xref: /linux/drivers/i2c/algos/i2c-algo-pca.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  *  i2c-algo-pca.c i2c driver algorithms for PCA9564 adapters
3  *    Copyright (C) 2004 Arcom Control Systems
4  *    Copyright (C) 2008 Pengutronix
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/moduleparam.h>
20 #include <linux/delay.h>
21 #include <linux/jiffies.h>
22 #include <linux/errno.h>
23 #include <linux/i2c.h>
24 #include <linux/i2c-algo-pca.h>
25 
26 #define DEB1(fmt, args...) do { if (i2c_debug >= 1)			\
27 				 printk(KERN_DEBUG fmt, ## args); } while (0)
28 #define DEB2(fmt, args...) do { if (i2c_debug >= 2)			\
29 				 printk(KERN_DEBUG fmt, ## args); } while (0)
30 #define DEB3(fmt, args...) do { if (i2c_debug >= 3)			\
31 				 printk(KERN_DEBUG fmt, ## args); } while (0)
32 
33 static int i2c_debug;
34 
35 #define pca_outw(adap, reg, val) adap->write_byte(adap->data, reg, val)
36 #define pca_inw(adap, reg) adap->read_byte(adap->data, reg)
37 
38 #define pca_status(adap) pca_inw(adap, I2C_PCA_STA)
39 #define pca_clock(adap) adap->i2c_clock
40 #define pca_set_con(adap, val) pca_outw(adap, I2C_PCA_CON, val)
41 #define pca_get_con(adap) pca_inw(adap, I2C_PCA_CON)
42 #define pca_wait(adap) adap->wait_for_completion(adap->data)
43 
44 static void pca_reset(struct i2c_algo_pca_data *adap)
45 {
46 	if (adap->chip == I2C_PCA_CHIP_9665) {
47 		/* Ignore the reset function from the module,
48 		 * we can use the parallel bus reset.
49 		 */
50 		pca_outw(adap, I2C_PCA_INDPTR, I2C_PCA_IPRESET);
51 		pca_outw(adap, I2C_PCA_IND, 0xA5);
52 		pca_outw(adap, I2C_PCA_IND, 0x5A);
53 	} else {
54 		adap->reset_chip(adap->data);
55 	}
56 }
57 
58 /*
59  * Generate a start condition on the i2c bus.
60  *
61  * returns after the start condition has occurred
62  */
63 static int pca_start(struct i2c_algo_pca_data *adap)
64 {
65 	int sta = pca_get_con(adap);
66 	DEB2("=== START\n");
67 	sta |= I2C_PCA_CON_STA;
68 	sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_SI);
69 	pca_set_con(adap, sta);
70 	return pca_wait(adap);
71 }
72 
73 /*
74  * Generate a repeated start condition on the i2c bus
75  *
76  * return after the repeated start condition has occurred
77  */
78 static int pca_repeated_start(struct i2c_algo_pca_data *adap)
79 {
80 	int sta = pca_get_con(adap);
81 	DEB2("=== REPEATED START\n");
82 	sta |= I2C_PCA_CON_STA;
83 	sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_SI);
84 	pca_set_con(adap, sta);
85 	return pca_wait(adap);
86 }
87 
88 /*
89  * Generate a stop condition on the i2c bus
90  *
91  * returns after the stop condition has been generated
92  *
93  * STOPs do not generate an interrupt or set the SI flag, since the
94  * part returns the idle state (0xf8). Hence we don't need to
95  * pca_wait here.
96  */
97 static void pca_stop(struct i2c_algo_pca_data *adap)
98 {
99 	int sta = pca_get_con(adap);
100 	DEB2("=== STOP\n");
101 	sta |= I2C_PCA_CON_STO;
102 	sta &= ~(I2C_PCA_CON_STA|I2C_PCA_CON_SI);
103 	pca_set_con(adap, sta);
104 }
105 
106 /*
107  * Send the slave address and R/W bit
108  *
109  * returns after the address has been sent
110  */
111 static int pca_address(struct i2c_algo_pca_data *adap,
112 		       struct i2c_msg *msg)
113 {
114 	int sta = pca_get_con(adap);
115 	int addr;
116 
117 	addr = ((0x7f & msg->addr) << 1);
118 	if (msg->flags & I2C_M_RD)
119 		addr |= 1;
120 	DEB2("=== SLAVE ADDRESS %#04x+%c=%#04x\n",
121 	     msg->addr, msg->flags & I2C_M_RD ? 'R' : 'W', addr);
122 
123 	pca_outw(adap, I2C_PCA_DAT, addr);
124 
125 	sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_STA|I2C_PCA_CON_SI);
126 	pca_set_con(adap, sta);
127 
128 	return pca_wait(adap);
129 }
130 
131 /*
132  * Transmit a byte.
