1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * This driver implements I2C master functionality using the LSI API2C 4 * controller. 5 * 6 * NOTE: The controller has a limitation in that it can only do transfers of 7 * maximum 255 bytes at a time. If a larger transfer is attempted, error code 8 * (-EINVAL) is returned. 9 */ 10 #include <linux/clk.h> 11 #include <linux/clkdev.h> 12 #include <linux/delay.h> 13 #include <linux/err.h> 14 #include <linux/i2c.h> 15 #include <linux/init.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/io.h> 19 #include <linux/kernel.h> 20 #include <linux/platform_device.h> 21 22 #define SCL_WAIT_TIMEOUT_NS 25000000 23 #define I2C_XFER_TIMEOUT (msecs_to_jiffies(250)) 24 #define I2C_STOP_TIMEOUT (msecs_to_jiffies(100)) 25 #define FIFO_SIZE 8 26 #define SEQ_LEN 2 27 28 #define GLOBAL_CONTROL 0x00 29 #define GLOBAL_MST_EN BIT(0) 30 #define GLOBAL_SLV_EN BIT(1) 31 #define GLOBAL_IBML_EN BIT(2) 32 #define INTERRUPT_STATUS 0x04 33 #define INTERRUPT_ENABLE 0x08 34 #define INT_SLV BIT(1) 35 #define INT_MST BIT(0) 36 #define WAIT_TIMER_CONTROL 0x0c 37 #define WT_EN BIT(15) 38 #define WT_VALUE(_x) ((_x) & 0x7fff) 39 #define IBML_TIMEOUT 0x10 40 #define IBML_LOW_MEXT 0x14 41 #define IBML_LOW_SEXT 0x18 42 #define TIMER_CLOCK_DIV 0x1c 43 #define I2C_BUS_MONITOR 0x20 44 #define BM_SDAC BIT(3) 45 #define BM_SCLC BIT(2) 46 #define BM_SDAS BIT(1) 47 #define BM_SCLS BIT(0) 48 #define SOFT_RESET 0x24 49 #define MST_COMMAND 0x28 50 #define CMD_BUSY (1<<3) 51 #define CMD_MANUAL (0x00 | CMD_BUSY) 52 #define CMD_AUTO (0x01 | CMD_BUSY) 53 #define CMD_SEQUENCE (0x02 | CMD_BUSY) 54 #define MST_RX_XFER 0x2c 55 #define MST_TX_XFER 0x30 56 #define MST_ADDR_1 0x34 57 #define MST_ADDR_2 0x38 58 #define MST_DATA 0x3c 59 #define MST_TX_FIFO 0x40 60 #define MST_RX_FIFO 0x44 61 #define MST_INT_ENABLE 0x48 62 #define MST_INT_STATUS 0x4c 63 #define MST_STATUS_RFL (1 << 13) /* RX FIFO serivce */ 64 #define MST_STATUS_TFL (1 << 12) /* TX FIFO service */ 65 #define MST_STATUS_SNS (1 << 11) /* Manual mode done */ 66 #define MST_STATUS_SS (1 << 10) /* Automatic mode done */ 67 #define MST_STATUS_SCC (1 << 9) /* Stop complete */ 68 #define MST_STATUS_IP (1 << 8) /* Invalid parameter */ 69 #define MST_STATUS_TSS (1 << 7) /* Timeout */ 70 #define MST_STATUS_AL (1 << 6) /* Arbitration lost */ 71 #define MST_STATUS_ND (1 << 5) /* NAK on data phase */ 72 #define MST_STATUS_NA (1 << 4) /* NAK on address phase */ 73 #define MST_STATUS_NAK (MST_STATUS_NA | \ 74 MST_STATUS_ND) 75 #define MST_STATUS_ERR (MST_STATUS_NAK | \ 76 MST_STATUS_AL | \ 77 MST_STATUS_IP) 78 #define MST_TX_BYTES_XFRD 0x50 79 #define MST_RX_BYTES_XFRD 0x54 80 #define SLV_ADDR_DEC_CTL 0x58 81 #define SLV_ADDR_DEC_GCE BIT(0) /* ACK to General Call Address from own master (loopback) */ 82 #define SLV_ADDR_DEC_OGCE BIT(1) /* ACK to General Call Address from external masters */ 83 #define SLV_ADDR_DEC_SA1E BIT(2) /* ACK to addr_1 enabled */ 84 #define SLV_ADDR_DEC_SA1M BIT(3) /* 10-bit addressing for addr_1 enabled */ 85 #define SLV_ADDR_DEC_SA2E BIT(4) /* ACK to addr_2 enabled */ 86 #define SLV_ADDR_DEC_SA2M BIT(5) /* 10-bit addressing for addr_2 enabled */ 87 #define SLV_ADDR_1 0x5c 