1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2016 Linaro Limited. All rights reserved. 4 * Author: Mathieu Poirier <mathieu.poirier@linaro.org> 5 */ 6 7 #include <linux/atomic.h> 8 #include <linux/coresight.h> 9 #include <linux/dma-mapping.h> 10 #include <linux/iommu.h> 11 #include <linux/idr.h> 12 #include <linux/mutex.h> 13 #include <linux/refcount.h> 14 #include <linux/slab.h> 15 #include <linux/types.h> 16 #include <linux/vmalloc.h> 17 #include "coresight-catu.h" 18 #include "coresight-etm-perf.h" 19 #include "coresight-priv.h" 20 #include "coresight-tmc.h" 21 22 struct etr_flat_buf { 23 struct device *dev; 24 dma_addr_t daddr; 25 void *vaddr; 26 size_t size; 27 }; 28 29 struct etr_buf_hw { 30 bool has_iommu; 31 bool has_etr_sg; 32 bool has_catu; 33 }; 34 35 /* 36 * etr_perf_buffer - Perf buffer used for ETR 37 * @drvdata - The ETR drvdaga this buffer has been allocated for. 38 * @etr_buf - Actual buffer used by the ETR 39 * @pid - The PID this etr_perf_buffer belongs to. 40 * @snaphost - Perf session mode 41 * @nr_pages - Number of pages in the ring buffer. 42 * @pages - Array of Pages in the ring buffer. 43 */ 44 struct etr_perf_buffer { 45 struct tmc_drvdata *drvdata; 46 struct etr_buf *etr_buf; 47 pid_t pid; 48 bool snapshot; 49 int nr_pages; 50 void **pages; 51 }; 52 53 /* Convert the perf index to an offset within the ETR buffer */ 54 #define PERF_IDX2OFF(idx, buf) \ 55 ((idx) % ((unsigned long)(buf)->nr_pages << PAGE_SHIFT)) 56 57 /* Lower limit for ETR hardware buffer */ 58 #define TMC_ETR_PERF_MIN_BUF_SIZE SZ_1M 59 60 /* 61 * The TMC ETR SG has a page size of 4K. The SG table contains pointers 62 * to 4KB buffers. However, the OS may use a PAGE_SIZE different from 63 * 4K (i.e, 16KB or 64KB). This implies that a single OS page could 64 * contain more than one SG buffer and tables. 65 * 66 * A table entry has the following format: 67 * 68 * ---Bit31------------Bit4-------Bit1-----Bit0-- 69 * | Address[39:12] | SBZ | Entry Type | 70 * ---------------------------------------------- 71 * 72 * Address: Bits [39:12] of a physical page address. Bits [11:0] are 73 * always zero. 74 * 75 * Entry type: 76 * b00 - Reserved. 77 * b01 - Last entry in the tables, points to 4K page buffer. 78 * b10 - Normal entry, points to 4K page buffer. 79 * b11 - Link. The address points to the base of next table. 80 */ 81 82 typedef u32 sgte_t; 83 84 #define ETR_SG_PAGE_SHIFT 12 85 #define ETR_SG_PAGE_SIZE (1UL << ETR_SG_PAGE_SHIFT) 86 #define ETR_SG_PAGES_PER_SYSPAGE (PAGE_SIZE / ETR_SG_PAGE_SIZE) 87 #define ETR_SG_PTRS_PER_PAGE (ETR_SG_PAGE_SIZE / sizeof(sgte_t)) 88 #define ETR_SG_PTRS_PER_SYSPAGE (PAGE_SIZE / sizeof(sgte_t)) 89 90 #define ETR_SG_ET_MASK 0x3 91 #define ETR_SG_ET_LAST 0x1 92 #define ETR_SG_ET_NORMAL 0x2 93 #define ETR_SG_ET_LINK 0x3 94 95 #define ETR_SG_ADDR_SHIFT 4 96 97 #define ETR_SG_ENTRY(addr, type) \ 98 (sgte_t)((((addr) >> ETR_SG_PAGE_SHIFT) << ETR_SG_ADDR_SHIFT) | \ 99 (type & ETR_SG_ET_MASK)) 100 101 #define ETR_SG_ADDR(entry) \ 102 (((dma_addr_t)(entry) >> ETR_SG_ADDR_SHIFT) << ETR_SG_PAGE_SHIFT) 103 #define ETR_SG_ET(entry) ((entry) & ETR_SG_ET_MASK) 104 105 /* 106 * struct etr_sg_table : ETR SG Table 107 * @sg_table: Generic SG Table holding the data/table pages. 108 * @hwaddr: hwaddress used by the TMC, which is the base 109 * address of the table. 110 */ 111 struct etr_sg_table { 112 struct tmc_sg_table *sg_table; 113 dma_addr_t hwaddr; 114 }; 115 116 /* 117 * tmc_etr_sg_table_entries: Total number of table entries required to map 118 * @nr_pages system pages. 119 * 120 * We need to map @nr_pages * ETR_SG_PAGES_PER_SYSPAGE data pages. 121 * Each TMC page can map (ETR_SG_PTRS_PER_PAGE - 1) buffer pointers, 122 * with the last entry pointing to another page of table entries. 123 * If we spill over to a new page for mapping 1 entry, we could as 124 * well replace the link entry of the previous page with the last entry. 125 */ 126 static inline unsigned long __attribute_const__ 127 tmc_etr_sg_table_entries(int nr_pages) 128 { 129 unsigned long nr_sgpages = nr_pages * ETR_SG_PAGES_PER_SYSPAGE; 130 unsigned long nr_sglinks = nr_sgpages / (ETR_SG_PTRS_PER_PAGE - 1); 131 /* 132 * If we spill over to a new page for 1 entry, we could as well 133 * make it the LAST entry in the previous page, skipping the Link 134 * address. 135 */ 136 if (nr_sglinks && (nr_sgpages % (ETR_SG_PTRS_PER_PAGE - 1) < 2)) 137 nr_sglinks--; 138 return nr_sgpages + nr_sglinks; 139 } 140 141 /* 142 * tmc_pages_get_offset: Go through all the pages in the tmc_pages 143 * and map the device address @addr to an offset within the virtual 144 * contiguous buffer. 145 */ 146 static long 147 tmc_pages_get_offset(struct tmc_pages *tmc_pages, dma_addr_t addr) 148 { 149 int i; 150 dma_addr_t page_start; 151 152 for (i = 0; i < tmc_pages->nr_pages; i++) { 153 page_start = tmc_pages->daddrs[i]; 154 if (addr >= page_start && addr < (page_start + PAGE_SIZE)) 155 return i * PAGE_SIZE + (addr - page_start); 156 } 157 158 return -EINVAL; 159 } 160 161 /* 162 * tmc_pages_free : Unmap and free the pages used by tmc_pages. 163 * If the pages were not allocated in tmc_pages_alloc(), we would 164 * simply drop the refcount. 165 */ 166 static void tmc_pages_free(struct tmc_pages *tmc_pages, 167 struct device *dev, enum dma_data_direction dir) 168 { 169 int i; 170 struct device *real_dev = dev->parent; 171 172 for (i = 0; i < tmc_pages->nr_pages; i++) { 173 if (tmc_pages->daddrs && tmc_pages->daddrs[i]) 174 dma_unmap_page(real_dev, tmc_pages->daddrs[i], 175 PAGE_SIZE, dir); 176 if (tmc_pages->pages && tmc_pages->pages[i]) 177 __free_page(tmc_pages->pages[i]); 178 } 179 180 kfree(tmc_pages->pages); 181 kfree(tmc_pages->daddrs); 182 tmc_pages->pages = NULL; 183 tmc_pages->daddrs = NULL; 184 tmc_pages->nr_pages = 0; 185 } 186 187 /* 188 * tmc_pages_alloc : Allocate and map pages for a given @tmc_pages. 189 * If @pages is not NULL, the list of page virtual addresses are 190 * used as the data pages. The pages are then dma_map'ed for @dev 191 * with dma_direction @dir. 192 * 193 * Returns 0 upon success, else the error number. 194 */ 195 static int tmc_pages_alloc(struct tmc_pages *tmc_pages, 196 struct device *dev, int node, 197 enum dma_data_direction dir, void **pages) 198 { 199 int i, nr_pages; 200 dma_addr_t paddr; 201 struct page *page; 202 struct device *real_dev = dev->parent; 203 204 nr_pages = tmc_pages->nr_pages; 205 tmc_pages->daddrs = kcalloc(nr_pages, sizeof(*tmc_pages->daddrs), 206 GFP_KERNEL); 207 if (!tmc_pages->daddrs) 208 return -ENOMEM; 209 tmc_pages->pages = kcalloc(nr_pages, sizeof(*tmc_pages->pages), 210 GFP_KERNEL); 211 if (!tmc_pages->pages) { 212 kfree(tmc_pages->daddrs); 213 tmc_pages->daddrs = NULL; 214 return -ENOMEM; 215 } 216 217 for (i = 0; i < nr_pages; i++) { 218 if (pages && pages[i]) { 219 page = virt_to_page(pages[i]); 220 /* Hold a refcount on the page */ 221 get_page(page); 222 } else { 223 page = alloc_pages_node(node, 224 GFP_KERNEL | __GFP_ZERO, 0); 225 if (!page) 226 goto err; 227 } 228 paddr = dma_map_page(real_dev, page, 0, PAGE_SIZE, dir); 229 if (dma_mapping_error(real_dev, paddr)) 230 goto err; 231 tmc_pages->daddrs[i] = paddr; 232 tmc_pages->pages[i] = page; 233 } 234 return 0; 235 err: 236 tmc_pages_free(tmc_pages, dev, dir); 237 return -ENOMEM; 238 } 239 240 static inline long 241 tmc_sg_get_data_page_offset(struct tmc_sg_table *sg_table, dma_addr_t addr) 242 { 243 return tmc_pages_get_offset(&sg_table->data_pages, addr); 244 } 245 246 static inline void tmc_free_table_pages(struct tmc_sg_table *sg_table) 247 { 248 if (sg_table->table_vaddr) 249 vunmap(sg_table->table_vaddr); 250 tmc_pages_free(&sg_table->table_pages, sg_table->dev, DMA_TO_DEVICE); 251 } 252 253 static void tmc_free_data_pages(struct tmc_sg_table *sg_table) 254 { 255 if (sg_table->data_vaddr) 256 vunmap(sg_table->data_vaddr); 257 tmc_pages_free(&sg_table->data_pages, sg_table->dev, DMA_FROM_DEVICE); 258 } 259 260 void tmc_free_sg_table(struct tmc_sg_table *sg_table) 261 { 262 tmc_free_table_pages(sg_table); 263 tmc_free_data_pages(sg_table); 264 } 265 EXPORT_SYMBOL_GPL(tmc_free_sg_table); 266 267 /* 268 * Alloc pages for the table. Since this will be used by the device, 269 * allocate the pages closer to the device (i.e, dev_to_node(dev) 270 * rather than the CPU node). 