xref: /linux/drivers/i2c/busses/i2c-aspeed.c (revision 222408cde4d0ab17e54d4db26751c2b5cab9ac2b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Aspeed 24XX/25XX I2C Controller.
4  *
5  *  Copyright (C) 2012-2017 ASPEED Technology Inc.
6  *  Copyright 2017 IBM Corporation
7  *  Copyright 2017 Google, Inc.
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/completion.h>
12 #include <linux/err.h>
13 #include <linux/errno.h>
14 #include <linux/i2c.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/irq.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/of_address.h>
22 #include <linux/of_irq.h>
23 #include <linux/of_platform.h>
24 #include <linux/platform_device.h>
25 #include <linux/reset.h>
26 #include <linux/slab.h>
27 
28 /* I2C Register */
29 #define ASPEED_I2C_FUN_CTRL_REG				0x00
30 #define ASPEED_I2C_AC_TIMING_REG1			0x04
31 #define ASPEED_I2C_AC_TIMING_REG2			0x08
32 #define ASPEED_I2C_INTR_CTRL_REG			0x0c
33 #define ASPEED_I2C_INTR_STS_REG				0x10
34 #define ASPEED_I2C_CMD_REG				0x14
35 #define ASPEED_I2C_DEV_ADDR_REG				0x18
36 #define ASPEED_I2C_BYTE_BUF_REG				0x20
37 
38 /* Global Register Definition */
39 /* 0x00 : I2C Interrupt Status Register  */
40 /* 0x08 : I2C Interrupt Target Assignment  */
41 
42 /* Device Register Definition */
43 /* 0x00 : I2CD Function Control Register  */
44 #define ASPEED_I2CD_MULTI_MASTER_DIS			BIT(15)
45 #define ASPEED_I2CD_SDA_DRIVE_1T_EN			BIT(8)
46 #define ASPEED_I2CD_M_SDA_DRIVE_1T_EN			BIT(7)
47 #define ASPEED_I2CD_M_HIGH_SPEED_EN			BIT(6)
48 #define ASPEED_I2CD_SLAVE_EN				BIT(1)
49 #define ASPEED_I2CD_MASTER_EN				BIT(0)
50 
51 /* 0x04 : I2CD Clock and AC Timing Control Register #1 */
52 #define ASPEED_I2CD_TIME_TBUF_MASK			GENMASK(31, 28)
53 #define ASPEED_I2CD_TIME_THDSTA_MASK			GENMASK(27, 24)
54 #define ASPEED_I2CD_TIME_TACST_MASK			GENMASK(23, 20)
55 #define ASPEED_I2CD_TIME_SCL_HIGH_SHIFT			16
56 #define ASPEED_I2CD_TIME_SCL_HIGH_MASK			GENMASK(19, 16)
57 #define ASPEED_I2CD_TIME_SCL_LOW_SHIFT			12
58 #define ASPEED_I2CD_TIME_SCL_LOW_MASK			GENMASK(15, 12)
59 #define ASPEED_I2CD_TIME_BASE_DIVISOR_MASK		GENMASK(3, 0)
60 #define ASPEED_I2CD_TIME_SCL_REG_MAX			GENMASK(3, 0)
61 /* 0x08 : I2CD Clock and AC Timing Control Register #2 */
62 #define ASPEED_NO_TIMEOUT_CTRL				0
63 
64 /* 0x0c : I2CD Interrupt Control Register &
65  * 0x10 : I2CD Interrupt Status Register
66  *
67  * These share bit definitions, so use the same values for the enable &
68  * status bits.
69  */
70 #define ASPEED_I2CD_INTR_RECV_MASK			0xf000ffff
71 #define ASPEED_I2CD_INTR_SDA_DL_TIMEOUT			BIT(14)
72 #define ASPEED_I2CD_INTR_BUS_RECOVER_DONE		BIT(13)
73 #define ASPEED_I2CD_INTR_SLAVE_MATCH			BIT(7)
74 #define ASPEED_I2CD_INTR_SCL_TIMEOUT			BIT(6)
75 #define ASPEED_I2CD_INTR_ABNORMAL			BIT(5)
76 #define ASPEED_I2CD_INTR_NORMAL_STOP			BIT(4)
77 #define ASPEED_I2CD_INTR_ARBIT_LOSS			BIT(3)
78 #define ASPEED_I2CD_INTR_RX_DONE			BIT(2)
79 #define ASPEED_I2CD_INTR_TX_NAK				BIT(1)
80 #define ASPEED_I2CD_INTR_TX_ACK				BIT(0)
81 #define ASPEED_I2CD_INTR_MASTER_ERRORS					       \
82 		(ASPEED_I2CD_INTR_SDA_DL_TIMEOUT |			       \
83 		 ASPEED_I2CD_INTR_SCL_TIMEOUT |				       \
84 		 ASPEED_I2CD_INTR_ABNORMAL |				       \
85 		 ASPEED_I2CD_INTR_ARBIT_LOSS)
86 #define ASPEED_I2CD_INTR_ALL						       \
87 		(ASPEED_I2CD_INTR_SDA_DL_TIMEOUT |			       \
88 		 ASPEED_I2CD_INTR_BUS_RECOVER_DONE |			       \
89 		 ASPEED_I2CD_INTR_SCL_TIMEOUT |				       \
90 		 ASPEED_I2CD_INTR_ABNORMAL |				       \
91 		 ASPEED_I2CD_INTR_NORMAL_STOP |				       \
92 		 ASPEED_I2CD_INTR_ARBIT_LOSS |				       \
93 		 ASPEED_I2CD_INTR_RX_DONE |				       \
94 		 ASPEED_I2CD_INTR_TX_NAK |				       \
95 		 ASPEED_I2CD_INTR_TX_ACK)
96 
97 /* 0x14 : I2CD Command/Status Register   */
98 #define ASPEED_I2CD_SCL_LINE_STS			BIT(18)
99 #define ASPEED_I2CD_SDA_LINE_STS			BIT(17)
100 #define ASPEED_I2CD_BUS_BUSY_STS			BIT(16)
101 #define ASPEED_I2CD_BUS_RECOVER_CMD			BIT(11)
102 
103 /* Command Bit */
104 #define ASPEED_I2CD_M_STOP_CMD				BIT(5)
105 #define ASPEED_I2CD_M_S_RX_CMD_LAST			BIT(4)
106 #define ASPEED_I2CD_M_RX_CMD				BIT(3)
107 #define ASPEED_I2CD_S_TX_CMD				BIT(2)
108 #define ASPEED_I2CD_M_TX_CMD				BIT(1)
109 #define ASPEED_I2CD_M_START_CMD				BIT(0)
110 #define ASPEED_I2CD_MASTER_CMDS_MASK					       \
111 		(ASPEED_I2CD_M_STOP_CMD |				       \
112 		 ASPEED_I2CD_M_S_RX_CMD_LAST |				       \
