev->i2c_clk) / 1000000; 180 u32 t_setup; 181 u32 t_high, t_low; 182 u32 tmo_clk; 183 u32 prescale; 184 unsigned long timeout; 185 186 dev_dbg(idev->dev, "rate=%uHz per_clk=%uMHz -> ratio=1:%u\n", 187 idev->bus_clk_rate, clk_mhz, divisor); 188 189 /* Reset controller */ 190 writel(0x01, idev->base + SOFT_RESET); 191 timeout = jiffies + msecs_to_jiffies(100); 192 while (readl(idev->base + SOFT_RESET) & 1) { 193 if (time_after(jiffies, timeout)) { 194 dev_warn(idev->dev, "Soft reset failed\n"); 195 break; 196 } 197 } 198 199 /* Enable Master Mode */ 200 writel(0x1, idev->base + GLOBAL_CONTROL); 201 202 if (idev->bus_clk_rate <= I2C_MAX_STANDARD_MODE_FREQ) { 203 /* Standard mode SCL 50/50, tSU:DAT = 250 ns */ 204 t_high = divisor * 1 / 2; 205 t_low = divisor * 1 / 2; 206 t_setup = ns_to_clk(250, clk_mhz); 207 } else { 208 /* Fast mode SCL 33/66, tSU:DAT = 100 ns */ 209 t_high = divisor * 1 / 3; 210 t_low = divisor * 2 / 3; 211 t_setup = ns_to_clk(100, clk_mhz); 212 } 213 214 /* SCL High Time */ 215 writel(t_high, idev->base + SCL_HIGH_PERIOD); 216 /* SCL Low Time */ 217 writel(t_low, idev->base + SCL_LOW_PERIOD); 218 /* SDA Setup Time */ 219 writel(t_setup, idev->base + SDA_SETUP_TIME); 220 /* SDA Hold Time, 300ns */ 221 writel(ns_to_clk(300, clk_mhz), idev->base + SDA_HOLD_TIME); 222 /* Filter <50ns spikes */ 223 writel(ns_to_clk(50, clk_mhz), idev->base + SPIKE_FLTR_LEN); 224 225 /* Configure Time-Out Registers */ 226 tmo_clk = ns_to_clk(SCL_WAIT_TIMEOUT_NS, clk_mhz); 227 228 /* Find prescaler value that makes tmo_clk fit in 15-bits counter. */ 229 for (prescale = 0; prescale < 15; ++prescale) { 230 if (tmo_clk <= 0x7fff) 231 break; 232 tmo_clk >>= 1; 233 } 234 if (tmo_clk > 0x7fff) 235 tmo_clk = 0x7fff; 236 237 /* Prescale divider (log2) */ 238 writel(prescale, idev->base + TIMER_CLOCK_DIV); 239 /* Timeout in divided clocks */ 240 writel(WT_EN | WT_VALUE(tmo_clk), idev->base + WAIT_TIMER_CONTROL); 241 242 /* Mask all master interrupt bits */ 243 i2c_int_disable(idev, ~0); 244 245 /* Interrupt enable */ 246 writel(0x01, idev->base + INTERRUPT_ENABLE); 247 248 return 0; 249 } 250 251 static int i2c_m_rd(const struct i2c_msg *msg) 252 { 253 return (msg->flags & I2C_M_RD) != 0; 254 } 255 256 static int i2c_m_ten(const struct i2c_msg *msg) 257 { 258 return (msg->flags & I2C_M_TEN) != 0; 259 } 260 261 static int i2c_m_recv_len(const struct i2c_msg *msg) 262 { 263 return (msg->flags & I2C_M_RECV_LEN) != 0; 264 } 265 266 /** 267 * axxia_i2c_empty_rx_fifo - Fetch data from RX FIFO and update SMBus block 268 * transfer length if this is the first byte of such a transfer. 