1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * System Trace Module (STM) infrastructure 4 * Copyright (c) 2014, Intel Corporation. 5 * 6 * STM class implements generic infrastructure for System Trace Module devices 7 * as defined in MIPI STPv2 specification. 8 */ 9 10 #include <linux/pm_runtime.h> 11 #include <linux/uaccess.h> 12 #include <linux/kernel.h> 13 #include <linux/module.h> 14 #include <linux/device.h> 15 #include <linux/compat.h> 16 #include <linux/kdev_t.h> 17 #include <linux/srcu.h> 18 #include <linux/slab.h> 19 #include <linux/stm.h> 20 #include <linux/fs.h> 21 #include <linux/mm.h> 22 #include <linux/vmalloc.h> 23 #include "stm.h" 24 25 #include <uapi/linux/stm.h> 26 27 static unsigned int stm_core_up; 28 29 /* 30 * The SRCU here makes sure that STM device doesn't disappear from under a 31 * stm_source_write() caller, which may want to have as little overhead as 32 * possible. 33 */ 34 static struct srcu_struct stm_source_srcu; 35 36 static ssize_t masters_show(struct device *dev, 37 struct device_attribute *attr, 38 char *buf) 39 { 40 struct stm_device *stm = to_stm_device(dev); 41 int ret; 42 43 ret = sprintf(buf, "%u %u\n", stm->data->sw_start, stm->data->sw_end); 44 45 return ret; 46 } 47 48 static DEVICE_ATTR_RO(masters); 49 50 static ssize_t channels_show(struct device *dev, 51 struct device_attribute *attr, 52 char *buf) 53 { 54 struct stm_device *stm = to_stm_device(dev); 55 int ret; 56 57 ret = sprintf(buf, "%u\n", stm->data->sw_nchannels); 58 59 return ret; 60 } 61 62 static DEVICE_ATTR_RO(channels); 63 64 static ssize_t hw_override_show(struct device *dev, 65 struct device_attribute *attr, 66 char *buf) 67 { 68 struct stm_device *stm = to_stm_device(dev); 69 int ret; 70 71 ret = sprintf(buf, "%u\n", stm->data->hw_override); 72 73 return ret; 74 } 75 76 static DEVICE_ATTR_RO(hw_override); 77 78 static struct attribute *stm_attrs[] = { 79 &dev_attr_masters.attr, 80 &dev_attr_channels.attr, 81 &dev_attr_hw_override.attr, 82 NULL, 83 }; 84 85 ATTRIBUTE_GROUPS(stm); 86 87 static struct class stm_class = { 88 .name = "stm", 89 .dev_groups = stm_groups, 90 }; 91 92 /** 93 * stm_find_device() - find stm device by name 94 * @buf: character buffer containing the name 95 * 96 * This is called when either policy gets assigned to an stm device or an 97 * stm_source device gets linked to an stm device. 98 * 99 * This grabs device's reference (get_device()) and module reference, both 100 * of which the calling path needs to make sure to drop with stm_put_device(). 101 * 102 * Return: stm device pointer or null if lookup failed. 103 */ 104 struct stm_device *stm_find_device(const char *buf) 105 { 106 struct stm_device *stm; 107 struct device *dev; 108 109 if (!stm_core_up) 110 return NULL; 111 112 dev = class_find_device_by_name(&stm_class, buf); 113 if (!dev) 114 return NULL; 115 116 stm = to_stm_device(dev); 117 if (!try_module_get(stm->owner)) { 118 /* matches class_find_device() above */ 119 put_device(dev); 120 return NULL; 121 } 122 123 return stm; 124 } 125 126 /** 127 * stm_put_device() - drop references on the stm device 128 * @stm: stm device, previously acquired by stm_find_device() 129 * 130 * This drops the module reference and device reference taken by 131 * stm_find_device() or stm_char_open(). 132 */ 133 void stm_put_device(struct stm_device *stm) 134 { 135 module_put(stm->owner); 136 put_device(&stm->dev); 137 } 138 139 /* 140 * Internally we only care about software-writable masters here, that is the 141 * ones in the range [stm_data->sw_start..stm_data..sw_end], however we need 142 * original master numbers to be visible externally, since they are the ones 143 * that will appear in the STP stream. Thus, the internal bookkeeping uses 144 * $master - stm_data->sw_start to reference master descriptors and such. 145 */ 146 147 #define __stm_master(_s, _m) \ 148 ((_s)->masters[(_m) - (_s)->data->sw_start]) 149 150 static inline struct stp_master * 151 stm_master(struct stm_device *stm, unsigned int idx) 152 { 153 if (idx < stm->data->sw_start || idx > stm->data->sw_end) 154 return NULL; 155 156 return __stm_master(stm, idx); 157 } 158 159 static int stp_master_alloc(struct stm_device *stm, unsigned int idx) 160 { 161 struct stp_master *master; 162 163 master = kzalloc(struct_size(master, chan_map, 164 BITS_TO_LONGS(stm->data->sw_nchannels)), 165 GFP_ATOMIC); 