113 		 ASPEED_I2CD_M_RX_CMD |					       \
114 		 ASPEED_I2CD_M_TX_CMD |					       \
115 		 ASPEED_I2CD_M_START_CMD)
116 
117 /* 0x18 : I2CD Slave Device Address Register   */
118 #define ASPEED_I2CD_DEV_ADDR_MASK			GENMASK(6, 0)
119 
120 enum aspeed_i2c_master_state {
121 	ASPEED_I2C_MASTER_INACTIVE,
122 	ASPEED_I2C_MASTER_PENDING,
123 	ASPEED_I2C_MASTER_START,
124 	ASPEED_I2C_MASTER_TX_FIRST,
125 	ASPEED_I2C_MASTER_TX,
126 	ASPEED_I2C_MASTER_RX_FIRST,
127 	ASPEED_I2C_MASTER_RX,
128 	ASPEED_I2C_MASTER_STOP,
129 };
130 
131 enum aspeed_i2c_slave_state {
132 	ASPEED_I2C_SLAVE_INACTIVE,
133 	ASPEED_I2C_SLAVE_START,
134 	ASPEED_I2C_SLAVE_READ_REQUESTED,
135 	ASPEED_I2C_SLAVE_READ_PROCESSED,
136 	ASPEED_I2C_SLAVE_WRITE_REQUESTED,
137 	ASPEED_I2C_SLAVE_WRITE_RECEIVED,
138 	ASPEED_I2C_SLAVE_STOP,
139 };
140 
141 struct aspeed_i2c_bus {
142 	struct i2c_adapter		adap;
143 	struct device			*dev;
144 	void __iomem			*base;
145 	struct reset_control		*rst;
146 	/* Synchronizes I/O mem access to base. */
147 	spinlock_t			lock;
148 	struct completion		cmd_complete;
149 	u32				(*get_clk_reg_val)(struct device *dev,
150 							   u32 divisor);
151 	unsigned long			parent_clk_frequency;
152 	u32				bus_frequency;
153 	/* Transaction state. */
154 	enum aspeed_i2c_master_state	master_state;
155 	struct i2c_msg			*msgs;
156 	size_t				buf_index;
157 	size_t				msgs_index;
158 	size_t				msgs_count;
159 	bool				send_stop;
160 	int				cmd_err;
161 	/* Protected only by i2c_lock_bus */
162 	int				master_xfer_result;
163 	/* Multi-master */
164 	bool				multi_master;
165 #if IS_ENABLED(CONFIG_I2C_SLAVE)
166 	struct i2c_client		*slave;
167 	enum aspeed_i2c_slave_state	slave_state;
168 #endif /* CONFIG_I2C_SLAVE */
169 };
170 
171 static int aspeed_i2c_reset(struct aspeed_i2c_bus *bus);
172 
173 static int aspeed_i2c_recover_bus(struct aspeed_i2c_bus *bus)
174 {
175 	unsigned long time_left, flags;
176 	int ret = 0;
177 	u32 command;
178 
179 	spin_lock_irqsave(&bus->lock, flags);
180 	command = readl(bus->base + ASPEED_I2C_CMD_REG);
181 
182 	if (command & ASPEED_I2CD_SDA_LINE_STS) {
183 		/* Bus is idle: no recovery needed. */
184 		if (command & ASPEED_I2CD_SCL_LINE_STS)
185 			goto out;
186 		dev_dbg(bus->dev, "SCL hung (state %x), attempting recovery\n",
187 			command);
188 
189 		reinit_completion(&bus->cmd_complete);
190 		writel(ASPEED_I2CD_M_STOP_CMD, bus->base + ASPEED_I2C_CMD_REG);
191 		spin_unlock_irqrestore(&bus->lock, flags);
192 
193 		time_left = wait_for_completion_timeout(
194 				&bus->cmd_complete, bus->adap.timeout);
195 
196 		spin_lock_irqsave(&bus->lock, flags);
197 		if (time_left == 0)
198 			goto reset_out;
199 		else if (bus->cmd_err)
200 			goto reset_out;
201 		/* Recovery failed. */
202 		else if (!(readl(bus->base + ASPEED_I2C_CMD_REG) &
203 			   ASPEED_I2CD_SCL_LINE_STS))
204 			goto reset_out;
205 	/* Bus error. */
206 	} else {
207 		dev_dbg(bus->dev, "SDA hung (state %x), attempting recovery\n",
208 			command);
209 
210 		reinit_completion(&bus->cmd_complete);
211 		/* Writes 1 to 8 SCL clock cycles until SDA is released. */
212 		writel(ASPEED_I2CD_BUS_RECOVER_CMD,
213 		       bus->base + ASPEED_I2C_CMD_REG);
214 		spin_unlock_irqrestore(&bus->lock, flags);
215 
216 		time_left = wait_for_completion_timeout(
217 				&bus->cmd_complete, bus->adap.timeout);
218 
219 		spin_lock_irqsave(&bus->lock, flags);
220 		if (time_left == 0)
221 			goto reset_out;
222 		else if (bus->cmd_err)
223 			goto reset_out;
224 		/* Recovery failed. */
225 		else if (!(readl(bus->base + ASPEED_I2C_CMD_REG) &
226 			   ASPEED_I2CD_SDA_LINE_STS))
227 			goto reset_out;
228 	}
229 
230 out:
231 	spin_unlock_irqrestore(&bus->lock, flags);
232 
233 	return ret;
234 
235 reset_out:
236 	spin_unlock_irqrestore(&bus->lock, flags);
237 
238 	return aspeed_i2c_reset(bus);
239 }
240 
241 #if IS_ENABLED(CONFIG_I2C_SLAVE)
242 static u32 aspeed_i2c_slave_irq(struct aspeed_i2c_bus *bus, u32 irq_status)
243 {
244 	u32 command, irq_handled = 0;
245 	struct i2c_client *slave = bus->slave;
246 	u8 value;
247 	int ret;
248 
249 	if (!slave)
250 		return 0;
251 
252 	/*
253 	 * Handle stop conditions early, prior to SLAVE_MATCH. Some masters may drive
254 	 * transfers with low enough latency between the nak/stop phase of the current
255 	 * command and the start/address phase of the following command that the
256 	 * interrupts are coalesced by the time we process them.
