xref: /linux/drivers/i2c/algos/i2c-algo-pca.c (revision c8bfe3fad4f86a029da7157bae9699c816f0c309)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  i2c-algo-pca.c i2c driver algorithms for PCA9564 adapters
4  *    Copyright (C) 2004 Arcom Control Systems
5  *    Copyright (C) 2008 Pengutronix
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/moduleparam.h>
11 #include <linux/delay.h>
12 #include <linux/jiffies.h>
13 #include <linux/errno.h>
14 #include <linux/i2c.h>
15 #include <linux/i2c-algo-pca.h>
16 
17 #define DEB1(fmt, args...) do { if (i2c_debug >= 1)			\
18 				 printk(KERN_DEBUG fmt, ## args); } while (0)
19 #define DEB2(fmt, args...) do { if (i2c_debug >= 2)			\
20 				 printk(KERN_DEBUG fmt, ## args); } while (0)
21 #define DEB3(fmt, args...) do { if (i2c_debug >= 3)			\
22 				 printk(KERN_DEBUG fmt, ## args); } while (0)
23 
24 static int i2c_debug;
25 
26 #define pca_outw(adap, reg, val) adap->write_byte(adap->data, reg, val)
27 #define pca_inw(adap, reg) adap->read_byte(adap->data, reg)
28 
29 #define pca_status(adap) pca_inw(adap, I2C_PCA_STA)
30 #define pca_clock(adap) adap->i2c_clock
31 #define pca_set_con(adap, val) pca_outw(adap, I2C_PCA_CON, val)
32 #define pca_get_con(adap) pca_inw(adap, I2C_PCA_CON)
33 #define pca_wait(adap) adap->wait_for_completion(adap->data)
34 
35 static void pca_reset(struct i2c_algo_pca_data *adap)
36 {
37 	if (adap->chip == I2C_PCA_CHIP_9665) {
38 		/* Ignore the reset function from the module,
39 		 * we can use the parallel bus reset.
40 		 */
41 		pca_outw(adap, I2C_PCA_INDPTR, I2C_PCA_IPRESET);
42 		pca_outw(adap, I2C_PCA_IND, 0xA5);
43 		pca_outw(adap, I2C_PCA_IND, 0x5A);
44 
45 		/*
46 		 * After a reset we need to re-apply any configuration
47 		 * (calculated in pca_init) to get the bus in a working state.
48 		 */
49 		pca_outw(adap, I2C_PCA_INDPTR, I2C_PCA_IMODE);
50 		pca_outw(adap, I2C_PCA_IND, adap->bus_settings.mode);
51 		pca_outw(adap, I2C_PCA_INDPTR, I2C_PCA_ISCLL);
52 		pca_outw(adap, I2C_PCA_IND, adap->bus_settings.tlow);
53 		pca_outw(adap, I2C_PCA_INDPTR, I2C_PCA_ISCLH);
54 		pca_outw(adap, I2C_PCA_IND, adap->bus_settings.thi);
55 
56 		pca_set_con(adap, I2C_PCA_CON_ENSIO);
57 	} else {
58 		adap->reset_chip(adap->data);
59 		pca_set_con(adap, I2C_PCA_CON_ENSIO | adap->bus_settings.clock_freq);
60 	}
61 }
62 
63 /*
64  * Generate a start condition on the i2c bus.
65  *
66  * returns after the start condition has occurred
67  */
68 static int pca_start(struct i2c_algo_pca_data *adap)
69 {
70 	int sta = pca_get_con(adap);
71 	DEB2("=== START\n");
72 	sta |= I2C_PCA_CON_STA;
73 	sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_SI);
74 	pca_set_con(adap, sta);
75 	return pca_wait(adap);
76 }
77 
78 /*
79  * Generate a repeated start condition on the i2c bus
80  *
81  * return after the repeated start condition has occurred
82  */
83 static int pca_repeated_start(struct i2c_algo_pca_data *adap)
84 {
85 	int sta = pca_get_con(adap);
86 	DEB2("=== REPEATED START\n");
87 	sta |= I2C_PCA_CON_STA;
88 	sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_SI);
89 	pca_set_con(adap, sta);
90 	return pca_wait(adap);
91 }
92 
93 /*
94  * Generate a stop condition on the i2c bus
95  *
96  * returns after the stop condition has been generated
97  *
98  * STOPs do not generate an interrupt or set the SI flag, since the
99  * part returns the idle state (0xf8). Hence we don't need to
100  * pca_wait here.