166 if (!master) 167 return -ENOMEM; 168 169 master->nr_free = stm->data->sw_nchannels; 170 __stm_master(stm, idx) = master; 171 172 return 0; 173 } 174 175 static void stp_master_free(struct stm_device *stm, unsigned int idx) 176 { 177 struct stp_master *master = stm_master(stm, idx); 178 179 if (!master) 180 return; 181 182 __stm_master(stm, idx) = NULL; 183 kfree(master); 184 } 185 186 static void stm_output_claim(struct stm_device *stm, struct stm_output *output) 187 { 188 struct stp_master *master = stm_master(stm, output->master); 189 190 lockdep_assert_held(&stm->mc_lock); 191 lockdep_assert_held(&output->lock); 192 193 if (WARN_ON_ONCE(master->nr_free < output->nr_chans)) 194 return; 195 196 bitmap_allocate_region(&master->chan_map[0], output->channel, 197 ilog2(output->nr_chans)); 198 199 master->nr_free -= output->nr_chans; 200 } 201 202 static void 203 stm_output_disclaim(struct stm_device *stm, struct stm_output *output) 204 { 205 struct stp_master *master = stm_master(stm, output->master); 206 207 lockdep_assert_held(&stm->mc_lock); 208 lockdep_assert_held(&output->lock); 209 210 bitmap_release_region(&master->chan_map[0], output->channel, 211 ilog2(output->nr_chans)); 212 213 master->nr_free += output->nr_chans; 214 output->nr_chans = 0; 215 } 216 217 /* 218 * This is like bitmap_find_free_region(), except it can ignore @start bits 219 * at the beginning. 220 */ 221 static int find_free_channels(unsigned long *bitmap, unsigned int start, 222 unsigned int end, unsigned int width) 223 { 224 unsigned int pos; 225 int i; 226 227 for (pos = start; pos < end + 1; pos = ALIGN(pos, width)) { 228 pos = find_next_zero_bit(bitmap, end + 1, pos); 229 if (pos + width > end + 1) 230 break; 231 232 if (pos & (width - 1)) 233 continue; 234 235 for (i = 1; i < width && !test_bit(pos + i, bitmap); i++) 236 ; 237 if (i == width) 238 return pos; 239 240 /* step over [pos..pos+i) to continue search */ 241 pos += i; 242 } 243 244 return -1; 245 } 246 247 static int 248 stm_find_master_chan(struct stm_device *stm, unsigned int width, 249 unsigned int *mstart, unsigned int mend, 250 unsigned int *cstart, unsigned int cend) 251 { 252 struct stp_master *master; 253 unsigned int midx; 254 int pos, err; 255 256 for (midx = *mstart; midx <= mend; midx++) { 257 if (!stm_master(stm, midx)) { 258 err = stp_master_alloc(stm, midx); 259 if (err) 260 return err; 261 } 262 263 master = stm_master(stm, midx); 264 265 if (!master->nr_free) 266 continue; 267 268 pos = find_free_channels(master->chan_map, *cstart, cend, 269 width); 270 if (pos < 0) 271 continue; 272 273 *mstart = midx; 274 *cstart = pos; 275 return 0; 276 } 277 278 return -ENOSPC; 279 } 280 281 static int stm_output_assign(struct stm_device *stm, unsigned int width, 282 struct stp_policy_node *policy_node, 283 struct stm_output *output) 284 { 285 unsigned int midx, cidx, mend, cend; 286 int ret = -EINVAL; 287 288 if (width > stm->data->sw_nchannels) 289 return -EINVAL; 290 291 /* We no longer accept policy_node==NULL here */ 292 if (WARN_ON_ONCE(!policy_node)) 293 return -EINVAL; 294 295 /* 296 * Also, the caller holds reference to policy_node, so it won't 297 * disappear on us. 298 */ 299 stp_policy_node_get_ranges(policy_node, &midx, &mend, &cidx, &cend); 300 301 spin_lock(&stm->mc_lock); 302 spin_lock(&output->lock); 303 /* output is already assigned -- shouldn't happen */ 304 if (WARN_ON_ONCE(output->nr_chans)) 305 goto unlock; 306 307 ret = stm_find_master_chan(stm, width, &midx, mend, &cidx, cend); 308 if (ret < 0) 309 goto unlock; 310 311 output->master = midx; 312 output->channel = cidx; 313 output->nr_chans = width; 314 if (stm->pdrv->output_open) { 315 void *priv = stp_policy_node_priv(policy_node); 316 317 if (WARN_ON_ONCE(!priv)) 318 goto unlock; 319 320 /* configfs subsys mutex is held by the caller */ 321 ret = stm->pdrv->output_open(priv, output); 322 if (ret) 323 goto unlock; 324 } 325 326 stm_output_claim(stm, output); 327 dev_dbg(&stm->dev, "assigned %u:%u (+%u)\n", midx, cidx, width); 328 329 ret = 0; 330 unlock: 331 if (ret) 332 output->nr_chans = 0; 333 334 spin_unlock(&output->lock); 335 spin_unlock(&stm->mc_lock); 336 337 return ret; 338 } 339 340 static void stm_output_free(struct stm_device *stm, struct stm_output *output) 341 { 342 spin_lock(&stm->mc_lock); 343 spin_lock(&output->lock); 344 if (output->nr_chans) 345 stm_output_disclaim(stm, output); 346 if (stm->pdrv && stm->pdrv->output_close) 347 stm->pdrv->output_close(output); 348 spin_unlock(&output->lock); 349 spin_unlock(&stm->mc_lock); 350 } 351 352 static void stm_output_init(struct stm_output *output) 353 { 354 spin_lock_init(&output->lock); 355 } 356 357 static int major_match(struct device *dev, const void *data) 358 { 359 unsigned int major = *(unsigned int *)data; 360 361 return MAJOR(dev->devt) == major; 362 } 363 364 /* 365 * Framing protocol management 366 * Modules can implement STM protocol drivers and (un-)register them 367 * with the STM class framework. 