257 	 */
258 	if (irq_status & ASPEED_I2CD_INTR_NORMAL_STOP) {
259 		irq_handled |= ASPEED_I2CD_INTR_NORMAL_STOP;
260 		bus->slave_state = ASPEED_I2C_SLAVE_STOP;
261 	}
262 
263 	if (irq_status & ASPEED_I2CD_INTR_TX_NAK &&
264 	    bus->slave_state == ASPEED_I2C_SLAVE_READ_PROCESSED) {
265 		irq_handled |= ASPEED_I2CD_INTR_TX_NAK;
266 		bus->slave_state = ASPEED_I2C_SLAVE_STOP;
267 	}
268 
269 	/* Propagate any stop conditions to the slave implementation. */
270 	if (bus->slave_state == ASPEED_I2C_SLAVE_STOP) {
271 		i2c_slave_event(slave, I2C_SLAVE_STOP, &value);
272 		bus->slave_state = ASPEED_I2C_SLAVE_INACTIVE;
273 	}
274 
275 	/*
276 	 * Now that we've dealt with any potentially coalesced stop conditions,
277 	 * address any start conditions.
278 	 */
279 	if (irq_status & ASPEED_I2CD_INTR_SLAVE_MATCH) {
280 		irq_handled |= ASPEED_I2CD_INTR_SLAVE_MATCH;
281 		bus->slave_state = ASPEED_I2C_SLAVE_START;
282 	}
283 
284 	/*
285 	 * If the slave has been stopped and not started then slave interrupt
286 	 * handling is complete.
287 	 */
288 	if (bus->slave_state == ASPEED_I2C_SLAVE_INACTIVE)
289 		return irq_handled;
290 
291 	command = readl(bus->base + ASPEED_I2C_CMD_REG);
292 	dev_dbg(bus->dev, "slave irq status 0x%08x, cmd 0x%08x\n",
293 		irq_status, command);
294 
295 	/* Slave was sent something. */
296 	if (irq_status & ASPEED_I2CD_INTR_RX_DONE) {
297 		value = readl(bus->base + ASPEED_I2C_BYTE_BUF_REG) >> 8;
298 		/* Handle address frame. */
299 		if (bus->slave_state == ASPEED_I2C_SLAVE_START) {
300 			if (value & 0x1)
301 				bus->slave_state =
302 						ASPEED_I2C_SLAVE_READ_REQUESTED;
303 			else
304 				bus->slave_state =
305 						ASPEED_I2C_SLAVE_WRITE_REQUESTED;
306 		}
307 		irq_handled |= ASPEED_I2CD_INTR_RX_DONE;
308 	}
309 
310 	switch (bus->slave_state) {
311 	case ASPEED_I2C_SLAVE_READ_REQUESTED:
312 		if (unlikely(irq_status & ASPEED_I2CD_INTR_TX_ACK))
313 			dev_err(bus->dev, "Unexpected ACK on read request.\n");
314 		bus->slave_state = ASPEED_I2C_SLAVE_READ_PROCESSED;
315 		i2c_slave_event(slave, I2C_SLAVE_READ_REQUESTED, &value);
316 		writel(value, bus->base + ASPEED_I2C_BYTE_BUF_REG);
317 		writel(ASPEED_I2CD_S_TX_CMD, bus->base + ASPEED_I2C_CMD_REG);
318 		break;
319 	case ASPEED_I2C_SLAVE_READ_PROCESSED:
320 		if (unlikely(!(irq_status & ASPEED_I2CD_INTR_TX_ACK))) {
321 			dev_err(bus->dev,
322 				"Expected ACK after processed read.\n");
323 			break;
324 		}
325 		irq_handled |= ASPEED_I2CD_INTR_TX_ACK;
326 		i2c_slave_event(slave, I2C_SLAVE_READ_PROCESSED, &value);
327 		writel(value, bus->base + ASPEED_I2C_BYTE_BUF_REG);
328 		writel(ASPEED_I2CD_S_TX_CMD, bus->base + ASPEED_I2C_CMD_REG);
329 		break;
330 	case ASPEED_I2C_SLAVE_WRITE_REQUESTED:
331 		bus->slave_state = ASPEED_I2C_SLAVE_WRITE_RECEIVED;
332 		ret = i2c_slave_event(slave, I2C_SLAVE_WRITE_REQUESTED, &value);
333 		/*
334 		 * Slave ACK's on this address phase already but as the backend driver
335 		 * returns an errno, the bus driver should nack the next incoming byte.
336 		 */
337 		if (ret < 0)
338 			writel(ASPEED_I2CD_M_S_RX_CMD_LAST, bus->base + ASPEED_I2C_CMD_REG);
339 		break;
340 	case ASPEED_I2C_SLAVE_WRITE_RECEIVED:
341 		i2c_slave_event(slave, I2C_SLAVE_WRITE_RECEIVED, &value);
342 		break;
343 	case ASPEED_I2C_SLAVE_STOP:
344 		/* Stop event handling is done early. Unreachable. */
345 		break;
346 	case ASPEED_I2C_SLAVE_START:
347 		/* Slave was just started. Waiting for the next event. */;
348 		break;
349 	default:
350 		dev_err(bus->dev, "unknown slave_state: %d\n",
351 			bus->slave_state);
352 		bus->slave_state = ASPEED_I2C_SLAVE_INACTIVE;
353 		break;
354 	}
355 
356 	return irq_handled;
357 }
358 #endif /* CONFIG_I2C_SLAVE */
359 
360 /* precondition: bus.lock has been acquired. */
361 static void aspeed_i2c_do_start(struct aspeed_i2c_bus *bus)
362 {
363 	u32 command = ASPEED_I2CD_M_START_CMD | ASPEED_I2CD_M_TX_CMD;
364 	struct i2c_msg *msg = &bus->msgs[bus->msgs_index];
365 	u8 slave_addr = i2c_8bit_addr_from_msg(msg);
366 
367 #if IS_ENABLED(CONFIG_I2C_SLAVE)
368 	/*
369 	 * If it's requested in the middle of a slave session, set the master
370 	 * state to 'pending' then H/W will continue handling this master
371 	 * command when the bus comes back to the idle state.
