1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2016 Linaro Limited. All rights reserved. 4 * Author: Mathieu Poirier <mathieu.poirier@linaro.org> 5 */ 6 7 #include <linux/atomic.h> 8 #include <linux/coresight.h> 9 #include <linux/dma-mapping.h> 10 #include <linux/iommu.h> 11 #include <linux/idr.h> 12 #include <linux/mutex.h> 13 #include <linux/refcount.h> 14 #include <linux/slab.h> 15 #include <linux/types.h> 16 #include <linux/vmalloc.h> 17 #include "coresight-catu.h" 18 #include "coresight-etm-perf.h" 19 #include "coresight-priv.h" 20 #include "coresight-tmc.h" 21 22 struct etr_flat_buf { 23 struct device *dev; 24 dma_addr_t daddr; 25 void *vaddr; 26 size_t size; 27 }; 28 29 struct etr_buf_hw { 30 bool has_iommu; 31 bool has_etr_sg; 32 bool has_catu; 33 }; 34 35 /* 36 * etr_perf_buffer - Perf buffer used for ETR 37 * @drvdata - The ETR drvdaga this buffer has been allocated for. 38 * @etr_buf - Actual buffer used by the ETR 39 * @pid - The PID of the session owner that etr_perf_buffer 40 * belongs to. 41 * @snaphost - Perf session mode 42 * @nr_pages - Number of pages in the ring buffer. 43 * @pages - Array of Pages in the ring buffer. 44 */ 45 struct etr_perf_buffer { 46 struct tmc_drvdata *drvdata; 47 struct etr_buf *etr_buf; 48 pid_t pid; 49 bool snapshot; 50 int nr_pages; 51 void **pages; 52 }; 53 54 /* Convert the perf index to an offset within the ETR buffer */ 55 #define PERF_IDX2OFF(idx, buf) \ 56 ((idx) % ((unsigned long)(buf)->nr_pages << PAGE_SHIFT)) 57 58 /* Lower limit for ETR hardware buffer */ 59 #define TMC_ETR_PERF_MIN_BUF_SIZE SZ_1M 60 61 /* 62 * The TMC ETR SG has a page size of 4K. The SG table contains pointers 63 * to 4KB buffers. However, the OS may use a PAGE_SIZE different from 64 * 4K (i.e, 16KB or 64KB). This implies that a single OS page could 65 * contain more than one SG buffer and tables. 66 * 67 * A table entry has the following format: 68 * 69 * ---Bit31------------Bit4-------Bit1-----Bit0-- 70 * | Address[39:12] | SBZ | Entry Type | 71 * ---------------------------------------------- 72 * 73 * Address: Bits [39:12] of a physical page address. Bits [11:0] are 74 * always zero. 75 * 76 * Entry type: 77 * b00 - Reserved. 78 * b01 - Last entry in the tables, points to 4K page buffer. 79 * b10 - Normal entry, points to 4K page buffer. 80 * b11 - Link. The address points to the base of next table. 81 */ 82 83 typedef u32 sgte_t; 84 85 #define ETR_SG_PAGE_SHIFT 12 86 #define ETR_SG_PAGE_SIZE (1UL << ETR_SG_PAGE_SHIFT) 87 #define ETR_SG_PAGES_PER_SYSPAGE (PAGE_SIZE / ETR_SG_PAGE_SIZE) 88 #define ETR_SG_PTRS_PER_PAGE (ETR_SG_PAGE_SIZE / sizeof(sgte_t)) 89 #define ETR_SG_PTRS_PER_SYSPAGE (PAGE_SIZE / sizeof(sgte_t)) 90 91 #define ETR_SG_ET_MASK 0x3 92 #define ETR_SG_ET_LAST 0x1 93 #define ETR_SG_ET_NORMAL 0x2 94 #define ETR_SG_ET_LINK 0x3 95 96 #define ETR_SG_ADDR_SHIFT 4 97 98 #define ETR_SG_ENTRY(addr, type) \ 99 (sgte_t)((((addr) >> ETR_SG_PAGE_SHIFT) << ETR_SG_ADDR_SHIFT) | \ 100 (type & ETR_SG_ET_MASK)) 101 102 #define ETR_SG_ADDR(entry) \ 103 (((dma_addr_t)(entry) >> ETR_SG_ADDR_SHIFT) << ETR_SG_PAGE_SHIFT) 104 #define ETR_SG_ET(entry) ((entry) & ETR_SG_ET_MASK) 105 106 /* 107 * struct etr_sg_table : ETR SG Table 108 * @sg_table: Generic SG Table holding the data/table pages. 109 * @hwaddr: hwaddress used by the TMC, which is the base 110 * address of the table. 111 */ 112 struct etr_sg_table { 113 struct tmc_sg_table *sg_table; 114 dma_addr_t hwaddr; 115 }; 116 117 /* 118 * tmc_etr_sg_table_entries: Total number of table entries required to map 119 * @nr_pages system pages. 120 * 121 * We need to map @nr_pages * ETR_SG_PAGES_PER_SYSPAGE data pages. 