101  */
102 static void pca_stop(struct i2c_algo_pca_data *adap)
103 {
104 	int sta = pca_get_con(adap);
105 	DEB2("=== STOP\n");
106 	sta |= I2C_PCA_CON_STO;
107 	sta &= ~(I2C_PCA_CON_STA|I2C_PCA_CON_SI);
108 	pca_set_con(adap, sta);
109 }
110 
111 /*
112  * Send the slave address and R/W bit
113  *
114  * returns after the address has been sent
115  */
116 static int pca_address(struct i2c_algo_pca_data *adap,
117 		       struct i2c_msg *msg)
118 {
119 	int sta = pca_get_con(adap);
120 	int addr = i2c_8bit_addr_from_msg(msg);
121 
122 	DEB2("=== SLAVE ADDRESS %#04x+%c=%#04x\n",
123 	     msg->addr, msg->flags & I2C_M_RD ? 'R' : 'W', addr);
124 
125 	pca_outw(adap, I2C_PCA_DAT, addr);
126 
127 	sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_STA|I2C_PCA_CON_SI);
128 	pca_set_con(adap, sta);
129 
130 	return pca_wait(adap);
131 }
132 
133 /*
134  * Transmit a byte.
135  *
136  * Returns after the byte has been transmitted
137  */
138 static int pca_tx_byte(struct i2c_algo_pca_data *adap,
139 		       __u8 b)
140 {
141 	int sta = pca_get_con(adap);
142 	DEB2("=== WRITE %#04x\n", b);
143 	pca_outw(adap, I2C_PCA_DAT, b);
144 
145 	sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_STA|I2C_PCA_CON_SI);
146 	pca_set_con(adap, sta);
147 
148 	return pca_wait(adap);
149 }
150 
151 /*
152  * Receive a byte
153  *
154  * returns immediately.
155  */
156 static void pca_rx_byte(struct i2c_algo_pca_data *adap,
157 			__u8 *b, int ack)
158 {
159 	*b = pca_inw(adap, I2C_PCA_DAT);
160 	DEB2("=== READ %#04x %s\n", *b, ack ? "ACK" : "NACK");
161 }
162 
163 /*
164  * Setup ACK or NACK for next received byte and wait for it to arrive.
165  *
166  * Returns after next byte has arrived.
167  */
168 static int pca_rx_ack(struct i2c_algo_pca_data *adap,
169 		      int ack)
170 {
171 	int sta = pca_get_con(adap);
172 
173 	sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_STA|I2C_PCA_CON_SI|I2C_PCA_CON_AA);
174 
175 	if (ack)
176 		sta |= I2C_PCA_CON_AA;
177 
178 	pca_set_con(adap, sta);
179 	return pca_wait(adap);
180 }
181 
182 static int pca_xfer(struct i2c_adapter *i2c_adap,
183 		    struct i2c_msg *msgs,
184 		    int num)
185 {
186 	struct i2c_algo_pca_data *adap = i2c_adap->algo_data;
187 	struct i2c_msg *msg = NULL;
188 	int curmsg;
189 	int numbytes = 0;
190 	int state;
191 	int ret;
192 	int completed = 1;
193 	unsigned long timeout = jiffies + i2c_adap->timeout;
194 
195 	while ((state = pca_status(adap)) != 0xf8) {
196 		if (time_before(jiffies, timeout)) {
197 			msleep(10);
198 		} else {
199 			dev_dbg(&i2c_adap->dev, "bus is not idle. status is "
200 				"%#04x\n", state);
201 			return -EBUSY;
202 		}
203 	}
204 
205 	DEB1("{{{ XFER %d messages\n", num);
206 
207 	if (i2c_debug >= 2) {
208 		for (curmsg = 0; curmsg < num; curmsg++) {
209 			int addr, i;
210 			msg = &msgs[curmsg];
211 
212 			addr = (0x7f & msg->addr) ;
213 
214 			if (msg->flags & I2C_M_RD)
215 				printk(KERN_INFO "    [%02d] RD %d bytes from %#02x [%#02x, ...]\n",
216 				       curmsg, msg->len, addr, (addr << 1) | 1);
217 			else {
218 				printk(KERN_INFO "    [%02d] WR %d bytes to %#02x [%#02x%s",
219 				       curmsg, msg->len, addr, addr << 1,
220 				       msg->len == 0 ? "" : ", ");
221 				for (i = 0; i < msg->len; i++)
222 					printk("%#04x%s", msg->buf[i], i == msg->len - 1 ? "" : ", ");
223 				printk("]\n");
224 			}
225 		}
226 	}
227 
228 	curmsg = 0;
229 	ret = -EIO;
230 	while (curmsg < num) {
231 		state = pca_status(adap);
232 
233 		DEB3("STATE is 0x%02x\n", state);
234 		msg = &msgs[curmsg];
235 
236 		switch (state) {
237 		case 0xf8: /* On reset or stop the bus is idle */
238 			completed = pca_start(adap);
239 			break;