372 	 */
373 	if (bus->slave_state != ASPEED_I2C_SLAVE_INACTIVE) {
374 		bus->master_state = ASPEED_I2C_MASTER_PENDING;
375 		return;
376 	}
377 #endif /* CONFIG_I2C_SLAVE */
378 
379 	bus->master_state = ASPEED_I2C_MASTER_START;
380 	bus->buf_index = 0;
381 
382 	if (msg->flags & I2C_M_RD) {
383 		command |= ASPEED_I2CD_M_RX_CMD;
384 		/* Need to let the hardware know to NACK after RX. */
385 		if (msg->len == 1 && !(msg->flags & I2C_M_RECV_LEN))
386 			command |= ASPEED_I2CD_M_S_RX_CMD_LAST;
387 	}
388 
389 	writel(slave_addr, bus->base + ASPEED_I2C_BYTE_BUF_REG);
390 	writel(command, bus->base + ASPEED_I2C_CMD_REG);
391 }
392 
393 /* precondition: bus.lock has been acquired. */
394 static void aspeed_i2c_do_stop(struct aspeed_i2c_bus *bus)
395 {
396 	bus->master_state = ASPEED_I2C_MASTER_STOP;
397 	writel(ASPEED_I2CD_M_STOP_CMD, bus->base + ASPEED_I2C_CMD_REG);
398 }
399 
400 /* precondition: bus.lock has been acquired. */
401 static void aspeed_i2c_next_msg_or_stop(struct aspeed_i2c_bus *bus)
402 {
403 	if (bus->msgs_index + 1 < bus->msgs_count) {
404 		bus->msgs_index++;
405 		aspeed_i2c_do_start(bus);
406 	} else {
407 		aspeed_i2c_do_stop(bus);
408 	}
409 }
410 
411 static int aspeed_i2c_is_irq_error(u32 irq_status)
412 {
413 	if (irq_status & ASPEED_I2CD_INTR_ARBIT_LOSS)
414 		return -EAGAIN;
415 	if (irq_status & (ASPEED_I2CD_INTR_SDA_DL_TIMEOUT |
416 			  ASPEED_I2CD_INTR_SCL_TIMEOUT))
417 		return -EBUSY;
418 	if (irq_status & (ASPEED_I2CD_INTR_ABNORMAL))
419 		return -EPROTO;
420 
421 	return 0;
422 }
423 
424 static u32 aspeed_i2c_master_irq(struct aspeed_i2c_bus *bus, u32 irq_status)
425 {
426 	u32 irq_handled = 0, command = 0;
427 	struct i2c_msg *msg;
428 	u8 recv_byte;
429 	int ret;
430 
431 	if (irq_status & ASPEED_I2CD_INTR_BUS_RECOVER_DONE) {
432 		bus->master_state = ASPEED_I2C_MASTER_INACTIVE;
433 		irq_handled |= ASPEED_I2CD_INTR_BUS_RECOVER_DONE;
434 		goto out_complete;
435 	}
436 
437 	/*
438 	 * We encountered an interrupt that reports an error: the hardware
439 	 * should clear the command queue effectively taking us back to the
440 	 * INACTIVE state.
441 	 */
442 	ret = aspeed_i2c_is_irq_error(irq_status);
443 	if (ret) {
444 		dev_dbg(bus->dev, "received error interrupt: 0x%08x\n",
445 			irq_status);
446 		irq_handled |= (irq_status & ASPEED_I2CD_INTR_MASTER_ERRORS);
447 		if (bus->master_state != ASPEED_I2C_MASTER_INACTIVE) {
448 			irq_handled = irq_status;
449 			bus->cmd_err = ret;
450 			bus->master_state = ASPEED_I2C_MASTER_INACTIVE;
451 			goto out_complete;
452 		}
453 	}
454 
455 	/* Master is not currently active, irq was for someone else. */
456 	if (bus->master_state == ASPEED_I2C_MASTER_INACTIVE ||
457 	    bus->master_state == ASPEED_I2C_MASTER_PENDING)
458 		goto out_no_complete;
459 
460 	/* We are in an invalid state; reset bus to a known state. */
461 	if (!bus->msgs) {
462 		dev_err(bus->dev, "bus in unknown state. irq_status: 0x%x\n",
463 			irq_status);
464 		bus->cmd_err = -EIO;
465 		if (bus->master_state != ASPEED_I2C_MASTER_STOP &&
466 		    bus->master_state != ASPEED_I2C_MASTER_INACTIVE)
467 			aspeed_i2c_do_stop(bus);
468 		goto out_no_complete;
469 	}
470 	msg = &bus->msgs[bus->msgs_index];
471 
472 	/*
473 	 * START is a special case because we still have to handle a subsequent
474 	 * TX or RX immediately after we handle it, so we handle it here and
475 	 * then update the state and handle the new state below.
476 	 */
477 	if (bus->master_state == ASPEED_I2C_MASTER_START) {
478 #if IS_ENABLED(CONFIG_I2C_SLAVE)
479 		/*
480 		 * If a peer master starts a xfer immediately after it queues a
481 		 * master command, clear the queued master command and change
482 		 * its state to 'pending'. To simplify handling of pending
483 		 * cases, it uses S/W solution instead of H/W command queue
484 		 * handling.
485 		 */
486 		if (unlikely(irq_status & ASPEED_I2CD_INTR_SLAVE_MATCH)) {
487 			writel(readl(bus->base + ASPEED_I2C_CMD_REG) &
488 				~ASPEED_I2CD_MASTER_CMDS_MASK,
489 			       bus->base + ASPEED_I2C_CMD_REG);
490 			bus->master_state = ASPEED_I2C_MASTER_PENDING;
491 			dev_dbg(bus->dev,
492 				"master goes pending due to a slave start\n");
493 			goto out_no_complete;
494 		}
495 #endif /* CONFIG_I2C_SLAVE */
496 		if (unlikely(!(irq_status & ASPEED_I2CD_INTR_TX_ACK))) {
497 			if (unlikely(!(irq_status & ASPEED_I2CD_INTR_TX_NAK))) {
498 				bus->cmd_err = -ENXIO;
499 				bus->master_state = ASPEED_I2C_MASTER_INACTIVE;
500 				goto out_complete;
501 			}
502 			pr_devel("no slave present at %02x\n", msg->addr);
503 			irq_handled |= ASPEED_I2CD_INTR_TX_NAK;
504 			bus->cmd_err = -ENXIO;
505 			aspeed_i2c_do_stop(bus);
506 			goto out_no_complete;
507 		}
508 		irq_handled |= ASPEED_I2CD_INTR_TX_ACK;
509 		if (msg->len == 0) { /* SMBUS_QUICK */
510 			aspeed_i2c_do_stop(bus);
511 			goto out_no_complete;
512 		}
513 		if (msg->flags & I2C_M_RD)
514 			bus->master_state = ASPEED_I2C_MASTER_RX_FIRST;
515 		else