271 */ 272 static int tmc_alloc_table_pages(struct tmc_sg_table *sg_table) 273 { 274 int rc; 275 struct tmc_pages *table_pages = &sg_table->table_pages; 276 277 rc = tmc_pages_alloc(table_pages, sg_table->dev, 278 dev_to_node(sg_table->dev), 279 DMA_TO_DEVICE, NULL); 280 if (rc) 281 return rc; 282 sg_table->table_vaddr = vmap(table_pages->pages, 283 table_pages->nr_pages, 284 VM_MAP, 285 PAGE_KERNEL); 286 if (!sg_table->table_vaddr) 287 rc = -ENOMEM; 288 else 289 sg_table->table_daddr = table_pages->daddrs[0]; 290 return rc; 291 } 292 293 static int tmc_alloc_data_pages(struct tmc_sg_table *sg_table, void **pages) 294 { 295 int rc; 296 297 /* Allocate data pages on the node requested by the caller */ 298 rc = tmc_pages_alloc(&sg_table->data_pages, 299 sg_table->dev, sg_table->node, 300 DMA_FROM_DEVICE, pages); 301 if (!rc) { 302 sg_table->data_vaddr = vmap(sg_table->data_pages.pages, 303 sg_table->data_pages.nr_pages, 304 VM_MAP, 305 PAGE_KERNEL); 306 if (!sg_table->data_vaddr) 307 rc = -ENOMEM; 308 } 309 return rc; 310 } 311 312 /* 313 * tmc_alloc_sg_table: Allocate and setup dma pages for the TMC SG table 314 * and data buffers. TMC writes to the data buffers and reads from the SG 315 * Table pages. 316 * 317 * @dev - Coresight device to which page should be DMA mapped. 318 * @node - Numa node for mem allocations 319 * @nr_tpages - Number of pages for the table entries. 320 * @nr_dpages - Number of pages for Data buffer. 321 * @pages - Optional list of virtual address of pages. 322 */ 323 struct tmc_sg_table *tmc_alloc_sg_table(struct device *dev, 324 int node, 325 int nr_tpages, 326 int nr_dpages, 327 void **pages) 328 { 329 long rc; 330 struct tmc_sg_table *sg_table; 331 332 sg_table = kzalloc(sizeof(*sg_table), GFP_KERNEL); 333 if (!sg_table) 334 return ERR_PTR(-ENOMEM); 335 sg_table->data_pages.nr_pages = nr_dpages; 336 sg_table->table_pages.nr_pages = nr_tpages; 337 sg_table->node = node; 338 sg_table->dev = dev; 339 340 rc = tmc_alloc_data_pages(sg_table, pages); 341 if (!rc) 342 rc = tmc_alloc_table_pages(sg_table); 343 if (rc) { 344 tmc_free_sg_table(sg_table); 345 kfree(sg_table); 346 return ERR_PTR(rc); 347 } 348 349 return sg_table; 350 } 351 EXPORT_SYMBOL_GPL(tmc_alloc_sg_table); 352 353 /* 354 * tmc_sg_table_sync_data_range: Sync the data buffer written 355 * by the device from @offset upto a @size bytes. 356 */ 357 void tmc_sg_table_sync_data_range(struct tmc_sg_table *table, 358 u64 offset, u64 size) 359 { 360 int i, index, start; 361 int npages = DIV_ROUND_UP(size, PAGE_SIZE); 362 struct device *real_dev = table->dev->parent; 363 struct tmc_pages *data = &table->data_pages; 364 365 start = offset >> PAGE_SHIFT; 366 for (i = start; i < (start + npages); i++) { 367 index = i % data->nr_pages; 368 dma_sync_single_for_cpu(real_dev, data->daddrs[index], 369 PAGE_SIZE, DMA_FROM_DEVICE); 370 } 371 } 372 EXPORT_SYMBOL_GPL(tmc_sg_table_sync_data_range); 373 374 /* tmc_sg_sync_table: Sync the page table */ 375 void tmc_sg_table_sync_table(struct tmc_sg_table *sg_table) 376 { 377 int i; 378 struct device *real_dev = sg_table->dev->parent; 379 struct tmc_pages *table_pages = &sg_table->table_pages; 380 381 for (i = 0; i < table_pages->nr_pages; i++) 382 dma_sync_single_for_device(real_dev, table_pages->daddrs[i], 383 PAGE_SIZE, DMA_TO_DEVICE); 384 } 385 EXPORT_SYMBOL_GPL(tmc_sg_table_sync_table); 386 387 /* 388 * tmc_sg_table_get_data: Get the buffer pointer for data @offset 389 * in the SG buffer. The @bufpp is updated to point to the buffer. 390 * Returns : 391 * the length of linear data available at @offset. 392 * or 393 * <= 0 if no data is available. 394 */ 395 ssize_t tmc_sg_table_get_data(struct tmc_sg_table *sg_table, 396 u64 offset, size_t len, char **bufpp) 397 { 398 size_t size; 399 int pg_idx = offset >> PAGE_SHIFT; 400 int pg_offset = offset & (PAGE_SIZE - 1); 401 struct tmc_pages *data_pages = &sg_table->data_pages; 402 403 size = tmc_sg_table_buf_size(sg_table); 404 if (offset >= size) 405 return -EINVAL; 406 407 /* Make sure we don't go beyond the end */ 408 len = (len < (size - offset)) ? len : size - offset; 409 /* Respect the page boundaries */ 410 len = (len < (PAGE_SIZE - pg_offset)) ? len : (PAGE_SIZE - pg_offset); 411 if (len > 0) 412 *bufpp = page_address(data_pages->pages[pg_idx]) + pg_offset; 413 return len; 414 } 415 EXPORT_SYMBOL_GPL(tmc_sg_table_get_data); 416 417 #ifdef ETR_SG_DEBUG 418 /* Map a dma address to virtual address */ 419 static unsigned long 420 tmc_sg_daddr_to_vaddr(struct tmc_sg_table *sg_table, 421 dma_addr_t addr, bool table) 422 { 423 long offset; 424 unsigned long base; 425 struct tmc_pages *tmc_pages; 426 427 if (table) { 428 tmc_pages = &sg_table->table_pages; 429 base = (unsigned long)sg_table->table_vaddr; 430 } else { 431 tmc_pages = &sg_table->data_pages; 432 base = (unsigned long)sg_table->data_vaddr; 433 } 434 435 offset = tmc_pages_get_offset(tmc_pages, addr); 436 if (offset < 0) 437 return 0; 438 return base + offset; 439 } 440 441 /* Dump the given sg_table */ 442 static void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) 443 { 444 sgte_t *ptr; 445 int i = 0; 446 dma_addr_t addr; 447 struct tmc_sg_table *sg_table = etr_table->sg_table; 448 449 ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table, 450 etr_table->hwaddr, true); 451 while (ptr) { 452 addr = ETR_SG_ADDR(*ptr); 453 switch (ETR_SG_ET(*ptr)) { 454 case ETR_SG_ET_NORMAL: 455 dev_dbg(sg_table->dev, 456 "%05d: %p\t:[N] 0x%llx\n", i, ptr, addr); 457 ptr++; 458 break; 459 case ETR_SG_ET_LINK: 460 dev_dbg(sg_table->dev, 461 "%05d: *** %p\t:{L} 0x%llx ***\n", 462 i, ptr, addr); 463 ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table, 464 addr, true); 465 break; 466 case ETR_SG_ET_LAST: 467 dev_dbg(sg_table->dev, 468 "%05d: ### %p\t:[L] 0x%llx ###\n", 469 i, ptr, addr); 470 return; 471 default: 472 dev_dbg(sg_table->dev, 473 "%05d: xxx %p\t:[INVALID] 0x%llx xxx\n", 474 i, ptr, addr); 475 return; 476 } 477 i++; 478 } 479 dev_dbg(sg_table->dev, "******* End of Table *****\n"); 480 } 481 #else 482 static inline void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) {} 483 #endif 484 485 /* 486 * Populate the SG Table page table entries from table/data 487 * pages allocated. Each Data page has ETR_SG_PAGES_PER_SYSPAGE SG pages. 