122 * Each TMC page can map (ETR_SG_PTRS_PER_PAGE - 1) buffer pointers, 123 * with the last entry pointing to another page of table entries. 124 * If we spill over to a new page for mapping 1 entry, we could as 125 * well replace the link entry of the previous page with the last entry. 126 */ 127 static inline unsigned long __attribute_const__ 128 tmc_etr_sg_table_entries(int nr_pages) 129 { 130 unsigned long nr_sgpages = nr_pages * ETR_SG_PAGES_PER_SYSPAGE; 131 unsigned long nr_sglinks = nr_sgpages / (ETR_SG_PTRS_PER_PAGE - 1); 132 /* 133 * If we spill over to a new page for 1 entry, we could as well 134 * make it the LAST entry in the previous page, skipping the Link 135 * address. 136 */ 137 if (nr_sglinks && (nr_sgpages % (ETR_SG_PTRS_PER_PAGE - 1) < 2)) 138 nr_sglinks--; 139 return nr_sgpages + nr_sglinks; 140 } 141 142 /* 143 * tmc_pages_get_offset: Go through all the pages in the tmc_pages 144 * and map the device address @addr to an offset within the virtual 145 * contiguous buffer. 146 */ 147 static long 148 tmc_pages_get_offset(struct tmc_pages *tmc_pages, dma_addr_t addr) 149 { 150 int i; 151 dma_addr_t page_start; 152 153 for (i = 0; i < tmc_pages->nr_pages; i++) { 154 page_start = tmc_pages->daddrs[i]; 155 if (addr >= page_start && addr < (page_start + PAGE_SIZE)) 156 return i * PAGE_SIZE + (addr - page_start); 157 } 158 159 return -EINVAL; 160 } 161 162 /* 163 * tmc_pages_free : Unmap and free the pages used by tmc_pages. 164 * If the pages were not allocated in tmc_pages_alloc(), we would 165 * simply drop the refcount. 166 */ 167 static void tmc_pages_free(struct tmc_pages *tmc_pages, 168 struct device *dev, enum dma_data_direction dir) 169 { 170 int i; 171 struct device *real_dev = dev->parent; 172 173 for (i = 0; i < tmc_pages->nr_pages; i++) { 174 if (tmc_pages->daddrs && tmc_pages->daddrs[i]) 175 dma_unmap_page(real_dev, tmc_pages->daddrs[i], 176 PAGE_SIZE, dir); 177 if (tmc_pages->pages && tmc_pages->pages[i]) 178 __free_page(tmc_pages->pages[i]); 179 } 180 181 kfree(tmc_pages->pages); 182 kfree(tmc_pages->daddrs); 183 tmc_pages->pages = NULL; 184 tmc_pages->daddrs = NULL; 185 tmc_pages->nr_pages = 0; 186 } 187 188 /* 189 * tmc_pages_alloc : Allocate and map pages for a given @tmc_pages. 190 * If @pages is not NULL, the list of page virtual addresses are 191 * used as the data pages. The pages are then dma_map'ed for @dev 192 * with dma_direction @dir. 193 * 194 * Returns 0 upon success, else the error number. 195 */ 196 static int tmc_pages_alloc(struct tmc_pages *tmc_pages, 197 struct device *dev, int node, 198 enum dma_data_direction dir, void **pages) 199 { 200 int i, nr_pages; 201 dma_addr_t paddr; 202 struct page *page; 203 struct device *real_dev = dev->parent; 204 205 nr_pages = tmc_pages->nr_pages; 206 tmc_pages->daddrs = kcalloc(nr_pages, sizeof(*tmc_pages->daddrs), 207 GFP_KERNEL); 208 if (!tmc_pages->daddrs) 209 return -ENOMEM; 210 tmc_pages->pages = kcalloc(nr_pages, sizeof(*tmc_pages->pages), 211 GFP_KERNEL); 212 if (!tmc_pages->pages) { 213 kfree(tmc_pages->daddrs); 214 tmc_pages->daddrs = NULL; 215 return -ENOMEM; 216 } 217 218 for (i = 0; i < nr_pages; i++) { 219 if (pages && pages[i]) { 220 page = virt_to_page(pages[i]); 221 /* Hold a refcount on the page */ 222 get_page(page); 223 } else { 224 page = alloc_pages_node(node, 225 GFP_KERNEL | __GFP_ZERO, 0); 226 if (!page) 227 goto err; 228 } 229 paddr = dma_map_page(real_dev, page, 0, PAGE_SIZE, dir); 230 if (dma_mapping_error(real_dev, paddr)) 231 goto err; 232 tmc_pages->daddrs[i] = paddr; 233 tmc_pages->pages[i] = page; 234 } 235 return 0; 236 err: 237 tmc_pages_free(tmc_pages, dev, dir); 238 return -ENOMEM; 239 } 240 241 static inline long 242 tmc_sg_get_data_page_offset(struct tmc_sg_table *sg_table, dma_addr_t addr) 243 { 244 return tmc_pages_get_offset(&sg_table->data_pages, addr); 245 } 246 247 static inline void tmc_free_table_pages(struct tmc_sg_table *sg_table) 248 { 249 if (sg_table->table_vaddr) 250 vunmap(sg_table->table_vaddr); 251 tmc_pages_free(&sg_table->table_pages, sg_table->dev, DMA_TO_DEVICE); 252 } 253 254 static void tmc_free_data_pages(struct tmc_sg_table *sg_table) 255 { 256 if (sg_table->data_vaddr) 257 vunmap(sg_table->data_vaddr); 258 tmc_pages_free(&sg_table->data_pages, sg_table->dev, DMA_FROM_DEVICE); 259 } 260 261 void tmc_free_sg_table(struct tmc_sg_table *sg_table) 262 { 263 tmc_free_table_pages(sg_table); 264 tmc_free_data_pages(sg_table); 265 kfree(sg_table); 266 } 267 EXPORT_SYMBOL_GPL(tmc_free_sg_table); 268 269 /* 270 * Alloc pages for the table. Since this will be used by the device, 271 * allocate the pages closer to the device (i.e, dev_to_node(dev) 272 * rather than the CPU node). 273 */ 274 static int tmc_alloc_table_pages(struct tmc_sg_table *sg_table) 275 { 276 int rc; 277 struct tmc_pages *table_pages = &sg_table->table_pages; 278 279 rc = tmc_pages_alloc(table_pages, sg_table->dev, 280 dev_to_node(sg_table->dev), 281 DMA_TO_DEVICE, NULL); 282 if (rc) 283 return rc; 284 sg_table->table_vaddr = vmap(table_pages->pages, 285 table_pages->nr_pages, 286 VM_MAP, 287 PAGE_KERNEL); 288 if (!sg_table->table_vaddr) 289 rc = -ENOMEM; 290 else 291 sg_table->table_daddr = table_pages->daddrs[0]; 292 return rc; 293 } 294 295 static int tmc_alloc_data_pages(struct tmc_sg_table *sg_table, void **pages) 296 { 297 int rc; 298 299 /* Allocate data pages on the node requested by the caller */ 300 rc = tmc_pages_alloc(&sg_table->data_pages, 301 sg_table->dev, sg_table->node, 302 DMA_FROM_DEVICE, pages); 303 if (!rc) { 304 sg_table->data_vaddr = vmap(sg_table->data_pages.pages, 305 sg_table->data_pages.nr_pages, 306 VM_MAP, 307 PAGE_KERNEL); 308 if (!sg_table->data_vaddr) 309 rc = -ENOMEM; 310 } 311 return rc; 312 } 313 314 /* 315 * tmc_alloc_sg_table: Allocate and setup dma pages for the TMC SG table 316 * and data buffers. TMC writes to the data buffers and reads from the SG 317 * Table pages. 318 * 319 * @dev - Coresight device to which page should be DMA mapped. 320 * @node - Numa node for mem allocations 321 * @nr_tpages - Number of pages for the table entries. 322 * @nr_dpages - Number of pages for Data buffer. 323 * @pages - Optional list of virtual address of pages. 324 */ 325 struct tmc_sg_table *tmc_alloc_sg_table(struct device *dev, 326 int node, 327 int nr_tpages, 328 int nr_dpages, 329 void **pages) 330 { 331 long rc; 332 struct tmc_sg_table *sg_table; 333 334 sg_table = kzalloc(sizeof(*sg_table), GFP_KERNEL); 335 if (!sg_table) 336 return ERR_PTR(-ENOMEM); 337 sg_table->data_pages.nr_pages = nr_dpages; 338 sg_table->table_pages.nr_pages = nr_tpages; 339 sg_table->node = node; 340 sg_table->dev = dev; 341 342 rc = tmc_alloc_data_pages(sg_table, pages); 343 if (!rc) 344 rc = tmc_alloc_table_pages(sg_table); 345 if (rc) { 346 tmc_free_sg_table(sg_table); 347 return ERR_PTR(rc); 348 } 349 350 return sg_table; 351 } 352 EXPORT_SYMBOL_GPL(tmc_alloc_sg_table); 353 354 /* 355 * tmc_sg_table_sync_data_range: Sync the data buffer written 356 * by the device from @offset upto a @size bytes. 