516 			bus->master_state = ASPEED_I2C_MASTER_TX_FIRST;
517 	}
518 
519 	switch (bus->master_state) {
520 	case ASPEED_I2C_MASTER_TX:
521 		if (unlikely(irq_status & ASPEED_I2CD_INTR_TX_NAK)) {
522 			dev_dbg(bus->dev, "slave NACKed TX\n");
523 			irq_handled |= ASPEED_I2CD_INTR_TX_NAK;
524 			goto error_and_stop;
525 		} else if (unlikely(!(irq_status & ASPEED_I2CD_INTR_TX_ACK))) {
526 			dev_err(bus->dev, "slave failed to ACK TX\n");
527 			goto error_and_stop;
528 		}
529 		irq_handled |= ASPEED_I2CD_INTR_TX_ACK;
530 		fallthrough;
531 	case ASPEED_I2C_MASTER_TX_FIRST:
532 		if (bus->buf_index < msg->len) {
533 			bus->master_state = ASPEED_I2C_MASTER_TX;
534 			writel(msg->buf[bus->buf_index++],
535 			       bus->base + ASPEED_I2C_BYTE_BUF_REG);
536 			writel(ASPEED_I2CD_M_TX_CMD,
537 			       bus->base + ASPEED_I2C_CMD_REG);
538 		} else {
539 			aspeed_i2c_next_msg_or_stop(bus);
540 		}
541 		goto out_no_complete;
542 	case ASPEED_I2C_MASTER_RX_FIRST:
543 		/* RX may not have completed yet (only address cycle) */
544 		if (!(irq_status & ASPEED_I2CD_INTR_RX_DONE))
545 			goto out_no_complete;
546 		fallthrough;
547 	case ASPEED_I2C_MASTER_RX:
548 		if (unlikely(!(irq_status & ASPEED_I2CD_INTR_RX_DONE))) {
549 			dev_err(bus->dev, "master failed to RX\n");
550 			goto error_and_stop;
551 		}
552 		irq_handled |= ASPEED_I2CD_INTR_RX_DONE;
553 
554 		recv_byte = readl(bus->base + ASPEED_I2C_BYTE_BUF_REG) >> 8;
555 		msg->buf[bus->buf_index++] = recv_byte;
556 
557 		if (msg->flags & I2C_M_RECV_LEN) {
558 			if (unlikely(recv_byte > I2C_SMBUS_BLOCK_MAX)) {
559 				bus->cmd_err = -EPROTO;
560 				aspeed_i2c_do_stop(bus);
561 				goto out_no_complete;
562 			}
563 			msg->len = recv_byte +
564 					((msg->flags & I2C_CLIENT_PEC) ? 2 : 1);
565 			msg->flags &= ~I2C_M_RECV_LEN;
566 		}
567 
568 		if (bus->buf_index < msg->len) {
569 			bus->master_state = ASPEED_I2C_MASTER_RX;
570 			command = ASPEED_I2CD_M_RX_CMD;
571 			if (bus->buf_index + 1 == msg->len)
572 				command |= ASPEED_I2CD_M_S_RX_CMD_LAST;
573 			writel(command, bus->base + ASPEED_I2C_CMD_REG);
574 		} else {
575 			aspeed_i2c_next_msg_or_stop(bus);
576 		}
577 		goto out_no_complete;
578 	case ASPEED_I2C_MASTER_STOP:
579 		if (unlikely(!(irq_status & ASPEED_I2CD_INTR_NORMAL_STOP))) {
580 			dev_err(bus->dev,
581 				"master failed to STOP. irq_status:0x%x\n",
582 				irq_status);
583 			bus->cmd_err = -EIO;
584 			/* Do not STOP as we have already tried. */
585 		} else {
586 			irq_handled |= ASPEED_I2CD_INTR_NORMAL_STOP;
587 		}
588 
589 		bus->master_state = ASPEED_I2C_MASTER_INACTIVE;
590 		goto out_complete;
591 	case ASPEED_I2C_MASTER_INACTIVE:
592 		dev_err(bus->dev,
593 			"master received interrupt 0x%08x, but is inactive\n",
594 			irq_status);
595 		bus->cmd_err = -EIO;
596 		/* Do not STOP as we should be inactive. */
597 		goto out_complete;
598 	default:
599 		WARN(1, "unknown master state\n");
600 		bus->master_state = ASPEED_I2C_MASTER_INACTIVE;
601 		bus->cmd_err = -EINVAL;
602 		goto out_complete;
603 	}
604 error_and_stop:
605 	bus->cmd_err = -EIO;
606 	aspeed_i2c_do_stop(bus);
607 	goto out_no_complete;
608 out_complete:
609 	bus->msgs = NULL;
610 	if (bus->cmd_err)
611 		bus->master_xfer_result = bus->cmd_err;
612 	else
613 		bus->master_xfer_result = bus->msgs_index + 1;
614 	complete(&bus->cmd_complete);
615 out_no_complete:
616 	return irq_handled;
617 }
618 
619 static irqreturn_t aspeed_i2c_bus_irq(int irq, void *dev_id)
620 {
621 	struct aspeed_i2c_bus *bus = dev_id;
622 	u32 irq_received, irq_remaining, irq_handled;
623 
624 	spin_lock(&bus->lock);
625 	irq_received = readl(bus->base + ASPEED_I2C_INTR_STS_REG);
626 	/* Ack all interrupts except for Rx done */
627 	writel(irq_received & ~ASPEED_I2CD_INTR_RX_DONE,
628 	       bus->base + ASPEED_I2C_INTR_STS_REG);
629 	readl(bus->base + ASPEED_I2C_INTR_STS_REG);
630 	irq_received &= ASPEED_I2CD_INTR_RECV_MASK;
631 	irq_remaining = irq_received;
632 
633 #if IS_ENABLED(CONFIG_I2C_SLAVE)
634 	/*
635 	 * In most cases, interrupt bits will be set one by one, although
636 	 * multiple interrupt bits could be set at the same time. It's also
637 	 * possible that master interrupt bits could be set along with slave
638 	 * interrupt bits. Each case needs to be handled using corresponding
639 	 * handlers depending on the current state.
640 	 */
641 	if (bus->master_state != ASPEED_I2C_MASTER_INACTIVE &&
642 	    bus->master_state != ASPEED_I2C_MASTER_PENDING) {
643 		irq_handled = aspeed_i2c_master_irq(bus, irq_remaining);
644 		irq_remaining &= ~irq_handled;
645 		if (irq_remaining)
646 			irq_handled |= aspeed_i2c_slave_irq(bus, irq_remaining);
647 	} else {
648 		irq_handled = aspeed_i2c_slave_irq(bus, irq_remaining);
649 		irq_remaining &= ~irq_handled;
650 		if (irq_remaining)
651 			irq_handled |= aspeed_i2c_master_irq(bus,
652 							     irq_remaining);
653 	}
654 
655 	/*
656 	 * Start a pending master command at here if a slave operation is
657 	 * completed.