269 */ 270 static int axxia_i2c_empty_rx_fifo(struct axxia_i2c_dev *idev) 271 { 272 struct i2c_msg *msg = idev->msg_r; 273 size_t rx_fifo_avail = readl(idev->base + MST_RX_FIFO); 274 int bytes_to_transfer = min(rx_fifo_avail, msg->len - idev->msg_xfrd_r); 275 276 while (bytes_to_transfer-- > 0) { 277 int c = readl(idev->base + MST_DATA); 278 279 if (idev->msg_xfrd_r == 0 && i2c_m_recv_len(msg)) { 280 /* 281 * Check length byte for SMBus block read 282 */ 283 if (c <= 0 || c > I2C_SMBUS_BLOCK_MAX) { 284 idev->msg_err = -EPROTO; 285 i2c_int_disable(idev, ~MST_STATUS_TSS); 286 complete(&idev->msg_complete); 287 break; 288 } 289 msg->len = 1 + c; 290 writel(msg->len, idev->base + MST_RX_XFER); 291 } 292 msg->buf[idev->msg_xfrd_r++] = c; 293 } 294 295 return 0; 296 } 297 298 /** 299 * axxia_i2c_fill_tx_fifo - Fill TX FIFO from current message buffer. 300 * @return: Number of bytes left to transfer. 301 */ 302 static int axxia_i2c_fill_tx_fifo(struct axxia_i2c_dev *idev) 303 { 304 struct i2c_msg *msg = idev->msg; 305 size_t tx_fifo_avail = FIFO_SIZE - readl(idev->base + MST_TX_FIFO); 306 int bytes_to_transfer = min(tx_fifo_avail, msg->len - idev->msg_xfrd); 307 int ret = msg->len - idev->msg_xfrd - bytes_to_transfer; 308 309 while (bytes_to_transfer-- > 0) 310 writel(msg->buf[idev->msg_xfrd++], idev->base + MST_DATA); 311 312 return ret; 313 } 314 315 static void axxia_i2c_slv_fifo_event(struct axxia_i2c_dev *idev) 316 { 317 u32 fifo_status = readl(idev->base + SLV_RX_FIFO); 318 u8 val; 319 320 dev_dbg(idev->dev, "slave irq fifo_status=0x%x\n", fifo_status); 321 322 if (fifo_status & SLV_FIFO_DV1) { 323 if (fifo_status & SLV_FIFO_STRC) 324 i2c_slave_event(idev->slave, 325 I2C_SLAVE_WRITE_REQUESTED, &val); 326 327 val = readl(idev->base + SLV_DATA); 328 i2c_slave_event(idev->slave, I2C_SLAVE_WRITE_RECEIVED, &val); 329 } 330 if (fifo_status & SLV_FIFO_STPC) { 331 readl(idev->base + SLV_DATA); /* dummy read */ 332 i2c_slave_event(idev->slave, I2C_SLAVE_STOP, &val); 333 } 334 if (fifo_status & SLV_FIFO_RSC) 335 readl(idev->base + SLV_DATA); /* dummy read */ 336 } 337 338 static irqreturn_t axxia_i2c_slv_isr(struct axxia_i2c_dev *idev) 339 { 340 u32 status = readl(idev->base + SLV_INT_STATUS); 341 u8 val; 342 343 dev_dbg(idev->dev, "slave irq status=0x%x\n", status); 344 345 if (status & SLV_STATUS_RFH) 346 axxia_i2c_slv_fifo_event(idev); 347 if (status & SLV_STATUS_SRS1) { 348 i2c_slave_event(idev->slave, I2C_SLAVE_READ_REQUESTED, &val); 349 writel(val, idev->base + SLV_DATA); 350 } 351 if (status & SLV_STATUS_SRND1) { 352 i2c_slave_event(idev->slave, I2C_SLAVE_READ_PROCESSED, &val); 353 writel(val, idev->base + SLV_DATA); 354 } 355 if (status & SLV_STATUS_SRC1) 356 i2c_slave_event(idev->slave, I2C_SLAVE_STOP, &val); 357 358 writel(INT_SLV, idev->base + INTERRUPT_STATUS); 359 return IRQ_HANDLED; 360 } 361 362 static irqreturn_t axxia_i2c_isr(int irq, void *_dev) 363 { 364 struct axxia_i2c_dev *idev = _dev; 365 irqreturn_t ret = IRQ_NONE; 366 u32 status; 367 368 status = readl(idev->base + INTERRUPT_STATUS); 369 370 if (status & INT_SLV) 371 ret = axxia_i2c_slv_isr(idev); 372 if (!