133  *
134  * Returns after the byte has been transmitted
135  */
136 static int pca_tx_byte(struct i2c_algo_pca_data *adap,
137 		       __u8 b)
138 {
139 	int sta = pca_get_con(adap);
140 	DEB2("=== WRITE %#04x\n", b);
141 	pca_outw(adap, I2C_PCA_DAT, b);
142 
143 	sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_STA|I2C_PCA_CON_SI);
144 	pca_set_con(adap, sta);
145 
146 	return pca_wait(adap);
147 }
148 
149 /*
150  * Receive a byte
151  *
152  * returns immediately.
153  */
154 static void pca_rx_byte(struct i2c_algo_pca_data *adap,
155 			__u8 *b, int ack)
156 {
157 	*b = pca_inw(adap, I2C_PCA_DAT);
158 	DEB2("=== READ %#04x %s\n", *b, ack ? "ACK" : "NACK");
159 }
160 
161 /*
162  * Setup ACK or NACK for next received byte and wait for it to arrive.
163  *
164  * Returns after next byte has arrived.
165  */
166 static int pca_rx_ack(struct i2c_algo_pca_data *adap,
167 		      int ack)
168 {
169 	int sta = pca_get_con(adap);
170 
171 	sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_STA|I2C_PCA_CON_SI|I2C_PCA_CON_AA);
172 
173 	if (ack)
174 		sta |= I2C_PCA_CON_AA;
175 
176 	pca_set_con(adap, sta);
177 	return pca_wait(adap);
178 }
179 
180 static int pca_xfer(struct i2c_adapter *i2c_adap,
181 		    struct i2c_msg *msgs,
182 		    int num)
183 {
184 	struct i2c_algo_pca_data *adap = i2c_adap->algo_data;
185 	struct i2c_msg *msg = NULL;
186 	int curmsg;
187 	int numbytes = 0;
188 	int state;
189 	int ret;
190 	int completed = 1;
191 	unsigned long timeout = jiffies + i2c_adap->timeout;
192 
193 	while ((state = pca_status(adap)) != 0xf8) {
194 		if (time_before(jiffies, timeout)) {
195 			msleep(10);
196 		} else {
197 			dev_dbg(&i2c_adap->dev, "bus is not idle. status is "
198 				"%#04x\n", state);
199 			return -EBUSY;
200 		}
201 	}
202 
203 	DEB1("{{{ XFER %d messages\n", num);
204 
205 	if (i2c_debug >= 2) {
206 		for (curmsg = 0; curmsg < num; curmsg++) {
207 			int addr, i;
208 			msg = &msgs[curmsg];
209 
210 			addr = (0x7f & msg->addr) ;
211 
212 			if (msg->flags & I2C_M_RD)
213 				printk(KERN_INFO "    [%02d] RD %d bytes from %#02x [%#02x, ...]\n",
214 				       curmsg, msg->len, addr, (addr << 1) | 1);
215 			else {
216 				printk(KERN_INFO "    [%02d] WR %d bytes to %#02x [%#02x%s",
217 				       curmsg, msg->len, addr, addr << 1,
218 				       msg->len == 0 ? "" : ", ");
219 				for (i = 0; i < msg->len; i++)
220 					printk("%#04x%s", msg->buf[i], i == msg->len - 1 ? "" : ", ");
221 				printk("]\n");
222 			}
223 		}
224 	}
225 
226 	curmsg = 0;
227 	ret = -EIO;
228 	while (curmsg < num) {
229 		state = pca_status(adap);
230 
231 		DEB3("STATE is 0x%02x\n", state);
232 		msg = &msgs[curmsg];
233 
234 		switch (state) {
235 		case 0xf8: /* On reset or stop the bus is idle */
236 			completed = pca_start(adap);
237 			break;
238 
239 		case 0x08: /* A START condition has been transmitted */
240 		case 0x10: /* A repeated start condition has been transmitted */
241 			completed = pca_address(adap, msg);
242 			break;
243 
244 		case 0x18: /* SLA+W has been transmitted; ACK has been received */
245 		case 0x28: /* Data byte in I2CDAT has been transmitted; ACK has been received */
246 			if (numbytes < msg->len) {
247 				completed = pca_tx_byte(adap,
248 							msg->buf[numbytes]);
249 				numbytes++;
250 				break;
251 			}
252 			curmsg++; numbytes = 0;