368 */ 369 static struct list_head stm_pdrv_head; 370 static struct mutex stm_pdrv_mutex; 371 372 struct stm_pdrv_entry { 373 struct list_head entry; 374 const struct stm_protocol_driver *pdrv; 375 const struct config_item_type *node_type; 376 }; 377 378 static const struct stm_pdrv_entry * 379 __stm_lookup_protocol(const char *name) 380 { 381 struct stm_pdrv_entry *pe; 382 383 /* 384 * If no name is given (NULL or ""), fall back to "p_basic". 385 */ 386 if (!name || !*name) 387 name = "p_basic"; 388 389 list_for_each_entry(pe, &stm_pdrv_head, entry) { 390 if (!strcmp(name, pe->pdrv->name)) 391 return pe; 392 } 393 394 return NULL; 395 } 396 397 int stm_register_protocol(const struct stm_protocol_driver *pdrv) 398 { 399 struct stm_pdrv_entry *pe = NULL; 400 int ret = -ENOMEM; 401 402 mutex_lock(&stm_pdrv_mutex); 403 404 if (__stm_lookup_protocol(pdrv->name)) { 405 ret = -EEXIST; 406 goto unlock; 407 } 408 409 pe = kzalloc(sizeof(*pe), GFP_KERNEL); 410 if (!pe) 411 goto unlock; 412 413 if (pdrv->policy_attr) { 414 pe->node_type = get_policy_node_type(pdrv->policy_attr); 415 if (!pe->node_type) 416 goto unlock; 417 } 418 419 list_add_tail(&pe->entry, &stm_pdrv_head); 420 pe->pdrv = pdrv; 421 422 ret = 0; 423 unlock: 424 mutex_unlock(&stm_pdrv_mutex); 425 426 if (ret) 427 kfree(pe); 428 429 return ret; 430 } 431 EXPORT_SYMBOL_GPL(stm_register_protocol); 432 433 void stm_unregister_protocol(const struct stm_protocol_driver *pdrv) 434 { 435 struct stm_pdrv_entry *pe, *iter; 436 437 mutex_lock(&stm_pdrv_mutex); 438 439 list_for_each_entry_safe(pe, iter, &stm_pdrv_head, entry) { 440 if (pe->pdrv == pdrv) { 441 list_del(&pe->entry); 442 443 if (pe->node_type) { 444 kfree(pe->node_type->ct_attrs); 445 kfree(pe->node_type); 446 } 447 kfree(pe); 448 break; 449 } 450 } 451 452 mutex_unlock(&stm_pdrv_mutex); 453 } 454 EXPORT_SYMBOL_GPL(stm_unregister_protocol); 455 456 static bool stm_get_protocol(const struct stm_protocol_driver *pdrv) 457 { 458 return try_module_get(pdrv->owner); 459 } 460 461 void stm_put_protocol(const struct stm_protocol_driver *pdrv) 462 { 463 module_put(pdrv->owner); 464 } 465 466 int stm_lookup_protocol(const char *name, 467 const struct stm_protocol_driver **pdrv, 468 const struct config_item_type **node_type) 469 { 470 const struct stm_pdrv_entry *pe; 471 472 mutex_lock(&stm_pdrv_mutex); 473 474 pe = __stm_lookup_protocol(name); 475 if (pe && pe->pdrv && stm_get_protocol(pe->pdrv)) { 476 *pdrv = pe->pdrv; 477 *node_type = pe->node_type; 478 } 479 480 mutex_unlock(&stm_pdrv_mutex); 481 482 return pe ? 0 : -ENOENT; 483 } 484 485 static int stm_char_open(struct inode *inode, struct file *file) 486 { 487 struct stm_file *stmf; 488 struct device *dev; 489 unsigned int major = imajor(inode); 490 int err = -ENOMEM; 491 492 dev = class_find_device(&stm_class, NULL, &major, major_match); 493 if (!dev) 494 return -ENODEV; 495 496 stmf = kzalloc(sizeof(*stmf), GFP_KERNEL); 497 if (!stmf) 498 goto err_put_device; 499 500 err = -ENODEV; 501 stm_output_init(&stmf->output); 502 stmf->stm = to_stm_device(dev); 503 504 if (!try_module_get(stmf->stm->owner)) 505 goto err_free; 506 507 file->private_data = stmf; 508 509 return nonseekable_open(inode, file); 510 511 err_free: 512 kfree(stmf); 513 err_put_device: 514 /* matches class_find_device() above */ 515 put_device(dev); 516 517 return err; 518 } 519 520 static int stm_char_release(struct inode *inode, struct file *file) 521 { 522 struct stm_file *stmf = file->private_data; 523 struct stm_device *stm = stmf->stm; 524 525 if (stm->data->unlink) 526 stm->data->unlink(stm->data, stmf->output.master, 527 stmf->output.channel); 528 529 stm_output_free(stm, &stmf->output); 530 531 /* 532 * matches the stm_char_open()'s 533 * class_find_device() + try_module_get() 534 */ 535 stm_put_device(stm); 536 kfree(stmf); 537 538 return 0; 539 } 540 541 static int 542 stm_assign_first_policy(struct stm_device *stm, struct stm_output *output, 543 char **ids, unsigned int width) 544 { 545 struct stp_policy_node *pn; 546 int err, n; 547 548 /* 549 * On success, stp_policy_node_lookup() will return holding the 550 * configfs subsystem mutex, which is then released in 551 * stp_policy_node_put(). This allows the pdrv->output_open() in 552 * stm_output_assign() to serialize against the attribute accessors. 