488 * So does a Table page. So we keep track of indices of the tables 489 * in each system page and move the pointers accordingly. 490 */ 491 #define INC_IDX_ROUND(idx, size) ((idx) = ((idx) + 1) % (size)) 492 static void tmc_etr_sg_table_populate(struct etr_sg_table *etr_table) 493 { 494 dma_addr_t paddr; 495 int i, type, nr_entries; 496 int tpidx = 0; /* index to the current system table_page */ 497 int sgtidx = 0; /* index to the sg_table within the current syspage */ 498 int sgtentry = 0; /* the entry within the sg_table */ 499 int dpidx = 0; /* index to the current system data_page */ 500 int spidx = 0; /* index to the SG page within the current data page */ 501 sgte_t *ptr; /* pointer to the table entry to fill */ 502 struct tmc_sg_table *sg_table = etr_table->sg_table; 503 dma_addr_t *table_daddrs = sg_table->table_pages.daddrs; 504 dma_addr_t *data_daddrs = sg_table->data_pages.daddrs; 505 506 nr_entries = tmc_etr_sg_table_entries(sg_table->data_pages.nr_pages); 507 /* 508 * Use the contiguous virtual address of the table to update entries. 509 */ 510 ptr = sg_table->table_vaddr; 511 /* 512 * Fill all the entries, except the last entry to avoid special 513 * checks within the loop. 514 */ 515 for (i = 0; i < nr_entries - 1; i++) { 516 if (sgtentry == ETR_SG_PTRS_PER_PAGE - 1) { 517 /* 518 * Last entry in a sg_table page is a link address to 519 * the next table page. If this sg_table is the last 520 * one in the system page, it links to the first 521 * sg_table in the next system page. Otherwise, it 522 * links to the next sg_table page within the system 523 * page. 524 */ 525 if (sgtidx == ETR_SG_PAGES_PER_SYSPAGE - 1) { 526 paddr = table_daddrs[tpidx + 1]; 527 } else { 528 paddr = table_daddrs[tpidx] + 529 (ETR_SG_PAGE_SIZE * (sgtidx + 1)); 530 } 531 type = ETR_SG_ET_LINK; 532 } else { 533 /* 534 * Update the indices to the data_pages to point to the 535 * next sg_page in the data buffer. 536 */ 537 type = ETR_SG_ET_NORMAL; 538 paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE; 539 if (!INC_IDX_ROUND(spidx, ETR_SG_PAGES_PER_SYSPAGE)) 540 dpidx++; 541 } 542 *ptr++ = ETR_SG_ENTRY(paddr, type); 543 /* 544 * Move to the next table pointer, moving the table page index 545 * if necessary 546 */ 547 if (!INC_IDX_ROUND(sgtentry, ETR_SG_PTRS_PER_PAGE)) { 548 if (!INC_IDX_ROUND(sgtidx, ETR_SG_PAGES_PER_SYSPAGE)) 549 tpidx++; 550 } 551 } 552 553 /* Set up the last entry, which is always a data pointer */ 554 paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE; 555 *ptr++ = ETR_SG_ENTRY(paddr, ETR_SG_ET_LAST); 556 } 557 558 /* 559 * tmc_init_etr_sg_table: Allocate a TMC ETR SG table, data buffer of @size and 560 * populate the table. 561 * 562 * @dev - Device pointer for the TMC 563 * @node - NUMA node where the memory should be allocated 564 * @size - Total size of the data buffer 565 * @pages - Optional list of page virtual address 566 */ 567 static struct etr_sg_table * 568 tmc_init_etr_sg_table(struct device *dev, int node, 569 unsigned long size, void **pages) 570 { 571 int nr_entries, nr_tpages; 572 int nr_dpages = size >> PAGE_SHIFT; 573 struct tmc_sg_table *sg_table; 574 struct etr_sg_table *etr_table; 575 576 etr_table = kzalloc(sizeof(*etr_table), GFP_KERNEL); 577 if (!etr_table) 578 return ERR_PTR(-ENOMEM); 579 nr_entries = tmc_etr_sg_table_entries(nr_dpages); 580 nr_tpages = DIV_ROUND_UP(nr_entries, ETR_SG_PTRS_PER_SYSPAGE); 581 582 sg_table = tmc_alloc_sg_table(dev, node, nr_tpages, nr_dpages, pages); 583 if (IS_ERR(sg_table)) { 584 kfree(etr_table); 585 return ERR_CAST(sg_table); 586 } 587 588 etr_table->sg_table = sg_table; 589 /* TMC should use table base address for DBA */ 590 etr_table->hwaddr = sg_table->table_daddr; 591 tmc_etr_sg_table_populate(etr_table); 592 /* Sync the table pages for the HW */ 593 tmc_sg_table_sync_table(sg_table); 594 tmc_etr_sg_table_dump(etr_table); 595 596 return etr_table; 597 } 598 599 /* 600 * tmc_etr_alloc_flat_buf: Allocate a contiguous DMA buffer. 601 */ 602 static int tmc_etr_alloc_flat_buf(struct tmc_drvdata *drvdata, 603 struct etr_buf *etr_buf, int node, 604 void **pages) 605 { 606 struct etr_flat_buf *flat_buf; 607 struct device *real_dev = drvdata->csdev->dev.parent; 608 609 /* We cannot reuse existing pages for flat buf */ 610 if (pages) 611 return -EINVAL; 612 613 flat_buf = kzalloc(sizeof(*flat_buf), GFP_KERNEL); 614 if (!flat_buf) 615 return -ENOMEM; 616 617 flat_buf->vaddr = dma_alloc_noncoherent(real_dev, etr_buf->size, 618 &flat_buf->daddr, 619 DMA_FROM_DEVICE, 620 GFP_KERNEL | __GFP_NOWARN); 621 if (!flat_buf->vaddr) { 622 kfree(flat_buf); 623 return -ENOMEM; 624 } 625 626 flat_buf->size = etr_buf->size; 627 flat_buf->dev = &drvdata->csdev->dev; 628 etr_buf->hwaddr = flat_buf->daddr; 629 etr_buf->mode = ETR_MODE_FLAT; 630 etr_buf->private = flat_buf; 631 return 0; 632 } 633 634 static void tmc_etr_free_flat_buf(struct etr_buf *etr_buf) 635 { 636 struct etr_flat_buf *flat_buf = etr_buf->private; 637 638 if (flat_buf && flat_buf->daddr) { 639 struct device *real_dev = flat_buf->dev->parent; 640 641 dma_free_noncoherent(real_dev, etr_buf->size, 642 flat_buf->vaddr, flat_buf->daddr, 643 DMA_FROM_DEVICE); 644 } 645 kfree(flat_buf); 646 } 647 648 static void tmc_etr_sync_flat_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp) 649 { 650 struct etr_flat_buf *flat_buf = etr_buf->private; 651 struct device *real_dev = flat_buf->dev->parent; 652 653 /* 654 * Adjust the buffer to point to the beginning of the trace data 655 * and update the available trace data. 656 */ 657 etr_buf->offset = rrp - etr_buf->hwaddr; 658 if (etr_buf->full) 659 etr_buf->len = etr_buf->size; 660 else 661 etr_buf->len = rwp - rrp; 662 663 /* 664 * The driver always starts tracing at the beginning of the buffer, 665 * the only reason why we would get a wrap around is when the buffer 666 * is full. Sync the entire buffer in one go for this case. 667 */ 668 if (etr_buf->offset + etr_buf->len > etr_buf->size) 669 dma_sync_single_for_cpu(real_dev, flat_buf->daddr, 670 etr_buf->size, DMA_FROM_DEVICE); 671 else 672 dma_sync_single_for_cpu(real_dev, 673 flat_buf->daddr + etr_buf->offset, 674 etr_buf->len, DMA_FROM_DEVICE); 675 } 676 677 static ssize_t tmc_etr_get_data_flat_buf(struct etr_buf *etr_buf, 678 u64 offset, size_t len, char **bufpp) 679 { 680 struct etr_flat_buf *flat_buf = etr_buf->private; 681 682 *bufpp = (char *)flat_buf->vaddr + offset; 683 /* 684 * tmc_etr_buf_get_data already adjusts the length to handle 685 * buffer wrapping around. 686 */ 687 return len; 688 } 689 690 static const struct etr_buf_operations etr_flat_buf_ops = { 691 .alloc = tmc_etr_alloc_flat_buf, 692 .free = tmc_etr_free_flat_buf, 693 .sync = tmc_etr_sync_flat_buf, 694 .get_data = tmc_etr_get_data_flat_buf, 695 }; 696 697 /* 698 * tmc_etr_alloc_sg_buf: Allocate an SG buf @etr_buf. Setup the parameters 699 * appropriately. 