357 */ 358 void tmc_sg_table_sync_data_range(struct tmc_sg_table *table, 359 u64 offset, u64 size) 360 { 361 int i, index, start; 362 int npages = DIV_ROUND_UP(size, PAGE_SIZE); 363 struct device *real_dev = table->dev->parent; 364 struct tmc_pages *data = &table->data_pages; 365 366 start = offset >> PAGE_SHIFT; 367 for (i = start; i < (start + npages); i++) { 368 index = i % data->nr_pages; 369 dma_sync_single_for_cpu(real_dev, data->daddrs[index], 370 PAGE_SIZE, DMA_FROM_DEVICE); 371 } 372 } 373 EXPORT_SYMBOL_GPL(tmc_sg_table_sync_data_range); 374 375 /* tmc_sg_sync_table: Sync the page table */ 376 void tmc_sg_table_sync_table(struct tmc_sg_table *sg_table) 377 { 378 int i; 379 struct device *real_dev = sg_table->dev->parent; 380 struct tmc_pages *table_pages = &sg_table->table_pages; 381 382 for (i = 0; i < table_pages->nr_pages; i++) 383 dma_sync_single_for_device(real_dev, table_pages->daddrs[i], 384 PAGE_SIZE, DMA_TO_DEVICE); 385 } 386 EXPORT_SYMBOL_GPL(tmc_sg_table_sync_table); 387 388 /* 389 * tmc_sg_table_get_data: Get the buffer pointer for data @offset 390 * in the SG buffer. The @bufpp is updated to point to the buffer. 391 * Returns : 392 * the length of linear data available at @offset. 393 * or 394 * <= 0 if no data is available. 395 */ 396 ssize_t tmc_sg_table_get_data(struct tmc_sg_table *sg_table, 397 u64 offset, size_t len, char **bufpp) 398 { 399 size_t size; 400 int pg_idx = offset >> PAGE_SHIFT; 401 int pg_offset = offset & (PAGE_SIZE - 1); 402 struct tmc_pages *data_pages = &sg_table->data_pages; 403 404 size = tmc_sg_table_buf_size(sg_table); 405 if (offset >= size) 406 return -EINVAL; 407 408 /* Make sure we don't go beyond the end */ 409 len = (len < (size - offset)) ? len : size - offset; 410 /* Respect the page boundaries */ 411 len = (len < (PAGE_SIZE - pg_offset)) ? len : (PAGE_SIZE - pg_offset); 412 if (len > 0) 413 *bufpp = page_address(data_pages->pages[pg_idx]) + pg_offset; 414 return len; 415 } 416 EXPORT_SYMBOL_GPL(tmc_sg_table_get_data); 417 418 #ifdef ETR_SG_DEBUG 419 /* Map a dma address to virtual address */ 420 static unsigned long 421 tmc_sg_daddr_to_vaddr(struct tmc_sg_table *sg_table, 422 dma_addr_t addr, bool table) 423 { 424 long offset; 425 unsigned long base; 426 struct tmc_pages *tmc_pages; 427 428 if (table) { 429 tmc_pages = &sg_table->table_pages; 430 base = (unsigned long)sg_table->table_vaddr; 431 } else { 432 tmc_pages = &sg_table->data_pages; 433 base = (unsigned long)sg_table->data_vaddr; 434 } 435 436 offset = tmc_pages_get_offset(tmc_pages, addr); 437 if (offset < 0) 438 return 0; 439 return base + offset; 440 } 441 442 /* Dump the given sg_table */ 443 static void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) 444 { 445 sgte_t *ptr; 446 int i = 0; 447 dma_addr_t addr; 448 struct tmc_sg_table *sg_table = etr_table->sg_table; 449 450 ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table, 451 etr_table->hwaddr, true); 452 while (ptr) { 453 addr = ETR_SG_ADDR(*ptr); 454 switch (ETR_SG_ET(*ptr)) { 455 case ETR_SG_ET_NORMAL: 456 dev_dbg(sg_table->dev, 457 "%05d: %p\t:[N] 0x%llx\n", i, ptr, addr); 458 ptr++; 459 break; 460 case ETR_SG_ET_LINK: 461 dev_dbg(sg_table->dev, 462 "%05d: *** %p\t:{L} 0x%llx ***\n", 463 i, ptr, addr); 464 ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table, 465 addr, true); 466 break; 467 case ETR_SG_ET_LAST: 468 dev_dbg(sg_table->dev, 469 "%05d: ### %p\t:[L] 0x%llx ###\n", 470 i, ptr, addr); 471 return; 472 default: 473 dev_dbg(sg_table->dev, 474 "%05d: xxx %p\t:[INVALID] 0x%llx xxx\n", 475 i, ptr, addr); 476 return; 477 } 478 i++; 479 } 480 dev_dbg(sg_table->dev, "******* End of Table *****\n"); 481 } 482 #else 483 static inline void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) {} 484 #endif 485 486 /* 487 * Populate the SG Table page table entries from table/data 488 * pages allocated. Each Data page has ETR_SG_PAGES_PER_SYSPAGE SG pages. 489 * So does a Table page. So we keep track of indices of the tables 490 * in each system page and move the pointers accordingly. 