1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2016 Linaro Limited. All rights reserved. 4 * Author: Mathieu Poirier <mathieu.poirier@linaro.org> 5 */ 6 7 #include <linux/atomic.h> 8 #include <linux/coresight.h> 9 #include <linux/dma-mapping.h> 10 #include <linux/iommu.h> 11 #include <linux/idr.h> 12 #include <linux/mutex.h> 13 #include <linux/refcount.h> 14 #include <linux/slab.h> 15 #include <linux/types.h> 16 #include <linux/vmalloc.h> 17 #include "coresight-catu.h" 18 #include "coresight-etm-perf.h" 19 #include "coresight-priv.h" 20 #include "coresight-tmc.h" 21 22 struct etr_flat_buf { 23 struct device *dev; 24 dma_addr_t daddr; 25 void *vaddr; 26 size_t size; 27 }; 28 29 struct etr_buf_hw { 30 bool has_iommu; 31 bool has_etr_sg; 32 bool has_catu; 33 bool has_resrv; 34 }; 35 36 /* 37 * etr_perf_buffer - Perf buffer used for ETR 38 * @drvdata - The ETR drvdaga this buffer has been allocated for. 39 * @etr_buf - Actual buffer used by the ETR 40 * @pid - The PID of the session owner that etr_perf_buffer 41 * belongs to. 42 * @snaphost - Perf session mode 43 * @nr_pages - Number of pages in the ring buffer. 44 * @pages - Array of Pages in the ring buffer. 45 */ 46 struct etr_perf_buffer { 47 struct tmc_drvdata *drvdata; 48 struct etr_buf *etr_buf; 49 pid_t pid; 50 bool snapshot; 51 int nr_pages; 52 void **pages; 53 }; 54 55 /* Convert the perf index to an offset within the ETR buffer */ 56 #define PERF_IDX2OFF(idx, buf) \ 57 ((idx) % ((unsigned long)(buf)->nr_pages << PAGE_SHIFT)) 58 59 /* Lower limit for ETR hardware buffer */ 60 #define TMC_ETR_PERF_MIN_BUF_SIZE SZ_1M 61 62 /* 63 * The TMC ETR SG has a page size of 4K. The SG table contains pointers 64 * to 4KB buffers. However, the OS may use a PAGE_SIZE different from 65 * 4K (i.e, 16KB or 64KB). This implies that a single OS page could 66 * contain more than one SG buffer and tables. 67 * 68 * A table entry has the following format: 69 * 70 * ---Bit31------------Bit4-------Bit1-----Bit0-- 71 * | Address[39:12] | SBZ | Entry Type | 72 * ---------------------------------------------- 73 * 74 * Address: Bits [39:12] of a physical page address. Bits [11:0] are 75 * always zero. 76 * 77 * Entry type: 78 * b00 - Reserved. 79 * b01 - Last entry in the tables, points to 4K page buffer. 80 * b10 - Normal entry, points to 4K page buffer. 81 * b11 - Link. The address points to the base of next table. 82 */ 83 84 typedef u32 sgte_t; 85 86 #define ETR_SG_PAGE_SHIFT 12 87 #define ETR_SG_PAGE_SIZE (1UL << ETR_SG_PAGE_SHIFT) 88 #define ETR_SG_PAGES_PER_SYSPAGE (PAGE_SIZE / ETR_SG_PAGE_SIZE) 89 #define ETR_SG_PTRS_PER_PAGE (ETR_SG_PAGE_SIZE / sizeof(sgte_t)) 90 #define ETR_SG_PTRS_PER_SYSPAGE (PAGE_SIZE / sizeof(sgte_t)) 91 92 #define ETR_SG_ET_MASK 0x3 93 #define ETR_SG_ET_LAST 0x1 94 #define ETR_SG_ET_NORMAL 0x2 95 #define ETR_SG_ET_LINK 0x3 96 97 #define ETR_SG_ADDR_SHIFT 4 98 99 #define ETR_SG_ENTRY(addr, type) \ 100 (sgte_t)((((addr) >> ETR_SG_PAGE_SHIFT) << ETR_SG_ADDR_SHIFT) | \ 101 (type & ETR_SG_ET_MASK)) 102 103 #define ETR_SG_ADDR(entry) \ 104 (((dma_addr_t)(entry) >> ETR_SG_ADDR_SHIFT) << ETR_SG_PAGE_SHIFT) 105 #define ETR_SG_ET(entry) ((entry) & ETR_SG_ET_MASK) 106 107 /* 108 * struct etr_sg_table : ETR SG Table 109 * @sg_table: Generic SG Table holding the data/table pages. 110 * @hwaddr: hwaddress used by the TMC, which is the base 111 * address of the table. 112 */ 113 struct etr_sg_table { 114 struct tmc_sg_table *sg_table; 115 dma_addr_t hwaddr; 116 }; 117 118 /* 119 * tmc_etr_sg_table_entries: Total number of table entries required to map 120 * @nr_pages system pages. 121 * 122 * We need to map @nr_pages * ETR_SG_PAGES_PER_SYSPAGE data pages. 123 * Each TMC page can map (ETR_SG_PTRS_PER_PAGE - 1) buffer pointers, 124 * with the last entry pointing to another page of table entries. 125 * If we spill over to a new page for mapping 1 entry, we could as 126 * well replace the link entry of the previous page with the last entry. 127 */ 128 static inline unsigned long __attribute_const__ 129 tmc_etr_sg_table_entries(int nr_pages) 130 { 131 unsigned long nr_sgpages = nr_pages * ETR_SG_PAGES_PER_SYSPAGE; 132 unsigned long nr_sglinks = nr_sgpages / (ETR_SG_PTRS_PER_PAGE - 1); 133 /* 134 * If we spill over to a new page for 1 entry, we could as well 135 * make it the LAST entry in the previous page, skipping the Link 136 * address. 137 */ 138 if (nr_sglinks && (nr_sgpages % (ETR_SG_PTRS_PER_PAGE - 1) < 2)) 139 nr_sglinks--; 140 return nr_sgpages + nr_sglinks; 141 } 142 143 /* 144 * tmc_pages_get_offset: Go through all the pages in the tmc_pages 145 * and map the device address @addr to an offset within the virtual 146 * contiguous buffer. 147 */ 148 static long 149 tmc_pages_get_offset(struct tmc_pages *tmc_pages, dma_addr_t addr) 150 { 151 int i; 152 dma_addr_t page_start; 153 154 for (i = 0; i < tmc_pages->nr_pages; i++) { 155 page_start = tmc_pages->daddrs[i]; 156 if (addr >= page_start && addr < (page_start + PAGE_SIZE)) 157 return i * PAGE_SIZE + (addr - page_start); 158 } 159 160 return -EINVAL; 161 } 162 163 /* 164 * tmc_pages_free : Unmap and free the pages used by tmc_pages. 165 * If the pages were not allocated in tmc_pages_alloc(), we would 166 * simply drop the refcount. 167 */ 168 static void tmc_pages_free(struct tmc_pages *tmc_pages, 169 struct device *dev, enum dma_data_direction dir) 170 { 171 int i; 172 struct device *real_dev = dev->parent; 173 174 for (i = 0; i < tmc_pages->nr_pages; i++) { 175 if (tmc_pages->daddrs && tmc_pages->daddrs[i]) 176 dma_unmap_page(real_dev, tmc_pages->daddrs[i], 177 PAGE_SIZE, dir); 178 if (tmc_pages->pages && tmc_pages->pages[i]) 179 __free_page(tmc_pages->pages[i]); 180 } 181 182 kfree(tmc_pages->pages); 183 kfree(tmc_pages->daddrs); 184 tmc_pages->pages = NULL; 185 tmc_pages->daddrs = NULL; 186 tmc_pages->nr_pages = 0; 187 } 188 189 /* 190 * tmc_pages_alloc : Allocate and map pages for a given @tmc_pages. 191 * If @pages is not NULL, the list of page virtual addresses are 192 * used as the data pages. The pages are then dma_map'ed for @dev 193 * with dma_direction @dir. 194 * 195 * Returns 0 upon success, else the error number. 196 */ 197 static int tmc_pages_alloc(struct tmc_pages *tmc_pages, 198 struct device *dev, int node, 199 enum dma_data_direction dir, void **pages) 200 { 201 int i, nr_pages; 202 dma_addr_t paddr; 203 struct page *page; 204 struct device *real_dev = dev->parent; 205 206 nr_pages = tmc_pages->nr_pages; 207 tmc_pages->daddrs = kcalloc(nr_pages, sizeof(*tmc_pages->daddrs), 208 GFP_KERNEL); 209 if (!tmc_pages->daddrs) 210 return -ENOMEM; 211 tmc_pages->pages = kcalloc(nr_pages, sizeof(*tmc_pages->pages), 212 GFP_KERNEL); 213 if (!tmc_pages->pages) { 214 kfree(tmc_pages->daddrs); 215 tmc_pages->daddrs = NULL; 216 return -ENOMEM; 217 } 218 219 for (i = 0; i < nr_pages; i++) { 220 if (pages && pages[i]) { 221 page = virt_to_page(pages[i]); 222 /* Hold a refcount on the page */ 223 get_page(page); 224 } else { 225 page = alloc_pages_node(node, 226 GFP_KERNEL | __GFP_ZERO, 0); 227 if (!page) 228 goto err; 229 } 230 paddr = dma_map_page(real_dev, page, 0, PAGE_SIZE, dir); 231 if (dma_mapping_error(real_dev, paddr)) 232 goto err; 233 tmc_pages->daddrs[i] = paddr; 234 tmc_pages->pages[i] = page; 235 } 236 return 0; 237 err: 238 tmc_pages_free(tmc_pages, dev, dir); 239 return -ENOMEM; 240 } 241 242 static inline long 243 tmc_sg_get_data_page_offset(struct tmc_sg_table *sg_table, dma_addr_t addr) 244 { 245 return tmc_pages_get_offset(&sg_table->data_pages, addr); 246 } 247 248 static inline void tmc_free_table_pages(struct tmc_sg_table *sg_table) 249 { 250 if (sg_table->table_vaddr) 251 vunmap(sg_table->table_vaddr); 252 tmc_pages_free(&sg_table->table_pages, sg_table->dev, DMA_TO_DEVICE); 253 } 254 255 static void tmc_free_data_pages(struct tmc_sg_table *sg_table) 256 { 257 if (sg_table->data_vaddr) 258 vunmap(sg_table->data_vaddr); 259 tmc_pages_free(&sg_table->data_pages, sg_table->dev, DMA_FROM_DEVICE); 260 } 261 262 void tmc_free_sg_table(struct tmc_sg_table *sg_table) 263 { 264 tmc_free_table_pages(sg_table); 265 tmc_free_data_pages(sg_table); 266 kfree(sg_table); 267 } 268 EXPORT_SYMBOL_GPL(tmc_free_sg_table); 269 270 /* 271 * Alloc pages for the table. Since this will be used by the device, 272 * allocate the pages closer to the device (i.e, dev_to_node(dev) 273 * rather than the CPU node). 