253 			if (curmsg == num)
254 				pca_stop(adap);
255 			else
256 				completed = pca_repeated_start(adap);
257 			break;
258 
259 		case 0x20: /* SLA+W has been transmitted; NOT ACK has been received */
260 			DEB2("NOT ACK received after SLA+W\n");
261 			pca_stop(adap);
262 			ret = -ENXIO;
263 			goto out;
264 
265 		case 0x40: /* SLA+R has been transmitted; ACK has been received */
266 			completed = pca_rx_ack(adap, msg->len > 1);
267 			break;
268 
269 		case 0x50: /* Data bytes has been received; ACK has been returned */
270 			if (numbytes < msg->len) {
271 				pca_rx_byte(adap, &msg->buf[numbytes], 1);
272 				numbytes++;
273 				completed = pca_rx_ack(adap,
274 						       numbytes < msg->len - 1);
275 				break;
276 			}
277 			curmsg++; numbytes = 0;
278 			if (curmsg == num)
279 				pca_stop(adap);
280 			else
281 				completed = pca_repeated_start(adap);
282 			break;
283 
284 		case 0x48: /* SLA+R has been transmitted; NOT ACK has been received */
285 			DEB2("NOT ACK received after SLA+R\n");
286 			pca_stop(adap);
287 			ret = -ENXIO;
288 			goto out;
289 
290 		case 0x30: /* Data byte in I2CDAT has been transmitted; NOT ACK has been received */
291 			DEB2("NOT ACK received after data byte\n");
292 			pca_stop(adap);
293 			goto out;
294 
295 		case 0x38: /* Arbitration lost during SLA+W, SLA+R or data bytes */
296 			DEB2("Arbitration lost\n");
297 			/*
298 			 * The PCA9564 data sheet (2006-09-01) says "A
299 			 * START condition will be transmitted when the
300 			 * bus becomes free (STOP or SCL and SDA high)"
301 			 * when the STA bit is set (p. 11).
302 			 *
303 			 * In case this won't work, try pca_reset()
304 			 * instead.
305 			 */
306 			pca_start(adap);
307 			goto out;
308 
309 		case 0x58: /* Data byte has been received; NOT ACK has been returned */
310 			if (numbytes == msg->len - 1) {
311 				pca_rx_byte(adap, &msg->buf[numbytes], 0);
312 				curmsg++; numbytes = 0;
313 				if (curmsg == num)
314 					pca_stop(adap);
315 				else
316 					completed = pca_repeated_start(adap);
317 			} else {
318 				DEB2("NOT ACK sent after data byte received. "
319 				     "Not final byte. numbytes %d. len %d\n",
320 				     numbytes, msg->len);
321 				pca_stop(adap);
322 				goto out;
323 			}
324 			break;
325 		case 0x70: /* Bus error - SDA stuck low */
326 			DEB2("BUS ERROR - SDA Stuck low\n");
327 			pca_reset(adap);
328 			goto out;
329 		case 0x90: /* Bus error - SCL stuck low */
330 			DEB2("BUS ERROR - SCL Stuck low\n");
331 			pca_reset(adap);
332 			goto out;
333 		case 0x00: /* Bus error during master or slave mode due to illegal START or STOP condition */
334 			DEB2("BUS ERROR - Illegal START or STOP\n");
335 			pca_reset(adap);
336 			goto out;
337 		default:
338 			dev_err(&i2c_adap->dev, "unhandled SIO state 0x%02x\n", state);
339 			break;
340 		}
341 
342 		if (!completed)
343 			goto out;
344 	}
345 
346 	ret = curmsg;
347  out:
348 	DEB1("}}} transferred %d/%d messages. "
349 	     "status is %#04x. control is %#04x\n",
350 	     curmsg, num, pca_status(adap),
351 	     pca_get_con(adap));
352 	return ret;
353 }
354 
355 static u32 pca_func(struct i2c_adapter *adap)
356 {
357 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
358 }
359 
360 static const struct i2c_algorithm pca_algo = {
361 	.master_xfer	= pca_xfer,
362 	.functionality	= pca_func,