553 */ 554 for (n = 0, pn = NULL; ids[n] && !pn; n++) 555 pn = stp_policy_node_lookup(stm, ids[n]); 556 557 if (!pn) 558 return -EINVAL; 559 560 err = stm_output_assign(stm, width, pn, output); 561 562 stp_policy_node_put(pn); 563 564 return err; 565 } 566 567 /** 568 * stm_data_write() - send the given payload as data packets 569 * @data: stm driver's data 570 * @m: STP master 571 * @c: STP channel 572 * @ts_first: timestamp the first packet 573 * @buf: data payload buffer 574 * @count: data payload size 575 */ 576 ssize_t notrace stm_data_write(struct stm_data *data, unsigned int m, 577 unsigned int c, bool ts_first, const void *buf, 578 size_t count) 579 { 580 unsigned int flags = ts_first ? STP_PACKET_TIMESTAMPED : 0; 581 ssize_t sz; 582 size_t pos; 583 584 for (pos = 0, sz = 0; pos < count; pos += sz) { 585 sz = min_t(unsigned int, count - pos, 8); 586 sz = data->packet(data, m, c, STP_PACKET_DATA, flags, sz, 587 &((u8 *)buf)[pos]); 588 if (sz <= 0) 589 break; 590 591 if (ts_first) { 592 flags = 0; 593 ts_first = false; 594 } 595 } 596 597 return sz < 0 ? sz : pos; 598 } 599 EXPORT_SYMBOL_GPL(stm_data_write); 600 601 static ssize_t notrace 602 stm_write(struct stm_device *stm, struct stm_output *output, 603 unsigned int chan, const char *buf, size_t count, struct stm_source_data *source) 604 { 605 int err; 606 607 /* stm->pdrv is serialized against policy_mutex */ 608 if (!stm->pdrv) 609 return -ENODEV; 610 611 err = stm->pdrv->write(stm->data, output, chan, buf, count, source); 612 if (err < 0) 613 return err; 614 615 return err; 616 } 617 618 static ssize_t stm_char_write(struct file *file, const char __user *buf, 619 size_t count, loff_t *ppos) 620 { 621 struct stm_file *stmf = file->private_data; 622 struct stm_device *stm = stmf->stm; 623 char *kbuf; 624 int err; 625 626 if (count + 1 > PAGE_SIZE) 627 count = PAGE_SIZE - 1; 628 629 /* 630 * If no m/c have been assigned to this writer up to this 631 * point, try to use the task name and "default" policy entries. 632 */ 633 if (!stmf->output.nr_chans) { 634 char comm[sizeof(current->comm)]; 635 char *ids[] = { comm, "default", NULL }; 636 637 get_task_comm(comm, current); 638 639 err = stm_assign_first_policy(stmf->stm, &stmf->output, ids, 1); 640 /* 641 * EBUSY means that somebody else just assigned this 642 * output, which is just fine for write() 643 */ 644 if (err) 645 return err; 646 } 647 648 kbuf = kmalloc(count + 1, GFP_KERNEL); 649 if (!kbuf) 650 return -ENOMEM; 651 652 err = copy_from_user(kbuf, buf, count); 653 if (err) { 654 kfree(kbuf); 655 return -EFAULT; 656 } 657 658 pm_runtime_get_sync(&stm->dev); 659 660 count = stm_write(stm, &stmf->output, 0, kbuf, count, NULL); 661 662 pm_runtime_mark_last_busy(&stm->dev); 663 pm_runtime_put_autosuspend(&stm->dev); 664 kfree(kbuf); 665 666 return count; 667 } 668 669 static void stm_mmap_open(struct vm_area_struct *vma) 670 { 671 struct stm_file *stmf = vma->vm_file->private_data; 672 struct stm_device *stm = stmf->stm; 673 674 pm_runtime_get(&stm->dev); 675 } 676 677 static void stm_mmap_close(struct vm_area_struct *vma) 678 { 679 struct stm_file *stmf = vma->vm_file->private_data; 680 struct stm_device *stm = stmf->stm; 681 682 pm_runtime_mark_last_busy(&stm->dev); 683 pm_runtime_put_autosuspend(&stm->dev); 684 } 685 686 static const struct vm_operations_struct stm_mmap_vmops = { 687 .open = stm_mmap_open, 688 .close = stm_mmap_close, 689 }; 690 691 static int stm_char_mmap(struct file *file, struct vm_area_struct *vma) 692 { 693 struct stm_file *stmf = file->private_data; 694 struct stm_device *stm = stmf->stm; 695 unsigned long size, phys; 696 697 if (!stm->data->mmio_addr) 698 return -EOPNOTSUPP; 699 700 if (vma->vm_pgoff) 701 return -EINVAL; 702 703 size = vma->vm_end - vma->vm_start; 704 705 if (stmf->output.nr_chans * stm->data->sw_mmiosz != size) 706 return -EINVAL; 707 708 phys = stm->data->mmio_addr(stm->data, stmf->output.master, 709 stmf->output.channel, 710 stmf->output.nr_chans); 711 712 if (!phys) 713 return -EINVAL; 714 715 pm_runtime_get_sync(&stm->dev); 716 717 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 718 vm_flags_set(vma, VM_IO | VM_DONTEXPAND | VM_DONTDUMP); 719 vma->vm_ops = &stm_mmap_vmops; 720 vm_iomap_memory(vma, phys, size); 721 722 return 0; 723 } 724 725 static int stm_char_policy_set_ioctl(struct stm_file *stmf, void __user *arg) 726 { 727 struct stm_device *stm = stmf->stm; 728 struct stp_policy_id *id; 729 char *ids[] = { NULL, NULL }; 730 int ret = -EINVAL, wlimit = 1; 731 u32 size; 732 733 if (stmf->output.nr_chans) 734 return -EBUSY; 735 736 if (copy_from_user(&size, arg, sizeof(size))) 737 return -EFAULT; 738 739 if (size < sizeof(*id) || size >= PATH_MAX + sizeof(*id)) 740 return -EINVAL; 741 742 /* 743 * size + 1 to make sure the .id string at the bottom is terminated, 744 * which is also why memdup_user() is not useful here 745 */ 746 id = kzalloc(size + 1, GFP_KERNEL); 747 if (!id) 748 return -ENOMEM; 749 750 if (copy_from_user(id, arg, size)) { 751 ret = -EFAULT; 752 goto err_free; 753 } 754 755 if (id->__reserved_0 || id->__reserved_1) 756 goto err_free; 757 758 if (stm->data->sw_mmiosz) 759 wlimit = PAGE_SIZE / stm->data->sw_mmiosz; 760 761 if (id->width < 1 || id->width > wlimit) 762 goto err_free; 763 764 ids[0] = id->id; 765 ret = stm_assign_first_policy(stmf->stm, &stmf->output, ids, 766 id->width); 767 if (ret) 768 goto err_free; 769 770 if (stm->data->link) 771 ret = stm->data->link(stm->data, stmf->output.master, 772 stmf->output.channel); 773 774 if (ret) 775 stm_output_free(stmf->stm, &stmf->output); 776 777 err_free: 778 kfree(id); 779 780 return ret; 781 } 782 783 static int stm_char_policy_get_ioctl(struct stm_file *stmf, void __user *arg) 784 { 785 struct stp_policy_id id = { 786 .size = sizeof(id), 787 .master = stmf->output.master, 788 .channel = stmf->output.channel, 789 .width = stmf->output.nr_chans, 790 .__reserved_0 = 0, 791 .__reserved_1 = 0, 792 }; 793 794 return copy_to_user(arg, &id, id.size) ? -EFAULT : 0; 795 } 796 797 static long 798 stm_char_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 799 { 800 struct stm_file *stmf = file->private_data; 801 struct stm_data *stm_data = stmf->stm->data; 802 int err = -ENOTTY; 803 u64 options; 804 805 switch (cmd) { 806 case STP_POLICY_ID_SET: 807 err = stm_char_policy_set_ioctl(stmf, (void __user *)arg); 808 if (err) 809 return err; 810 811 return stm_char_policy_get_ioctl(stmf, (void __user *)arg); 812 813 case STP_POLICY_ID_GET: 814 return stm_char_policy_get_ioctl(stmf, (void __user *)arg); 815 816 case STP_SET_OPTIONS: 817 if (copy_from_user(&options, (u64 __user *)arg, sizeof(u64))) 818 return -EFAULT; 819 820 if (stm_data->set_options) 821 err = stm_data->set_options(stm_data, 822 stmf->output.master, 823 stmf->output.channel, 824 stmf->output.nr_chans, 825 options); 826 827 break; 828 default: 829 break; 830 } 831 832 return err; 833 } 834 835 static const struct file_operations stm_fops = { 836 .open = stm_char_open, 837 .release = stm_char_release, 838 .write = stm_char_write, 839 .mmap = stm_char_mmap, 840 .unlocked_ioctl = stm_char_ioctl, 841 .compat_ioctl = compat_ptr_ioctl, 842 .llseek = no_llseek, 843 }; 844 845 static void stm_device_release(struct device *dev) 846 { 847 struct stm_device *stm = to_stm_device(dev); 848 849 vfree(stm); 850 } 851 852 int stm_register_device(struct device *parent, struct stm_data *stm_data, 853 struct module *owner) 854 { 855 struct stm_device *stm; 856 unsigned int nmasters; 857 int err = -ENOMEM; 858 859 if (!stm_core_up) 860 return -EPROBE_DEFER; 861 862 if (!stm_data->packet || !stm_data->sw_nchannels) 863 return -EINVAL; 864 865 nmasters = stm_data->sw_end - stm_data->sw_start + 1; 866 stm = vzalloc(sizeof(*stm) + nmasters * sizeof(void *)); 867 if (!stm) 868 return -ENOMEM; 869 870 stm->major = register_chrdev(0, stm_data->name, &stm_fops); 871 if (stm->major < 0) { 872 err = stm->major; 873 vfree(stm); 874 return err; 875 } 876 877 device_initialize(&stm->dev); 878 stm->dev.devt = MKDEV(stm->major, 0); 879 stm->dev.class = &stm_class; 880 stm->dev.parent = parent; 881 stm->dev.release = stm_device_release; 882 883 mutex_init(&stm->link_mutex); 