274 */ 275 static int tmc_alloc_table_pages(struct tmc_sg_table *sg_table) 276 { 277 int rc; 278 struct tmc_pages *table_pages = &sg_table->table_pages; 279 280 rc = tmc_pages_alloc(table_pages, sg_table->dev, 281 dev_to_node(sg_table->dev), 282 DMA_TO_DEVICE, NULL); 283 if (rc) 284 return rc; 285 sg_table->table_vaddr = vmap(table_pages->pages, 286 table_pages->nr_pages, 287 VM_MAP, 288 PAGE_KERNEL); 289 if (!sg_table->table_vaddr) 290 rc = -ENOMEM; 291 else 292 sg_table->table_daddr = table_pages->daddrs[0]; 293 return rc; 294 } 295 296 static int tmc_alloc_data_pages(struct tmc_sg_table *sg_table, void **pages) 297 { 298 int rc; 299 300 /* Allocate data pages on the node requested by the caller */ 301 rc = tmc_pages_alloc(&sg_table->data_pages, 302 sg_table->dev, sg_table->node, 303 DMA_FROM_DEVICE, pages); 304 if (!rc) { 305 sg_table->data_vaddr = vmap(sg_table->data_pages.pages, 306 sg_table->data_pages.nr_pages, 307 VM_MAP, 308 PAGE_KERNEL); 309 if (!sg_table->data_vaddr) 310 rc = -ENOMEM; 311 } 312 return rc; 313 } 314 315 /* 316 * tmc_alloc_sg_table: Allocate and setup dma pages for the TMC SG table 317 * and data buffers. TMC writes to the data buffers and reads from the SG 318 * Table pages. 319 * 320 * @dev - Coresight device to which page should be DMA mapped. 321 * @node - Numa node for mem allocations 322 * @nr_tpages - Number of pages for the table entries. 323 * @nr_dpages - Number of pages for Data buffer. 324 * @pages - Optional list of virtual address of pages. 325 */ 326 struct tmc_sg_table *tmc_alloc_sg_table(struct device *dev, 327 int node, 328 int nr_tpages, 329 int nr_dpages, 330 void **pages) 331 { 332 long rc; 333 struct tmc_sg_table *sg_table; 334 335 sg_table = kzalloc(sizeof(*sg_table), GFP_KERNEL); 336 if (!sg_table) 337 return ERR_PTR(-ENOMEM); 338 sg_table->data_pages.nr_pages = nr_dpages; 339 sg_table->table_pages.nr_pages = nr_tpages; 340 sg_table->node = node; 341 sg_table->dev = dev; 342 343 rc = tmc_alloc_data_pages(sg_table, pages); 344 if (!rc) 345 rc = tmc_alloc_table_pages(sg_table); 346 if (rc) { 347 tmc_free_sg_table(sg_table); 348 return ERR_PTR(rc); 349 } 350 351 return sg_table; 352 } 353 EXPORT_SYMBOL_GPL(tmc_alloc_sg_table); 354 355 /* 356 * tmc_sg_table_sync_data_range: Sync the data buffer written 357 * by the device from @offset upto a @size bytes. 358 */ 359 void tmc_sg_table_sync_data_range(struct tmc_sg_table *table, 360 u64 offset, u64 size) 361 { 362 int i, index, start; 363 int npages = DIV_ROUND_UP(size, PAGE_SIZE); 364 struct device *real_dev = table->dev->parent; 365 struct tmc_pages *data = &table->data_pages; 366 367 start = offset >> PAGE_SHIFT; 368 for (i = start; i < (start + npages); i++) { 369 index = i % data->nr_pages; 370 dma_sync_single_for_cpu(real_dev, data->daddrs[index], 371 PAGE_SIZE, DMA_FROM_DEVICE); 372 } 373 } 374 EXPORT_SYMBOL_GPL(tmc_sg_table_sync_data_range); 375 376 /* tmc_sg_sync_table: Sync the page table */ 377 void tmc_sg_table_sync_table(struct tmc_sg_table *sg_table) 378 { 379 int i; 380 struct device *real_dev = sg_table->dev->parent; 381 struct tmc_pages *table_pages = &sg_table->table_pages; 382 383 for (i = 0; i < table_pages->nr_pages; i++) 384 dma_sync_single_for_device(real_dev, table_pages->daddrs[i], 385 PAGE_SIZE, DMA_TO_DEVICE); 386 } 387 EXPORT_SYMBOL_GPL(tmc_sg_table_sync_table); 388 389 /* 390 * tmc_sg_table_get_data: Get the buffer pointer for data @offset 391 * in the SG buffer. The @bufpp is updated to point to the buffer. 392 * Returns : 393 * the length of linear data available at @offset. 394 * or 395 * <= 0 if no data is available. 396 */ 397 ssize_t tmc_sg_table_get_data(struct tmc_sg_table *sg_table, 398 u64 offset, size_t len, char **bufpp) 399 { 400 size_t size; 401 int pg_idx = offset >> PAGE_SHIFT; 402 int pg_offset = offset & (PAGE_SIZE - 1); 403 struct tmc_pages *data_pages = &sg_table->data_pages; 404 405 size = tmc_sg_table_buf_size(sg_table); 406 if (offset >= size) 407 return -EINVAL; 408 409 /* Make sure we don't go beyond the end */ 410 len = (len < (size - offset)) ? len : size - offset; 411 /* Respect the page boundaries */ 412 len = (len < (PAGE_SIZE - pg_offset)) ? len : (PAGE_SIZE - pg_offset); 413 if (len > 0) 414 *bufpp = page_address(data_pages->pages[pg_idx]) + pg_offset; 415 return len; 416 } 417 EXPORT_SYMBOL_GPL(tmc_sg_table_get_data); 418 419 #ifdef ETR_SG_DEBUG 420 /* Map a dma address to virtual address */ 421 static unsigned long 422 tmc_sg_daddr_to_vaddr(struct tmc_sg_table *sg_table, 423 dma_addr_t addr, bool table) 424 { 425 long offset; 426 unsigned long base; 427 struct tmc_pages *tmc_pages; 428 429 if (table) { 430 tmc_pages = &sg_table->table_pages; 431 base = (unsigned long)sg_table->table_vaddr; 432 } else { 433 tmc_pages = &sg_table->data_pages; 434 base = (unsigned long)sg_table->data_vaddr; 435 } 436 437 offset = tmc_pages_get_offset(tmc_pages, addr); 438 if (offset < 0) 439 return 0; 440 return base + offset; 441 } 442 443 /* Dump the given sg_table */ 444 static void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) 445 { 446 sgte_t *ptr; 447 int i = 0; 448 dma_addr_t addr; 449 struct tmc_sg_table *sg_table = etr_table->sg_table; 450 451 ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table, 452 etr_table->hwaddr, true); 453 while (ptr) { 454 addr = ETR_SG_ADDR(*ptr); 455 switch (ETR_SG_ET(*ptr)) { 456 case ETR_SG_ET_NORMAL: 457 dev_dbg(sg_table->dev, 458 "%05d: %p\t:[N] 0x%llx\n", i, ptr, addr); 459 ptr++; 460 break; 461 case ETR_SG_ET_LINK: 462 dev_dbg(sg_table->dev, 463 "%05d: *** %p\t:{L} 0x%llx ***\n", 464 i, ptr, addr); 465 ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table, 466 addr, true); 467 break; 468 case ETR_SG_ET_LAST: 469 dev_dbg(sg_table->dev, 470 "%05d: ### %p\t:[L] 0x%llx ###\n", 471 i, ptr, addr); 472 return; 473 default: 474 dev_dbg(sg_table->dev, 475 "%05d: xxx %p\t:[INVALID] 0x%llx xxx\n", 476 i, ptr, addr); 477 return; 478 } 479 i++; 480 } 481 dev_dbg(sg_table->dev, "******* End of Table *****\n"); 482 } 483 #else 484 static inline void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) {} 485 #endif 486 487 /* 488 * Populate the SG Table page table entries from table/data 489 * pages allocated. Each Data page has ETR_SG_PAGES_PER_SYSPAGE SG pages. 490 * So does a Table page. So we keep track of indices of the tables 491 * in each system page and move the pointers accordingly. 492 */ 493 #define INC_IDX_ROUND(idx, size) ((idx) = ((idx) + 1) % (size)) 494 static void tmc_etr_sg_table_populate(struct etr_sg_table *etr_table) 495 { 496 dma_addr_t paddr; 497 int i, type, nr_entries; 498 int tpidx = 0; /* index to the current system table_page */ 499 int sgtidx = 0; /* index to the sg_table within the current syspage */ 500 int sgtentry = 0; /* the entry within the sg_table */ 501 int dpidx = 0; /* index to the current system data_page */ 502 int spidx = 0; /* index to the SG page within the current data page */ 503 sgte_t *ptr; /* pointer to the table entry to fill */ 504 struct tmc_sg_table *sg_table = etr_table->sg_table; 505 dma_addr_t *table_daddrs = sg_table->table_pages.daddrs; 506 dma_addr_t *data_daddrs = sg_table->data_pages.daddrs; 507 508 nr_entries = tmc_etr_sg_table_entries(sg_table->data_pages.nr_pages); 509 /* 510 * Use the contiguous virtual address of the table to update entries. 