88 #define SLV_ADDR_2 0x60 89 #define SLV_RX_CTL 0x64 90 #define SLV_RX_ACSA1 BIT(0) /* Generate ACK for writes to addr_1 */ 91 #define SLV_RX_ACSA2 BIT(1) /* Generate ACK for writes to addr_2 */ 92 #define SLV_RX_ACGCA BIT(2) /* ACK data phase transfers to General Call Address */ 93 #define SLV_DATA 0x68 94 #define SLV_RX_FIFO 0x6c 95 #define SLV_FIFO_DV1 BIT(0) /* Data Valid for addr_1 */ 96 #define SLV_FIFO_DV2 BIT(1) /* Data Valid for addr_2 */ 97 #define SLV_FIFO_AS BIT(2) /* (N)ACK Sent */ 98 #define SLV_FIFO_TNAK BIT(3) /* Timeout NACK */ 99 #define SLV_FIFO_STRC BIT(4) /* First byte after start condition received */ 100 #define SLV_FIFO_RSC BIT(5) /* Repeated Start Condition */ 101 #define SLV_FIFO_STPC BIT(6) /* Stop Condition */ 102 #define SLV_FIFO_DV (SLV_FIFO_DV1 | SLV_FIFO_DV2) 103 #define SLV_INT_ENABLE 0x70 104 #define SLV_INT_STATUS 0x74 105 #define SLV_STATUS_RFH BIT(0) /* FIFO service */ 106 #define SLV_STATUS_WTC BIT(1) /* Write transfer complete */ 107 #define SLV_STATUS_SRS1 BIT(2) /* Slave read from addr 1 */ 108 #define SLV_STATUS_SRRS1 BIT(3) /* Repeated start from addr 1 */ 109 #define SLV_STATUS_SRND1 BIT(4) /* Read request not following start condition */ 110 #define SLV_STATUS_SRC1 BIT(5) /* Read canceled */ 111 #define SLV_STATUS_SRAT1 BIT(6) /* Slave Read timed out */ 112 #define SLV_STATUS_SRDRE1 BIT(7) /* Data written after timed out */ 113 #define SLV_READ_DUMMY 0x78 114 #define SCL_HIGH_PERIOD 0x80 115 #define SCL_LOW_PERIOD 0x84 116 #define SPIKE_FLTR_LEN 0x88 117 #define SDA_SETUP_TIME 0x8c 118 #define SDA_HOLD_TIME 0x90 119 120 /** 121 * struct axxia_i2c_dev - I2C device context 122 * @base: pointer to register struct 123 * @msg: pointer to current message 124 * @msg_r: pointer to current read message (sequence transfer) 125 * @msg_xfrd: number of bytes transferred in tx_fifo 126 * @msg_xfrd_r: number of bytes transferred in rx_fifo 127 * @msg_err: error code for completed message 128 * @msg_complete: xfer completion object 129 * @dev: device reference 130 * @adapter: core i2c abstraction 131 * @i2c_clk: clock reference for i2c input clock 132 * @bus_clk_rate: current i2c bus clock rate 133 * @last: a flag indicating is this is last message in transfer 134 * @slave: associated &i2c_client 135 * @irq: platform device IRQ number 136 */ 137 struct axxia_i2c_dev { 138 void __iomem *base; 139 struct i2c_msg *msg; 140 struct i2c_msg *msg_r; 141 size_t msg_xfrd; 142 size_t msg_xfrd_r; 143 int msg_err; 144 struct completion msg_complete; 145 struct device *dev; 146 struct i2c_adapter adapter; 147 struct clk *i2c_clk; 148 u32 bus_clk_rate; 149 bool last; 150 struct i2c_client *slave; 151 int irq; 152 }; 153 154 static void i2c_int_disable(struct axxia_i2c_dev *idev, u32 mask) 155 { 156 u32 int_en; 157 158 int_en = readl(idev->base + MST_INT_ENABLE); 159 writel(int_en & ~mask, idev->base + MST_INT_ENABLE); 160 } 161 162 static void i2c_int_enable(struct axxia_i2c_dev *idev, u32 mask) 163 { 164 u32 int_en; 165 166 int_en = readl(idev->base + MST_INT_ENABLE); 167 writel(int_en | mask, idev->base + MST_INT_ENABLE); 168 } 169 170 /* 171 * ns_to_clk - Convert time (ns) to clock cycles for the given clock frequency. 