(status & INT_MST)) 373 return ret; 374 375 /* Read interrupt status bits */ 376 status = readl(idev->base + MST_INT_STATUS); 377 378 if (!idev->msg) { 379 dev_warn(idev->dev, "unexpected interrupt\n"); 380 goto out; 381 } 382 383 /* RX FIFO needs service? */ 384 if (i2c_m_rd(idev->msg_r) && (status & MST_STATUS_RFL)) 385 axxia_i2c_empty_rx_fifo(idev); 386 387 /* TX FIFO needs service? */ 388 if (!i2c_m_rd(idev->msg) && (status & MST_STATUS_TFL)) { 389 if (axxia_i2c_fill_tx_fifo(idev) == 0) 390 i2c_int_disable(idev, MST_STATUS_TFL); 391 } 392 393 if (unlikely(status & MST_STATUS_ERR)) { 394 /* Transfer error */ 395 i2c_int_disable(idev, ~0); 396 if (status & MST_STATUS_AL) 397 idev->msg_err = -EAGAIN; 398 else if (status & MST_STATUS_NAK) 399 idev->msg_err = -ENXIO; 400 else 401 idev->msg_err = -EIO; 402 dev_dbg(idev->dev, "error %#x, addr=%#x rx=%u/%u tx=%u/%u\n", 403 status, 404 idev->msg->addr, 405 readl(idev->base + MST_RX_BYTES_XFRD), 406 readl(idev->base + MST_RX_XFER), 407 readl(idev->base + MST_TX_BYTES_XFRD), 408 readl(idev->base + MST_TX_XFER)); 409 complete(&idev->msg_complete); 410 } else if (status & MST_STATUS_SCC) { 411 /* Stop completed */ 412 i2c_int_disable(idev, ~MST_STATUS_TSS); 413 complete(&idev->msg_complete); 414 } else if (status & (MST_STATUS_SNS | MST_STATUS_SS)) { 415 /* Transfer done */ 416 int mask = idev->last ? ~0 : ~MST_STATUS_TSS; 417 418 i2c_int_disable(idev, mask); 419 if (i2c_m_rd(idev->msg_r) && idev->msg_xfrd_r < idev->msg_r->len) 420 axxia_i2c_empty_rx_fifo(idev); 421 complete(&idev->msg_complete); 422 } else if (status & MST_STATUS_TSS) { 423 /* Transfer timeout */ 424 idev->msg_err = -ETIMEDOUT; 425 i2c_int_disable(idev, ~MST_STATUS_TSS); 426 complete(&idev->msg_complete); 427 } 428 429 out: 430 /* Clear interrupt */ 431 writel(INT_MST, idev->base + INTERRUPT_STATUS); 432 433 return IRQ_HANDLED; 434 } 435 436 static void axxia_i2c_set_addr(struct axxia_i2c_dev *idev, struct i2c_msg *msg) 437 { 438 u32 addr_1, addr_2; 439 440 if (i2c_m_ten(msg)) { 441 /* 10-bit address 442 * addr_1: 5'b11110 | addr[9:8] | (R/nW) 443 * addr_2: addr[7:0] 444 */ 445 addr_1 = 0xF0 | ((msg->addr >> 7) & 0x06); 446 if (i2c_m_rd(msg)) 447 addr_1 |= 1; /* Set the R/nW bit of the address */ 448 addr_2 = msg->addr & 0xFF; 449 } else { 450 /* 7-bit address 451 * addr_1: addr[6:0] | (R/nW) 452 * addr_2: dont care 453 */ 454 addr_1 = i2c_8bit_addr_from_msg(msg); 455 addr_2 = 0; 