511 */ 512 ptr = sg_table->table_vaddr; 513 /* 514 * Fill all the entries, except the last entry to avoid special 515 * checks within the loop. 516 */ 517 for (i = 0; i < nr_entries - 1; i++) { 518 if (sgtentry == ETR_SG_PTRS_PER_PAGE - 1) { 519 /* 520 * Last entry in a sg_table page is a link address to 521 * the next table page. If this sg_table is the last 522 * one in the system page, it links to the first 523 * sg_table in the next system page. Otherwise, it 524 * links to the next sg_table page within the system 525 * page. 526 */ 527 if (sgtidx == ETR_SG_PAGES_PER_SYSPAGE - 1) { 528 paddr = table_daddrs[tpidx + 1]; 529 } else { 530 paddr = table_daddrs[tpidx] + 531 (ETR_SG_PAGE_SIZE * (sgtidx + 1)); 532 } 533 type = ETR_SG_ET_LINK; 534 } else { 535 /* 536 * Update the indices to the data_pages to point to the 537 * next sg_page in the data buffer. 538 */ 539 type = ETR_SG_ET_NORMAL; 540 paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE; 541 if (!INC_IDX_ROUND(spidx, ETR_SG_PAGES_PER_SYSPAGE)) 542 dpidx++; 543 } 544 *ptr++ = ETR_SG_ENTRY(paddr, type); 545 /* 546 * Move to the next table pointer, moving the table page index 547 * if necessary 548 */ 549 if (!INC_IDX_ROUND(sgtentry, ETR_SG_PTRS_PER_PAGE)) { 550 if (!INC_IDX_ROUND(sgtidx, ETR_SG_PAGES_PER_SYSPAGE)) 551 tpidx++; 552 } 553 } 554 555 /* Set up the last entry, which is always a data pointer */ 556 paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE; 557 *ptr++ = ETR_SG_ENTRY(paddr, ETR_SG_ET_LAST); 558 } 559 560 /* 561 * tmc_init_etr_sg_table: Allocate a TMC ETR SG table, data buffer of @size and 562 * populate the table. 563 * 564 * @dev - Device pointer for the TMC 565 * @node - NUMA node where the memory should be allocated 566 * @size - Total size of the data buffer 567 * @pages - Optional list of page virtual address 568 */ 569 static struct etr_sg_table * 570 tmc_init_etr_sg_table(struct device *dev, int node, 571 unsigned long size, void **pages) 572 { 573 int nr_entries, nr_tpages; 574 int nr_dpages = size >> PAGE_SHIFT; 575 struct tmc_sg_table *sg_table; 576 struct etr_sg_table *etr_table; 577 578 etr_table = kzalloc(sizeof(*etr_table), GFP_KERNEL); 579 if (!etr_table) 580 return ERR_PTR(-ENOMEM); 581 nr_entries = tmc_etr_sg_table_entries(nr_dpages); 582 nr_tpages = DIV_ROUND_UP(nr_entries, ETR_SG_PTRS_PER_SYSPAGE); 583 584 sg_table = tmc_alloc_sg_table(dev, node, nr_tpages, nr_dpages, pages); 585 if (IS_ERR(sg_table)) { 586 kfree(etr_table); 587 return ERR_CAST(sg_table); 588 } 589 590 etr_table->sg_table = sg_table; 591 /* TMC should use table base address for DBA */ 592 etr_table->hwaddr = sg_table->table_daddr; 593 tmc_etr_sg_table_populate(etr_table); 594 /* Sync the table pages for the HW */ 595 tmc_sg_table_sync_table(sg_table); 596 tmc_etr_sg_table_dump(etr_table); 597 598 return etr_table; 599 } 600 601 /* 602 * tmc_etr_alloc_flat_buf: Allocate a contiguous DMA buffer. 603 */ 604 static int tmc_etr_alloc_flat_buf(struct tmc_drvdata *drvdata, 605 struct etr_buf *etr_buf, int node, 606 void **pages) 607 { 608 struct etr_flat_buf *flat_buf; 609 struct device *real_dev = drvdata->csdev->dev.parent; 610 611 /* We cannot reuse existing pages for flat buf */ 612 if (pages) 613 return -EINVAL; 614 615 flat_buf = kzalloc(sizeof(*flat_buf), GFP_KERNEL); 616 if (!flat_buf) 617 return -ENOMEM; 618 619 flat_buf->vaddr = dma_alloc_noncoherent(real_dev, etr_buf->size, 620 &flat_buf->daddr, 621 DMA_FROM_DEVICE, 622 GFP_KERNEL | __GFP_NOWARN); 623 if (!flat_buf->vaddr) { 624 kfree(flat_buf); 625 return -ENOMEM; 626 } 627 628 flat_buf->size = etr_buf->size; 629 flat_buf->dev = &drvdata->csdev->dev; 630 etr_buf->hwaddr = flat_buf->daddr; 631 etr_buf->mode = ETR_MODE_FLAT; 632 etr_buf->private = flat_buf; 633 return 0; 634 } 635 636 static void tmc_etr_free_flat_buf(struct etr_buf *etr_buf) 637 { 638 struct etr_flat_buf *flat_buf = etr_buf->private; 639 640 if (flat_buf && flat_buf->daddr) { 641 struct device *real_dev = flat_buf->dev->parent; 642 643 dma_free_noncoherent(real_dev, etr_buf->size, 644 flat_buf->vaddr, flat_buf->daddr, 645 DMA_FROM_DEVICE); 646 } 647 kfree(flat_buf); 648 } 649 650 static void tmc_etr_sync_flat_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp) 651 { 652 struct etr_flat_buf *flat_buf = etr_buf->private; 653 struct device *real_dev = flat_buf->dev->parent; 654 655 /* 656 * Adjust the buffer to point to the beginning of the trace data 657 * and update the available trace data. 658 */ 659 etr_buf->offset = rrp - etr_buf->hwaddr; 660 if (etr_buf->full) 661 etr_buf->len = etr_buf->size; 662 else 663 etr_buf->len = rwp - rrp; 664 665 /* 666 * The driver always starts tracing at the beginning of the buffer, 667 * the only reason why we would get a wrap around is when the buffer 668 * is full. Sync the entire buffer in one go for this case. 669 */ 670 if (etr_buf->offset + etr_buf->len > etr_buf->size) 671 dma_sync_single_for_cpu(real_dev, flat_buf->daddr, 672 etr_buf->size, DMA_FROM_DEVICE); 673 else 674 dma_sync_single_for_cpu(real_dev, 675 flat_buf->daddr + etr_buf->offset, 676 etr_buf->len, DMA_FROM_DEVICE); 677 } 678 679 static ssize_t tmc_etr_get_data_flat_buf(struct etr_buf *etr_buf, 680 u64 offset, size_t len, char **bufpp) 681 { 682 struct etr_flat_buf *flat_buf = etr_buf->private; 683 684 *bufpp = (char *)flat_buf->vaddr + offset; 685 /* 686 * tmc_etr_buf_get_data already adjusts the length to handle 687 * buffer wrapping around. 688 */ 689 return len; 690 } 691 692 static const struct etr_buf_operations etr_flat_buf_ops = { 693 .alloc = tmc_etr_alloc_flat_buf, 694 .free = tmc_etr_free_flat_buf, 695 .sync = tmc_etr_sync_flat_buf, 696 .get_data = tmc_etr_get_data_flat_buf, 697 }; 698 699 /* 700 * tmc_etr_alloc_resrv_buf: Allocate a contiguous DMA buffer from reserved region. 701 */ 702 static int tmc_etr_alloc_resrv_buf(struct tmc_drvdata *drvdata, 703 struct etr_buf *etr_buf, int node, 704 void **pages) 705 { 706 struct etr_flat_buf *resrv_buf; 707 struct device *real_dev = drvdata->csdev->dev.parent; 708 709 /* We cannot reuse existing pages for resrv buf */ 710 if (pages) 711 return -EINVAL; 712 713 resrv_buf = kzalloc(sizeof(*resrv_buf), GFP_KERNEL); 714 if (!resrv_buf) 715 return -ENOMEM; 716 717 resrv_buf->daddr = dma_map_resource(real_dev, drvdata->resrv_buf.paddr, 718 drvdata->resrv_buf.size, 719 DMA_FROM_DEVICE, 0); 720 if (dma_mapping_error(real_dev, resrv_buf->daddr)) { 721 dev_err(real_dev, "failed to map source buffer address\n"); 722 kfree(resrv_buf); 723 return -ENOMEM; 724 } 725 726 resrv_buf->vaddr = drvdata->resrv_buf.vaddr; 727 resrv_buf->size = etr_buf->size = drvdata->resrv_buf.size; 728 resrv_buf->dev = &drvdata->csdev->dev; 729 etr_buf->hwaddr = resrv_buf->daddr; 730 etr_buf->mode = ETR_MODE_RESRV; 731 etr_buf->private = resrv_buf; 732 return 0; 733 } 734 735 static void tmc_etr_free_resrv_buf(struct etr_buf *etr_buf) 736 { 737 struct etr_flat_buf *resrv_buf = etr_buf->private; 738 739 if (resrv_buf && resrv_buf->daddr) { 740 struct device *real_dev = resrv_buf->dev->parent; 741 742 dma_unmap_resource(real_dev, resrv_buf->daddr, 743 resrv_buf->size, DMA_FROM_DEVICE, 0); 744 } 745 kfree(resrv_buf); 746 } 747 748 static void tmc_etr_sync_resrv_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp) 749 { 750 /* 751 * Adjust the buffer to point to the beginning of the trace data 752 * and update the available trace data. 753 */ 754 etr_buf->offset = rrp - etr_buf->hwaddr; 755 if (etr_buf->full) 756 etr_buf->len = etr_buf->size; 757 else 758 etr_buf->len = rwp - rrp; 759 } 760 761 static const struct etr_buf_operations etr_resrv_buf_ops = { 762 .alloc = tmc_etr_alloc_resrv_buf, 763 .free = tmc_etr_free_resrv_buf, 764 .sync = tmc_etr_sync_resrv_buf, 765 .get_data = tmc_etr_get_data_flat_buf, 766 }; 767 768 /* 769 * tmc_etr_alloc_sg_buf: Allocate an SG buf @etr_buf. Setup the parameters 770 * appropriately. 