658 	 */
659 	if (bus->master_state == ASPEED_I2C_MASTER_PENDING &&
660 	    bus->slave_state == ASPEED_I2C_SLAVE_INACTIVE)
661 		aspeed_i2c_do_start(bus);
662 #else
663 	irq_handled = aspeed_i2c_master_irq(bus, irq_remaining);
664 #endif /* CONFIG_I2C_SLAVE */
665 
666 	irq_remaining &= ~irq_handled;
667 	if (irq_remaining)
668 		dev_err(bus->dev,
669 			"irq handled != irq. expected 0x%08x, but was 0x%08x\n",
670 			irq_received, irq_handled);
671 
672 	/* Ack Rx done */
673 	if (irq_received & ASPEED_I2CD_INTR_RX_DONE) {
674 		writel(ASPEED_I2CD_INTR_RX_DONE,
675 		       bus->base + ASPEED_I2C_INTR_STS_REG);
676 		readl(bus->base + ASPEED_I2C_INTR_STS_REG);
677 	}
678 	spin_unlock(&bus->lock);
679 	return irq_remaining ? IRQ_NONE : IRQ_HANDLED;
680 }
681 
682 static int aspeed_i2c_master_xfer(struct i2c_adapter *adap,
683 				  struct i2c_msg *msgs, int num)
684 {
685 	struct aspeed_i2c_bus *bus = i2c_get_adapdata(adap);
686 	unsigned long time_left, flags;
687 
688 	spin_lock_irqsave(&bus->lock, flags);
689 	bus->cmd_err = 0;
690 
691 	/* If bus is busy in a single master environment, attempt recovery. */
692 	if (!bus->multi_master &&
693 	    (readl(bus->base + ASPEED_I2C_CMD_REG) &
694 	     ASPEED_I2CD_BUS_BUSY_STS)) {
695 		int ret;
696 
697 		spin_unlock_irqrestore(&bus->lock, flags);
698 		ret = aspeed_i2c_recover_bus(bus);
699 		if (ret)
700 			return ret;
701 		spin_lock_irqsave(&bus->lock, flags);
702 	}
703 
704 	bus->cmd_err = 0;
705 	bus->msgs = msgs;
706 	bus->msgs_index = 0;
707 	bus->msgs_count = num;
708 
709 	reinit_completion(&bus->cmd_complete);
710 	aspeed_i2c_do_start(bus);
711 	spin_unlock_irqrestore(&bus->lock, flags);
712 
713 	time_left = wait_for_completion_timeout(&bus->cmd_complete,
714 						bus->adap.timeout);
715 
716 	if (time_left == 0) {
717 		/*
718 		 * In a multi-master setup, if a timeout occurs, attempt
719 		 * recovery. But if the bus is idle, we still need to reset the
720 		 * i2c controller to clear the remaining interrupts.
721 		 */
722 		if (bus->multi_master &&
723 		    (readl(bus->base + ASPEED_I2C_CMD_REG) &
724 		     ASPEED_I2CD_BUS_BUSY_STS))
725 			aspeed_i2c_recover_bus(bus);
726 		else
727 			aspeed_i2c_reset(bus);
728 
729 		/*
730 		 * If timed out and the state is still pending, drop the pending
731 		 * master command.
732 		 */
733 		spin_lock_irqsave(&bus->lock, flags);
734 		if (bus->master_state == ASPEED_I2C_MASTER_PENDING)
735 			bus->master_state = ASPEED_I2C_MASTER_INACTIVE;
736 		spin_unlock_irqrestore(&bus->lock, flags);
737 
738 		return -ETIMEDOUT;
739 	}
740 
741 	return bus->master_xfer_result;
742 }
743 
744 static u32 aspeed_i2c_functionality(struct i2c_adapter *adap)
745 {
746 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_SMBUS_BLOCK_DATA;
747 }
748 
749 #if IS_ENABLED(CONFIG_I2C_SLAVE)
750 /* precondition: bus.lock has been acquired. */
751 static void __aspeed_i2c_reg_slave(struct aspeed_i2c_bus *bus, u16 slave_addr)
752 {
753 	u32 addr_reg_val, func_ctrl_reg_val;
754 
755 	/*
756 	 * Set slave addr.  Reserved bits can all safely be written with zeros
757 	 * on all of ast2[456]00, so zero everything else to ensure we only
758 	 * enable a single slave address (ast2500 has two, ast2600 has three,
759 	 * the enable bits for which are also in this register) so that we don't
760 	 * end up with additional phantom devices responding on the bus.
761 	 */
762 	addr_reg_val = slave_addr & ASPEED_I2CD_DEV_ADDR_MASK;
763 	writel(addr_reg_val, bus->base + ASPEED_I2C_DEV_ADDR_REG);
764 
765 	/* Turn on slave mode. */
766 	func_ctrl_reg_val = readl(bus->base + ASPEED_I2C_FUN_CTRL_REG);
767 	func_ctrl_reg_val |= ASPEED_I2CD_SLAVE_EN;
768 	writel(func_ctrl_reg_val, bus->base + ASPEED_I2C_FUN_CTRL_REG);
769 
770 	bus->slave_state = ASPEED_I2C_SLAVE_INACTIVE;
771 }
772 
773 static int aspeed_i2c_reg_slave(struct i2c_client *client)
774 {
775 	struct aspeed_i2c_bus *bus = i2c_get_adapdata(client->adapter);
776 	unsigned long flags;
777 
778 	spin_lock_irqsave(&bus->lock, flags);
779 	if (bus->slave) {
780 		spin_unlock_irqrestore(&bus->lock, flags);
781 		return -EINVAL;
782 	}
783 
784 	__aspeed_i2c_reg_slave(bus, client->addr);
785 
786 	bus->slave = client;
787 	spin_unlock_irqrestore(&bus->lock, flags);
788 
789 	return 0;
790 }
791 
792 static int aspeed_i2c_unreg_slave(struct i2c_client *client)
793 {
794 	struct aspeed_i2c_bus *bus = i2c_get_adapdata(client->adapter);
795 	u32 func_ctrl_reg_val;
796 	unsigned long flags;
797 
798 	spin_lock_irqsave(&bus->lock, flags);
799 	if (!bus->slave) {
800 		spin_unlock_irqrestore(&bus->lock, flags);
801 		return -EINVAL;
802 	}
803 
804 	/* Turn off slave mode. */
805 	func_ctrl_reg_val = readl(bus->base + ASPEED_I2C_FUN_CTRL_REG);
806 	func_ctrl_reg_val &= ~ASPEED_I2CD_SLAVE_EN;
807 	writel(func_ctrl_reg_val, bus->base + ASPEED_I2C_FUN_CTRL_REG);
808 
809 	bus->slave = NULL;
810 	spin_unlock_irqrestore(&bus->lock, flags);
811 
812 	return 0;
813 }
814 #endif /* CONFIG_I2C_SLAVE */
815 
816 static const struct i2c_algorithm aspeed_i2c_algo = {
817 	.master_xfer	= aspeed_i2c_master_xfer,
818 	.functionality	= aspeed_i2c_functionality,
819 #if IS_ENABLED(CONFIG_I2C_SLAVE)
820 	.reg_slave	= aspeed_i2c_reg_slave,
821 	.unreg_slave	= aspeed_i2c_unreg_slave,
822 #endif /* CONFIG_I2C_SLAVE */
823 };
824 
825 static u32 aspeed_i2c_get_clk_reg_val(struct device *dev,
826 				      u32 clk_high_low_mask,
827 				      u32 divisor)
828 {
829 	u32 base_clk_divisor, clk_high_low_max, clk_high, clk_low, tmp;
830 
831 	/*
832 	 * SCL_high and SCL_low represent a value 1 greater than what is stored
833 	 * since a zero divider is meaningless. Thus, the max value each can
834 	 * store is every bit set + 1. Since SCL_high and SCL_low are added
835 	 * together (see below), the max value of both is the max value of one
836 	 * them times two.