700 */ 701 static int tmc_etr_alloc_sg_buf(struct tmc_drvdata *drvdata, 702 struct etr_buf *etr_buf, int node, 703 void **pages) 704 { 705 struct etr_sg_table *etr_table; 706 struct device *dev = &drvdata->csdev->dev; 707 708 etr_table = tmc_init_etr_sg_table(dev, node, 709 etr_buf->size, pages); 710 if (IS_ERR(etr_table)) 711 return -ENOMEM; 712 etr_buf->hwaddr = etr_table->hwaddr; 713 etr_buf->mode = ETR_MODE_ETR_SG; 714 etr_buf->private = etr_table; 715 return 0; 716 } 717 718 static void tmc_etr_free_sg_buf(struct etr_buf *etr_buf) 719 { 720 struct etr_sg_table *etr_table = etr_buf->private; 721 722 if (etr_table) { 723 tmc_free_sg_table(etr_table->sg_table); 724 kfree(etr_table); 725 } 726 } 727 728 static ssize_t tmc_etr_get_data_sg_buf(struct etr_buf *etr_buf, u64 offset, 729 size_t len, char **bufpp) 730 { 731 struct etr_sg_table *etr_table = etr_buf->private; 732 733 return tmc_sg_table_get_data(etr_table->sg_table, offset, len, bufpp); 734 } 735 736 static void tmc_etr_sync_sg_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp) 737 { 738 long r_offset, w_offset; 739 struct etr_sg_table *etr_table = etr_buf->private; 740 struct tmc_sg_table *table = etr_table->sg_table; 741 742 /* Convert hw address to offset in the buffer */ 743 r_offset = tmc_sg_get_data_page_offset(table, rrp); 744 if (r_offset < 0) { 745 dev_warn(table->dev, 746 "Unable to map RRP %llx to offset\n", rrp); 747 etr_buf->len = 0; 748 return; 749 } 750 751 w_offset = tmc_sg_get_data_page_offset(table, rwp); 752 if (w_offset < 0) { 753 dev_warn(table->dev, 754 "Unable to map RWP %llx to offset\n", rwp); 755 etr_buf->len = 0; 756 return; 757 } 758 759 etr_buf->offset = r_offset; 760 if (etr_buf->full) 761 etr_buf->len = etr_buf->size; 762 else 763 etr_buf->len = ((w_offset < r_offset) ? etr_buf->size : 0) + 764 w_offset - r_offset; 765 tmc_sg_table_sync_data_range(table, r_offset, etr_buf->len); 766 } 767 768 static const struct etr_buf_operations etr_sg_buf_ops = { 769 .alloc = tmc_etr_alloc_sg_buf, 770 .free = tmc_etr_free_sg_buf, 771 .sync = tmc_etr_sync_sg_buf, 772 .get_data = tmc_etr_get_data_sg_buf, 773 }; 774 775 /* 776 * TMC ETR could be connected to a CATU device, which can provide address 777 * translation service. This is represented by the Output port of the TMC 778 * (ETR) connected to the input port of the CATU. 779 * 780 * Returns : coresight_device ptr for the CATU device if a CATU is found. 781 * : NULL otherwise. 782 */ 783 struct coresight_device * 784 tmc_etr_get_catu_device(struct tmc_drvdata *drvdata) 785 { 786 struct coresight_device *etr = drvdata->csdev; 787 union coresight_dev_subtype catu_subtype = { 788 .helper_subtype = CORESIGHT_DEV_SUBTYPE_HELPER_CATU 789 }; 790 791 if (!IS_ENABLED(CONFIG_CORESIGHT_CATU)) 792 return NULL; 793 794 return coresight_find_output_type(etr->pdata, CORESIGHT_DEV_TYPE_HELPER, 795 catu_subtype); 796 } 797 EXPORT_SYMBOL_GPL(tmc_etr_get_catu_device); 798 799 static const struct etr_buf_operations *etr_buf_ops[] = { 800 [ETR_MODE_FLAT] = &etr_flat_buf_ops, 801 [ETR_MODE_ETR_SG] = &etr_sg_buf_ops, 802 [ETR_MODE_CATU] = NULL, 803 }; 804 805 void tmc_etr_set_catu_ops(const struct etr_buf_operations *catu) 806 { 807 etr_buf_ops[ETR_MODE_CATU] = catu; 808 } 809 EXPORT_SYMBOL_GPL(tmc_etr_set_catu_ops); 810 811 void tmc_etr_remove_catu_ops(void) 812 { 813 etr_buf_ops[ETR_MODE_CATU] = NULL; 814 } 815 EXPORT_SYMBOL_GPL(tmc_etr_remove_catu_ops); 816 817 static inline int tmc_etr_mode_alloc_buf(int mode, 818 struct tmc_drvdata *drvdata, 819 struct etr_buf *etr_buf, int node, 820 void **pages) 821 { 822 int rc = -EINVAL; 823 824 switch (mode) { 825 case ETR_MODE_FLAT: 826 case ETR_MODE_ETR_SG: 827 case ETR_MODE_CATU: 828 if (etr_buf_ops[mode] && etr_buf_ops[mode]->alloc) 829 rc = etr_buf_ops[mode]->alloc(drvdata, etr_buf, 830 node, pages); 831 if (!rc) 832 etr_buf->ops = etr_buf_ops[mode]; 833 return rc; 834 default: 835 return -EINVAL; 836 } 837 } 838 839 static void get_etr_buf_hw(struct device *dev, struct etr_buf_hw *buf_hw) 840 { 841 struct tmc_drvdata *drvdata = dev_get_drvdata(dev->parent); 842 843 buf_hw->has_iommu = iommu_get_domain_for_dev(dev->parent); 844 buf_hw->has_etr_sg = tmc_etr_has_cap(drvdata, TMC_ETR_SG); 845 buf_hw->has_catu = !!tmc_etr_get_catu_device(drvdata); 846 } 847 848 static bool etr_can_use_flat_mode(struct etr_buf_hw *buf_hw, ssize_t etr_buf_size) 849 { 850 bool has_sg = buf_hw->has_catu || buf_hw->has_etr_sg; 851 852 return !has_sg || buf_hw->has_iommu || etr_buf_size < SZ_1M; 853 } 854 855 /* 856 * tmc_alloc_etr_buf: Allocate a buffer use by ETR. 857 * @drvdata : ETR device details. 858 * @size : size of the requested buffer. 859 * @flags : Required properties for the buffer. 860 * @node : Node for memory allocations. 861 * @pages : An optional list of pages. 862 */ 863 static struct etr_buf *tmc_alloc_etr_buf(struct tmc_drvdata *drvdata, 864 ssize_t size, int flags, 865 int node, void **pages) 866 { 867 int rc = -ENOMEM; 868 struct etr_buf *etr_buf; 869 struct etr_buf_hw buf_hw; 870 struct device *dev = &drvdata->csdev->dev; 871 872 get_etr_buf_hw(dev, &buf_hw); 873 etr_buf = kzalloc(sizeof(*etr_buf), GFP_KERNEL); 874 if (!etr_buf) 875 return ERR_PTR(-ENOMEM); 876 877 etr_buf->size = size; 878 879 /* If there is user directive for buffer mode, try that first */ 880 if (drvdata->etr_mode != ETR_MODE_AUTO) 881 rc = tmc_etr_mode_alloc_buf(drvdata->etr_mode, drvdata, 882 etr_buf, node, pages); 883 884 /* 885 * If we have to use an existing list of pages, we cannot reliably 886 * use a contiguous DMA memory (even if we have an IOMMU). Otherwise, 887 * we use the contiguous DMA memory if at least one of the following 888 * conditions is true: 889 * a) The ETR cannot use Scatter-Gather. 890 * b) we have a backing IOMMU 891 * c) The requested memory size is smaller (< 1M). 892 * 893 * Fallback to available mechanisms. 894 * 895 */ 896 if (rc && !pages && etr_can_use_flat_mode(&buf_hw, size)) 897 rc = tmc_etr_mode_alloc_buf(ETR_MODE_FLAT, drvdata, 898 etr_buf, node, pages); 899 if (rc && buf_hw.has_etr_sg) 900 rc = tmc_etr_mode_alloc_buf(ETR_MODE_ETR_SG, drvdata, 901 etr_buf, node, pages); 902 if (rc && buf_hw.has_catu) 903 rc = tmc_etr_mode_alloc_buf(ETR_MODE_CATU, drvdata, 904 etr_buf, node, pages); 905 if (rc) { 906 kfree(etr_buf); 907 return ERR_PTR(rc); 908 } 909 910 refcount_set(&etr_buf->refcount, 1); 911 dev_dbg(dev, "allocated buffer of size %ldKB in mode %d\n", 912 (unsigned long)size >> 10, etr_buf->mode); 913 return etr_buf; 914 } 915 916 static void tmc_free_etr_buf(struct etr_buf *etr_buf) 917 { 918 WARN_ON(!etr_buf->ops || !etr_buf->ops->free); 919 etr_buf->ops->free(etr_buf); 920 kfree(etr_buf); 921 } 922 923 /* 924 * tmc_etr_buf_get_data: Get the pointer the trace data at @offset 925 * with a maximum of @len bytes. 926 * Returns: The size of the linear data available @pos, with *bufpp 927 * updated to point to the buffer. 928 */ 929 static ssize_t tmc_etr_buf_get_data(struct etr_buf *etr_buf, 930 u64 offset, size_t len, char **bufpp) 931 { 932 /* Adjust the length to limit this transaction to end of buffer */ 933 len = (len < (etr_buf->size - offset)) ? len : etr_buf->size - offset; 934 935 return etr_buf->ops->get_data(etr_buf, (u64)offset, len, bufpp); 936 } 937 938 static inline s64 939 tmc_etr_buf_insert_barrier_packet(struct etr_buf *etr_buf, u64 offset) 940 { 941 ssize_t len; 942 char *bufp; 943 944 len = tmc_etr_buf_get_data(etr_buf, offset, 945 CORESIGHT_BARRIER_PKT_SIZE, &bufp); 946 if (WARN_ON(len < 0 || len < CORESIGHT_BARRIER_PKT_SIZE)) 947 return -EINVAL; 948 coresight_insert_barrier_packet(bufp); 949 return offset + CORESIGHT_BARRIER_PKT_SIZE; 950 } 951 952 /* 953 * tmc_sync_etr_buf: Sync the trace buffer availability with drvdata. 