456 } 457 458 writel(addr_1, idev->base + MST_ADDR_1); 459 writel(addr_2, idev->base + MST_ADDR_2); 460 } 461 462 /* The NAK interrupt will be sent _before_ issuing STOP command 463 * so the controller might still be busy processing it. No 464 * interrupt will be sent at the end so we have to poll for it 465 */ 466 static int axxia_i2c_handle_seq_nak(struct axxia_i2c_dev *idev) 467 { 468 unsigned long timeout = jiffies + I2C_XFER_TIMEOUT; 469 470 do { 471 if ((readl(idev->base + MST_COMMAND) & CMD_BUSY) == 0) 472 return 0; 473 usleep_range(1, 100); 474 } while (time_before(jiffies, timeout)); 475 476 return -ETIMEDOUT; 477 } 478 479 static int axxia_i2c_xfer_seq(struct axxia_i2c_dev *idev, struct i2c_msg msgs[]) 480 { 481 u32 int_mask = MST_STATUS_ERR | MST_STATUS_SS | MST_STATUS_RFL; 482 u32 rlen = i2c_m_recv_len(&msgs[1]) ? I2C_SMBUS_BLOCK_MAX : msgs[1].len; 483 unsigned long time_left; 484 485 axxia_i2c_set_addr(idev, &msgs[0]); 486 487 writel(msgs[0].len, idev->base + MST_TX_XFER); 488 writel(rlen, idev->base + MST_RX_XFER); 489 490 idev->msg = &msgs[0]; 491 idev->msg_r = &msgs[1]; 492 idev->msg_xfrd = 0; 493 idev->msg_xfrd_r = 0; 494 idev->last = true; 495 axxia_i2c_fill_tx_fifo(idev); 496 497 writel(CMD_SEQUENCE, idev->base + MST_COMMAND); 498 499 reinit_completion(&idev->msg_complete); 500 i2c_int_enable(idev, int_mask); 501 502 time_left = wait_for_completion_timeout(&idev->msg_complete, 503 I2C_XFER_TIMEOUT); 504 505 if (idev->msg_err == -ENXIO) { 506 if (axxia_i2c_handle_seq_nak(idev)) 507 axxia_i2c_init(idev); 508 } else if (readl(idev->base + MST_COMMAND) & CMD_BUSY) { 509 dev_warn(idev->dev, "busy after xfer\n"); 510 } 511 512 if (time_left == 0) { 513 idev->msg_err = -ETIMEDOUT; 514 i2c_recover_bus(&idev->adapter); 515 axxia_i2c_init(idev); 516 } 517 518 if (unlikely(idev->msg_err) && idev->msg_err != -ENXIO) 519 axxia_i2c_init(idev); 520 521 return idev->msg_err; 522 } 523 524 static int axxia_i2c_xfer_msg(struct axxia_i2c_dev *idev, struct i2c_msg *msg, 525 bool last) 526 { 527 u32 int_mask = MST_STATUS_ERR; 528 u32 rx_xfer, tx_xfer; 529 unsigned long time_left; 530 unsigned int wt_value; 531 532 idev->msg = msg; 533 idev->msg_r = msg; 534 idev->msg_xfrd = 0; 535 idev->msg_xfrd_r = 0; 536 idev->last = last; 537 reinit_completion(&idev->msg_complete); 538 539 axxia_i2c_set_addr(idev, msg); 540 541 if (i2c_m_rd(msg)) { 542 /* I2C read transfer */ 543 rx_xfer = i2c_m_recv_len(msg) ? I2C_SMBUS_BLOCK_MAX : msg->len; 544 tx_xfer = 0; 545 } else { 546 /* I2C write transfer */ 547 rx_xfer = 0; 548 tx_xfer = msg->len; 549 } 550 551 writel(rx_xfer, idev->base + MST_RX_XFER); 552 writel(tx_xfer, idev->base + MST_TX_XFER); 553 554 if (i2c_m_rd(msg)) 555 int_mask |= MST_STATUS_RFL; 556 else if (axxia_i2c_fill_tx_fifo(idev) != 0) 557 int_mask |= MST_STATUS_TFL; 558 559 wt_value = WT_VALUE(readl(idev->base + WAIT_TIMER_CONTROL)); 560 /* Disable wait timer temporarly */ 561 writel(wt_value, idev->base + WAIT_TIMER_CONTROL); 562 /* Check if timeout error happened */ 563 if (idev->msg_err) 564 goto out; 565 566 if (!last) { 567 writel(CMD_MANUAL, idev->base + MST_COMMAND); 568 int_mask |= MST_STATUS_SNS; 569 } else { 570 writel(CMD_AUTO, idev->base + MST_COMMAND); 571 int_mask |= MST_STATUS_SS; 572 } 573 574 writel(WT_EN | wt_value, idev->base + WAIT_TIMER_CONTROL); 575 576 i2c_int_enable(idev, int_mask); 577 578 time_left = wait_for_completion_timeout(&idev->msg_complete, 579 I2C_XFER_TIMEOUT); 580 581 i2c_int_disable(idev, int_mask); 582 583 if (readl(idev->base + MST_COMMAND) & CMD_BUSY) 584 dev_warn(idev->dev, "busy after xfer\n"); 585 586 if (time_left == 0) { 587 idev->msg_err = -ETIMEDOUT; 588 i2c_recover_bus(&idev->adapter); 589 axxia_i2c_init(idev); 590 } 591 592 out: 593 if (unlikely(idev->msg_err) && idev->msg_err != -ENXIO && 594 idev->msg_err != -ETIMEDOUT) 595 axxia_i2c_init(idev); 596 597 return idev->msg_err; 598 } 599 600 /* This function checks if the msgs[] array contains messages compatible with 601 * Sequence mode of operation. This mode assumes there will be exactly one 602 * write of non-zero length followed by exactly one read of non-zero length, 603 * both targeted at the same client device. 604 */ 605 static bool axxia_i2c_sequence_ok(struct i2c_msg msgs[], int num) 606 { 607 return num == SEQ_LEN && !i2c_m_rd(&msgs[0]) && i2c_m_rd(&msgs[1]) && 608 msgs[0].len > 0 && msgs[0].len <= FIFO_SIZE && 609 msgs[1].len > 0 && msgs[0].addr == msgs[1].addr; 610 } 611 612 static int 613 axxia_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num) 614 { 615 struct axxia_i2c_dev *idev = i2c_get_adapdata(adap); 616 int i; 617 int ret = 0; 618 619 idev->msg_err = 0; 620 621 if (axxia_i2c_sequence_ok(msgs, num)) { 622 ret = axxia_i2c_xfer_seq(idev, msgs); 623 return ret ? : SEQ_LEN; 624 } 625 626 i2c_int_enable(idev, MST_STATUS_TSS); 627 628 for (i = 0; ret == 0 && i < num; ++i) 629 ret = axxia_i2c_xfer_msg(idev, &msgs[i], i == (num - 1)); 630 631 return ret ? : i; 632 } 633 634 static int axxia_i2c_get_scl(struct i2c_adapter *adap) 635 { 636 struct axxia_i2c_dev *idev = i2c_get_adapdata(adap); 637 638 return !!(readl(idev->base + I2C_BUS_MONITOR) & BM_SCLS); 639 } 640 641 static void axxia_i2c_set_scl(struct i2c_adapter *adap, int val) 642 { 643 struct axxia_i2c_dev *idev = i2c_get_adapdata(adap); 644 u32 tmp; 645 646 /* Preserve SDA Control */ 647 tmp = readl(idev->base + I2C_BUS_MONITOR) & BM_SDAC; 648 if (!val) 649 tmp |= BM_SCLC; 650 writel(tmp, idev->base + I2C_BUS_MONITOR); 651 } 652 653 static int axxia_i2c_get_sda(struct i2c_adapter *adap) 654 { 655 struct axxia_i2c_dev *idev = i2c_get_adapdata(adap); 656 657 return !!