837 	 */
838 	clk_high_low_max = (clk_high_low_mask + 1) * 2;
839 
840 	/*
841 	 * The actual clock frequency of SCL is:
842 	 *	SCL_freq = APB_freq / (base_freq * (SCL_high + SCL_low))
843 	 *		 = APB_freq / divisor
844 	 * where base_freq is a programmable clock divider; its value is
845 	 *	base_freq = 1 << base_clk_divisor
846 	 * SCL_high is the number of base_freq clock cycles that SCL stays high
847 	 * and SCL_low is the number of base_freq clock cycles that SCL stays
848 	 * low for a period of SCL.
849 	 * The actual register has a minimum SCL_high and SCL_low minimum of 1;
850 	 * thus, they start counting at zero. So
851 	 *	SCL_high = clk_high + 1
852 	 *	SCL_low	 = clk_low + 1
853 	 * Thus,
854 	 *	SCL_freq = APB_freq /
855 	 *		((1 << base_clk_divisor) * (clk_high + 1 + clk_low + 1))
856 	 * The documentation recommends clk_high >= clk_high_max / 2 and
857 	 * clk_low >= clk_low_max / 2 - 1 when possible; this last constraint
858 	 * gives us the following solution:
859 	 */
860 	base_clk_divisor = divisor > clk_high_low_max ?
861 			ilog2((divisor - 1) / clk_high_low_max) + 1 : 0;
862 
863 	if (base_clk_divisor > ASPEED_I2CD_TIME_BASE_DIVISOR_MASK) {
864 		base_clk_divisor = ASPEED_I2CD_TIME_BASE_DIVISOR_MASK;
865 		clk_low = clk_high_low_mask;
866 		clk_high = clk_high_low_mask;
867 		dev_err(dev,
868 			"clamping clock divider: divider requested, %u, is greater than largest possible divider, %u.\n",
869 			divisor, (1 << base_clk_divisor) * clk_high_low_max);
870 	} else {
871 		tmp = (divisor + (1 << base_clk_divisor) - 1)
872 				>> base_clk_divisor;
873 		clk_low = tmp / 2;
874 		clk_high = tmp - clk_low;
875 
876 		if (clk_high)
877 			clk_high--;
878 
879 		if (clk_low)
880 			clk_low--;
881 	}
882 
883 
884 	return ((clk_high << ASPEED_I2CD_TIME_SCL_HIGH_SHIFT)
885 		& ASPEED_I2CD_TIME_SCL_HIGH_MASK)
886 			| ((clk_low << ASPEED_I2CD_TIME_SCL_LOW_SHIFT)
887 			   & ASPEED_I2CD_TIME_SCL_LOW_MASK)
888 			| (base_clk_divisor
889 			   & ASPEED_I2CD_TIME_BASE_DIVISOR_MASK);
890 }
891 
892 static u32 aspeed_i2c_24xx_get_clk_reg_val(struct device *dev, u32 divisor)
893 {
894 	/*
895 	 * clk_high and clk_low are each 3 bits wide, so each can hold a max
896 	 * value of 8 giving a clk_high_low_max of 16.
897 	 */
898 	return aspeed_i2c_get_clk_reg_val(dev, GENMASK(2, 0), divisor);
899 }
900 
901 static u32 aspeed_i2c_25xx_get_clk_reg_val(struct device *dev, u32 divisor)
902 {
903 	/*
904 	 * clk_high and clk_low are each 4 bits wide, so each can hold a max
905 	 * value of 16 giving a clk_high_low_max of 32.
906 	 */
907 	return aspeed_i2c_get_clk_reg_val(dev, GENMASK(3, 0), divisor);
908 }
909 
910 /* precondition: bus.lock has been acquired. */
911 static int aspeed_i2c_init_clk(struct aspeed_i2c_bus *bus)
912 {
913 	u32 divisor, clk_reg_val;
914 
915 	divisor = DIV_ROUND_UP(bus->parent_clk_frequency, bus->bus_frequency);
916 	clk_reg_val = readl(bus->base + ASPEED_I2C_AC_TIMING_REG1);
917 	clk_reg_val &= (ASPEED_I2CD_TIME_TBUF_MASK |
918 			ASPEED_I2CD_TIME_THDSTA_MASK |
919 			ASPEED_I2CD_TIME_TACST_MASK);
920 	clk_reg_val |= bus->get_clk_reg_val(bus->dev, divisor);
921 	writel(clk_reg_val, bus->base + ASPEED_I2C_AC_TIMING_REG1);
922 	writel(ASPEED_NO_TIMEOUT_CTRL, bus->base + ASPEED_I2C_AC_TIMING_REG2);
923 
924 	return 0;
925 }
926 
927 /* precondition: bus.lock has been acquired. */
928 static int aspeed_i2c_init(struct aspeed_i2c_bus *bus,
929 			     struct platform_device *pdev)
930 {
931 	u32 fun_ctrl_reg = ASPEED_I2CD_MASTER_EN;
932 	int ret;
933 
934 	/* Disable everything. */
935 	writel(0, bus->base + ASPEED_I2C_FUN_CTRL_REG);
936 
937 	ret = aspeed_i2c_init_clk(bus);
938 	if (ret < 0)
939 		return ret;
940 
941 	if (of_property_read_bool(pdev->dev.of_node, "multi-master"))
942 		bus->multi_master = true;
943 	else
944 		fun_ctrl_reg |= ASPEED_I2CD_MULTI_MASTER_DIS;
945 
946 	/* Enable Master Mode */
947 	writel(readl(bus->base + ASPEED_I2C_FUN_CTRL_REG) | fun_ctrl_reg,
948 	       bus->base + ASPEED_I2C_FUN_CTRL_REG);
949 
950 #if IS_ENABLED(CONFIG_I2C_SLAVE)
951 	/* If slave has already been registered, re-enable it. */
952 	if (bus->slave)
953 		__aspeed_i2c_reg_slave(bus, bus->slave->addr);
954 #endif /* CONFIG_I2C_SLAVE */
955 
956 	/* Set interrupt generation of I2C controller */
957 	writel(ASPEED_I2CD_INTR_ALL, bus->base + ASPEED_I2C_INTR_CTRL_REG);
958 
959 	return 0;
960 }
961 
962 static int aspeed_i2c_reset(struct aspeed_i2c_bus *bus)
963 {
964 	struct platform_device *pdev = to_platform_device(bus->dev);
965 	unsigned long flags;
966 	int ret;
967 
968 	spin_lock_irqsave(&bus->lock, flags);
969 