954 * Makes sure the trace data is synced to the memory for consumption. 955 * @etr_buf->offset will hold the offset to the beginning of the trace data 956 * within the buffer, with @etr_buf->len bytes to consume. 957 */ 958 static void tmc_sync_etr_buf(struct tmc_drvdata *drvdata) 959 { 960 struct etr_buf *etr_buf = drvdata->etr_buf; 961 u64 rrp, rwp; 962 u32 status; 963 964 rrp = tmc_read_rrp(drvdata); 965 rwp = tmc_read_rwp(drvdata); 966 status = readl_relaxed(drvdata->base + TMC_STS); 967 968 /* 969 * If there were memory errors in the session, truncate the 970 * buffer. 971 */ 972 if (WARN_ON_ONCE(status & TMC_STS_MEMERR)) { 973 dev_dbg(&drvdata->csdev->dev, 974 "tmc memory error detected, truncating buffer\n"); 975 etr_buf->len = 0; 976 etr_buf->full = false; 977 return; 978 } 979 980 etr_buf->full = !!(status & TMC_STS_FULL); 981 982 WARN_ON(!etr_buf->ops || !etr_buf->ops->sync); 983 984 etr_buf->ops->sync(etr_buf, rrp, rwp); 985 } 986 987 static int __tmc_etr_enable_hw(struct tmc_drvdata *drvdata) 988 { 989 u32 axictl, sts; 990 struct etr_buf *etr_buf = drvdata->etr_buf; 991 int rc = 0; 992 993 CS_UNLOCK(drvdata->base); 994 995 /* Wait for TMCSReady bit to be set */ 996 rc = tmc_wait_for_tmcready(drvdata); 997 if (rc) { 998 dev_err(&drvdata->csdev->dev, 999 "Failed to enable : TMC not ready\n"); 1000 CS_LOCK(drvdata->base); 1001 return rc; 1002 } 1003 1004 writel_relaxed(etr_buf->size / 4, drvdata->base + TMC_RSZ); 1005 writel_relaxed(TMC_MODE_CIRCULAR_BUFFER, drvdata->base + TMC_MODE); 1006 1007 axictl = readl_relaxed(drvdata->base + TMC_AXICTL); 1008 axictl &= ~TMC_AXICTL_CLEAR_MASK; 1009 axictl |= TMC_AXICTL_PROT_CTL_B1; 1010 axictl |= TMC_AXICTL_WR_BURST(drvdata->max_burst_size); 1011 axictl |= TMC_AXICTL_AXCACHE_OS; 1012 1013 if (tmc_etr_has_cap(drvdata, TMC_ETR_AXI_ARCACHE)) { 1014 axictl &= ~TMC_AXICTL_ARCACHE_MASK; 1015 axictl |= TMC_AXICTL_ARCACHE_OS; 1016 } 1017 1018 if (etr_buf->mode == ETR_MODE_ETR_SG) 1019 axictl |= TMC_AXICTL_SCT_GAT_MODE; 1020 1021 writel_relaxed(axictl, drvdata->base + TMC_AXICTL); 1022 tmc_write_dba(drvdata, etr_buf->hwaddr); 1023 /* 1024 * If the TMC pointers must be programmed before the session, 1025 * we have to set it properly (i.e, RRP/RWP to base address and 1026 * STS to "not full"). 1027 */ 1028 if (tmc_etr_has_cap(drvdata, TMC_ETR_SAVE_RESTORE)) { 1029 tmc_write_rrp(drvdata, etr_buf->hwaddr); 1030 tmc_write_rwp(drvdata, etr_buf->hwaddr); 1031 sts = readl_relaxed(drvdata->base + TMC_STS) & ~TMC_STS_FULL; 1032 writel_relaxed(sts, drvdata->base + TMC_STS); 1033 } 1034 1035 writel_relaxed(TMC_FFCR_EN_FMT | TMC_FFCR_EN_TI | 1036 TMC_FFCR_FON_FLIN | TMC_FFCR_FON_TRIG_EVT | 1037 TMC_FFCR_TRIGON_TRIGIN, 1038 drvdata->base + TMC_FFCR); 1039 writel_relaxed(drvdata->trigger_cntr, drvdata->base + TMC_TRG); 1040 tmc_enable_hw(drvdata); 1041 1042 CS_LOCK(drvdata->base); 1043 return rc; 1044 } 1045 1046 static int tmc_etr_enable_hw(struct tmc_drvdata *drvdata, 1047 struct etr_buf *etr_buf) 1048 { 1049 int rc; 1050 1051 /* Callers should provide an appropriate buffer for use */ 1052 if (WARN_ON(!etr_buf)) 1053 return -EINVAL; 1054 1055 if ((etr_buf->mode == ETR_MODE_ETR_SG) && 1056 WARN_ON(!tmc_etr_has_cap(drvdata, TMC_ETR_SG))) 1057 return -EINVAL; 1058 1059 if (WARN_ON(drvdata->etr_buf)) 1060 return -EBUSY; 1061 1062 rc = coresight_claim_device(drvdata->csdev); 1063 if (!rc) { 1064 drvdata->etr_buf = etr_buf; 1065 rc = __tmc_etr_enable_hw(drvdata); 1066 if (rc) { 1067 drvdata->etr_buf = NULL; 1068 coresight_disclaim_device(drvdata->csdev); 1069 } 1070 } 1071 1072 return rc; 1073 } 1074 1075 /* 1076 * Return the available trace data in the buffer (starts at etr_buf->offset, 1077 * limited by etr_buf->len) from @pos, with a maximum limit of @len, 1078 * also updating the @bufpp on where to find it. Since the trace data 1079 * starts at anywhere in the buffer, depending on the RRP, we adjust the 1080 * @len returned to handle buffer wrapping around. 1081 * 1082 * We are protected here by drvdata->reading != 0, which ensures the 1083 * sysfs_buf stays alive. 1084 */ 1085 ssize_t tmc_etr_get_sysfs_trace(struct tmc_drvdata *drvdata, 1086 loff_t pos, size_t len, char **bufpp) 1087 { 1088 s64 offset; 1089 ssize_t actual = len; 1090 struct etr_buf *etr_buf = drvdata->sysfs_buf; 1091 1092 if (pos + actual > etr_buf->len) 1093 actual = etr_buf->len - pos; 1094 if (actual <= 0) 1095 return actual; 1096 1097 /* Compute the offset from which we read the data */ 1098 offset = etr_buf->offset + pos; 1099 if (offset >= etr_buf->size) 1100 offset -= etr_buf->size; 1101 return tmc_etr_buf_get_data(etr_buf, offset, actual, bufpp); 1102 } 1103 1104 static struct etr_buf * 1105 tmc_etr_setup_sysfs_buf(struct tmc_drvdata *drvdata) 1106 { 1107 return tmc_alloc_etr_buf(drvdata, drvdata->size, 1108 0, cpu_to_node(0), NULL); 1109 } 1110 1111 static void 1112 tmc_etr_free_sysfs_buf(struct etr_buf *buf) 1113 { 1114 if (buf) 1115 tmc_free_etr_buf(buf); 1116 } 1117 1118 static void tmc_etr_sync_sysfs_buf(struct tmc_drvdata *drvdata) 1119 { 1120 struct etr_buf *etr_buf = drvdata->etr_buf; 1121 1122 if (WARN_ON(drvdata->sysfs_buf != etr_buf)) { 1123 tmc_etr_free_sysfs_buf(drvdata->sysfs_buf); 1124 drvdata->sysfs_buf = NULL; 1125 } else { 1126 tmc_sync_etr_buf(drvdata); 1127 /* 1128 * Insert barrier packets at the beginning, if there was 1129 * an overflow. 1130 */ 1131 if (etr_buf->full) 1132 tmc_etr_buf_insert_barrier_packet(etr_buf, 1133 etr_buf->offset); 1134 } 1135 } 1136 1137 static void __tmc_etr_disable_hw(struct tmc_drvdata *drvdata) 1138 { 1139 CS_UNLOCK(drvdata->base); 1140 1141 tmc_flush_and_stop(drvdata); 1142 /* 1143 * When operating in sysFS mode the content of the buffer needs to be 1144 * read before the TMC is disabled. 1145 */ 1146 if (drvdata->mode == CS_MODE_SYSFS) 1147 tmc_etr_sync_sysfs_buf(drvdata); 1148 1149 tmc_disable_hw(drvdata); 1150 1151 CS_LOCK(drvdata->base); 1152 1153 } 1154 1155 void tmc_etr_disable_hw(struct tmc_drvdata *drvdata) 1156 { 1157 __tmc_etr_disable_hw(drvdata); 1158 coresight_disclaim_device(drvdata->csdev); 1159 /* Reset the ETR buf used by hardware */ 1160 drvdata->etr_buf = NULL; 1161 } 1162 1163 static struct etr_buf *tmc_etr_get_sysfs_buffer(struct coresight_device *csdev) 1164 { 1165 int ret = 0; 1166 unsigned long flags; 1167 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1168 struct etr_buf *sysfs_buf = NULL, *new_buf = NULL, *free_buf = NULL; 1169 1170 /* 1171 * If we are enabling the ETR from disabled state, we need to make 1172 * sure we have a buffer with the right size. The etr_buf is not reset 1173 * immediately after we stop the tracing in SYSFS mode as we wait for 1174 * the user to collect the data. We may be able to reuse the existing 1175 * buffer, provided the size matches. Any allocation has to be done 1176 * with the lock released. 