491 */ 492 #define INC_IDX_ROUND(idx, size) ((idx) = ((idx) + 1) % (size)) 493 static void tmc_etr_sg_table_populate(struct etr_sg_table *etr_table) 494 { 495 dma_addr_t paddr; 496 int i, type, nr_entries; 497 int tpidx = 0; /* index to the current system table_page */ 498 int sgtidx = 0; /* index to the sg_table within the current syspage */ 499 int sgtentry = 0; /* the entry within the sg_table */ 500 int dpidx = 0; /* index to the current system data_page */ 501 int spidx = 0; /* index to the SG page within the current data page */ 502 sgte_t *ptr; /* pointer to the table entry to fill */ 503 struct tmc_sg_table *sg_table = etr_table->sg_table; 504 dma_addr_t *table_daddrs = sg_table->table_pages.daddrs; 505 dma_addr_t *data_daddrs = sg_table->data_pages.daddrs; 506 507 nr_entries = tmc_etr_sg_table_entries(sg_table->data_pages.nr_pages); 508 /* 509 * Use the contiguous virtual address of the table to update entries. 510 */ 511 ptr = sg_table->table_vaddr; 512 /* 513 * Fill all the entries, except the last entry to avoid special 514 * checks within the loop. 515 */ 516 for (i = 0; i < nr_entries - 1; i++) { 517 if (sgtentry == ETR_SG_PTRS_PER_PAGE - 1) { 518 /* 519 * Last entry in a sg_table page is a link address to 520 * the next table page. If this sg_table is the last 521 * one in the system page, it links to the first 522 * sg_table in the next system page. Otherwise, it 523 * links to the next sg_table page within the system 524 * page. 525 */ 526 if (sgtidx == ETR_SG_PAGES_PER_SYSPAGE - 1) { 527 paddr = table_daddrs[tpidx + 1]; 528 } else { 529 paddr = table_daddrs[tpidx] + 530 (ETR_SG_PAGE_SIZE * (sgtidx + 1)); 531 } 532 type = ETR_SG_ET_LINK; 533 } else { 534 /* 535 * Update the indices to the data_pages to point to the 536 * next sg_page in the data buffer. 537 */ 538 type = ETR_SG_ET_NORMAL; 539 paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE; 540 if (!INC_IDX_ROUND(spidx, ETR_SG_PAGES_PER_SYSPAGE)) 541 dpidx++; 542 } 543 *ptr++ = ETR_SG_ENTRY(paddr, type); 544 /* 545 * Move to the next table pointer, moving the table page index 546 * if necessary 547 */ 548 if (!INC_IDX_ROUND(sgtentry, ETR_SG_PTRS_PER_PAGE)) { 549 if (!INC_IDX_ROUND(sgtidx, ETR_SG_PAGES_PER_SYSPAGE)) 550 tpidx++; 551 } 552 } 553 554 /* Set up the last entry, which is always a data pointer */ 555 paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE; 556 *ptr++ = ETR_SG_ENTRY(paddr, ETR_SG_ET_LAST); 557 } 558 559 /* 560 * tmc_init_etr_sg_table: Allocate a TMC ETR SG table, data buffer of @size and 561 * populate the table. 562 * 563 * @dev - Device pointer for the TMC 564 * @node - NUMA node where the memory should be allocated 565 * @size - Total size of the data buffer 566 * @pages - Optional list of page virtual address 567 */ 568 static struct etr_sg_table * 569 tmc_init_etr_sg_table(struct device *dev, int node, 570 unsigned long size, void **pages) 571 { 572 int nr_entries, nr_tpages; 573 int nr_dpages = size >> PAGE_SHIFT; 574 struct tmc_sg_table *sg_table; 575 struct etr_sg_table *etr_table; 576 577 etr_table = kzalloc(sizeof(*etr_table), GFP_KERNEL); 578 if (!etr_table) 579 return ERR_PTR(-ENOMEM); 580 nr_entries = tmc_etr_sg_table_entries(nr_dpages); 581 nr_tpages = DIV_ROUND_UP(nr_entries, ETR_SG_PTRS_PER_SYSPAGE); 582 583 sg_table = tmc_alloc_sg_table(dev, node, nr_tpages, nr_dpages, pages); 584 if (IS_ERR(sg_table)) { 585 kfree(etr_table); 586 return ERR_CAST(sg_table); 587 } 588 589 etr_table->sg_table = sg_table; 590 /* TMC should use table base address for DBA */ 591 etr_table->hwaddr = sg_table->table_daddr; 592 tmc_etr_sg_table_populate(etr_table); 593 /* Sync the table pages for the HW */ 594 tmc_sg_table_sync_table(sg_table); 595 tmc_etr_sg_table_dump(etr_table); 596 597 return etr_table; 598 } 599 600 /* 601 * tmc_etr_alloc_flat_buf: Allocate a contiguous DMA buffer. 