(readl(idev->base + I2C_BUS_MONITOR) & BM_SDAS); 658 } 659 660 static struct i2c_bus_recovery_info axxia_i2c_recovery_info = { 661 .recover_bus = i2c_generic_scl_recovery, 662 .get_scl = axxia_i2c_get_scl, 663 .set_scl = axxia_i2c_set_scl, 664 .get_sda = axxia_i2c_get_sda, 665 }; 666 667 static u32 axxia_i2c_func(struct i2c_adapter *adap) 668 { 669 u32 caps = (I2C_FUNC_I2C | I2C_FUNC_10BIT_ADDR | 670 I2C_FUNC_SMBUS_EMUL | I2C_FUNC_SMBUS_BLOCK_DATA); 671 return caps; 672 } 673 674 static int axxia_i2c_reg_slave(struct i2c_client *slave) 675 { 676 struct axxia_i2c_dev *idev = i2c_get_adapdata(slave->adapter); 677 u32 slv_int_mask = SLV_STATUS_RFH; 678 u32 dec_ctl; 679 680 if (idev->slave) 681 return -EBUSY; 682 683 idev->slave = slave; 684 685 /* Enable slave mode as well */ 686 writel(GLOBAL_MST_EN | GLOBAL_SLV_EN, idev->base + GLOBAL_CONTROL); 687 writel(INT_MST | INT_SLV, idev->base + INTERRUPT_ENABLE); 688 689 /* Set slave address */ 690 dec_ctl = SLV_ADDR_DEC_SA1E; 691 if (slave->flags & I2C_CLIENT_TEN) 692 dec_ctl |= SLV_ADDR_DEC_SA1M; 693 694 writel(SLV_RX_ACSA1, idev->base + SLV_RX_CTL); 695 writel(dec_ctl, idev->base + SLV_ADDR_DEC_CTL); 696 writel(slave->addr, idev->base + SLV_ADDR_1); 697 698 /* Enable interrupts */ 699 slv_int_mask |= SLV_STATUS_SRS1 | SLV_STATUS_SRRS1 | SLV_STATUS_SRND1; 700 slv_int_mask |= SLV_STATUS_SRC1; 701 writel(slv_int_mask, idev->base + SLV_INT_ENABLE); 702 703 return 0; 704 } 705 706 static int axxia_i2c_unreg_slave(struct i2c_client *slave) 707 { 708 struct axxia_i2c_dev *idev = i2c_get_adapdata(slave->adapter); 709 710 /* Disable slave mode */ 711 writel(GLOBAL_MST_EN, idev->base + GLOBAL_CONTROL); 712 writel(INT_MST, idev->base + INTERRUPT_ENABLE); 713 714 synchronize_irq(idev->irq); 715 716 idev->slave = NULL; 717 718 return 0; 719 } 720 721 static const struct i2c_algorithm axxia_i2c_algo = { 722 .master_xfer = axxia_i2c_xfer, 723 .functionality = axxia_i2c_func, 724 .reg_slave = axxia_i2c_reg_slave, 725 .unreg_slave = axxia_i2c_unreg_slave, 726 }; 727 728 static const struct i2c_adapter_quirks axxia_i2c_quirks = { 729 .max_read_len = 255, 730 .max_write_len = 255, 731 }; 732 733 static int axxia_i2c_probe(struct platform_device *pdev) 734 { 735 struct device_node *np = pdev->dev.of_node; 736 struct axxia_i2c_dev *idev = NULL; 737 struct resource *res; 738 void __iomem *base; 739 int ret = 0; 740 741 idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL); 742 if (!idev) 743 return -ENOMEM; 744 745 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 