1177 */ 1178 spin_lock_irqsave(&drvdata->spinlock, flags); 1179 sysfs_buf = READ_ONCE(drvdata->sysfs_buf); 1180 if (!sysfs_buf || (sysfs_buf->size != drvdata->size)) { 1181 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1182 1183 /* Allocate memory with the locks released */ 1184 free_buf = new_buf = tmc_etr_setup_sysfs_buf(drvdata); 1185 if (IS_ERR(new_buf)) 1186 return new_buf; 1187 1188 /* Let's try again */ 1189 spin_lock_irqsave(&drvdata->spinlock, flags); 1190 } 1191 1192 if (drvdata->reading || drvdata->mode == CS_MODE_PERF) { 1193 ret = -EBUSY; 1194 goto out; 1195 } 1196 1197 /* 1198 * If we don't have a buffer or it doesn't match the requested size, 1199 * use the buffer allocated above. Otherwise reuse the existing buffer. 1200 */ 1201 sysfs_buf = READ_ONCE(drvdata->sysfs_buf); 1202 if (!sysfs_buf || (new_buf && sysfs_buf->size != new_buf->size)) { 1203 free_buf = sysfs_buf; 1204 drvdata->sysfs_buf = new_buf; 1205 } 1206 1207 out: 1208 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1209 1210 /* Free memory outside the spinlock if need be */ 1211 if (free_buf) 1212 tmc_etr_free_sysfs_buf(free_buf); 1213 return ret ? ERR_PTR(ret) : drvdata->sysfs_buf; 1214 } 1215 1216 static int tmc_enable_etr_sink_sysfs(struct coresight_device *csdev) 1217 { 1218 int ret = 0; 1219 unsigned long flags; 1220 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1221 struct etr_buf *sysfs_buf = tmc_etr_get_sysfs_buffer(csdev); 1222 1223 if (IS_ERR(sysfs_buf)) 1224 return PTR_ERR(sysfs_buf); 1225 1226 spin_lock_irqsave(&drvdata->spinlock, flags); 1227 1228 /* 1229 * In sysFS mode we can have multiple writers per sink. Since this 1230 * sink is already enabled no memory is needed and the HW need not be 1231 * touched, even if the buffer size has changed. 1232 */ 1233 if (drvdata->mode == CS_MODE_SYSFS) { 1234 atomic_inc(&csdev->refcnt); 1235 goto out; 1236 } 1237 1238 ret = tmc_etr_enable_hw(drvdata, sysfs_buf); 1239 if (!ret) { 1240 drvdata->mode = CS_MODE_SYSFS; 1241 atomic_inc(&csdev->refcnt); 1242 } 1243 1244 out: 1245 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1246 1247 if (!ret) 1248 dev_dbg(&csdev->dev, "TMC-ETR enabled\n"); 1249 1250 return ret; 1251 } 1252 1253 struct etr_buf *tmc_etr_get_buffer(struct coresight_device *csdev, 1254 enum cs_mode mode, void *data) 1255 { 1256 struct perf_output_handle *handle = data; 1257 struct etr_perf_buffer *etr_perf; 1258 1259 switch (mode) { 1260 case CS_MODE_SYSFS: 1261 return tmc_etr_get_sysfs_buffer(csdev); 1262 case CS_MODE_PERF: 1263 etr_perf = etm_perf_sink_config(handle); 1264 if (WARN_ON(!etr_perf || !etr_perf->etr_buf)) 1265 return ERR_PTR(-EINVAL); 1266 return etr_perf->etr_buf; 1267 default: 1268 return ERR_PTR(-EINVAL); 1269 } 1270 } 1271 EXPORT_SYMBOL_GPL(tmc_etr_get_buffer); 1272 1273 /* 1274 * alloc_etr_buf: Allocate ETR buffer for use by perf. 1275 * The size of the hardware buffer is dependent on the size configured 1276 * via sysfs and the perf ring buffer size. We prefer to allocate the 1277 * largest possible size, scaling down the size by half until it 1278 * reaches a minimum limit (1M), beyond which we give up. 1279 */ 1280 static struct etr_buf * 1281 alloc_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event, 1282 int nr_pages, void **pages, bool snapshot) 1283 { 1284 int node; 1285 struct etr_buf *etr_buf; 1286 unsigned long size; 1287 1288 node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu); 1289 /* 1290 * Try to match the perf ring buffer size if it is larger 1291 * than the size requested via sysfs. 1292 */ 1293 if ((nr_pages << PAGE_SHIFT) > drvdata->size) { 1294 etr_buf = tmc_alloc_etr_buf(drvdata, ((ssize_t)nr_pages << PAGE_SHIFT), 1295 0, node, NULL); 1296 if (!IS_ERR(etr_buf)) 1297 goto done; 1298 } 1299 1300 /* 1301 * Else switch to configured size for this ETR 1302 * and scale down until we hit the minimum limit. 1303 */ 1304 size = drvdata->size; 1305 do { 1306 etr_buf = tmc_alloc_etr_buf(drvdata, size, 0, node, NULL); 1307 if (!IS_ERR(etr_buf)) 1308 goto done; 1309 size /= 2; 1310 } while (size >= TMC_ETR_PERF_MIN_BUF_SIZE); 1311 1312 return ERR_PTR(-ENOMEM); 1313 1314 done: 1315 return etr_buf; 1316 } 1317 1318 static struct etr_buf * 1319 get_perf_etr_buf_cpu_wide(struct tmc_drvdata *drvdata, 1320 struct perf_event *event, int nr_pages, 1321 void **pages, bool snapshot) 1322 { 1323 int ret; 1324 pid_t pid = task_pid_nr(event->owner); 1325 struct etr_buf *etr_buf; 1326 1327 retry: 1328 /* 1329 * An etr_perf_buffer is associated with an event and holds a reference 1330 * to the AUX ring buffer that was created for that event. In CPU-wide 1331 * N:1 mode multiple events (one per CPU), each with its own AUX ring 1332 * buffer, share a sink. As such an etr_perf_buffer is created for each 1333 * event but a single etr_buf associated with the ETR is shared between 1334 * them. The last event in a trace session will copy the content of the 1335 * etr_buf to its AUX ring buffer. Ring buffer associated to other 1336 * events are simply not used an freed as events are destoyed. We still 1337 * need to allocate a ring buffer for each event since we don't know 1338 * which event will be last. 1339 */ 1340 1341 /* 1342 * The first thing to do here is check if an etr_buf has already been 1343 * allocated for this session. If so it is shared with this event, 1344 * otherwise it is created. 1345 */ 1346 mutex_lock(&drvdata->idr_mutex); 1347 etr_buf = idr_find(&drvdata->idr, pid); 1348 if (etr_buf) { 1349 refcount_inc(&etr_buf->refcount); 1350 mutex_unlock(&drvdata->idr_mutex); 1351 return etr_buf; 1352 } 1353 1354 /* If we made it here no buffer has been allocated, do so now. */ 1355 mutex_unlock(&drvdata->idr_mutex); 1356 1357 etr_buf = alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot); 1358 if (IS_ERR(etr_buf)) 1359 return etr_buf; 1360 1361 /* Now that we have a buffer, add it to the IDR. */ 1362 mutex_lock(&drvdata->idr_mutex); 1363 ret = idr_alloc(&drvdata->idr, etr_buf, pid, pid + 1, GFP_KERNEL); 1364 mutex_unlock(&drvdata->idr_mutex); 1365 1366 /* Another event with this session ID has allocated this buffer. */ 1367 if (ret == -ENOSPC) { 1368 tmc_free_etr_buf(etr_buf); 1369 goto retry; 1370 } 1371 1372 /* The IDR can't allocate room for a new session, abandon ship. */ 1373 if (ret == -ENOMEM) { 1374 tmc_free_etr_buf(etr_buf); 1375 return ERR_PTR(ret); 1376 } 1377 1378 1379 return etr_buf; 1380 } 1381 1382 static struct etr_buf * 1383 get_perf_etr_buf_per_thread(struct tmc_drvdata *drvdata, 1384 struct perf_event *event, int nr_pages, 1385 void **pages, bool snapshot) 1386 { 1387 /* 1388 * In per-thread mode the etr_buf isn't shared, so just go ahead 1389 * with memory allocation. 1390 */ 1391 return alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot); 1392 } 1393 1394 static struct etr_buf * 1395 get_perf_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event, 1396 int nr_pages, void **pages, bool snapshot) 1397 { 1398 if (event->cpu == -1) 1399 return get_perf_etr_buf_per_thread(drvdata, event, nr_pages, 1400 pages, snapshot); 1401 1402 return get_perf_etr_buf_cpu_wide(drvdata, event, nr_pages, 1403 pages, snapshot); 1404 } 1405 1406 static struct etr_perf_buffer * 1407 tmc_etr_setup_perf_buf(struct tmc_drvdata *drvdata, struct perf_event *event, 1408 int nr_pages, void **pages, bool snapshot) 1409 { 1410 int node; 1411 struct etr_buf *etr_buf; 1412 struct etr_perf_buffer *etr_perf; 1413 1414 node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu); 1415 1416 etr_perf = kzalloc_node(sizeof(*etr_perf), GFP_KERNEL, node); 1417 if (!etr_perf) 1418 return ERR_PTR(-ENOMEM); 1419 1420 etr_buf = get_perf_etr_buf(drvdata, event, nr_pages, pages, snapshot); 1421 if (!IS_ERR(etr_buf)) 1422 goto done; 1423 1424 kfree(etr_perf); 1425 return ERR_PTR(-ENOMEM); 1426 1427 done: 1428 /* 1429 * Keep a reference to the ETR this buffer has been allocated for 1430 * in order to have access to the IDR in tmc_free_etr_buffer(). 