172 */ 173 static u32 ns_to_clk(u64 ns, u32 clk_mhz) 174 { 175 return div_u64(ns * clk_mhz, 1000); 176 } 177 178 static int axxia_i2c_init(struct axxia_i2c_dev *idev) 179 { 180 u32 divisor = clk_get_rate(idev->i2c_clk) / idev->bus_clk_rate; 181 u32 clk_mhz = clk_get_rate(idev->i2c_clk) / 1000000; 182 u32 t_setup; 183 u32 t_high, t_low; 184 u32 tmo_clk; 185 u32 prescale; 186 unsigned long timeout; 187 188 dev_dbg(idev->dev, "rate=%uHz per_clk=%uMHz -> ratio=1:%u\n", 189 idev->bus_clk_rate, clk_mhz, divisor); 190 191 /* Reset controller */ 192 writel(0x01, idev->base + SOFT_RESET); 193 timeout = jiffies + msecs_to_jiffies(100); 194 while (readl(idev->base + SOFT_RESET) & 1) { 195 if (time_after(jiffies, timeout)) { 196 dev_warn(idev->dev, "Soft reset failed\n"); 197 break; 198 } 199 } 200 201 /* Enable Master Mode */ 202 writel(0x1, idev->base + GLOBAL_CONTROL); 203 204 if (idev->bus_clk_rate <= I2C_MAX_STANDARD_MODE_FREQ) { 205 /* Standard mode SCL 50/50, tSU:DAT = 250 ns */ 206 t_high = divisor * 1 / 2; 207 t_low = divisor * 1 / 2; 208 t_setup = ns_to_clk(250, clk_mhz); 209 } else { 210 /* Fast mode SCL 33/66, tSU:DAT = 100 ns */ 211 t_high = divisor * 1 / 3; 212 t_low = divisor * 2 / 3; 213 t_setup = ns_to_clk(100, clk_mhz); 214 } 215 216 /* SCL High Time */ 217 writel(t_high, idev->base + SCL_HIGH_PERIOD); 218 /* SCL Low Time */ 219 writel(t_low, idev->base + SCL_LOW_PERIOD); 220 /* SDA Setup Time */ 221 writel(t_setup, idev->base + SDA_SETUP_TIME); 222 /* SDA Hold Time, 300ns */ 223 writel(ns_to_clk(300, clk_mhz), idev->base + SDA_HOLD_TIME); 224 /* Filter <50ns spikes */ 225 writel(ns_to_clk(50, clk_mhz), idev->base + SPIKE_FLTR_LEN); 226 227 /* Configure Time-Out Registers */ 228 tmo_clk = ns_to_clk(SCL_WAIT_TIMEOUT_NS, clk_mhz); 229 230 /* Find prescaler value that makes tmo_clk fit in 15-bits counter. */ 231 for (prescale = 0; prescale < 15; ++prescale) { 232 if (tmo_clk <= 0x7fff) 233 break; 234 tmo_clk >>= 1; 235 } 236 if (tmo_clk > 0x7fff) 237 tmo_clk = 0x7fff; 238 239 /* Prescale divider (log2) */ 240 writel(prescale, idev->base + TIMER_CLOCK_DIV); 241 /* Timeout in divided clocks */ 242 writel(WT_EN | WT_VALUE(tmo_clk), idev->base + WAIT_TIMER_CONTROL); 243 244 /* Mask all master interrupt bits */ 245 i2c_int_disable(idev, ~0); 246 247 /* Interrupt enable */ 248 writel(0x01, idev->base + INTERRUPT_ENABLE); 249 250 return 0; 251 } 252 253 static int i2c_m_rd(const struct i2c_msg *msg) 254 { 255 return (msg->flags & I2C_M_RD) != 0; 256 } 257 258 static int i2c_m_ten(const struct i2c_msg *msg) 259 { 260 return (msg->flags & I2C_M_TEN) != 0; 261 } 262 263 static int i2c_m_recv_len(const struct i2c_msg *msg) 264 { 265 return (msg->flags & I2C_M_RECV_LEN) != 0; 266 } 267 268 /* 269 * axxia_i2c_empty_rx_fifo - Fetch data from RX FIFO and update SMBus block 270 * transfer length if this is the first byte of such a transfer. 