884 spin_lock_init(&stm->link_lock); 885 INIT_LIST_HEAD(&stm->link_list); 886 887 /* initialize the object before it is accessible via sysfs */ 888 spin_lock_init(&stm->mc_lock); 889 mutex_init(&stm->policy_mutex); 890 stm->sw_nmasters = nmasters; 891 stm->owner = owner; 892 stm->data = stm_data; 893 stm_data->stm = stm; 894 895 err = kobject_set_name(&stm->dev.kobj, "%s", stm_data->name); 896 if (err) 897 goto err_device; 898 899 err = device_add(&stm->dev); 900 if (err) 901 goto err_device; 902 903 /* 904 * Use delayed autosuspend to avoid bouncing back and forth 905 * on recurring character device writes, with the initial 906 * delay time of 2 seconds. 907 */ 908 pm_runtime_no_callbacks(&stm->dev); 909 pm_runtime_use_autosuspend(&stm->dev); 910 pm_runtime_set_autosuspend_delay(&stm->dev, 2000); 911 pm_runtime_set_suspended(&stm->dev); 912 pm_runtime_enable(&stm->dev); 913 914 return 0; 915 916 err_device: 917 unregister_chrdev(stm->major, stm_data->name); 918 919 /* calls stm_device_release() */ 920 put_device(&stm->dev); 921 922 return err; 923 } 924 EXPORT_SYMBOL_GPL(stm_register_device); 925 926 static int __stm_source_link_drop(struct stm_source_device *src, 927 struct stm_device *stm); 928 929 void stm_unregister_device(struct stm_data *stm_data) 930 { 931 struct stm_device *stm = stm_data->stm; 932 struct stm_source_device *src, *iter; 933 int i, ret; 934 935 pm_runtime_dont_use_autosuspend(&stm->dev); 936 pm_runtime_disable(&stm->dev); 937 938 mutex_lock(&stm->link_mutex); 939 list_for_each_entry_safe(src, iter, &stm->link_list, link_entry) { 940 ret = __stm_source_link_drop(src, stm); 941 /* 942 * src <-> stm link must not change under the same 943 * stm::link_mutex, so complain loudly if it has; 944 * also in this situation ret!=0 means this src is 945 * not connected to this stm and it should be otherwise 946 * safe to proceed with the tear-down of stm. 947 */ 948 WARN_ON_ONCE(ret); 949 } 950 mutex_unlock(&stm->link_mutex); 951 952 synchronize_srcu(&stm_source_srcu); 953 954 unregister_chrdev(stm->major, stm_data->name); 955 956 mutex_lock(&stm->policy_mutex); 957 if (stm->policy) 958 stp_policy_unbind(stm->policy); 959 mutex_unlock(&stm->policy_mutex); 960 961 for (i = stm->data->sw_start; i <= stm->data->sw_end; i++) 962 stp_master_free(stm, i); 963 964 device_unregister(&stm->dev); 965 stm_data->stm = NULL; 966 } 967 EXPORT_SYMBOL_GPL(stm_unregister_device); 968 969 /* 970 * stm::link_list access serialization uses a spinlock and a mutex; holding 971 * either of them guarantees that the list is stable; modification requires 972 * holding both of them. 973 * 974 * Lock ordering is as follows: 975 * stm::link_mutex 976 * stm::link_lock 977 * src::link_lock 978 */ 979 980 /** 981 * stm_source_link_add() - connect an stm_source device to an stm device 982 * @src: stm_source device 983 * @stm: stm device 984 * 985 * This function establishes a link from stm_source to an stm device so that 986 * the former can send out trace data to the latter. 987 * 988 * Return: 0 on success, -errno otherwise. 989 */ 990 static int stm_source_link_add(struct stm_source_device *src, 991 struct stm_device *stm) 992 { 993 char *ids[] = { NULL, "default", NULL }; 994 int err = -ENOMEM; 995 996 mutex_lock(&stm->link_mutex); 997 spin_lock(&stm->link_lock); 998 spin_lock(&src->link_lock); 999 1000 /* src->link is dereferenced under stm_source_srcu but not the list */ 1001 rcu_assign_pointer(src->link, stm); 1002 list_add_tail(&src->link_entry, &stm->link_list); 1003 1004 spin_unlock(&src->link_lock); 1005 spin_unlock(&stm->link_lock); 1006 mutex_unlock(&stm->link_mutex); 1007 1008 ids[0] = kstrdup(src->data->name, GFP_KERNEL); 1009 if (!ids[0]) 1010 goto fail_detach; 1011 1012 err = stm_assign_first_policy(stm, &src->output, ids, 1013 src->data->nr_chans); 1014 kfree(ids[0]); 1015 1016 if (err) 1017 goto fail_detach; 1018 1019 /* this is to notify the STM device that a new link has been made */ 1020 if (stm->data->link) 1021 err = stm->data->link(stm->data, src->output.master, 1022 src->output.channel); 1023 1024 if (err) 1025 goto fail_free_output; 1026 1027 /* this is to let the source carry out all necessary preparations */ 1028 if (src->data->link) 1029 src->data->link(src->data); 1030 1031 return 0; 1032 1033 fail_free_output: 1034 stm_output_free(stm, &src->output); 1035 1036 fail_detach: 1037 mutex_lock(&stm->link_mutex); 1038 spin_lock(&stm->link_lock); 1039 spin_lock(&src->link_lock); 1040 1041 rcu_assign_pointer(src->link, NULL); 1042 list_del_init(&src->link_entry); 1043 1044 spin_unlock(&src->link_lock); 1045 spin_unlock(&stm->link_lock); 1046 mutex_unlock(&stm->link_mutex); 1047 1048 return err; 1049 } 1050 1051 /** 1052 * __stm_source_link_drop() - detach stm_source from an stm device 1053 * @src: stm_source device 1054 * @stm: stm device 1055 * 1056 * If @stm is @src::link, disconnect them from one another and put the 1057 * reference on the @stm device. 