363 };
364 
365 static unsigned int pca_probe_chip(struct i2c_adapter *adap)
366 {
367 	struct i2c_algo_pca_data *pca_data = adap->algo_data;
368 	/* The trick here is to check if there is an indirect register
369 	 * available. If there is one, we will read the value we first
370 	 * wrote on I2C_PCA_IADR. Otherwise, we will read the last value
371 	 * we wrote on I2C_PCA_ADR
372 	 */
373 	pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_IADR);
374 	pca_outw(pca_data, I2C_PCA_IND, 0xAA);
375 	pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_ITO);
376 	pca_outw(pca_data, I2C_PCA_IND, 0x00);
377 	pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_IADR);
378 	if (pca_inw(pca_data, I2C_PCA_IND) == 0xAA) {
379 		printk(KERN_INFO "%s: PCA9665 detected.\n", adap->name);
380 		pca_data->chip = I2C_PCA_CHIP_9665;
381 	} else {
382 		printk(KERN_INFO "%s: PCA9564 detected.\n", adap->name);
383 		pca_data->chip = I2C_PCA_CHIP_9564;
384 	}
385 	return pca_data->chip;
386 }
387 
388 static int pca_init(struct i2c_adapter *adap)
389 {
390 	struct i2c_algo_pca_data *pca_data = adap->algo_data;
391 
392 	adap->algo = &pca_algo;
393 
394 	if (pca_probe_chip(adap) == I2C_PCA_CHIP_9564) {
395 		static int freqs[] = {330, 288, 217, 146, 88, 59, 44, 36};
396 		int clock;
397 
398 		if (pca_data->i2c_clock > 7) {
399 			switch (pca_data->i2c_clock) {
400 			case 330000:
401 				pca_data->i2c_clock = I2C_PCA_CON_330kHz;
402 				break;
403 			case 288000:
404 				pca_data->i2c_clock = I2C_PCA_CON_288kHz;
405 				break;
406 			case 217000:
407 				pca_data->i2c_clock = I2C_PCA_CON_217kHz;
408 				break;
409 			case 146000:
410 				pca_data->i2c_clock = I2C_PCA_CON_146kHz;
411 				break;
412 			case 88000:
413 				pca_data->i2c_clock = I2C_PCA_CON_88kHz;
414 				break;
415 			case 59000:
416 				pca_data->i2c_clock = I2C_PCA_CON_59kHz;
417 				break;
418 			case 44000:
419 				pca_data->i2c_clock = I2C_PCA_CON_44kHz;
420 				break;
421 			case 36000:
422 				pca_data->i2c_clock = I2C_PCA_CON_36kHz;
423 				break;
424 			default:
425 				printk(KERN_WARNING
426 					"%s: Invalid I2C clock speed selected."
427 					" Using default 59kHz.\n", adap->name);
428 			pca_data->i2c_clock = I2C_PCA_CON_59kHz;
429 			}
430 		} else {
431 			printk(KERN_WARNING "%s: "
432 				"Choosing the clock frequency based on "
433 				"index is deprecated."
434 				" Use the nominal frequency.\n", adap->name);
435 		}
436 
437 		pca_reset(pca_data);
438 
439 		clock = pca_clock(pca_data);
440 		printk(KERN_INFO "%s: Clock frequency is %dkHz\n",
441 		     adap->name, freqs[clock]);
442 
443 		pca_set_con(pca_data, I2C_PCA_CON_ENSIO | clock);
444 	} else {
445 		int clock;
446 		int mode;
447 		int tlow, thi;
448 		/* Values can be found on PCA9665 datasheet section 7.3.2.6 */
449 		int min_tlow, min_thi;
450 		/* These values are the maximum raise and fall values allowed
451 		 * by the I2C operation mode (Standard, Fast or Fast+)
452 		 * They are used (added) below to calculate the clock dividers
453 		 * of PCA9665. Note that they are slightly different of the
454 		 * real maximum, to allow the change on mode exactly on the
455 		 * maximum clock rate for each mode
456 		 */
457 		int raise_fall_time;
458 
459 		if (pca_data->i2c_clock > 1265800) {
460 			printk(KERN_WARNING "%s: I2C clock speed too high."