271 */ 272 static int axxia_i2c_empty_rx_fifo(struct axxia_i2c_dev *idev) 273 { 274 struct i2c_msg *msg = idev->msg_r; 275 size_t rx_fifo_avail = readl(idev->base + MST_RX_FIFO); 276 int bytes_to_transfer = min(rx_fifo_avail, msg->len - idev->msg_xfrd_r); 277 278 while (bytes_to_transfer-- > 0) { 279 int c = readl(idev->base + MST_DATA); 280 281 if (idev->msg_xfrd_r == 0 && i2c_m_recv_len(msg)) { 282 /* 283 * Check length byte for SMBus block read 284 */ 285 if (c <= 0 || c > I2C_SMBUS_BLOCK_MAX) { 286 idev->msg_err = -EPROTO; 287 i2c_int_disable(idev, ~MST_STATUS_TSS); 288 complete(&idev->msg_complete); 289 break; 290 } 291 msg->len = 1 + c; 292 writel(msg->len, idev->base + MST_RX_XFER); 293 } 294 msg->buf[idev->msg_xfrd_r++] = c; 295 } 296 297 return 0; 298 } 299 300 /* 301 * axxia_i2c_fill_tx_fifo - Fill TX FIFO from current message buffer. 302 * @return: Number of bytes left to transfer. 303 */ 304 static int axxia_i2c_fill_tx_fifo(struct axxia_i2c_dev *idev) 305 { 306 struct i2c_msg *msg = idev->msg; 307 size_t tx_fifo_avail = FIFO_SIZE - readl(idev->base + MST_TX_FIFO); 308 int bytes_to_transfer = min(tx_fifo_avail, msg->len - idev->msg_xfrd); 309 int ret = msg->len - idev->msg_xfrd - bytes_to_transfer; 310 311 while (bytes_to_transfer-- > 0) 312 writel(msg->buf[idev->msg_xfrd++], idev->base + MST_DATA); 313 314 return ret; 315 } 316 317 static void axxia_i2c_slv_fifo_event(struct axxia_i2c_dev *idev) 318 { 319 u32 fifo_status = readl(idev->base + SLV_RX_FIFO); 320 u8 val; 321 322 dev_dbg(idev->dev, "slave irq fifo_status=0x%x\n", fifo_status); 323 324 if (fifo_status & SLV_FIFO_DV1) { 325 if (fifo_status & SLV_FIFO_STRC) 326 i2c_slave_event(idev->slave, 327 I2C_SLAVE_WRITE_REQUESTED, &val); 328 329 val = readl(idev->base + SLV_DATA); 330 i2c_slave_event(idev->slave, I2C_SLAVE_WRITE_RECEIVED, &val); 331 } 332 if (fifo_status & SLV_FIFO_STPC) { 333 readl(idev->base + SLV_DATA); /* dummy read */ 334 i2c_slave_event(idev->slave, I2C_SLAVE_STOP, &val); 335 } 336 if (fifo_status & SLV_FIFO_RSC) 337 readl(idev->base + SLV_DATA); /* dummy read */ 338 } 339 340 static irqreturn_t axxia_i2c_slv_isr(struct axxia_i2c_dev *idev) 341 { 342 u32 status = readl(idev->base + SLV_INT_STATUS); 343 u8 val; 344 345 dev_dbg(idev->dev, "slave irq status=0x%x\n", status); 346 347 if (status & SLV_STATUS_RFH) 348 axxia_i2c_slv_fifo_event(idev); 349 if (status & SLV_STATUS_SRS1) { 350 i2c_slave_event(idev->slave, I2C_SLAVE_READ_REQUESTED, &val); 351 writel(val, idev->base + SLV_DATA); 352 } 353 if (status & SLV_STATUS_SRND1) { 354 i2c_slave_event(idev->slave, I2C_SLAVE_READ_PROCESSED, &val); 355 writel(val, idev->base + SLV_DATA); 356 } 357 if (status & SLV_STATUS_SRC1) 358 i2c_slave_event(idev->slave, I2C_SLAVE_STOP, &val); 359 360 writel(INT_SLV, idev->base + INTERRUPT_STATUS); 361 return IRQ_HANDLED; 362 } 363 364 static irqreturn_t axxia_i2c_isr(int irq, void *_dev) 365 { 366 struct axxia_i2c_dev *idev = _dev; 367 irqreturn_t ret = IRQ_NONE; 368 u32 status; 369 370 status = readl(idev->base + INTERRUPT_STATUS); 371 372 if (status & INT_SLV) 373 ret = axxia_i2c_slv_isr(idev); 374 if (!