1058 * 1059 * Caller must hold stm::link_mutex. 1060 */ 1061 static int __stm_source_link_drop(struct stm_source_device *src, 1062 struct stm_device *stm) 1063 { 1064 struct stm_device *link; 1065 int ret = 0; 1066 1067 lockdep_assert_held(&stm->link_mutex); 1068 1069 /* for stm::link_list modification, we hold both mutex and spinlock */ 1070 spin_lock(&stm->link_lock); 1071 spin_lock(&src->link_lock); 1072 link = srcu_dereference_check(src->link, &stm_source_srcu, 1); 1073 1074 /* 1075 * The linked device may have changed since we last looked, because 1076 * we weren't holding the src::link_lock back then; if this is the 1077 * case, tell the caller to retry. 1078 */ 1079 if (link != stm) { 1080 ret = -EAGAIN; 1081 goto unlock; 1082 } 1083 1084 stm_output_free(link, &src->output); 1085 list_del_init(&src->link_entry); 1086 pm_runtime_mark_last_busy(&link->dev); 1087 pm_runtime_put_autosuspend(&link->dev); 1088 /* matches stm_find_device() from stm_source_link_store() */ 1089 stm_put_device(link); 1090 rcu_assign_pointer(src->link, NULL); 1091 1092 unlock: 1093 spin_unlock(&src->link_lock); 1094 spin_unlock(&stm->link_lock); 1095 1096 /* 1097 * Call the unlink callbacks for both source and stm, when we know 1098 * that we have actually performed the unlinking. 1099 */ 1100 if (!ret) { 1101 if (src->data->unlink) 1102 src->data->unlink(src->data); 1103 1104 if (stm->data->unlink) 1105 stm->data->unlink(stm->data, src->output.master, 1106 src->output.channel); 1107 } 1108 1109 return ret; 1110 } 1111 1112 /** 1113 * stm_source_link_drop() - detach stm_source from its stm device 1114 * @src: stm_source device 1115 * 1116 * Unlinking means disconnecting from source's STM device; after this 1117 * writes will be unsuccessful until it is linked to a new STM device. 1118 * 1119 * This will happen on "stm_source_link" sysfs attribute write to undo 1120 * the existing link (if any), or on linked STM device's de-registration. 1121 */ 1122 static void stm_source_link_drop(struct stm_source_device *src) 1123 { 1124 struct stm_device *stm; 1125 int idx, ret; 1126 1127 retry: 1128 idx = srcu_read_lock(&stm_source_srcu); 1129 /* 1130 * The stm device will be valid for the duration of this 1131 * read section, but the link may change before we grab 1132 * the src::link_lock in __stm_source_link_drop(). 1133 */ 1134 stm = srcu_dereference(src->link, &stm_source_srcu); 1135 1136 ret = 0; 1137 if (stm) { 1138 mutex_lock(&stm->link_mutex); 1139 ret = __stm_source_link_drop(src, stm); 1140 mutex_unlock(&stm->link_mutex); 1141 } 1142 1143 srcu_read_unlock(&stm_source_srcu, idx); 1144 1145 /* if it did change, retry */ 1146 if (ret == -EAGAIN) 1147 goto retry; 1148 } 1149 1150 static ssize_t stm_source_link_show(struct device *dev, 1151 struct device_attribute *attr, 1152 char *buf) 1153 { 1154 struct stm_source_device *src = to_stm_source_device(dev); 1155 struct stm_device *stm; 1156 int idx, ret; 1157 1158 idx = srcu_read_lock(&stm_source_srcu); 1159 stm = srcu_dereference(src->link, &stm_source_srcu); 1160 ret = sprintf(buf, "%s\n", 1161 stm ? dev_name(&stm->dev) : "<none>"); 1162 srcu_read_unlock(&stm_source_srcu, idx); 1163 1164 return ret; 1165 } 1166 1167 static ssize_t stm_source_link_store(struct device *dev, 1168 struct device_attribute *attr, 1169 const char *buf, size_t count) 1170 { 1171 struct stm_source_device *src = to_stm_source_device(dev); 1172 struct stm_device *link; 1173 int err; 1174 1175 stm_source_link_drop(src); 1176 1177 link = stm_find_device(buf); 1178 if (!link) 1179 return -EINVAL; 1180 1181 pm_runtime_get(&link->dev); 1182 1183 err = stm_source_link_add(src, link); 1184 if (err) { 1185 pm_runtime_put_autosuspend(&link->dev); 1186 /* matches the stm_find_device() above */ 1187 stm_put_device(link); 1188 } 1189 