1431 */ 1432 etr_perf->drvdata = drvdata; 1433 etr_perf->etr_buf = etr_buf; 1434 1435 return etr_perf; 1436 } 1437 1438 1439 static void *tmc_alloc_etr_buffer(struct coresight_device *csdev, 1440 struct perf_event *event, void **pages, 1441 int nr_pages, bool snapshot) 1442 { 1443 struct etr_perf_buffer *etr_perf; 1444 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1445 1446 etr_perf = tmc_etr_setup_perf_buf(drvdata, event, 1447 nr_pages, pages, snapshot); 1448 if (IS_ERR(etr_perf)) { 1449 dev_dbg(&csdev->dev, "Unable to allocate ETR buffer\n"); 1450 return NULL; 1451 } 1452 1453 etr_perf->pid = task_pid_nr(event->owner); 1454 etr_perf->snapshot = snapshot; 1455 etr_perf->nr_pages = nr_pages; 1456 etr_perf->pages = pages; 1457 1458 return etr_perf; 1459 } 1460 1461 static void tmc_free_etr_buffer(void *config) 1462 { 1463 struct etr_perf_buffer *etr_perf = config; 1464 struct tmc_drvdata *drvdata = etr_perf->drvdata; 1465 struct etr_buf *buf, *etr_buf = etr_perf->etr_buf; 1466 1467 if (!etr_buf) 1468 goto free_etr_perf_buffer; 1469 1470 mutex_lock(&drvdata->idr_mutex); 1471 /* If we are not the last one to use the buffer, don't touch it. */ 1472 if (!refcount_dec_and_test(&etr_buf->refcount)) { 1473 mutex_unlock(&drvdata->idr_mutex); 1474 goto free_etr_perf_buffer; 1475 } 1476 1477 /* We are the last one, remove from the IDR and free the buffer. */ 1478 buf = idr_remove(&drvdata->idr, etr_perf->pid); 1479 mutex_unlock(&drvdata->idr_mutex); 1480 1481 /* 1482 * Something went very wrong if the buffer associated with this ID 1483 * is not the same in the IDR. Leak to avoid use after free. 1484 */ 1485 if (buf && WARN_ON(buf != etr_buf)) 1486 goto free_etr_perf_buffer; 1487 1488 tmc_free_etr_buf(etr_perf->etr_buf); 1489 1490 free_etr_perf_buffer: 1491 kfree(etr_perf); 1492 } 1493 1494 /* 1495 * tmc_etr_sync_perf_buffer: Copy the actual trace data from the hardware 1496 * buffer to the perf ring buffer. 1497 */ 1498 static void tmc_etr_sync_perf_buffer(struct etr_perf_buffer *etr_perf, 1499 unsigned long head, 1500 unsigned long src_offset, 1501 unsigned long to_copy) 1502 { 1503 long bytes; 1504 long pg_idx, pg_offset; 1505 char **dst_pages, *src_buf; 1506 struct etr_buf *etr_buf = etr_perf->etr_buf; 1507 1508 head = PERF_IDX2OFF(head, etr_perf); 1509 pg_idx = head >> PAGE_SHIFT; 1510 pg_offset = head & (PAGE_SIZE - 1); 1511 dst_pages = (char **)etr_perf->pages; 1512 1513 while (to_copy > 0) { 1514 /* 1515 * In one iteration, we can copy minimum of : 1516 * 1) what is available in the source buffer, 1517 * 2) what is available in the source buffer, before it 1518 * wraps around. 1519 * 3) what is available in the destination page. 1520 * in one iteration. 1521 */ 1522 if (src_offset >= etr_buf->size) 1523 src_offset -= etr_buf->size; 1524 bytes = tmc_etr_buf_get_data(etr_buf, src_offset, to_copy, 1525 &src_buf); 1526 if (WARN_ON_ONCE(bytes <= 0)) 1527 break; 1528 bytes = min(bytes, (long)(PAGE_SIZE - pg_offset)); 1529 1530 memcpy(dst_pages[pg_idx] + pg_offset, src_buf, bytes); 1531 1532 to_copy -= bytes; 1533 1534 /* Move destination pointers */ 1535 pg_offset += bytes; 1536 if (pg_offset == PAGE_SIZE) { 1537 pg_offset = 0; 1538 if (++pg_idx == etr_perf->nr_pages) 1539 pg_idx = 0; 1540 } 1541 1542 /* Move source pointers */ 1543 src_offset += bytes; 1544 } 1545 } 1546 1547 /* 1548 * tmc_update_etr_buffer : Update the perf ring buffer with the 1549 * available trace data. We use software double buffering at the moment. 1550 * 1551 * TODO: Add support for reusing the perf ring buffer. 1552 */ 1553 static unsigned long 1554 tmc_update_etr_buffer(struct coresight_device *csdev, 1555 struct perf_output_handle *handle, 1556 void *config) 1557 { 1558 bool lost = false; 1559 unsigned long flags, offset, size = 0; 1560 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1561 struct etr_perf_buffer *etr_perf = config; 1562 struct etr_buf *etr_buf = etr_perf->etr_buf; 1563 1564 spin_lock_irqsave(&drvdata->spinlock, flags); 1565 1566 /* Don't do anything if another tracer is using this sink */ 1567 if (atomic_read(&csdev->refcnt) != 1) { 1568 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1569 goto out; 1570 } 1571 1572 if (WARN_ON(drvdata->perf_buf != etr_buf)) { 1573 lost = true; 1574 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1575 goto out; 1576 } 1577 1578 CS_UNLOCK(drvdata->base); 1579 1580 tmc_flush_and_stop(drvdata); 1581 tmc_sync_etr_buf(drvdata); 1582 1583 CS_LOCK(drvdata->base); 1584 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1585 1586 lost = etr_buf->full; 1587 offset = etr_buf->offset; 1588 size = etr_buf->len; 1589 1590 /* 1591 * The ETR buffer may be bigger than the space available in the 1592 * perf ring buffer (handle->size). If so advance the offset so that we 1593 * get the latest trace data. In snapshot mode none of that matters 1594 * since we are expected to clobber stale data in favour of the latest 1595 * traces. 1596 */ 1597 if (!etr_perf->snapshot && size > handle->size) { 1598 u32 mask = tmc_get_memwidth_mask(drvdata); 1599 1600 /* 1601 * Make sure the new size is aligned in accordance with the 1602 * requirement explained in function tmc_get_memwidth_mask(). 1603 */ 1604 size = handle->size & mask; 1605 offset = etr_buf->offset + etr_buf->len - size; 1606 1607 if (offset >= etr_buf->size) 1608 offset -= etr_buf->size; 1609 lost = true; 1610 } 1611 1612 /* Insert barrier packets at the beginning, if there was an overflow */ 1613 if (lost) 1614 tmc_etr_buf_insert_barrier_packet(etr_buf, offset); 1615 tmc_etr_sync_perf_buffer(etr_perf, handle->head, offset, size); 1616 1617 /* 1618 * In snapshot mode we simply increment the head by the number of byte 1619 * that were written. User space will figure out how many bytes to get 1620 * from the AUX buffer based on the position of the head. 1621 */ 1622 if (etr_perf->snapshot) 1623 handle->head += size; 1624 1625 /* 1626 * Ensure that the AUX trace data is visible before the aux_head 1627 * is updated via perf_aux_output_end(), as expected by the 1628 * perf ring buffer. 1629 */ 1630 smp_wmb(); 1631 1632 out: 1633 /* 1634 * Don't set the TRUNCATED flag in snapshot mode because 1) the 1635 * captured buffer is expected to be truncated and 2) a full buffer 1636 * prevents the event from being re-enabled by the perf core, 1637 * resulting in stale data being send to user space. 