(status & INT_MST)) 375 return ret; 376 377 /* Read interrupt status bits */ 378 status = readl(idev->base + MST_INT_STATUS); 379 380 if (!idev->msg) { 381 dev_warn(idev->dev, "unexpected interrupt\n"); 382 goto out; 383 } 384 385 /* RX FIFO needs service? */ 386 if (i2c_m_rd(idev->msg_r) && (status & MST_STATUS_RFL)) 387 axxia_i2c_empty_rx_fifo(idev); 388 389 /* TX FIFO needs service? */ 390 if (!i2c_m_rd(idev->msg) && (status & MST_STATUS_TFL)) { 391 if (axxia_i2c_fill_tx_fifo(idev) == 0) 392 i2c_int_disable(idev, MST_STATUS_TFL); 393 } 394 395 if (unlikely(status & MST_STATUS_ERR)) { 396 /* Transfer error */ 397 i2c_int_disable(idev, ~0); 398 if (status & MST_STATUS_AL) 399 idev->msg_err = -EAGAIN; 400 else if (status & MST_STATUS_NAK) 401 idev->msg_err = -ENXIO; 402 else 403 idev->msg_err = -EIO; 404 dev_dbg(idev->dev, "error %#x, addr=%#x rx=%u/%u tx=%u/%u\n", 405 status, 406 idev->msg->addr, 407 readl(idev->base + MST_RX_BYTES_XFRD), 408 readl(idev->base + MST_RX_XFER), 409 readl(idev->base + MST_TX_BYTES_XFRD), 410 readl(idev->base + MST_TX_XFER)); 411 complete(&idev->msg_complete); 412 } else if (status & MST_STATUS_SCC) { 413 /* Stop completed */ 414 i2c_int_disable(idev, ~MST_STATUS_TSS); 415 complete(&idev->msg_complete); 416 } else if (status & (MST_STATUS_SNS | MST_STATUS_SS)) { 417 /* Transfer done */ 418 int mask = idev->last ? ~0 : ~MST_STATUS_TSS; 419 420 i2c_int_disable(idev, mask); 421 if (i2c_m_rd(idev->msg_r) && idev->msg_xfrd_r < idev->msg_r->len) 422 axxia_i2c_empty_rx_fifo(idev); 423 complete(&idev->msg_complete); 424 } else if (status & MST_STATUS_TSS) { 425 /* Transfer timeout */ 426 idev->msg_err = -ETIMEDOUT; 427 i2c_int_disable(idev, ~MST_STATUS_TSS); 428 complete(&idev->msg_complete); 429 } 430 431 out: 432 /* Clear interrupt */ 433 writel(INT_MST, idev->base + INTERRUPT_STATUS); 434 435 return IRQ_HANDLED; 436 } 437 438 static void axxia_i2c_set_addr(struct axxia_i2c_dev *idev, struct i2c_msg *msg) 439 { 440 u32 addr_1, addr_2; 441 442 if (i2c_m_ten(msg)) { 443 /* 10-bit address 444 * addr_1: 5'b11110 | addr[9:8] | (R/nW) 445 * addr_2: addr[7:0] 446 */ 447 addr_1 = 0xF0 | ((msg->addr >> 7) & 0x06); 448 if (i2c_m_rd(msg)) 449 addr_1 |= 1; /* Set the R/nW bit of the address */ 450 addr_2 = msg->addr & 0xFF; 451 } else { 452 /* 7-bit address 453 * addr_1: addr[6:0] | (R/nW) 454 * addr_2: dont care 455 */ 456 addr_1 = i2c_8bit_addr_from_msg(msg); 457 addr_2 = 0; 458 } 459 460 writel(addr_1, idev->base + MST_ADDR_1); 461 writel(addr_2, idev->base + MST_ADDR_2); 462 } 463 464 /* The NAK interrupt will be sent _before_ issuing STOP command 465 * so the controller might still be busy processing it. No 466 * interrupt will be sent at the end so we have to poll for it 467 */ 468 static int axxia_i2c_handle_seq_nak(struct axxia_i2c_dev *idev) 469 { 470 unsigned long timeout = jiffies + I2C_XFER_TIMEOUT; 471 472 do { 473 if ((readl(idev->base + MST_COMMAND) & CMD_BUSY) == 0) 474 return 0; 475 usleep_range(1, 100); 476 } while (time_before(jiffies, timeout)); 477 478 return -ETIMEDOUT; 479 } 480 481 static int axxia_i2c_xfer_seq(struct axxia_i2c_dev *idev, struct i2c_msg msgs[]) 482 { 483 u32 int_mask = MST_STATUS_ERR | MST_STATUS_SS | MST_STATUS_RFL; 484 u32 rlen = i2c_m_recv_len(&msgs[1]) ? I2C_SMBUS_BLOCK_MAX : msgs[1].len; 485 unsigned long time_left; 486 487 axxia_i2c_set_addr(idev, &msgs[0]); 488 489 writel(msgs[0].len, idev->base + MST_TX_XFER); 490 writel(rlen, idev->base + MST_RX_XFER); 491 492 idev->msg = &msgs[0]; 493 idev->msg_r = &msgs[1]; 494 idev->msg_xfrd = 0; 495 idev->msg_xfrd_r = 0; 496 idev->last = true; 497 axxia_i2c_fill_tx_fifo(idev); 498 499 writel(CMD_SEQUENCE, idev->base + MST_COMMAND); 500 501 reinit_completion(&idev->msg_complete); 502 i2c_int_enable(idev, int_mask); 503 504 time_left = wait_for_completion_timeout(&idev->msg_complete, 505 I2C_XFER_TIMEOUT); 506 507 if (idev->msg_err == -ENXIO) { 508 if (axxia_i2c_handle_seq_nak(idev)) 509 axxia_i2c_init(idev); 510 } else if (readl(idev->base + MST_COMMAND) & CMD_BUSY) { 511 dev_warn(idev->dev, "busy after xfer\n"); 512 } 513 514 if (time_left == 0) { 515 idev->msg_err = -ETIMEDOUT; 516 i2c_recover_bus(&idev->adapter); 517 axxia_i2c_init(idev); 518 } 519 520 if (unlikely(idev->msg_err) && idev->msg_err != -ENXIO) 521 axxia_i2c_init(idev); 522 523 return idev->msg_err; 524 } 525 526 static int axxia_i2c_xfer_msg(struct axxia_i2c_dev *idev, struct i2c_msg *msg, 527 bool last) 528 { 529 u32 int_mask = MST_STATUS_ERR; 530 u32 rx_xfer, tx_xfer; 531 unsigned long time_left; 532 unsigned int wt_value; 533 534 idev->msg = msg; 535 idev->msg_r = msg; 536 idev->msg_xfrd = 0; 537 idev->msg_xfrd_r = 0; 538 idev->last = last; 539 reinit_completion(&idev->msg_complete); 540 541 axxia_i2c_set_addr(idev, msg); 542 543 if (i2c_m_rd(msg)) { 544 /* I2C read transfer */ 545 rx_xfer = i2c_m_recv_len(msg) ? I2C_SMBUS_BLOCK_MAX : msg->len; 546 tx_xfer = 0; 547 } else { 548 /* I2C write transfer */ 549 rx_xfer = 0; 550 tx_xfer = msg->len; 551 } 552 553 writel(rx_xfer, idev->base + MST_RX_XFER); 554 writel(tx_xfer, idev->base + MST_TX_XFER); 555 556 if (i2c_m_rd(msg)) 557 int_mask |= MST_STATUS_RFL; 558 else if (axxia_i2c_fill_tx_fifo(idev) != 0) 559 int_mask |= MST_STATUS_TFL; 560 561 wt_value = WT_VALUE(readl(idev->base + WAIT_TIMER_CONTROL)); 562 /* Disable wait timer temporarly */ 563 writel(wt_value, idev->base + WAIT_TIMER_CONTROL); 564 /* Check if timeout error happened */ 565 if (idev->msg_err) 566 goto out; 567 568 if (!last) { 569 writel(CMD_MANUAL, idev->base + MST_COMMAND); 570 int_mask |= MST_STATUS_SNS; 571 } else { 572 writel(CMD_AUTO, idev->base + MST_COMMAND); 573 int_mask |= MST_STATUS_SS; 574 } 575 576 writel(WT_EN | wt_value, idev->base + WAIT_TIMER_CONTROL); 577 578 i2c_int_enable(idev, int_mask); 579 580 time_left = wait_for_completion_timeout(&idev->msg_complete, 581 I2C_XFER_TIMEOUT); 582 583 i2c_int_disable(idev, int_mask); 584 585 if (readl(idev->base + MST_COMMAND) & CMD_BUSY) 586 dev_warn(idev->dev, "busy after xfer\n"); 587 588 if (time_left == 0) { 589 idev->msg_err = -ETIMEDOUT; 590 i2c_recover_bus(&idev->adapter); 591 axxia_i2c_init(idev); 592 } 593 594 out: 595 if (unlikely(idev->msg_err) && idev->msg_err != -ENXIO && 596 idev->msg_err != -ETIMEDOUT) 597 axxia_i2c_init(idev); 598 599 return idev->msg_err; 600 } 601 602 /* This function checks if the msgs[] array contains messages compatible with 603 * Sequence mode of operation. This mode assumes there will be exactly one 604 * write of non-zero length followed by exactly one read of non-zero length, 605 * both targeted at the same client device. 