461 				" Using 1265.8kHz.\n", adap->name);
462 			pca_data->i2c_clock = 1265800;
463 		}
464 
465 		if (pca_data->i2c_clock < 60300) {
466 			printk(KERN_WARNING "%s: I2C clock speed too low."
467 				" Using 60.3kHz.\n", adap->name);
468 			pca_data->i2c_clock = 60300;
469 		}
470 
471 		/* To avoid integer overflow, use clock/100 for calculations */
472 		clock = pca_clock(pca_data) / 100;
473 
474 		if (pca_data->i2c_clock > 1000000) {
475 			mode = I2C_PCA_MODE_TURBO;
476 			min_tlow = 14;
477 			min_thi  = 5;
478 			raise_fall_time = 22; /* Raise 11e-8s, Fall 11e-8s */
479 		} else if (pca_data->i2c_clock > 400000) {
480 			mode = I2C_PCA_MODE_FASTP;
481 			min_tlow = 17;
482 			min_thi  = 9;
483 			raise_fall_time = 22; /* Raise 11e-8s, Fall 11e-8s */
484 		} else if (pca_data->i2c_clock > 100000) {
485 			mode = I2C_PCA_MODE_FAST;
486 			min_tlow = 44;
487 			min_thi  = 20;
488 			raise_fall_time = 58; /* Raise 29e-8s, Fall 29e-8s */
489 		} else {
490 			mode = I2C_PCA_MODE_STD;
491 			min_tlow = 157;
492 			min_thi  = 134;
493 			raise_fall_time = 127; /* Raise 29e-8s, Fall 98e-8s */
494 		}
495 
496 		/* The minimum clock that respects the thi/tlow = 134/157 is
497 		 * 64800 Hz. Below that, we have to fix the tlow to 255 and
498 		 * calculate the thi factor.
499 		 */
500 		if (clock < 648) {
501 			tlow = 255;
502 			thi = 1000000 - clock * raise_fall_time;
503 			thi /= (I2C_PCA_OSC_PER * clock) - tlow;
504 		} else {
505 			tlow = (1000000 - clock * raise_fall_time) * min_tlow;
506 			tlow /= I2C_PCA_OSC_PER * clock * (min_thi + min_tlow);
507 			thi = tlow * min_thi / min_tlow;
508 		}
509 
510 		pca_reset(pca_data);
511 
512 		printk(KERN_INFO
513 		     "%s: Clock frequency is %dHz\n", adap->name, clock * 100);
514 
515 		pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_IMODE);
516 		pca_outw(pca_data, I2C_PCA_IND, mode);
517 		pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_ISCLL);
518 		pca_outw(pca_data, I2C_PCA_IND, tlow);
519 		pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_ISCLH);
520 		pca_outw(pca_data, I2C_PCA_IND, thi);
521 
522 		pca_set_con(pca_data, I2C_PCA_CON_ENSIO);
523 	}
524 	udelay(500); /* 500 us for oscillator to stabilise */
525 
526 	return 0;
527 }
528 
529 /*
530  * registering functions to load algorithms at runtime
531  */
532 int i2c_pca_add_bus(struct i2c_adapter *adap)
533 {
534 	int rval;
535 
536 	rval = pca_init(adap);
537 	if (rval)
538 		return rval;
539 
540 	return i2c_add_adapter(adap);
541 }
542 EXPORT_SYMBOL(i2c_pca_add_bus);
543 
544 int i2c_pca_add_numbered_bus(struct i2c_adapter *adap)
545 {
546 	int rval;
547 
548 	rval = pca_init(adap);
549 	if (rval)
550 		return rval;
551 
552 	return i2c_add_numbered_adapter(adap);
553 }
554 EXPORT_SYMBOL(i2c_pca_add_numbered_bus);
555 
556 MODULE_AUTHOR("Ian Campbell <icampbell@arcom.com>, "
557 	"Wolfram Sang <w.sang@pengutronix.de>");
558 MODULE_DESCRIPTION("I2C-Bus PCA9564/PCA9665 algorithm");
559 MODULE_LICENSE("GPL");
560 
561 module_param(i2c_debug, int, 0);
562