602 */ 603 static int tmc_etr_alloc_flat_buf(struct tmc_drvdata *drvdata, 604 struct etr_buf *etr_buf, int node, 605 void **pages) 606 { 607 struct etr_flat_buf *flat_buf; 608 struct device *real_dev = drvdata->csdev->dev.parent; 609 610 /* We cannot reuse existing pages for flat buf */ 611 if (pages) 612 return -EINVAL; 613 614 flat_buf = kzalloc(sizeof(*flat_buf), GFP_KERNEL); 615 if (!flat_buf) 616 return -ENOMEM; 617 618 flat_buf->vaddr = dma_alloc_noncoherent(real_dev, etr_buf->size, 619 &flat_buf->daddr, 620 DMA_FROM_DEVICE, 621 GFP_KERNEL | __GFP_NOWARN); 622 if (!flat_buf->vaddr) { 623 kfree(flat_buf); 624 return -ENOMEM; 625 } 626 627 flat_buf->size = etr_buf->size; 628 flat_buf->dev = &drvdata->csdev->dev; 629 etr_buf->hwaddr = flat_buf->daddr; 630 etr_buf->mode = ETR_MODE_FLAT; 631 etr_buf->private = flat_buf; 632 return 0; 633 } 634 635 static void tmc_etr_free_flat_buf(struct etr_buf *etr_buf) 636 { 637 struct etr_flat_buf *flat_buf = etr_buf->private; 638 639 if (flat_buf && flat_buf->daddr) { 640 struct device *real_dev = flat_buf->dev->parent; 641 642 dma_free_noncoherent(real_dev, etr_buf->size, 643 flat_buf->vaddr, flat_buf->daddr, 644 DMA_FROM_DEVICE); 645 } 646 kfree(flat_buf); 647 } 648 649 static void tmc_etr_sync_flat_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp) 650 { 651 struct etr_flat_buf *flat_buf = etr_buf->private; 652 struct device *real_dev = flat_buf->dev->parent; 653 654 /* 655 * Adjust the buffer to point to the beginning of the trace data 656 * and update the available trace data. 657 */ 658 etr_buf->offset = rrp - etr_buf->hwaddr; 659 if (etr_buf->full) 660 etr_buf->len = etr_buf->size; 661 else 662 etr_buf->len = rwp - rrp; 663 664 /* 665 * The driver always starts tracing at the beginning of the buffer, 666 * the only reason why we would get a wrap around is when the buffer 667 * is full. Sync the entire buffer in one go for this case. 668 */ 669 if (etr_buf->offset + etr_buf->len > etr_buf->size) 670 dma_sync_single_for_cpu(real_dev, flat_buf->daddr, 671 etr_buf->size, DMA_FROM_DEVICE); 672 else 673 dma_sync_single_for_cpu(real_dev, 674 flat_buf->daddr + etr_buf->offset, 675 etr_buf->len, DMA_FROM_DEVICE); 676 } 677 678 static ssize_t tmc_etr_get_data_flat_buf(struct etr_buf *etr_buf, 679 u64 offset, size_t len, char **bufpp) 680 { 681 struct etr_flat_buf *flat_buf = etr_buf->private; 682 683 *bufpp = (char *)flat_buf->vaddr + offset; 684 /* 685 * tmc_etr_buf_get_data already adjusts the length to handle 686 * buffer wrapping around. 687 */ 688 return len; 689 } 690 691 static const struct etr_buf_operations etr_flat_buf_ops = { 692 .alloc = tmc_etr_alloc_flat_buf, 693 .free = tmc_etr_free_flat_buf, 694 .sync = tmc_etr_sync_flat_buf, 695 .get_data = tmc_etr_get_data_flat_buf, 696 }; 697 698 /* 699 * tmc_etr_alloc_sg_buf: Allocate an SG buf @etr_buf. Setup the parameters 700 * appropriately. 701 */ 702 static int tmc_etr_alloc_sg_buf(struct tmc_drvdata *drvdata, 703 struct etr_buf *etr_buf, int node, 704 void **pages) 705 { 706 struct etr_sg_table *etr_table; 707 struct device *dev = &drvdata->csdev->dev; 708 709 etr_table = tmc_init_etr_sg_table(dev, node, 710 etr_buf->size, pages); 711 if (IS_ERR(etr_table)) 712 return -ENOMEM; 713 etr_buf->hwaddr = etr_table->hwaddr; 714 etr_buf->mode = ETR_MODE_ETR_SG; 715 etr_buf->private = etr_table; 716 return 0; 717 } 718 719 static void tmc_etr_free_sg_buf(struct etr_buf *etr_buf) 720 { 721 struct etr_sg_table *etr_table = etr_buf->private; 722 723 if (etr_table) { 724 tmc_free_sg_table(etr_table->sg_table); 725 kfree(etr_table); 726 } 727 } 728 729 static