240 
241 		case 0x08: /* A START condition has been transmitted */
242 		case 0x10: /* A repeated start condition has been transmitted */
243 			completed = pca_address(adap, msg);
244 			break;
245 
246 		case 0x18: /* SLA+W has been transmitted; ACK has been received */
247 		case 0x28: /* Data byte in I2CDAT has been transmitted; ACK has been received */
248 			if (numbytes < msg->len) {
249 				completed = pca_tx_byte(adap,
250 							msg->buf[numbytes]);
251 				numbytes++;
252 				break;
253 			}
254 			curmsg++; numbytes = 0;
255 			if (curmsg == num)
256 				pca_stop(adap);
257 			else
258 				completed = pca_repeated_start(adap);
259 			break;
260 
261 		case 0x20: /* SLA+W has been transmitted; NOT ACK has been received */
262 			DEB2("NOT ACK received after SLA+W\n");
263 			pca_stop(adap);
264 			ret = -ENXIO;
265 			goto out;
266 
267 		case 0x40: /* SLA+R has been transmitted; ACK has been received */
268 			completed = pca_rx_ack(adap, msg->len > 1);
269 			break;
270 
271 		case 0x50: /* Data bytes has been received; ACK has been returned */
272 			if (numbytes < msg->len) {
273 				pca_rx_byte(adap, &msg->buf[numbytes], 1);
274 				numbytes++;
275 				completed = pca_rx_ack(adap,
276 						       numbytes < msg->len - 1);
277 				break;
278 			}
279 			curmsg++; numbytes = 0;
280 			if (curmsg == num)
281 				pca_stop(adap);
282 			else
283 				completed = pca_repeated_start(adap);
284 			break;
285 
286 		case 0x48: /* SLA+R has been transmitted; NOT ACK has been received */
287 			DEB2("NOT ACK received after SLA+R\n");
288 			pca_stop(adap);
289 			ret = -ENXIO;
290 			goto out;
291 
292 		case 0x30: /* Data byte in I2CDAT has been transmitted; NOT ACK has been received */
293 			DEB2("NOT ACK received after data byte\n");
294 			pca_stop(adap);
295 			goto out;
296 
297 		case 0x38: /* Arbitration lost during SLA+W, SLA+R or data bytes */
298 			DEB2("Arbitration lost\n");
299 			/*
300 			 * The PCA9564 data sheet (2006-09-01) says "A
301 			 * START condition will be transmitted when the
302 			 * bus becomes free (STOP or SCL and SDA high)"
303 			 * when the STA bit is set (p. 11).
304 			 *
305 			 * In case this won't work, try pca_reset()
306 			 * instead.
307 			 */
308 			pca_start(adap);
309 			goto out;
310 
311 		case 0x58: /* Data byte has been received; NOT ACK has been returned */
312 			if (numbytes == msg->len - 1) {
313 				pca_rx_byte(adap, &msg->buf[numbytes], 0);
314 				curmsg++; numbytes = 0;
315 				if (curmsg == num)
316 					pca_stop(adap);
317 				else
318 					completed = pca_repeated_start(adap);
319 			} else {
320 				DEB2("NOT ACK sent after data byte received. "
321 				     "Not final byte. numbytes %d. len %d\n",
322 				     numbytes, msg->len);
323 				pca_stop(adap);
324 				goto out;
325 			}
326 			break;
327 		case 0x70: /* Bus error - SDA stuck low */
328 			DEB2("BUS ERROR - SDA Stuck low\n");
329 			pca_reset(adap);
330 			goto out;
331 		case 0x78: /* Bus error - SCL stuck low (PCA9665) */
332 		case 0x90: /* Bus error - SCL stuck low (PCA9564) */
333 			DEB2("BUS ERROR - SCL Stuck low\n");
334 			pca_reset(adap);
335 			goto out;
336 		case 0x00: /* Bus error during master or slave mode due to illegal START or STOP condition */
337 			DEB2("BUS ERROR - Illegal START or STOP\n");
338 			pca_reset(adap);
339 			goto out;
340 		default:
341 			dev_err(&i2c_adap->dev, "unhandled SIO state 0x%02x\n", state);
342 			break;
343 		}
344 
345 		if (!completed)
346 			goto out;
347 	}
348 
349 	ret = curmsg;
350  out:
351 	DEB1("}}} transferred %d/%d messages. "
352 	     "status is %#04x. control is %#04x\n",
353 	     curmsg, num, pca_status(adap),