771 */ 772 static int tmc_etr_alloc_sg_buf(struct tmc_drvdata *drvdata, 773 struct etr_buf *etr_buf, int node, 774 void **pages) 775 { 776 struct etr_sg_table *etr_table; 777 struct device *dev = &drvdata->csdev->dev; 778 779 etr_table = tmc_init_etr_sg_table(dev, node, 780 etr_buf->size, pages); 781 if (IS_ERR(etr_table)) 782 return -ENOMEM; 783 etr_buf->hwaddr = etr_table->hwaddr; 784 etr_buf->mode = ETR_MODE_ETR_SG; 785 etr_buf->private = etr_table; 786 return 0; 787 } 788 789 static void tmc_etr_free_sg_buf(struct etr_buf *etr_buf) 790 { 791 struct etr_sg_table *etr_table = etr_buf->private; 792 793 if (etr_table) { 794 tmc_free_sg_table(etr_table->sg_table); 795 kfree(etr_table); 796 } 797 } 798 799 static ssize_t tmc_etr_get_data_sg_buf(struct etr_buf *etr_buf, u64 offset, 800 size_t len, char **bufpp) 801 { 802 struct etr_sg_table *etr_table = etr_buf->private; 803 804 return tmc_sg_table_get_data(etr_table->sg_table, offset, len, bufpp); 805 } 806 807 static void tmc_etr_sync_sg_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp) 808 { 809 long r_offset, w_offset; 810 struct etr_sg_table *etr_table = etr_buf->private; 811 struct tmc_sg_table *table = etr_table->sg_table; 812 813 /* Convert hw address to offset in the buffer */ 814 r_offset = tmc_sg_get_data_page_offset(table, rrp); 815 if (r_offset < 0) { 816 dev_warn(table->dev, 817 "Unable to map RRP %llx to offset\n", rrp); 818 etr_buf->len = 0; 819 return; 820 } 821 822 w_offset = tmc_sg_get_data_page_offset(table, rwp); 823 if (w_offset < 0) { 824 dev_warn(table->dev, 825 "Unable to map RWP %llx to offset\n", rwp); 826 etr_buf->len = 0; 827 return; 828 } 829 830 etr_buf->offset = r_offset; 831 if (etr_buf->full) 832 etr_buf->len = etr_buf->size; 833 else 834 etr_buf->len = ((w_offset < r_offset) ? etr_buf->size : 0) + 835 w_offset - r_offset; 836 tmc_sg_table_sync_data_range(table, r_offset, etr_buf->len); 837 } 838 839 static const struct etr_buf_operations etr_sg_buf_ops = { 840 .alloc = tmc_etr_alloc_sg_buf, 841 .free = tmc_etr_free_sg_buf, 842 .sync = tmc_etr_sync_sg_buf, 843 .get_data = tmc_etr_get_data_sg_buf, 844 }; 845 846 /* 847 * TMC ETR could be connected to a CATU device, which can provide address 848 * translation service. This is represented by the Output port of the TMC 849 * (ETR) connected to the input port of the CATU. 850 * 851 * Returns : coresight_device ptr for the CATU device if a CATU is found. 852 * : NULL otherwise. 853 */ 854 struct coresight_device * 855 tmc_etr_get_catu_device(struct tmc_drvdata *drvdata) 856 { 857 struct coresight_device *etr = drvdata->csdev; 858 union coresight_dev_subtype catu_subtype = { 859 .helper_subtype = CORESIGHT_DEV_SUBTYPE_HELPER_CATU 860 }; 861 862 if (!IS_ENABLED(CONFIG_CORESIGHT_CATU)) 863 return NULL; 864 865 return coresight_find_output_type(etr->pdata, CORESIGHT_DEV_TYPE_HELPER, 866 catu_subtype); 867 } 868 EXPORT_SYMBOL_GPL(tmc_etr_get_catu_device); 869 870 static const struct etr_buf_operations *etr_buf_ops[] = { 871 [ETR_MODE_FLAT] = &etr_flat_buf_ops, 872 [ETR_MODE_ETR_SG] = &etr_sg_buf_ops, 873 [ETR_MODE_CATU] = NULL, 874 [ETR_MODE_RESRV] = &etr_resrv_buf_ops 875 }; 876 877 void tmc_etr_set_catu_ops(const struct etr_buf_operations *catu) 878 { 879 etr_buf_ops[ETR_MODE_CATU] = catu; 880 } 881 EXPORT_SYMBOL_GPL(tmc_etr_set_catu_ops); 882 883 void tmc_etr_remove_catu_ops(void) 884 { 885 etr_buf_ops[ETR_MODE_CATU] = NULL; 886 } 887 EXPORT_SYMBOL_GPL(tmc_etr_remove_catu_ops); 888 889 static inline int tmc_etr_mode_alloc_buf(int mode, 890 struct tmc_drvdata *drvdata, 891 struct etr_buf *etr_buf, int node, 892 void **pages) 893 { 894 int rc = -EINVAL; 895 896 switch (mode) { 897 case ETR_MODE_FLAT: 898 case ETR_MODE_ETR_SG: 899 case ETR_MODE_CATU: 900 case ETR_MODE_RESRV: 901 if (etr_buf_ops[mode] && etr_buf_ops[mode]->alloc) 902 rc = etr_buf_ops[mode]->alloc(drvdata, etr_buf, 903 node, pages); 904 if (!rc) 905 etr_buf->ops = etr_buf_ops[mode]; 906 return rc; 907 default: 908 return -EINVAL; 909 } 910 } 911 912 static void get_etr_buf_hw(struct device *dev, struct etr_buf_hw *buf_hw) 913 { 914 struct tmc_drvdata *drvdata = dev_get_drvdata(dev->parent); 915 916 buf_hw->has_iommu = iommu_get_domain_for_dev(dev->parent); 917 buf_hw->has_etr_sg = tmc_etr_has_cap(drvdata, TMC_ETR_SG); 918 buf_hw->has_catu = !!tmc_etr_get_catu_device(drvdata); 919 buf_hw->has_resrv = tmc_has_reserved_buffer(drvdata); 920 } 921 922 static bool etr_can_use_flat_mode(struct etr_buf_hw *buf_hw, ssize_t etr_buf_size) 923 { 924 bool has_sg = buf_hw->has_catu || buf_hw->has_etr_sg; 925 926 return !has_sg || buf_hw->has_iommu || etr_buf_size < SZ_1M; 927 } 928 929 /* 930 * tmc_alloc_etr_buf: Allocate a buffer use by ETR. 931 * @drvdata : ETR device details. 932 * @size : size of the requested buffer. 933 * @flags : Required properties for the buffer. 934 * @node : Node for memory allocations. 935 * @pages : An optional list of pages. 936 */ 937 static struct etr_buf *tmc_alloc_etr_buf(struct tmc_drvdata *drvdata, 938 ssize_t size, int flags, 939 int node, void **pages) 940 { 941 int rc = -ENOMEM; 942 struct etr_buf *etr_buf; 943 struct etr_buf_hw buf_hw; 944 struct device *dev = &drvdata->csdev->dev; 945 946 get_etr_buf_hw(dev, &buf_hw); 947 etr_buf = kzalloc(sizeof(*etr_buf), GFP_KERNEL); 948 if (!etr_buf) 949 return ERR_PTR(-ENOMEM); 950 951 etr_buf->size = size; 952 953 /* If there is user directive for buffer mode, try that first */ 954 if (drvdata->etr_mode != ETR_MODE_AUTO) 955 rc = tmc_etr_mode_alloc_buf(drvdata->etr_mode, drvdata, 956 etr_buf, node, pages); 957 958 /* 959 * If we have to use an existing list of pages, we cannot reliably 960 * use a contiguous DMA memory (even if we have an IOMMU). Otherwise, 961 * we use the contiguous DMA memory if at least one of the following 962 * conditions is true: 963 * a) The ETR cannot use Scatter-Gather. 964 * b) we have a backing IOMMU 965 * c) The requested memory size is smaller (< 1M). 966 * 967 * Fallback to available mechanisms. 968 * 969 */ 970 if (rc && !pages && etr_can_use_flat_mode(&buf_hw, size)) 971 rc = tmc_etr_mode_alloc_buf(ETR_MODE_FLAT, drvdata, 972 etr_buf, node, pages); 973 if (rc && buf_hw.has_etr_sg) 974 rc = tmc_etr_mode_alloc_buf(ETR_MODE_ETR_SG, drvdata, 975 etr_buf, node, pages); 976 if (rc && buf_hw.has_catu) 977 rc = tmc_etr_mode_alloc_buf(ETR_MODE_CATU, drvdata, 978 etr_buf, node, pages); 979 if (rc) { 980 kfree(etr_buf); 981 return ERR_PTR(rc); 982 } 983 984 refcount_set(&etr_buf->refcount, 1); 985 dev_dbg(dev, "allocated buffer of size %ldKB in mode %d\n", 986 (unsigned long)size >> 10, etr_buf->mode); 987 return etr_buf; 988 } 989 990 static void tmc_free_etr_buf(struct etr_buf *etr_buf) 991 { 992 WARN_ON(!etr_buf->ops || !etr_buf->ops->free); 993 etr_buf->ops->free(etr_buf); 994 kfree(etr_buf); 995 } 996 997 /* 998 * tmc_etr_buf_get_data: Get the pointer the trace data at @offset 999 * with a maximum of @len bytes. 1000 * Returns: The size of the linear data available @pos, with *bufpp 1001 * updated to point to the buffer. 1002 */ 1003 static ssize_t tmc_etr_buf_get_data(struct etr_buf *etr_buf, 1004 u64 offset, size_t len, char **bufpp) 1005 { 1006 /* Adjust the length to limit this transaction to end of buffer */ 1007 len = (len < (etr_buf->size - offset)) ? len : etr_buf->size - offset; 1008 1009 return etr_buf->ops->get_data(etr_buf, (u64)offset, len, bufpp); 1010 } 1011 1012 static inline s64 1013 tmc_etr_buf_insert_barrier_packet(struct etr_buf *etr_buf, u64 offset) 1014 { 1015 ssize_t len; 1016 char *bufp; 1017 1018 len = tmc_etr_buf_get_data(etr_buf, offset, 1019 CORESIGHT_BARRIER_PKT_SIZE, &bufp); 1020 if (WARN_ON(len < 0 || len < CORESIGHT_BARRIER_PKT_SIZE)) 1021 return -EINVAL; 1022 coresight_insert_barrier_packet(bufp); 1023 return offset + CORESIGHT_BARRIER_PKT_SIZE; 1024 } 1025 1026 /* 1027 * tmc_sync_etr_buf: Sync the trace buffer availability with drvdata. 1028 * Makes sure the trace data is synced to the memory for consumption. 1029 * @etr_buf->offset will hold the offset to the beginning of the trace data 1030 * within the buffer, with @etr_buf->len bytes to consume. 