1190 return err ? : count; 1191 } 1192 1193 static DEVICE_ATTR_RW(stm_source_link); 1194 1195 static struct attribute *stm_source_attrs[] = { 1196 &dev_attr_stm_source_link.attr, 1197 NULL, 1198 }; 1199 1200 ATTRIBUTE_GROUPS(stm_source); 1201 1202 static struct class stm_source_class = { 1203 .name = "stm_source", 1204 .dev_groups = stm_source_groups, 1205 }; 1206 1207 static void stm_source_device_release(struct device *dev) 1208 { 1209 struct stm_source_device *src = to_stm_source_device(dev); 1210 1211 kfree(src); 1212 } 1213 1214 /** 1215 * stm_source_register_device() - register an stm_source device 1216 * @parent: parent device 1217 * @data: device description structure 1218 * 1219 * This will create a device of stm_source class that can write 1220 * data to an stm device once linked. 1221 * 1222 * Return: 0 on success, -errno otherwise. 1223 */ 1224 int stm_source_register_device(struct device *parent, 1225 struct stm_source_data *data) 1226 { 1227 struct stm_source_device *src; 1228 int err; 1229 1230 if (!stm_core_up) 1231 return -EPROBE_DEFER; 1232 1233 src = kzalloc(sizeof(*src), GFP_KERNEL); 1234 if (!src) 1235 return -ENOMEM; 1236 1237 device_initialize(&src->dev); 1238 src->dev.class = &stm_source_class; 1239 src->dev.parent = parent; 1240 src->dev.release = stm_source_device_release; 1241 1242 err = kobject_set_name(&src->dev.kobj, "%s", data->name); 1243 if (err) 1244 goto err; 1245 1246 pm_runtime_no_callbacks(&src->dev); 1247 pm_runtime_forbid(&src->dev); 1248 1249 err = device_add(&src->dev); 1250 if (err) 1251 goto err; 1252 1253 stm_output_init(&src->output); 1254 spin_lock_init(&src->link_lock); 1255 INIT_LIST_HEAD(&src->link_entry); 1256 src->data = data; 1257 data->src = src; 1258 1259 return 0; 1260 1261 err: 1262 put_device(&src->dev); 1263 1264 return err; 1265 } 1266 EXPORT_SYMBOL_GPL(stm_source_register_device); 1267 1268 /** 1269 * stm_source_unregister_device() - unregister an stm_source device 1270 * @data: device description that was used to register the device 1271 * 1272 * This will remove a previously created stm_source device from the system. 1273 */ 1274 void stm_source_unregister_device(struct stm_source_data *data) 1275 { 1276 struct stm_source_device *src = data->src; 1277 1278 stm_source_link_drop(src); 1279 1280 device_unregister(&src->dev); 1281 } 1282 EXPORT_SYMBOL_GPL(stm_source_unregister_device); 1283 1284 int notrace stm_source_write(struct stm_source_data *data, 1285 unsigned int chan, 1286 const char *buf, size_t count) 1287 { 1288 struct stm_source_device *src = data->src; 1289 struct stm_device *stm; 1290 int idx; 1291 1292 if (!src->output.nr_chans) 1293 return -ENODEV; 1294 1295 if (chan >= src->output.nr_chans) 1296 return -EINVAL; 1297 1298 idx = srcu_read_lock(&stm_source_srcu); 1299 1300 stm = srcu_dereference(src->link, &stm_source_srcu); 1301 if (stm) 1302 count = stm_write(stm, &src->output, chan, buf, count, data); 1303 else 1304 count = -ENODEV; 1305 1306 srcu_read_unlock(&stm_source_srcu, idx); 1307 1308 return count; 1309 } 1310 EXPORT_SYMBOL_GPL(stm_source_write); 1311 1312 static int __init stm_core_init(void) 1313 { 1314 int err; 1315 1316 err = class_register(&stm_class); 1317 if (err) 1318 return err; 1319 1320 err = class_register(&stm_source_class); 1321 if (err) 1322 goto err_stm; 1323 1324 err = stp_configfs_init(); 1325 if (err) 1326 goto err_src; 1327 1328 init_srcu_struct(&stm_source_srcu); 1329 INIT_LIST_HEAD(&stm_pdrv_head); 1330 mutex_init(&stm_pdrv_mutex); 1331 1332 /* 1333 * So as to not confuse existing users with a requirement 1334 * to load yet another module, do it here. 1335 */ 1336 if (IS_ENABLED(CONFIG_STM_PROTO_BASIC)) 1337 (void)request_module_nowait("stm_p_basic"); 1338 stm_core_up++; 1339 1340 return 0; 1341 1342 err_src: 1343 class_unregister(&stm_source_class); 1344 err_stm: 1345 class_unregister(&stm_class); 1346 1347 return err; 1348 } 1349 1350 module_init(stm_core_init); 1351 1352 static void __exit stm_core_exit(void) 1353 { 1354 cleanup_srcu_struct(&stm_source_srcu); 1355 class_unregister(&stm_source_class); 1356 class_unregister(&stm_class); 1357 stp_configfs_exit(); 1358 } 1359 1360 module_exit(stm_core_exit); 1361 1362 MODULE_LICENSE("GPL v2"); 1363 MODULE_DESCRIPTION("System Trace Module device class"); 1364 MODULE_AUTHOR("Alexander Shishkin <alexander.shishkin@linux.intel.com>"); 1365