354 	     pca_get_con(adap));
355 	return ret;
356 }
357 
358 static u32 pca_func(struct i2c_adapter *adap)
359 {
360 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
361 }
362 
363 static const struct i2c_algorithm pca_algo = {
364 	.master_xfer	= pca_xfer,
365 	.functionality	= pca_func,
366 };
367 
368 static unsigned int pca_probe_chip(struct i2c_adapter *adap)
369 {
370 	struct i2c_algo_pca_data *pca_data = adap->algo_data;
371 	/* The trick here is to check if there is an indirect register
372 	 * available. If there is one, we will read the value we first
373 	 * wrote on I2C_PCA_IADR. Otherwise, we will read the last value
374 	 * we wrote on I2C_PCA_ADR
375 	 */
376 	pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_IADR);
377 	pca_outw(pca_data, I2C_PCA_IND, 0xAA);
378 	pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_ITO);
379 	pca_outw(pca_data, I2C_PCA_IND, 0x00);
380 	pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_IADR);
381 	if (pca_inw(pca_data, I2C_PCA_IND) == 0xAA) {
382 		printk(KERN_INFO "%s: PCA9665 detected.\n", adap->name);
383 		pca_data->chip = I2C_PCA_CHIP_9665;
384 	} else {
385 		printk(KERN_INFO "%s: PCA9564 detected.\n", adap->name);
386 		pca_data->chip = I2C_PCA_CHIP_9564;
387 	}
388 	return pca_data->chip;
389 }
390 
391 static int pca_init(struct i2c_adapter *adap)
392 {
393 	struct i2c_algo_pca_data *pca_data = adap->algo_data;
394 
395 	adap->algo = &pca_algo;
396 
397 	if (pca_probe_chip(adap) == I2C_PCA_CHIP_9564) {
398 		static int freqs[] = {330, 288, 217, 146, 88, 59, 44, 36};
399 		int clock;
400 
401 		if (pca_data->i2c_clock > 7) {
402 			switch (pca_data->i2c_clock) {
403 			case 330000:
404 				pca_data->i2c_clock = I2C_PCA_CON_330kHz;
405 				break;
406 			case 288000:
407 				pca_data->i2c_clock = I2C_PCA_CON_288kHz;
408 				break;
409 			case 217000:
410 				pca_data->i2c_clock = I2C_PCA_CON_217kHz;
411 				break;
412 			case 146000:
413 				pca_data->i2c_clock = I2C_PCA_CON_146kHz;
414 				break;
415 			case 88000:
416 				pca_data->i2c_clock = I2C_PCA_CON_88kHz;
417 				break;
418 			case 59000:
419 				pca_data->i2c_clock = I2C_PCA_CON_59kHz;
420 				break;
421 			case 44000:
422 				pca_data->i2c_clock = I2C_PCA_CON_44kHz;
423 				break;
424 			case 36000:
425 				pca_data->i2c_clock = I2C_PCA_CON_36kHz;
426 				break;
427 			default:
428 				printk(KERN_WARNING
429 					"%s: Invalid I2C clock speed selected."
430 					" Using default 59kHz.\n", adap->name);
431 			pca_data->i2c_clock = I2C_PCA_CON_59kHz;
432 			}
433 		} else {
434 			printk(KERN_WARNING "%s: "
435 				"Choosing the clock frequency based on "
436 				"index is deprecated."
437 				" Use the nominal frequency.\n", adap->name);
438 		}
439 
440 		clock = pca_clock(pca_data);
441 		printk(KERN_INFO "%s: Clock frequency is %dkHz\n",
442 		     adap->name, freqs[clock]);
443 
444 		/* Store settings as these will be needed when the PCA chip is reset */
445 		pca_data->bus_settings.clock_freq = clock;
446 
447 		pca_reset(pca_data);
448 	} else {
449 		int clock;
450 		int mode;
451 		int tlow, thi;
452 		/* Values can be found on PCA9665 datasheet section 7.3.2.6 */
453 		int min_tlow, min_thi;
454 		/* These values are the maximum raise and fall values allowed
455 		 * by the I2C operation mode (Standard, Fast or Fast+)
456 		 * They are used (added) below to calculate the clock dividers
457 		 * of PCA9665. Note that they are slightly different of the
458 		 * real maximum, to allow the change on mode exactly on the
459 		 * maximum clock rate for each mode
460 		 */
461 		int raise_fall_time;
462 
463 		if (pca_data->i2c_clock > 1265800) {
464 			printk(KERN_WARNING "%s: I2C clock speed too high."