1031 */ 1032 static void tmc_sync_etr_buf(struct tmc_drvdata *drvdata) 1033 { 1034 struct etr_buf *etr_buf = drvdata->etr_buf; 1035 u64 rrp, rwp; 1036 u32 status; 1037 1038 rrp = tmc_read_rrp(drvdata); 1039 rwp = tmc_read_rwp(drvdata); 1040 status = readl_relaxed(drvdata->base + TMC_STS); 1041 1042 /* 1043 * If there were memory errors in the session, truncate the 1044 * buffer. 1045 */ 1046 if (WARN_ON_ONCE(status & TMC_STS_MEMERR)) { 1047 dev_dbg(&drvdata->csdev->dev, 1048 "tmc memory error detected, truncating buffer\n"); 1049 etr_buf->len = 0; 1050 etr_buf->full = false; 1051 return; 1052 } 1053 1054 etr_buf->full = !!(status & TMC_STS_FULL); 1055 1056 WARN_ON(!etr_buf->ops || !etr_buf->ops->sync); 1057 1058 etr_buf->ops->sync(etr_buf, rrp, rwp); 1059 } 1060 1061 static int __tmc_etr_enable_hw(struct tmc_drvdata *drvdata) 1062 { 1063 u32 axictl, sts, ffcr; 1064 struct etr_buf *etr_buf = drvdata->etr_buf; 1065 int rc = 0; 1066 1067 CS_UNLOCK(drvdata->base); 1068 1069 /* Wait for TMCSReady bit to be set */ 1070 rc = tmc_wait_for_tmcready(drvdata); 1071 if (rc) { 1072 dev_err(&drvdata->csdev->dev, 1073 "Failed to enable : TMC not ready\n"); 1074 CS_LOCK(drvdata->base); 1075 return rc; 1076 } 1077 1078 writel_relaxed(etr_buf->size / 4, drvdata->base + TMC_RSZ); 1079 writel_relaxed(TMC_MODE_CIRCULAR_BUFFER, drvdata->base + TMC_MODE); 1080 1081 axictl = readl_relaxed(drvdata->base + TMC_AXICTL); 1082 axictl &= ~TMC_AXICTL_CLEAR_MASK; 1083 axictl |= TMC_AXICTL_PROT_CTL_B1; 1084 axictl |= TMC_AXICTL_WR_BURST(drvdata->max_burst_size); 1085 axictl |= TMC_AXICTL_AXCACHE_OS; 1086 1087 if (tmc_etr_has_cap(drvdata, TMC_ETR_AXI_ARCACHE)) { 1088 axictl &= ~TMC_AXICTL_ARCACHE_MASK; 1089 axictl |= TMC_AXICTL_ARCACHE_OS; 1090 } 1091 1092 if (etr_buf->mode == ETR_MODE_ETR_SG) 1093 axictl |= TMC_AXICTL_SCT_GAT_MODE; 1094 1095 writel_relaxed(axictl, drvdata->base + TMC_AXICTL); 1096 tmc_write_dba(drvdata, etr_buf->hwaddr); 1097 /* 1098 * If the TMC pointers must be programmed before the session, 1099 * we have to set it properly (i.e, RRP/RWP to base address and 1100 * STS to "not full"). 1101 */ 1102 if (tmc_etr_has_cap(drvdata, TMC_ETR_SAVE_RESTORE)) { 1103 tmc_write_rrp(drvdata, etr_buf->hwaddr); 1104 tmc_write_rwp(drvdata, etr_buf->hwaddr); 1105 sts = readl_relaxed(drvdata->base + TMC_STS) & ~TMC_STS_FULL; 1106 writel_relaxed(sts, drvdata->base + TMC_STS); 1107 } 1108 1109 ffcr = TMC_FFCR_EN_FMT | TMC_FFCR_EN_TI | TMC_FFCR_FON_FLIN | 1110 TMC_FFCR_FON_TRIG_EVT | TMC_FFCR_TRIGON_TRIGIN; 1111 if (drvdata->stop_on_flush) 1112 ffcr |= TMC_FFCR_STOP_ON_FLUSH; 1113 writel_relaxed(ffcr, drvdata->base + TMC_FFCR); 1114 1115 writel_relaxed(drvdata->trigger_cntr, drvdata->base + TMC_TRG); 1116 tmc_enable_hw(drvdata); 1117 1118 CS_LOCK(drvdata->base); 1119 return rc; 1120 } 1121 1122 static int tmc_etr_enable_hw(struct tmc_drvdata *drvdata, 1123 struct etr_buf *etr_buf) 1124 { 1125 int rc; 1126 1127 /* Callers should provide an appropriate buffer for use */ 1128 if (WARN_ON(!etr_buf)) 1129 return -EINVAL; 1130 1131 if ((etr_buf->mode == ETR_MODE_ETR_SG) && 1132 WARN_ON(!tmc_etr_has_cap(drvdata, TMC_ETR_SG))) 1133 return -EINVAL; 1134 1135 if (WARN_ON(drvdata->etr_buf)) 1136 return -EBUSY; 1137 1138 rc = coresight_claim_device(drvdata->csdev); 1139 if (!rc) { 1140 drvdata->etr_buf = etr_buf; 1141 rc = __tmc_etr_enable_hw(drvdata); 1142 if (rc) { 1143 drvdata->etr_buf = NULL; 1144 coresight_disclaim_device(drvdata->csdev); 1145 } 1146 } 1147 1148 return rc; 1149 } 1150 1151 /* 1152 * Return the available trace data in the buffer (starts at etr_buf->offset, 1153 * limited by etr_buf->len) from @pos, with a maximum limit of @len, 1154 * also updating the @bufpp on where to find it. Since the trace data 1155 * starts at anywhere in the buffer, depending on the RRP, we adjust the 1156 * @len returned to handle buffer wrapping around. 1157 * 1158 * We are protected here by drvdata->reading != 0, which ensures the 1159 * sysfs_buf stays alive. 1160 */ 1161 ssize_t tmc_etr_get_sysfs_trace(struct tmc_drvdata *drvdata, 1162 loff_t pos, size_t len, char **bufpp) 1163 { 1164 s64 offset; 1165 ssize_t actual = len; 1166 struct etr_buf *etr_buf = drvdata->sysfs_buf; 1167 1168 if (pos + actual > etr_buf->len) 1169 actual = etr_buf->len - pos; 1170 if (actual <= 0) 1171 return actual; 1172 1173 /* Compute the offset from which we read the data */ 1174 offset = etr_buf->offset + pos; 1175 if (offset >= etr_buf->size) 1176 offset -= etr_buf->size; 1177 return tmc_etr_buf_get_data(etr_buf, offset, actual, bufpp); 1178 } 1179 1180 static struct etr_buf * 1181 tmc_etr_setup_sysfs_buf(struct tmc_drvdata *drvdata) 1182 { 1183 return tmc_alloc_etr_buf(drvdata, drvdata->size, 1184 0, cpu_to_node(0), NULL); 1185 } 1186 1187 static void 1188 tmc_etr_free_sysfs_buf(struct etr_buf *buf) 1189 { 1190 if (buf) 1191 tmc_free_etr_buf(buf); 1192 } 1193 1194 static void tmc_etr_sync_sysfs_buf(struct tmc_drvdata *drvdata) 1195 { 1196 struct etr_buf *etr_buf = drvdata->etr_buf; 1197 1198 if (WARN_ON(drvdata->sysfs_buf != etr_buf)) { 1199 tmc_etr_free_sysfs_buf(drvdata->sysfs_buf); 1200 drvdata->sysfs_buf = NULL; 1201 } else { 1202 tmc_sync_etr_buf(drvdata); 1203 /* 1204 * Insert barrier packets at the beginning, if there was 1205 * an overflow. 1206 */ 1207 if (etr_buf->full) 1208 tmc_etr_buf_insert_barrier_packet(etr_buf, 1209 etr_buf->offset); 1210 } 1211 } 1212 1213 static void __tmc_etr_disable_hw(struct tmc_drvdata *drvdata) 1214 { 1215 CS_UNLOCK(drvdata->base); 1216 1217 tmc_flush_and_stop(drvdata); 1218 /* 1219 * When operating in sysFS mode the content of the buffer needs to be 1220 * read before the TMC is disabled. 1221 */ 1222 if (coresight_get_mode(drvdata->csdev) == CS_MODE_SYSFS) 1223 tmc_etr_sync_sysfs_buf(drvdata); 1224 1225 tmc_disable_hw(drvdata); 1226 1227 CS_LOCK(drvdata->base); 1228 1229 } 1230 1231 void tmc_etr_disable_hw(struct tmc_drvdata *drvdata) 1232 { 1233 __tmc_etr_disable_hw(drvdata); 1234 coresight_disclaim_device(drvdata->csdev); 1235 /* Reset the ETR buf used by hardware */ 1236 drvdata->etr_buf = NULL; 1237 } 1238 1239 static struct etr_buf *tmc_etr_get_sysfs_buffer(struct coresight_device *csdev) 1240 { 1241 int ret = 0; 1242 unsigned long flags; 1243 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1244 struct etr_buf *sysfs_buf = NULL, *new_buf = NULL, *free_buf = NULL; 1245 1246 /* 1247 * If we are enabling the ETR from disabled state, we need to make 1248 * sure we have a buffer with the right size. The etr_buf is not reset 1249 * immediately after we stop the tracing in SYSFS mode as we wait for 1250 * the user to collect the data. We may be able to reuse the existing 1251 * buffer, provided the size matches. Any allocation has to be done 1252 * with the lock released. 1253 */ 1254 raw_spin_lock_irqsave(&drvdata->spinlock, flags); 1255 sysfs_buf = READ_ONCE(drvdata->sysfs_buf); 1256 if (!sysfs_buf || (sysfs_buf->size != drvdata->size)) { 1257 raw_spin_unlock_irqrestore(&drvdata->spinlock, flags); 1258 1259 /* Allocate memory with the locks released */ 1260 free_buf = new_buf = tmc_etr_setup_sysfs_buf(drvdata); 1261 if (IS_ERR(new_buf)) 1262 return new_buf; 1263 1264 /* Let's try again */ 1265 raw_spin_lock_irqsave(&drvdata->spinlock, flags); 1266 } 1267 1268 if (drvdata->reading || coresight_get_mode(csdev) == CS_MODE_PERF) { 1269 ret = -EBUSY; 1270 goto out; 1271 } 1272 1273 /* 1274 * If we don't have a buffer or it doesn't match the requested size, 1275 * use the buffer allocated above. Otherwise reuse the existing buffer. 1276 */ 1277 sysfs_buf = READ_ONCE(drvdata->sysfs_buf); 1278 if (!sysfs_buf || (new_buf && sysfs_buf->size != new_buf->size)) { 1279 free_buf = sysfs_buf; 1280 drvdata->sysfs_buf = new_buf; 1281 } 1282 1283 out: 1284 raw_spin_unlock_irqrestore(&drvdata->spinlock, flags); 1285 1286 /* Free memory outside the spinlock if need be */ 1287 if (free_buf) 1288 tmc_etr_free_sysfs_buf(free_buf); 1289 return ret ? ERR_PTR(ret) : drvdata->sysfs_buf; 1290 } 1291 1292 static int tmc_enable_etr_sink_sysfs(struct coresight_device *csdev) 1293 { 1294 int ret = 0; 1295 unsigned long flags; 1296 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1297 struct etr_buf *sysfs_buf = tmc_etr_get_sysfs_buffer(csdev); 1298 1299 if (IS_ERR(sysfs_buf)) 1300 return PTR_ERR(sysfs_buf); 1301 1302 raw_spin_lock_irqsave(&drvdata->spinlock, flags); 1303 1304 /* 1305 * In sysFS mode we can have multiple writers per sink. Since this 1306 * sink is already enabled no memory is needed and the HW need not be 1307 * touched, even if the buffer size has changed. 