1638 */ 1639 if (!etr_perf->snapshot && lost) 1640 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED); 1641 return size; 1642 } 1643 1644 static int tmc_enable_etr_sink_perf(struct coresight_device *csdev, void *data) 1645 { 1646 int rc = 0; 1647 pid_t pid; 1648 unsigned long flags; 1649 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1650 struct perf_output_handle *handle = data; 1651 struct etr_perf_buffer *etr_perf = etm_perf_sink_config(handle); 1652 1653 spin_lock_irqsave(&drvdata->spinlock, flags); 1654 /* Don't use this sink if it is already claimed by sysFS */ 1655 if (drvdata->mode == CS_MODE_SYSFS) { 1656 rc = -EBUSY; 1657 goto unlock_out; 1658 } 1659 1660 if (WARN_ON(!etr_perf || !etr_perf->etr_buf)) { 1661 rc = -EINVAL; 1662 goto unlock_out; 1663 } 1664 1665 /* Get a handle on the pid of the process to monitor */ 1666 pid = etr_perf->pid; 1667 1668 /* Do not proceed if this device is associated with another session */ 1669 if (drvdata->pid != -1 && drvdata->pid != pid) { 1670 rc = -EBUSY; 1671 goto unlock_out; 1672 } 1673 1674 /* 1675 * No HW configuration is needed if the sink is already in 1676 * use for this session. 1677 */ 1678 if (drvdata->pid == pid) { 1679 atomic_inc(&csdev->refcnt); 1680 goto unlock_out; 1681 } 1682 1683 rc = tmc_etr_enable_hw(drvdata, etr_perf->etr_buf); 1684 if (!rc) { 1685 /* Associate with monitored process. */ 1686 drvdata->pid = pid; 1687 drvdata->mode = CS_MODE_PERF; 1688 drvdata->perf_buf = etr_perf->etr_buf; 1689 atomic_inc(&csdev->refcnt); 1690 } 1691 1692 unlock_out: 1693 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1694 return rc; 1695 } 1696 1697 static int tmc_enable_etr_sink(struct coresight_device *csdev, 1698 enum cs_mode mode, void *data) 1699 { 1700 switch (mode) { 1701 case CS_MODE_SYSFS: 1702 return tmc_enable_etr_sink_sysfs(csdev); 1703 case CS_MODE_PERF: 1704 return tmc_enable_etr_sink_perf(csdev, data); 1705 default: 1706 return -EINVAL; 1707 } 1708 } 1709 1710 static int tmc_disable_etr_sink(struct coresight_device *csdev) 1711 { 1712 unsigned long flags; 1713 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1714 1715 spin_lock_irqsave(&drvdata->spinlock, flags); 1716 1717 if (drvdata->reading) { 1718 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1719 return -EBUSY; 1720 } 1721 1722 if (atomic_dec_return(&csdev->refcnt)) { 1723 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1724 return -EBUSY; 1725 } 1726 1727 /* Complain if we (somehow) got out of sync */ 1728 WARN_ON_ONCE(drvdata->mode == CS_MODE_DISABLED); 1729 tmc_etr_disable_hw(drvdata); 1730 /* Dissociate from monitored process. */ 1731 drvdata->pid = -1; 1732 drvdata->mode = CS_MODE_DISABLED; 1733 /* Reset perf specific data */ 1734 drvdata->perf_buf = NULL; 1735 1736 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1737 1738 dev_dbg(&csdev->dev, "TMC-ETR disabled\n"); 1739 return 0; 1740 } 1741 1742 static const struct coresight_ops_sink tmc_etr_sink_ops = { 1743 .enable = tmc_enable_etr_sink, 1744 .disable = tmc_disable_etr_sink, 1745 .alloc_buffer = tmc_alloc_etr_buffer, 1746 .update_buffer = tmc_update_etr_buffer, 1747 .free_buffer = tmc_free_etr_buffer, 1748 }; 1749 1750 const struct coresight_ops tmc_etr_cs_ops = { 1751 .sink_ops = &tmc_etr_sink_ops, 1752 }; 1753 1754 int tmc_read_prepare_etr(struct tmc_drvdata *drvdata) 1755 { 1756 int ret = 0; 1757 unsigned long flags; 1758 1759 /* config types are set a boot time and never change */ 1760 if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR)) 1761 return -EINVAL; 1762 1763 spin_lock_irqsave(&drvdata->spinlock, flags); 1764 if (drvdata->reading) { 1765 ret = -EBUSY; 1766 goto out; 1767 } 1768 1769 /* 1770 * We can safely allow reads even if the ETR is operating in PERF mode, 1771 * since the sysfs session is captured in mode specific data. 1772 * If drvdata::sysfs_data is NULL the trace data has been read already. 1773 */ 1774 if (!drvdata->sysfs_buf) { 1775 ret = -EINVAL; 1776 goto out; 1777 } 1778 1779 /* Disable the TMC if we are trying to read from a running session. */ 1780 if (drvdata->mode == CS_MODE_SYSFS) 1781 __tmc_etr_disable_hw(drvdata); 1782 1783 drvdata->reading = true; 1784 out: 1785 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1786 1787 return ret; 1788 } 1789 1790 int tmc_read_unprepare_etr(struct tmc_drvdata *drvdata) 1791 { 1792 unsigned long flags; 1793 struct etr_buf *sysfs_buf = NULL; 1794 1795 /* config types are set a boot time and never change */ 1796 if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR)) 1797 return -EINVAL; 1798 1799 spin_lock_irqsave(&drvdata->spinlock, flags); 1800 1801 /* RE-enable the TMC if need be */ 1802 if (drvdata->mode == CS_MODE_SYSFS) { 1803 /* 1804 * The trace run will continue with the same allocated trace 1805 * buffer. Since the tracer is still enabled drvdata::buf can't 1806 * be NULL. 1807 */ 1808 __tmc_etr_enable_hw(drvdata); 1809 } else { 1810 /* 1811 * The ETR is not tracing and the buffer was just read. 1812 * As such prepare to free the trace buffer. 1813 */ 1814 sysfs_buf = drvdata->sysfs_buf; 1815 drvdata->sysfs_buf = NULL; 1816 } 1817 1818 drvdata->reading = false; 1819 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1820 1821 /* Free allocated memory out side of the spinlock */ 1822 if (sysfs_buf) 1823 tmc_etr_free_sysfs_buf(sysfs_buf); 1824 1825 return 0; 1826 } 1827 1828 static const char *const buf_modes_str[] = { 1829 [ETR_MODE_FLAT] = "flat", 1830 [ETR_MODE_ETR_SG] = "tmc-sg", 1831 [ETR_MODE_CATU] = "catu", 1832 [ETR_MODE_AUTO] = "auto", 1833 }; 1834 1835 static ssize_t buf_modes_available_show(struct device *dev, 1836 struct device_attribute *attr, char *buf) 1837 { 1838 struct etr_buf_hw buf_hw; 1839 ssize_t size = 0; 1840 1841 get_etr_buf_hw(dev, &buf_hw); 1842 size += sysfs_emit(buf, "%s ", buf_modes_str[ETR_MODE_AUTO]); 1843 size += sysfs_emit_at(buf, size, "%s ", buf_modes_str[ETR_MODE_FLAT]); 1844 if (buf_hw.has_etr_sg) 1845 size += sysfs_emit_at(buf, size, "%s ", buf_modes_str[ETR_MODE_ETR_SG]); 1846 1847 if (buf_hw.has_catu) 1848 size += sysfs_emit_at(buf, size, "%s ", buf_modes_str[ETR_MODE_CATU]); 1849 1850 size += sysfs_emit_at(buf, size, "\n"); 1851 return size; 1852 } 1853 static DEVICE_ATTR_RO(buf_modes_available); 1854 1855 static ssize_t buf_mode_preferred_show(struct device *dev, 1856 struct device_attribute *attr, char *buf) 1857 { 1858 struct tmc_drvdata *drvdata = dev_get_drvdata(dev->parent); 1859 1860 return sysfs_emit(buf, "%s\n", buf_modes_str[drvdata->etr_mode]); 1861 } 1862 1863 static ssize_t buf_mode_preferred_store(struct device *dev, 1864 struct device_attribute *attr, 1865 const char *buf, size_t size) 1866 { 1867 struct tmc_drvdata *drvdata = dev_get_drvdata(dev->parent); 1868 struct etr_buf_hw buf_hw; 1869 1870 get_etr_buf_hw(dev, &buf_hw); 1871 if (sysfs_streq(buf, buf_modes_str[ETR_MODE_FLAT])) 1872 drvdata->etr_mode = ETR_MODE_FLAT; 1873 else if (sysfs_streq(buf, buf_modes_str[ETR_MODE_ETR_SG]) && buf_hw.has_etr_sg) 1874 drvdata->etr_mode = ETR_MODE_ETR_SG; 1875 else if (sysfs_streq(buf, buf_modes_str[ETR_MODE_CATU]) && buf_hw.has_catu) 1876 drvdata->etr_mode = ETR_MODE_CATU; 1877 else if (sysfs_streq(buf, buf_modes_str[ETR_MODE_AUTO])) 1878 drvdata->etr_mode = ETR_MODE_AUTO; 1879 else 1880 return -EINVAL; 1881 return size; 1882 } 1883 static DEVICE_ATTR_RW(buf_mode_preferred); 1884 1885 static struct attribute *coresight_etr_attrs[] = { 1886 &dev_attr_buf_modes_available.attr, 1887 &dev_attr_buf_mode_preferred.attr, 1888 NULL, 1889 }; 1890 1891 const struct attribute_group coresight_etr_group = { 1892 .attrs = coresight_etr_attrs, 1893 }; 1894