970 	/* Disable and ack all interrupts. */
971 	writel(0, bus->base + ASPEED_I2C_INTR_CTRL_REG);
972 	writel(0xffffffff, bus->base + ASPEED_I2C_INTR_STS_REG);
973 
974 	ret = aspeed_i2c_init(bus, pdev);
975 
976 	spin_unlock_irqrestore(&bus->lock, flags);
977 
978 	return ret;
979 }
980 
981 static const struct of_device_id aspeed_i2c_bus_of_table[] = {
982 	{
983 		.compatible = "aspeed,ast2400-i2c-bus",
984 		.data = aspeed_i2c_24xx_get_clk_reg_val,
985 	},
986 	{
987 		.compatible = "aspeed,ast2500-i2c-bus",
988 		.data = aspeed_i2c_25xx_get_clk_reg_val,
989 	},
990 	{
991 		.compatible = "aspeed,ast2600-i2c-bus",
992 		.data = aspeed_i2c_25xx_get_clk_reg_val,
993 	},
994 	{ },
995 };
996 MODULE_DEVICE_TABLE(of, aspeed_i2c_bus_of_table);
997 
998 static int aspeed_i2c_probe_bus(struct platform_device *pdev)
999 {
1000 	const struct of_device_id *match;
1001 	struct aspeed_i2c_bus *bus;
1002 	struct clk *parent_clk;
1003 	int irq, ret;
1004 
1005 	bus = devm_kzalloc(&pdev->dev, sizeof(*bus), GFP_KERNEL);
1006 	if (!bus)
1007 		return -ENOMEM;
1008 
1009 	bus->base = devm_platform_get_and_ioremap_resource(pdev, 0, NULL);
1010 	if (IS_ERR(bus->base))
1011 		return PTR_ERR(bus->base);
1012 
1013 	parent_clk = devm_clk_get(&pdev->dev, NULL);
1014 	if (IS_ERR(parent_clk))
1015 		return PTR_ERR(parent_clk);
1016 	bus->parent_clk_frequency = clk_get_rate(parent_clk);
1017 	/* We just need the clock rate, we don't actually use the clk object. */
1018 	devm_clk_put(&pdev->dev, parent_clk);
1019 
1020 	bus->rst = devm_reset_control_get_shared(&pdev->dev, NULL);
1021 	if (IS_ERR(bus->rst)) {
1022 		dev_err(&pdev->dev,
1023 			"missing or invalid reset controller device tree entry\n");
1024 		return PTR_ERR(bus->rst);
1025 	}
1026 	reset_control_deassert(bus->rst);
1027 
1028 	ret = of_property_read_u32(pdev->dev.of_node,
1029 				   "bus-frequency", &bus->bus_frequency);
1030 	if (ret < 0) {
1031 		dev_err(&pdev->dev,
1032 			"Could not read bus-frequency property\n");
1033 		bus->bus_frequency = I2C_MAX_STANDARD_MODE_FREQ;
1034 	}
1035 
1036 	match = of_match_node(aspeed_i2c_bus_of_table, pdev->dev.of_node);
1037 	if (!match)
1038 		bus->get_clk_reg_val = aspeed_i2c_24xx_get_clk_reg_val;
1039 	else
1040 		bus->get_clk_reg_val = (u32 (*)(struct device *, u32))
1041 				match->data;
1042 
1043 	/* Initialize the I2C adapter */
1044 	spin_lock_init(&bus->lock);
1045 	init_completion(&bus->cmd_complete);
1046 	bus->adap.owner = THIS_MODULE;
1047 	bus->adap.retries = 0;
1048 	bus->adap.algo = &aspeed_i2c_algo;
1049 	bus->adap.dev.parent = &pdev->dev;
1050 	bus->adap.dev.of_node = pdev->dev.of_node;
1051 	strscpy(bus->adap.name, pdev->name, sizeof(bus->adap.name));
1052 	i2c_set_adapdata(&bus->adap, bus);
1053 
1054 	bus->dev = &pdev->dev;
1055 
1056 	/* Clean up any left over interrupt state. */
1057 	writel(0, bus->base + ASPEED_I2C_INTR_CTRL_REG);
1058 	writel(0xffffffff, bus->base + ASPEED_I2C_INTR_STS_REG);
1059 	/*
1060 	 * bus.lock does not need to be held because the interrupt handler has
1061 	 * not been enabled yet.
1062 	 */
1063 	ret = aspeed_i2c_init(bus, pdev);
1064 	if (ret < 0)
1065 		return ret;
1066 
1067 	irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
1068 	ret = devm_request_irq(&pdev->dev, irq, aspeed_i2c_bus_irq,
1069 			       0, dev_name(&pdev->dev), bus);
1070 	if (ret < 0)
1071 		return ret;
1072 
1073 	ret = i2c_add_adapter(&bus->adap);
1074 	if (ret < 0)
1075 		return ret;
1076 
1077 	platform_set_drvdata(pdev, bus);
1078 
1079 	dev_info(bus->dev, "i2c bus %d registered, irq %d\n",
1080 		 bus->adap.nr, irq);
1081 
1082 	return 0;
1083 }
1084 
1085 static void aspeed_i2c_remove_bus(struct platform_device *pdev)
1086 {
1087 	struct aspeed_i2c_bus *bus = platform_get_drvdata(pdev);
1088 	unsigned long flags;
1089 
1090 	spin_lock_irqsave(&bus->lock, flags);
1091 
1092 	/* Disable everything. */
1093 	writel(0, bus->base + ASPEED_I2C_FUN_CTRL_REG);
1094 	writel(0, bus->base + ASPEED_I2C_INTR_CTRL_REG);
1095 
1096 	spin_unlock_irqrestore(&bus->lock, flags);
1097 
1098 	reset_control_assert(bus->rst);
1099 
1100 	i2c_del_adapter(&bus->adap);
1101 }
1102 
1103 static struct platform_driver aspeed_i2c_bus_driver = {
1104 	.probe		= aspeed_i2c_probe_bus,
1105 	.remove_new	= aspeed_i2c_remove_bus,
1106 	.driver		= {
1107 		.name		= "aspeed-i2c-bus",
1108 		.of_match_table	= aspeed_i2c_bus_of_table,
1109 	},
1110 };
1111 module_platform_driver(aspeed_i2c_bus_driver);
1112 
1113 MODULE_AUTHOR("Brendan Higgins <brendanhiggins@google.com>");
1114 MODULE_DESCRIPTION("Aspeed I2C Bus Driver");
1115 MODULE_LICENSE("GPL v2");
1116