1308 */ 1309 if (coresight_get_mode(csdev) == CS_MODE_SYSFS) { 1310 csdev->refcnt++; 1311 goto out; 1312 } 1313 1314 ret = tmc_etr_enable_hw(drvdata, sysfs_buf); 1315 if (!ret) { 1316 coresight_set_mode(csdev, CS_MODE_SYSFS); 1317 csdev->refcnt++; 1318 } 1319 1320 out: 1321 raw_spin_unlock_irqrestore(&drvdata->spinlock, flags); 1322 1323 if (!ret) 1324 dev_dbg(&csdev->dev, "TMC-ETR enabled\n"); 1325 1326 return ret; 1327 } 1328 1329 struct etr_buf *tmc_etr_get_buffer(struct coresight_device *csdev, 1330 enum cs_mode mode, void *data) 1331 { 1332 struct perf_output_handle *handle = data; 1333 struct etr_perf_buffer *etr_perf; 1334 1335 switch (mode) { 1336 case CS_MODE_SYSFS: 1337 return tmc_etr_get_sysfs_buffer(csdev); 1338 case CS_MODE_PERF: 1339 etr_perf = etm_perf_sink_config(handle); 1340 if (WARN_ON(!etr_perf || !etr_perf->etr_buf)) 1341 return ERR_PTR(-EINVAL); 1342 return etr_perf->etr_buf; 1343 default: 1344 return ERR_PTR(-EINVAL); 1345 } 1346 } 1347 EXPORT_SYMBOL_GPL(tmc_etr_get_buffer); 1348 1349 /* 1350 * alloc_etr_buf: Allocate ETR buffer for use by perf. 1351 * The size of the hardware buffer is dependent on the size configured 1352 * via sysfs and the perf ring buffer size. We prefer to allocate the 1353 * largest possible size, scaling down the size by half until it 1354 * reaches a minimum limit (1M), beyond which we give up. 1355 */ 1356 static struct etr_buf * 1357 alloc_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event, 1358 int nr_pages, void **pages, bool snapshot) 1359 { 1360 int node; 1361 struct etr_buf *etr_buf; 1362 unsigned long size; 1363 1364 node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu); 1365 /* 1366 * Try to match the perf ring buffer size if it is larger 1367 * than the size requested via sysfs. 1368 */ 1369 if ((nr_pages << PAGE_SHIFT) > drvdata->size) { 1370 etr_buf = tmc_alloc_etr_buf(drvdata, ((ssize_t)nr_pages << PAGE_SHIFT), 1371 0, node, NULL); 1372 if (!IS_ERR(etr_buf)) 1373 goto done; 1374 } 1375 1376 /* 1377 * Else switch to configured size for this ETR 1378 * and scale down until we hit the minimum limit. 1379 */ 1380 size = drvdata->size; 1381 do { 1382 etr_buf = tmc_alloc_etr_buf(drvdata, size, 0, node, NULL); 1383 if (!IS_ERR(etr_buf)) 1384 goto done; 1385 size /= 2; 1386 } while (size >= TMC_ETR_PERF_MIN_BUF_SIZE); 1387 1388 return ERR_PTR(-ENOMEM); 1389 1390 done: 1391 return etr_buf; 1392 } 1393 1394 static struct etr_buf * 1395 get_perf_etr_buf_cpu_wide(struct tmc_drvdata *drvdata, 1396 struct perf_event *event, int nr_pages, 1397 void **pages, bool snapshot) 1398 { 1399 int ret; 1400 pid_t pid = task_pid_nr(event->owner); 1401 struct etr_buf *etr_buf; 1402 1403 retry: 1404 /* 1405 * An etr_perf_buffer is associated with an event and holds a reference 1406 * to the AUX ring buffer that was created for that event. In CPU-wide 1407 * N:1 mode multiple events (one per CPU), each with its own AUX ring 1408 * buffer, share a sink. As such an etr_perf_buffer is created for each 1409 * event but a single etr_buf associated with the ETR is shared between 1410 * them. The last event in a trace session will copy the content of the 1411 * etr_buf to its AUX ring buffer. Ring buffer associated to other 1412 * events are simply not used an freed as events are destoyed. We still 1413 * need to allocate a ring buffer for each event since we don't know 1414 * which event will be last. 1415 */ 1416 1417 /* 1418 * The first thing to do here is check if an etr_buf has already been 1419 * allocated for this session. If so it is shared with this event, 1420 * otherwise it is created. 1421 */ 1422 mutex_lock(&drvdata->idr_mutex); 1423 etr_buf = idr_find(&drvdata->idr, pid); 1424 if (etr_buf) { 1425 refcount_inc(&etr_buf->refcount); 1426 mutex_unlock(&drvdata->idr_mutex); 1427 return etr_buf; 1428 } 1429 1430 /* If we made it here no buffer has been allocated, do so now. */ 1431 mutex_unlock(&drvdata->idr_mutex); 1432 1433 etr_buf = alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot); 1434 if (IS_ERR(etr_buf)) 1435 return etr_buf; 1436 1437 /* Now that we have a buffer, add it to the IDR. */ 1438 mutex_lock(&drvdata->idr_mutex); 1439 ret = idr_alloc(&drvdata->idr, etr_buf, pid, pid + 1, GFP_KERNEL); 1440 mutex_unlock(&drvdata->idr_mutex); 1441 1442 /* Another event with this session ID has allocated this buffer. */ 1443 if (ret == -ENOSPC) { 1444 tmc_free_etr_buf(etr_buf); 1445 goto retry; 1446 } 1447 1448 /* The IDR can't allocate room for a new session, abandon ship. */ 1449 if (ret == -ENOMEM) { 1450 tmc_free_etr_buf(etr_buf); 1451 return ERR_PTR(ret); 1452 } 1453 1454 1455 return etr_buf; 1456 } 1457 1458 static struct etr_buf * 1459 get_perf_etr_buf_per_thread(struct tmc_drvdata *drvdata, 1460 struct perf_event *event, int nr_pages, 1461 void **pages, bool snapshot) 1462 { 1463 /* 1464 * In per-thread mode the etr_buf isn't shared, so just go ahead 1465 * with memory allocation. 1466 */ 1467 return alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot); 1468 } 1469 1470 static struct etr_buf * 1471 get_perf_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event, 1472 int nr_pages, void **pages, bool snapshot) 1473 { 1474 if (event->cpu == -1) 1475 return get_perf_etr_buf_per_thread(drvdata, event, nr_pages, 1476 pages, snapshot); 1477 1478 return get_perf_etr_buf_cpu_wide(drvdata, event, nr_pages, 1479 pages, snapshot); 1480 } 1481 1482 static struct etr_perf_buffer * 1483 tmc_etr_setup_perf_buf(struct tmc_drvdata *drvdata, struct perf_event *event, 1484 int nr_pages, void **pages, bool snapshot) 1485 { 1486 int node; 1487 struct etr_buf *etr_buf; 1488 struct etr_perf_buffer *etr_perf; 1489 1490 node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu); 1491 1492 etr_perf = kzalloc_node(sizeof(*etr_perf), GFP_KERNEL, node); 1493 if (!etr_perf) 1494 return ERR_PTR(-ENOMEM); 1495 1496 etr_buf = get_perf_etr_buf(drvdata, event, nr_pages, pages, snapshot); 1497 if (!IS_ERR(etr_buf)) 1498 goto done; 1499 1500 kfree(etr_perf); 1501 return ERR_PTR(-ENOMEM); 1502 1503 done: 1504 /* 1505 * Keep a reference to the ETR this buffer has been allocated for 1506 * in order to have access to the IDR in tmc_free_etr_buffer(). 1507 */ 1508 etr_perf->drvdata = drvdata; 1509 etr_perf->etr_buf = etr_buf; 1510 1511 return etr_perf; 1512 } 1513 1514 1515 static void *tmc_alloc_etr_buffer(struct coresight_device *csdev, 1516 struct perf_event *event, void **pages, 1517 int nr_pages, bool snapshot) 1518 { 1519 struct etr_perf_buffer *etr_perf; 1520 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1521 1522 etr_perf = tmc_etr_setup_perf_buf(drvdata, event, 1523 nr_pages, pages, snapshot); 1524 if (IS_ERR(etr_perf)) { 1525 dev_dbg(&csdev->dev, "Unable to allocate ETR buffer\n"); 1526 return NULL; 1527 } 1528 1529 etr_perf->pid = task_pid_nr(event->owner); 1530 etr_perf->snapshot = snapshot; 1531 etr_perf->nr_pages = nr_pages; 1532 etr_perf->pages = pages; 1533 1534 return etr_perf; 1535 } 1536 1537 static void tmc_free_etr_buffer(void *config) 1538 { 1539 struct etr_perf_buffer *etr_perf = config; 1540 struct tmc_drvdata *drvdata = etr_perf->drvdata; 1541 struct etr_buf *buf, *etr_buf = etr_perf->etr_buf; 1542 1543 if (!etr_buf) 1544 goto free_etr_perf_buffer; 1545 1546 mutex_lock(&drvdata->idr_mutex); 1547 /* If we are not the last one to use the buffer, don't touch it. */ 1548 if (!refcount_dec_and_test(&etr_buf->refcount)) { 1549 mutex_unlock(&drvdata->idr_mutex); 1550 goto free_etr_perf_buffer; 1551 } 1552 1553 /* We are the last one, remove from the IDR and free the buffer. */ 1554 buf = idr_remove(&drvdata->idr, etr_perf->pid); 1555 mutex_unlock(&drvdata->idr_mutex); 1556 1557 /* 1558 * Something went very wrong if the buffer associated with this ID 1559 * is not the same in the IDR. Leak to avoid use after free. 1560 */ 1561 if (buf && WARN_ON(buf != etr_buf)) 1562 goto free_etr_perf_buffer; 1563 1564 tmc_free_etr_buf(etr_perf->etr_buf); 1565 1566 free_etr_perf_buffer: 1567 kfree(etr_perf); 1568 } 1569 1570 /* 1571 * tmc_etr_sync_perf_buffer: Copy the actual trace data from the hardware 1572 * buffer to the perf ring buffer. 