606 */ 607 static bool axxia_i2c_sequence_ok(struct i2c_msg msgs[], int num) 608 { 609 return num == SEQ_LEN && !i2c_m_rd(&msgs[0]) && i2c_m_rd(&msgs[1]) && 610 msgs[0].len > 0 && msgs[0].len <= FIFO_SIZE && 611 msgs[1].len > 0 && msgs[0].addr == msgs[1].addr; 612 } 613 614 static int 615 axxia_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num) 616 { 617 struct axxia_i2c_dev *idev = i2c_get_adapdata(adap); 618 int i; 619 int ret = 0; 620 621 idev->msg_err = 0; 622 623 if (axxia_i2c_sequence_ok(msgs, num)) { 624 ret = axxia_i2c_xfer_seq(idev, msgs); 625 return ret ? : SEQ_LEN; 626 } 627 628 i2c_int_enable(idev, MST_STATUS_TSS); 629 630 for (i = 0; ret == 0 && i < num; ++i) 631 ret = axxia_i2c_xfer_msg(idev, &msgs[i], i == (num - 1)); 632 633 return ret ? : i; 634 } 635 636 static int axxia_i2c_get_scl(struct i2c_adapter *adap) 637 { 638 struct axxia_i2c_dev *idev = i2c_get_adapdata(adap); 639 640 return !!(readl(idev->base + I2C_BUS_MONITOR) & BM_SCLS); 641 } 642 643 static void axxia_i2c_set_scl(struct i2c_adapter *adap, int val) 644 { 645 struct axxia_i2c_dev *idev = i2c_get_adapdata(adap); 646 u32 tmp; 647 648 /* Preserve SDA Control */ 649 tmp = readl(idev->base + I2C_BUS_MONITOR) & BM_SDAC; 650 if (!val) 651 tmp |= BM_SCLC; 652 writel(tmp, idev->base + I2C_BUS_MONITOR); 653 } 654 655 static int axxia_i2c_get_sda(struct i2c_adapter *adap) 656 { 657 struct axxia_i2c_dev *idev = i2c_get_adapdata(adap); 658 659 return !!(readl(idev->base + I2C_BUS_MONITOR) & BM_SDAS); 660 } 661 662 static struct i2c_bus_recovery_info axxia_i2c_recovery_info = { 663 .recover_bus = i2c_generic_scl_recovery, 664 .get_scl = axxia_i2c_get_scl, 665 .set_scl = axxia_i2c_set_scl, 666 .get_sda = axxia_i2c_get_sda, 667 }; 668 669 static u32 axxia_i2c_func(struct i2c_adapter *adap) 670 { 671 u32 caps = (I2C_FUNC_I2C | I2C_FUNC_10BIT_ADDR | 672 I2C_FUNC_SMBUS_EMUL | I2C_FUNC_SMBUS_BLOCK_DATA); 673 return caps; 674 } 675 676 static int axxia_i2c_reg_slave(struct i2c_client *slave) 677 { 678 struct axxia_i2c_dev *idev = i2c_get_adapdata(slave->adapter); 679 u32 slv_int_mask = SLV_STATUS_RFH; 680 u32 dec_ctl; 681 682 if (idev->slave) 683 return -EBUSY; 684 685 idev->slave = slave; 686 687 /* Enable slave mode as well */ 688 writel(GLOBAL_MST_EN | GLOBAL_SLV_EN, idev->base + GLOBAL_CONTROL); 689 writel(INT_MST | INT_SLV, idev->base + INTERRUPT_ENABLE); 690 691 /* Set slave address */ 692 dec_ctl = SLV_ADDR_DEC_SA1E; 693 if (slave->flags & I2C_CLIENT_TEN) 694 dec_ctl |= SLV_ADDR_DEC_SA1M; 695 696 writel(SLV_RX_ACSA1, idev->base + SLV_RX_CTL); 697 writel(dec_ctl, idev->base + SLV_ADDR_DEC_CTL); 698 writel(slave->addr, idev->base + SLV_ADDR_1); 699 700 /* Enable interrupts */ 701 slv_int_mask |= SLV_STATUS_SRS1 | SLV_STATUS_SRRS1 | SLV_STATUS_SRND1; 702 slv_int_mask |= SLV_STATUS_SRC1; 703 writel(slv_int_mask, idev->base + SLV_INT_ENABLE); 704 705 return 0; 706 } 707 708 static int axxia_i2c_unreg_slave(struct i2c_client *slave) 709 { 710 struct axxia_i2c_dev *idev = i2c_get_adapdata(slave->adapter); 711 712 /* Disable slave mode */ 713 writel(GLOBAL_MST_EN, idev->base + GLOBAL_CONTROL); 714 writel(INT_MST, idev->base + INTERRUPT_ENABLE); 715 716 synchronize_irq(idev->irq); 717 718 idev->slave = NULL; 719 720 return 0; 721 } 722 723 static const struct i2c_algorithm axxia_i2c_algo = { 724 .master_xfer = axxia_i2c_xfer, 725 .functionality = axxia_i2c_func, 726 .reg_slave = axxia_i2c_reg_slave, 727 .unreg_slave = axxia_i2c_unreg_slave, 728 }; 729 730 static const struct i2c_adapter_quirks axxia_i2c_quirks = { 731 .max_read_len = 255, 732 .max_write_len = 255, 733 }; 734 735 static int axxia_i2c_probe(struct platform_device *pdev) 736 { 737 struct device_node *np = pdev->dev.of_node; 738 struct axxia_i2c_dev *idev = NULL; 739 void __iomem *base; 740 int ret = 0; 741 742 idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL); 743 if (!idev) 744 return -ENOMEM; 745 746 base = devm_platform_ioremap_resource(pdev, 0); 747 if (IS_ERR(base)) 748 return PTR_ERR(base); 749 750 idev->irq = platform_get_irq(pdev, 0); 751 if (idev->irq < 0) 752 return idev->irq; 753 754 idev->i2c_clk = devm_clk_get(&pdev->dev, "i2c"); 755 if (IS_ERR(idev->i2c_clk)) { 756 dev_err(&pdev->dev, "missing clock\n"); 757 return PTR_ERR(idev->i2c_clk); 758 } 759 760 idev->base = base; 761 idev->dev = &pdev->dev; 762 init_completion(&idev->msg_complete); 763 764 of_property_read_u32(np, "clock-frequency", &idev->bus_clk_rate); 765 if (idev->bus_clk_rate == 0) 766 idev->bus_clk_rate = I2C_MAX_STANDARD_MODE_FREQ; /* default clock rate */ 767 768 ret = clk_prepare_enable(idev->i2c_clk); 769 if (ret) { 770 dev_err(&pdev->dev, "failed to enable clock\n"); 771 return ret; 772 } 773 774 ret = axxia_i2c_init(idev); 775 if (ret) { 776 dev_err(&pdev->dev, "failed to initialize\n"); 777 goto error_disable_clk; 778 } 779 780 ret = devm_request_irq(&pdev->dev, idev->irq, axxia_i2c_isr, 0, 781 pdev->name, idev); 782 if (ret) { 783 dev_err(&pdev->dev, "failed to claim IRQ%d\n", idev->irq); 784 goto error_disable_clk; 785 } 786 787 i2c_set_adapdata(&idev->adapter, idev); 788 strscpy(idev->adapter.name, pdev->name, sizeof(idev->adapter.name)); 789 idev->adapter.owner = THIS_MODULE; 790 idev->adapter.algo = &axxia_i2c_algo; 791 idev->adapter.bus_recovery_info = &axxia_i2c_recovery_info; 792 idev->adapter.quirks = &axxia_i2c_quirks; 793 idev->adapter.dev.parent = &pdev->dev; 794 idev->adapter.dev.of_node = pdev->dev.of_node; 795 796 platform_set_drvdata(pdev, idev); 797 798 ret = i2c_add_adapter(&idev->adapter); 799 if (ret) 800 goto error_disable_clk; 801 802 return 0; 803 804 error_disable_clk: 805 clk_disable_unprepare(idev->i2c_clk); 806 return ret; 807 } 808 809 static void axxia_i2c_remove(struct platform_device *pdev) 810 { 811 struct axxia_i2c_dev *idev = platform_get_drvdata(pdev); 812 813 clk_disable_unprepare(idev->i2c_clk); 814 i2c_del_adapter(&idev->adapter); 815 } 816 817 /* Match table for of_platform binding */ 818 static const struct of_device_id axxia_i2c_of_match[] = { 819 { .compatible = "lsi,api2c", }, 820 {}, 821 }; 822 823 MODULE_DEVICE_TABLE(of, axxia_i2c_of_match); 824 825 static struct platform_driver axxia_i2c_driver = { 826 .probe = axxia_i2c_probe, 827 .remove = axxia_i2c_remove, 828 .driver = { 829 .name = "axxia-i2c", 830 .of_match_table = axxia_i2c_of_match, 831 }, 832 }; 833 834 module_platform_driver(axxia_i2c_driver); 835 836 MODULE_DESCRIPTION("Axxia I2C Bus driver"); 837 MODULE_AUTHOR("Anders Berg <anders.berg@lsi.com>"); 838 MODULE_LICENSE("GPL v2"); 839