ssize_t tmc_etr_get_data_sg_buf(struct etr_buf *etr_buf, u64 offset, 730 size_t len, char **bufpp) 731 { 732 struct etr_sg_table *etr_table = etr_buf->private; 733 734 return tmc_sg_table_get_data(etr_table->sg_table, offset, len, bufpp); 735 } 736 737 static void tmc_etr_sync_sg_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp) 738 { 739 long r_offset, w_offset; 740 struct etr_sg_table *etr_table = etr_buf->private; 741 struct tmc_sg_table *table = etr_table->sg_table; 742 743 /* Convert hw address to offset in the buffer */ 744 r_offset = tmc_sg_get_data_page_offset(table, rrp); 745 if (r_offset < 0) { 746 dev_warn(table->dev, 747 "Unable to map RRP %llx to offset\n", rrp); 748 etr_buf->len = 0; 749 return; 750 } 751 752 w_offset = tmc_sg_get_data_page_offset(table, rwp); 753 if (w_offset < 0) { 754 dev_warn(table->dev, 755 "Unable to map RWP %llx to offset\n", rwp); 756 etr_buf->len = 0; 757 return; 758 } 759 760 etr_buf->offset = r_offset; 761 if (etr_buf->full) 762 etr_buf->len = etr_buf->size; 763 else 764 etr_buf->len = ((w_offset < r_offset) ? etr_buf->size : 0) + 765 w_offset - r_offset; 766 tmc_sg_table_sync_data_range(table, r_offset, etr_buf->len); 767 } 768 769 static const struct etr_buf_operations etr_sg_buf_ops = { 770 .alloc = tmc_etr_alloc_sg_buf, 771 .free = tmc_etr_free_sg_buf, 772 .sync = tmc_etr_sync_sg_buf, 773 .get_data = tmc_etr_get_data_sg_buf, 774 }; 775 776 /* 777 * TMC ETR could be connected to a CATU device, which can provide address 778 * translation service. This is represented by the Output port of the TMC 779 * (ETR) connected to the input port of the CATU. 780 * 781 * Returns : coresight_device ptr for the CATU device if a CATU is found. 782 * : NULL otherwise. 783 */ 784 struct coresight_device * 785 tmc_etr_get_catu_device(struct tmc_drvdata *drvdata) 786 { 787 struct coresight_device *etr = drvdata->csdev; 788 union coresight_dev_subtype catu_subtype = { 789 .helper_subtype = CORESIGHT_DEV_SUBTYPE_HELPER_CATU 790 }; 791 792 if (!IS_ENABLED(CONFIG_CORESIGHT_CATU)) 793 return NULL; 794 795 return coresight_find_output_type(etr->pdata, CORESIGHT_DEV_TYPE_HELPER, 796 catu_subtype); 797 } 798 EXPORT_SYMBOL_GPL(tmc_etr_get_catu_device); 799 800 static const struct etr_buf_operations *etr_buf_ops[] = { 801 [ETR_MODE_FLAT] = &etr_flat_buf_ops, 802 [ETR_MODE_ETR_SG] = &etr_sg_buf_ops, 803 [ETR_MODE_CATU] = NULL, 804 }; 805 806 void tmc_etr_set_catu_ops(const struct etr_buf_operations *catu) 807 { 808 etr_buf_ops[ETR_MODE_CATU] = catu; 809 } 810 EXPORT_SYMBOL_GPL(tmc_etr_set_catu_ops); 811 812 void tmc_etr_remove_catu_ops(void) 813 { 814 etr_buf_ops[ETR_MODE_CATU] = NULL; 815 } 816 EXPORT_SYMBOL_GPL(tmc_etr_remove_catu_ops); 817 818 static inline int tmc_etr_mode_alloc_buf(int mode, 819 struct tmc_drvdata *drvdata, 820 struct etr_buf *etr_buf, int node, 821 void **pages) 822 { 823 int rc = -EINVAL; 824 825 switch (mode) { 826 case ETR_MODE_FLAT: 827 case ETR_MODE_ETR_SG: 828 case ETR_MODE_CATU: 829 if (etr_buf_ops[mode] && etr_buf_ops[mode]->alloc) 830 rc = etr_buf_ops[mode]->alloc(drvdata, etr_buf, 831 node, pages); 832 if (!rc) 833 etr_buf->ops = etr_buf_ops[mode]; 834 return rc; 835 default: 836 return -EINVAL; 837 } 838 } 839 840 static void get_etr_buf_hw(struct device *dev, struct etr_buf_hw *buf_hw) 841 { 842 struct tmc_drvdata *drvdata = dev_get_drvdata(dev->parent); 843 844 buf_hw->has_iommu = iommu_get_domain_for_dev(dev->parent); 845 buf_hw->has_etr_sg = tmc_etr_has_cap(drvdata, TMC_ETR_SG); 846 buf_hw->has_catu = !!tmc_etr_get_catu_device(drvdata); 847 } 848 849 static bool etr_can_use_flat_mode(struct etr_buf_hw *buf_hw, ssize_t etr_buf_size) 850 { 851 bool has_sg = buf_hw->has_catu || buf_hw->has_etr_sg; 852 853 return !has_sg || buf_hw->has_iommu || etr_buf_size < SZ_1M; 854 } 855 856 /* 857 * tmc_alloc_etr_buf: Allocate a buffer use by ETR. 858 * @drvdata : ETR device details. 