1573 */ 1574 static void tmc_etr_sync_perf_buffer(struct etr_perf_buffer *etr_perf, 1575 unsigned long head, 1576 unsigned long src_offset, 1577 unsigned long to_copy) 1578 { 1579 long bytes; 1580 long pg_idx, pg_offset; 1581 char **dst_pages, *src_buf; 1582 struct etr_buf *etr_buf = etr_perf->etr_buf; 1583 1584 head = PERF_IDX2OFF(head, etr_perf); 1585 pg_idx = head >> PAGE_SHIFT; 1586 pg_offset = head & (PAGE_SIZE - 1); 1587 dst_pages = (char **)etr_perf->pages; 1588 1589 while (to_copy > 0) { 1590 /* 1591 * In one iteration, we can copy minimum of : 1592 * 1) what is available in the source buffer, 1593 * 2) what is available in the source buffer, before it 1594 * wraps around. 1595 * 3) what is available in the destination page. 1596 * in one iteration. 1597 */ 1598 if (src_offset >= etr_buf->size) 1599 src_offset -= etr_buf->size; 1600 bytes = tmc_etr_buf_get_data(etr_buf, src_offset, to_copy, 1601 &src_buf); 1602 if (WARN_ON_ONCE(bytes <= 0)) 1603 break; 1604 bytes = min(bytes, (long)(PAGE_SIZE - pg_offset)); 1605 1606 memcpy(dst_pages[pg_idx] + pg_offset, src_buf, bytes); 1607 1608 to_copy -= bytes; 1609 1610 /* Move destination pointers */ 1611 pg_offset += bytes; 1612 if (pg_offset == PAGE_SIZE) { 1613 pg_offset = 0; 1614 if (++pg_idx == etr_perf->nr_pages) 1615 pg_idx = 0; 1616 } 1617 1618 /* Move source pointers */ 1619 src_offset += bytes; 1620 } 1621 } 1622 1623 /* 1624 * tmc_update_etr_buffer : Update the perf ring buffer with the 1625 * available trace data. We use software double buffering at the moment. 1626 * 1627 * TODO: Add support for reusing the perf ring buffer. 1628 */ 1629 static unsigned long 1630 tmc_update_etr_buffer(struct coresight_device *csdev, 1631 struct perf_output_handle *handle, 1632 void *config) 1633 { 1634 bool lost = false; 1635 unsigned long flags, offset, size = 0; 1636 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1637 struct etr_perf_buffer *etr_perf = config; 1638 struct etr_buf *etr_buf = etr_perf->etr_buf; 1639 1640 raw_spin_lock_irqsave(&drvdata->spinlock, flags); 1641 1642 /* Don't do anything if another tracer is using this sink */ 1643 if (csdev->refcnt != 1) { 1644 raw_spin_unlock_irqrestore(&drvdata->spinlock, flags); 1645 goto out; 1646 } 1647 1648 if (WARN_ON(drvdata->perf_buf != etr_buf)) { 1649 lost = true; 1650 raw_spin_unlock_irqrestore(&drvdata->spinlock, flags); 1651 goto out; 1652 } 1653 1654 CS_UNLOCK(drvdata->base); 1655 1656 tmc_flush_and_stop(drvdata); 1657 tmc_sync_etr_buf(drvdata); 1658 1659 CS_LOCK(drvdata->base); 1660 raw_spin_unlock_irqrestore(&drvdata->spinlock, flags); 1661 1662 lost = etr_buf->full; 1663 offset = etr_buf->offset; 1664 size = etr_buf->len; 1665 1666 /* 1667 * The ETR buffer may be bigger than the space available in the 1668 * perf ring buffer (handle->size). If so advance the offset so that we 1669 * get the latest trace data. In snapshot mode none of that matters 1670 * since we are expected to clobber stale data in favour of the latest 1671 * traces. 1672 */ 1673 if (!etr_perf->snapshot && size > handle->size) { 1674 u32 mask = tmc_get_memwidth_mask(drvdata); 1675 1676 /* 1677 * Make sure the new size is aligned in accordance with the 1678 * requirement explained in function tmc_get_memwidth_mask(). 1679 */ 1680 size = handle->size & mask; 1681 offset = etr_buf->offset + etr_buf->len - size; 1682 1683 if (offset >= etr_buf->size) 1684 offset -= etr_buf->size; 1685 lost = true; 1686 } 1687 1688 /* Insert barrier packets at the beginning, if there was an overflow */ 1689 if (lost) 1690 tmc_etr_buf_insert_barrier_packet(etr_buf, offset); 1691 tmc_etr_sync_perf_buffer(etr_perf, handle->head, offset, size); 1692 1693 /* 1694 * In snapshot mode we simply increment the head by the number of byte 1695 * that were written. User space will figure out how many bytes to get 1696 * from the AUX buffer based on the position of the head. 1697 */ 1698 if (etr_perf->snapshot) 1699 handle->head += size; 1700 1701 /* 1702 * Ensure that the AUX trace data is visible before the aux_head 1703 * is updated via perf_aux_output_end(), as expected by the 1704 * perf ring buffer. 1705 */ 1706 smp_wmb(); 1707 1708 out: 1709 /* 1710 * Don't set the TRUNCATED flag in snapshot mode because 1) the 1711 * captured buffer is expected to be truncated and 2) a full buffer 1712 * prevents the event from being re-enabled by the perf core, 1713 * resulting in stale data being send to user space. 1714 */ 1715 if (!etr_perf->snapshot && lost) 1716 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED); 1717 return size; 1718 } 1719 1720 static int tmc_enable_etr_sink_perf(struct coresight_device *csdev, void *data) 1721 { 1722 int rc = 0; 1723 pid_t pid; 1724 unsigned long flags; 1725 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1726 struct perf_output_handle *handle = data; 1727 struct etr_perf_buffer *etr_perf = etm_perf_sink_config(handle); 1728 1729 raw_spin_lock_irqsave(&drvdata->spinlock, flags); 1730 /* Don't use this sink if it is already claimed by sysFS */ 1731 if (coresight_get_mode(csdev) == CS_MODE_SYSFS) { 1732 rc = -EBUSY; 1733 goto unlock_out; 1734 } 1735 1736 if (WARN_ON(!etr_perf || !etr_perf->etr_buf)) { 1737 rc = -EINVAL; 1738 goto unlock_out; 1739 } 1740 1741 /* Get a handle on the pid of the session owner */ 1742 pid = etr_perf->pid; 1743 1744 /* Do not proceed if this device is associated with another session */ 1745 if (drvdata->pid != -1 && drvdata->pid != pid) { 1746 rc = -EBUSY; 1747 goto unlock_out; 1748 } 1749 1750 /* 1751 * No HW configuration is needed if the sink is already in 1752 * use for this session. 1753 */ 1754 if (drvdata->pid == pid) { 1755 csdev->refcnt++; 1756 goto unlock_out; 1757 } 1758 1759 rc = tmc_etr_enable_hw(drvdata, etr_perf->etr_buf); 1760 if (!rc) { 1761 /* Associate with monitored process. */ 1762 drvdata->pid = pid; 1763 coresight_set_mode(csdev, CS_MODE_PERF); 1764 drvdata->perf_buf = etr_perf->etr_buf; 1765 csdev->refcnt++; 1766 } 1767 1768 unlock_out: 1769 raw_spin_unlock_irqrestore(&drvdata->spinlock, flags); 1770 return rc; 1771 } 1772 1773 static int tmc_enable_etr_sink(struct coresight_device *csdev, 1774 enum cs_mode mode, void *data) 1775 { 1776 switch (mode) { 1777 case CS_MODE_SYSFS: 1778 return tmc_enable_etr_sink_sysfs(csdev); 1779 case CS_MODE_PERF: 1780 return tmc_enable_etr_sink_perf(csdev, data); 1781 default: 1782 return -EINVAL; 1783 } 1784 } 1785 1786 static int tmc_disable_etr_sink(struct coresight_device *csdev) 1787 { 1788 unsigned long flags; 1789 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1790 1791 raw_spin_lock_irqsave(&drvdata->spinlock, flags); 1792 1793 if (drvdata->reading) { 1794 raw_spin_unlock_irqrestore(&drvdata->spinlock, flags); 1795 return -EBUSY; 1796 } 1797 1798 csdev->refcnt--; 1799 if (csdev->refcnt) { 1800 raw_spin_unlock_irqrestore(&drvdata->spinlock, flags); 1801 return -EBUSY; 1802 } 1803 1804 /* Complain if we (somehow) got out of sync */ 1805 WARN_ON_ONCE(coresight_get_mode(csdev) == CS_MODE_DISABLED); 1806 tmc_etr_disable_hw(drvdata); 1807 /* Dissociate from monitored process. */ 1808 drvdata->pid = -1; 1809 coresight_set_mode(csdev, CS_MODE_DISABLED); 1810 /* Reset perf specific data */ 1811 drvdata->perf_buf = NULL; 1812 1813 raw_spin_unlock_irqrestore(&drvdata->spinlock, flags); 1814 1815 dev_dbg(&csdev->dev, "TMC-ETR disabled\n"); 1816 return 0; 1817 } 1818 1819 static int tmc_panic_sync_etr(struct coresight_device *csdev) 1820 { 1821 u32 val; 1822 struct tmc_crash_metadata *mdata; 1823 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1824 1825 mdata = (struct tmc_crash_metadata *)drvdata->crash_mdata.vaddr; 1826 1827 if (!drvdata->etr_buf) 1828 return 0; 1829 1830 /* Being in RESRV mode implies valid reserved memory as well */ 1831 if (drvdata->etr_buf->mode != ETR_MODE_RESRV) 1832 return 0; 1833 1834 if (!tmc_has_crash_mdata_buffer(drvdata)) 1835 return 0; 1836 1837 CS_UNLOCK(drvdata->base); 1838 1839 /* Proceed only if ETR is enabled */ 1840 val = readl(drvdata->base + TMC_CTL); 1841 if (!