746 base = devm_ioremap_resource(&pdev->dev, res); 747 if (IS_ERR(base)) 748 return PTR_ERR(base); 749 750 idev->irq = platform_get_irq(pdev, 0); 751 if (idev->irq < 0) { 752 dev_err(&pdev->dev, "missing interrupt resource\n"); 753 return idev->irq; 754 } 755 756 idev->i2c_clk = devm_clk_get(&pdev->dev, "i2c"); 757 if (IS_ERR(idev->i2c_clk)) { 758 dev_err(&pdev->dev, "missing clock\n"); 759 return PTR_ERR(idev->i2c_clk); 760 } 761 762 idev->base = base; 763 idev->dev = &pdev->dev; 764 init_completion(&idev->msg_complete); 765 766 of_property_read_u32(np, "clock-frequency", &idev->bus_clk_rate); 767 if (idev->bus_clk_rate == 0) 768 idev->bus_clk_rate = I2C_MAX_STANDARD_MODE_FREQ; /* default clock rate */ 769 770 ret = clk_prepare_enable(idev->i2c_clk); 771 if (ret) { 772 dev_err(&pdev->dev, "failed to enable clock\n"); 773 return ret; 774 } 775 776 ret = axxia_i2c_init(idev); 777 if (ret) { 778 dev_err(&pdev->dev, "failed to initialize\n"); 779 goto error_disable_clk; 780 } 781 782 ret = devm_request_irq(&pdev->dev, idev->irq, axxia_i2c_isr, 0, 783 pdev->name, idev); 784 if (ret) { 785 dev_err(&pdev->dev, "failed to claim IRQ%d\n", idev->irq); 786 goto error_disable_clk; 787 } 788 789 i2c_set_adapdata(&idev->adapter, idev); 790 strlcpy(idev->adapter.name, pdev->name, sizeof(idev->adapter.name)); 791 idev->adapter.owner = THIS_MODULE; 792 idev->adapter.algo = &axxia_i2c_algo; 793 idev->adapter.bus_recovery_info = &axxia_i2c_recovery_info; 794 idev->adapter.quirks = &axxia_i2c_quirks; 795 idev->adapter.dev.parent = &pdev->dev; 796 idev->adapter.dev.of_node = pdev->dev.of_node; 797 798 platform_set_drvdata(pdev, idev); 799 800 ret = i2c_add_adapter(&idev->adapter); 801 if (ret) 802 goto error_disable_clk; 803 804 return 0; 805 806 error_disable_clk: 807 clk_disable_unprepare(idev->i2c_clk); 808 return ret; 809 } 810 811 static int axxia_i2c_remove(struct platform_device *pdev) 812 { 813 struct axxia_i2c_dev *idev = platform_get_drvdata(pdev); 814 815 clk_disable_unprepare(idev->i2c_clk); 816 i2c_del_adapter(&idev->adapter); 817 818 return 0; 819 } 820 821 /* Match table for of_platform binding */ 822 static const struct of_device_id axxia_i2c_of_match[] = { 823 { .compatible = "lsi,api2c", }, 824 {}, 825 }; 826 827 MODULE_DEVICE_TABLE(of, axxia_i2c_of_match); 828 829 static struct platform_driver axxia_i2c_driver = { 830 .probe = axxia_i2c_probe, 831 .remove = axxia_i2c_remove, 832 .driver = { 833 .name = "axxia-i2c", 834 .of_match_table = axxia_i2c_of_match, 835 }, 836 }; 837 838 module_platform_driver(axxia_i2c_driver); 839 840 MODULE_DESCRIPTION("Axxia I2C Bus driver"); 841 MODULE_AUTHOR("Anders Berg <anders.berg@lsi.com>"); 842 MODULE_LICENSE("GPL v2"); 843