465 				" Using 1265.8kHz.\n", adap->name);
466 			pca_data->i2c_clock = 1265800;
467 		}
468 
469 		if (pca_data->i2c_clock < 60300) {
470 			printk(KERN_WARNING "%s: I2C clock speed too low."
471 				" Using 60.3kHz.\n", adap->name);
472 			pca_data->i2c_clock = 60300;
473 		}
474 
475 		/* To avoid integer overflow, use clock/100 for calculations */
476 		clock = pca_clock(pca_data) / 100;
477 
478 		if (pca_data->i2c_clock > I2C_MAX_FAST_MODE_PLUS_FREQ) {
479 			mode = I2C_PCA_MODE_TURBO;
480 			min_tlow = 14;
481 			min_thi  = 5;
482 			raise_fall_time = 22; /* Raise 11e-8s, Fall 11e-8s */
483 		} else if (pca_data->i2c_clock > I2C_MAX_FAST_MODE_FREQ) {
484 			mode = I2C_PCA_MODE_FASTP;
485 			min_tlow = 17;
486 			min_thi  = 9;
487 			raise_fall_time = 22; /* Raise 11e-8s, Fall 11e-8s */
488 		} else if (pca_data->i2c_clock > I2C_MAX_STANDARD_MODE_FREQ) {
489 			mode = I2C_PCA_MODE_FAST;
490 			min_tlow = 44;
491 			min_thi  = 20;
492 			raise_fall_time = 58; /* Raise 29e-8s, Fall 29e-8s */
493 		} else {
494 			mode = I2C_PCA_MODE_STD;
495 			min_tlow = 157;
496 			min_thi  = 134;
497 			raise_fall_time = 127; /* Raise 29e-8s, Fall 98e-8s */
498 		}
499 
500 		/* The minimum clock that respects the thi/tlow = 134/157 is
501 		 * 64800 Hz. Below that, we have to fix the tlow to 255 and
502 		 * calculate the thi factor.
503 		 */
504 		if (clock < 648) {
505 			tlow = 255;
506 			thi = 1000000 - clock * raise_fall_time;
507 			thi /= (I2C_PCA_OSC_PER * clock) - tlow;
508 		} else {
509 			tlow = (1000000 - clock * raise_fall_time) * min_tlow;
510 			tlow /= I2C_PCA_OSC_PER * clock * (min_thi + min_tlow);
511 			thi = tlow * min_thi / min_tlow;
512 		}
513 
514 		/* Store settings as these will be needed when the PCA chip is reset */
515 		pca_data->bus_settings.mode = mode;
516 		pca_data->bus_settings.tlow = tlow;
517 		pca_data->bus_settings.thi = thi;
518 
519 		pca_reset(pca_data);
520 
521 		printk(KERN_INFO
522 		     "%s: Clock frequency is %dHz\n", adap->name, clock * 100);
523 	}
524 	udelay(500); /* 500 us for oscillator to stabilise */
525 
526 	return 0;
527 }
528 
529 /*
530  * registering functions to load algorithms at runtime
531  */
532 int i2c_pca_add_bus(struct i2c_adapter *adap)
533 {
534 	int rval;
535 
536 	rval = pca_init(adap);
537 	if (rval)
538 		return rval;
539 
540 	return i2c_add_adapter(adap);
541 }
542 EXPORT_SYMBOL(i2c_pca_add_bus);
543 
544 int i2c_pca_add_numbered_bus(struct i2c_adapter *adap)
545 {
546 	int rval;
547 
548 	rval = pca_init(adap);
549 	if (rval)
550 		return rval;
551 
552 	return i2c_add_numbered_adapter(adap);
553 }
554 EXPORT_SYMBOL(i2c_pca_add_numbered_bus);
555 
556 MODULE_AUTHOR("Ian Campbell <icampbell@arcom.com>");
557 MODULE_AUTHOR("Wolfram Sang <kernel@pengutronix.de>");
558 MODULE_DESCRIPTION("I2C-Bus PCA9564/PCA9665 algorithm");
559 MODULE_LICENSE("GPL");
560 
561 module_param(i2c_debug, int, 0);
562