(val & TMC_CTL_CAPT_EN)) 1842 goto out; 1843 1844 val = readl(drvdata->base + TMC_FFSR); 1845 /* Do manual flush and stop only if its not auto-stopped */ 1846 if (!(val & TMC_FFSR_FT_STOPPED)) { 1847 dev_dbg(&csdev->dev, 1848 "%s: Triggering manual flush\n", __func__); 1849 tmc_flush_and_stop(drvdata); 1850 } else 1851 tmc_wait_for_tmcready(drvdata); 1852 1853 /* Sync registers from hardware to metadata region */ 1854 mdata->tmc_ram_size = readl(drvdata->base + TMC_RSZ); 1855 mdata->tmc_sts = readl(drvdata->base + TMC_STS); 1856 mdata->tmc_mode = readl(drvdata->base + TMC_MODE); 1857 mdata->tmc_ffcr = readl(drvdata->base + TMC_FFCR); 1858 mdata->tmc_ffsr = readl(drvdata->base + TMC_FFSR); 1859 mdata->tmc_rrp = tmc_read_rrp(drvdata); 1860 mdata->tmc_rwp = tmc_read_rwp(drvdata); 1861 mdata->tmc_dba = tmc_read_dba(drvdata); 1862 mdata->trace_paddr = drvdata->resrv_buf.paddr; 1863 mdata->version = CS_CRASHDATA_VERSION; 1864 1865 /* 1866 * Make sure all previous writes are ordered, 1867 * before we mark valid 1868 */ 1869 dmb(sy); 1870 mdata->valid = true; 1871 /* 1872 * Below order need to maintained, since crc of metadata 1873 * is dependent on first 1874 */ 1875 mdata->crc32_tdata = find_crash_tracedata_crc(drvdata, mdata); 1876 mdata->crc32_mdata = find_crash_metadata_crc(mdata); 1877 1878 tmc_disable_hw(drvdata); 1879 1880 dev_dbg(&csdev->dev, "%s: success\n", __func__); 1881 out: 1882 CS_UNLOCK(drvdata->base); 1883 1884 return 0; 1885 } 1886 1887 static const struct coresight_ops_sink tmc_etr_sink_ops = { 1888 .enable = tmc_enable_etr_sink, 1889 .disable = tmc_disable_etr_sink, 1890 .alloc_buffer = tmc_alloc_etr_buffer, 1891 .update_buffer = tmc_update_etr_buffer, 1892 .free_buffer = tmc_free_etr_buffer, 1893 }; 1894 1895 static const struct coresight_ops_panic tmc_etr_sync_ops = { 1896 .sync = tmc_panic_sync_etr, 1897 }; 1898 1899 const struct coresight_ops tmc_etr_cs_ops = { 1900 .sink_ops = &tmc_etr_sink_ops, 1901 .panic_ops = &tmc_etr_sync_ops, 1902 }; 1903 1904 int tmc_read_prepare_etr(struct tmc_drvdata *drvdata) 1905 { 1906 int ret = 0; 1907 unsigned long flags; 1908 1909 /* config types are set a boot time and never change */ 1910 if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR)) 1911 return -EINVAL; 1912 1913 raw_spin_lock_irqsave(&drvdata->spinlock, flags); 1914 if (drvdata->reading) { 1915 ret = -EBUSY; 1916 goto out; 1917 } 1918 1919 /* 1920 * We can safely allow reads even if the ETR is operating in PERF mode, 1921 * since the sysfs session is captured in mode specific data. 1922 * If drvdata::sysfs_data is NULL the trace data has been read already. 1923 */ 1924 if (!drvdata->sysfs_buf) { 1925 ret = -EINVAL; 1926 goto out; 1927 } 1928 1929 /* Disable the TMC if we are trying to read from a running session. */ 1930 if (coresight_get_mode(drvdata->csdev) == CS_MODE_SYSFS) 1931 __tmc_etr_disable_hw(drvdata); 1932 1933 drvdata->reading = true; 1934 out: 1935 raw_spin_unlock_irqrestore(&drvdata->spinlock, flags); 1936 1937 return ret; 1938 } 1939 1940 int tmc_read_unprepare_etr(struct tmc_drvdata *drvdata) 1941 { 1942 unsigned long flags; 1943 struct etr_buf *sysfs_buf = NULL; 1944 1945 /* config types are set a boot time and never change */ 1946 if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR)) 1947 return -EINVAL; 1948 1949 raw_spin_lock_irqsave(&drvdata->spinlock, flags); 1950 1951 /* RE-enable the TMC if need be */ 1952 if (coresight_get_mode(drvdata->csdev) == CS_MODE_SYSFS) { 1953 /* 1954 * The trace run will continue with the same allocated trace 1955 * buffer. Since the tracer is still enabled drvdata::buf can't 1956 * be NULL. 1957 */ 1958 __tmc_etr_enable_hw(drvdata); 1959 } else { 1960 /* 1961 * The ETR is not tracing and the buffer was just read. 1962 * As such prepare to free the trace buffer. 1963 */ 1964 sysfs_buf = drvdata->sysfs_buf; 1965 drvdata->sysfs_buf = NULL; 1966 } 1967 1968 drvdata->reading = false; 1969 raw_spin_unlock_irqrestore(&drvdata->spinlock, flags); 1970 1971 /* Free allocated memory out side of the spinlock */ 1972 if (sysfs_buf) 1973 tmc_etr_free_sysfs_buf(sysfs_buf); 1974 1975 return 0; 1976 } 1977 1978 static const char *const buf_modes_str[] = { 1979 [ETR_MODE_FLAT] = "flat", 1980 [ETR_MODE_ETR_SG] = "tmc-sg", 1981 [ETR_MODE_CATU] = "catu", 1982 [ETR_MODE_RESRV] = "resrv", 1983 [ETR_MODE_AUTO] = "auto", 1984 }; 1985 1986 static ssize_t buf_modes_available_show(struct device *dev, 1987 struct device_attribute *attr, char *buf) 1988 { 1989 struct etr_buf_hw buf_hw; 1990 ssize_t size = 0; 1991 1992 get_etr_buf_hw(dev, &buf_hw); 1993 size += sysfs_emit(buf, "%s ", buf_modes_str[ETR_MODE_AUTO]); 1994 size += sysfs_emit_at(buf, size, "%s ", buf_modes_str[ETR_MODE_FLAT]); 1995 if (buf_hw.has_etr_sg) 1996 size += sysfs_emit_at(buf, size, "%s ", buf_modes_str[ETR_MODE_ETR_SG]); 1997 1998 if (buf_hw.has_catu) 1999 size += sysfs_emit_at(buf, size, "%s ", buf_modes_str[ETR_MODE_CATU]); 2000 2001 if (buf_hw.has_resrv) 2002 size += sysfs_emit_at(buf, size, "%s ", buf_modes_str[ETR_MODE_RESRV]); 2003 2004 size += sysfs_emit_at(buf, size, "\n"); 2005 return size; 2006 } 2007 static DEVICE_ATTR_RO(buf_modes_available); 2008 2009 static ssize_t buf_mode_preferred_show(struct device *dev, 2010 struct device_attribute *attr, char *buf) 2011 { 2012 struct tmc_drvdata *drvdata = dev_get_drvdata(dev->parent); 2013 2014 return sysfs_emit(buf, "%s\n", buf_modes_str[drvdata->etr_mode]); 2015 } 2016 2017 static int buf_mode_set_resrv(struct tmc_drvdata *drvdata) 2018 { 2019 int err = -EBUSY; 2020 unsigned long flags; 2021 struct tmc_resrv_buf *rbuf; 2022 2023 rbuf = &drvdata->resrv_buf; 2024 2025 /* Ensure there are no active crashdata read sessions */ 2026 raw_spin_lock_irqsave(&drvdata->spinlock, flags); 2027 if (!rbuf->reading) { 2028 tmc_crashdata_set_invalid(drvdata); 2029 rbuf->len = 0; 2030 drvdata->etr_mode = ETR_MODE_RESRV; 2031 err = 0; 2032 } 2033 raw_spin_unlock_irqrestore(&drvdata->spinlock, flags); 2034 return err; 2035 } 2036 2037 static ssize_t buf_mode_preferred_store(struct device *dev, 2038 struct device_attribute *attr, 2039 const char *buf, size_t size) 2040 { 2041 struct tmc_drvdata *drvdata = dev_get_drvdata(dev->parent); 2042 struct etr_buf_hw buf_hw; 2043 2044 get_etr_buf_hw(dev, &buf_hw); 2045 if (sysfs_streq(buf, buf_modes_str[ETR_MODE_FLAT])) 2046 drvdata->etr_mode = ETR_MODE_FLAT; 2047 else if (sysfs_streq(buf, buf_modes_str[ETR_MODE_ETR_SG]) && buf_hw.has_etr_sg) 2048 drvdata->etr_mode = ETR_MODE_ETR_SG; 2049 else if (sysfs_streq(buf, buf_modes_str[ETR_MODE_CATU]) && buf_hw.has_catu) 2050 drvdata->etr_mode = ETR_MODE_CATU; 2051 else if (sysfs_streq(buf, buf_modes_str[ETR_MODE_RESRV]) && buf_hw.has_resrv) 2052 return buf_mode_set_resrv(drvdata) ? : size; 2053 else if (sysfs_streq(buf, buf_modes_str[ETR_MODE_AUTO])) 2054 drvdata->etr_mode = ETR_MODE_AUTO; 2055 else 2056 return -EINVAL; 2057 return size; 2058 } 2059 static DEVICE_ATTR_RW(buf_mode_preferred); 2060 2061 static struct attribute *coresight_etr_attrs[] = { 2062 &dev_attr_buf_modes_available.attr, 2063 &dev_attr_buf_mode_preferred.attr, 2064 NULL, 2065 }; 2066 2067 const struct attribute_group coresight_etr_group = { 2068 .attrs = coresight_etr_attrs, 2069 }; 2070