859 * @size : size of the requested buffer. 860 * @flags : Required properties for the buffer. 861 * @node : Node for memory allocations. 862 * @pages : An optional list of pages. 863 */ 864 static struct etr_buf *tmc_alloc_etr_buf(struct tmc_drvdata *drvdata, 865 ssize_t size, int flags, 866 int node, void **pages) 867 { 868 int rc = -ENOMEM; 869 struct etr_buf *etr_buf; 870 struct etr_buf_hw buf_hw; 871 struct device *dev = &drvdata->csdev->dev; 872 873 get_etr_buf_hw(dev, &buf_hw); 874 etr_buf = kzalloc(sizeof(*etr_buf), GFP_KERNEL); 875 if (!etr_buf) 876 return ERR_PTR(-ENOMEM); 877 878 etr_buf->size = size; 879 880 /* If there is user directive for buffer mode, try that first */ 881 if (drvdata->etr_mode != ETR_MODE_AUTO) 882 rc = tmc_etr_mode_alloc_buf(drvdata->etr_mode, drvdata, 883 etr_buf, node, pages); 884 885 /* 886 * If we have to use an existing list of pages, we cannot reliably 887 * use a contiguous DMA memory (even if we have an IOMMU). Otherwise, 888 * we use the contiguous DMA memory if at least one of the following 889 * conditions is true: 890 * a) The ETR cannot use Scatter-Gather. 891 * b) we have a backing IOMMU 892 * c) The requested memory size is smaller (< 1M). 893 * 894 * Fallback to available mechanisms. 895 * 896 */ 897 if (rc && !pages && etr_can_use_flat_mode(&buf_hw, size)) 898 rc = tmc_etr_mode_alloc_buf(ETR_MODE_FLAT, drvdata, 899 etr_buf, node, pages); 900 if (rc && buf_hw.has_etr_sg) 901 rc = tmc_etr_mode_alloc_buf(ETR_MODE_ETR_SG, drvdata, 902 etr_buf, node, pages); 903 if (rc && buf_hw.has_catu) 904 rc = tmc_etr_mode_alloc_buf(ETR_MODE_CATU, drvdata, 905 etr_buf, node, pages); 906 if (rc) { 907 kfree(etr_buf); 908 return ERR_PTR(rc); 909 } 910 911 refcount_set(&etr_buf->refcount, 1); 912 dev_dbg(dev, "allocated buffer of size %ldKB in mode %d\n", 913 (unsigned long)size >> 10, etr_buf->mode); 914 return etr_buf; 915 } 916 917 static void tmc_free_etr_buf(struct etr_buf *etr_buf) 918 { 919 WARN_ON(!etr_buf->ops || !etr_buf->ops->free); 920 etr_buf->ops->free(etr_buf); 921 kfree(etr_buf); 922 } 923 924 /* 925 * tmc_etr_buf_get_data: Get the pointer the trace data at @offset 926 * with a maximum of @len bytes. 927 * Returns: The size of the linear data available @pos, with *bufpp 928 * updated to point to the buffer. 929 */ 930 static ssize_t tmc_etr_buf_get_data(struct etr_buf *etr_buf, 931 u64 offset, size_t len, char **bufpp) 932 { 933 /* Adjust the length to limit this transaction to end of buffer */ 934 len = (len < (etr_buf->size - offset)) ? len : etr_buf->size - offset; 935 936 return etr_buf->ops->get_data(etr_buf, (u64)offset, len, bufpp); 937 } 938 939 static inline s64 940 tmc_etr_buf_insert_barrier_packet(struct etr_buf *etr_buf, u64 offset) 941 { 942 ssize_t len; 943 char *bufp; 944 945 len = tmc_etr_buf_get_data(etr_buf, offset, 946 CORESIGHT_BARRIER_PKT_SIZE, &bufp); 947 if (WARN_ON(len < 0 || len < CORESIGHT_BARRIER_PKT_SIZE)) 948 return -EINVAL; 949 coresight_insert_barrier_packet(bufp); 950 return offset + CORESIGHT_BARRIER_PKT_SIZE; 951 } 952 953 /* 954 * tmc_sync_etr_buf: Sync the trace buffer availability with drvdata. 955 * Makes sure the trace data is synced to the memory for consumption. 956 * @etr_buf->offset will hold the offset to the beginning of the trace data 957 * within the buffer, with @etr_buf->len bytes to consume. 958 */ 959 static void tmc_sync_etr_buf(struct tmc_drvdata *drvdata) 960 { 961 struct etr_buf *etr_buf = drvdata->etr_buf; 962 u64 rrp, rwp; 963 u32 status; 964 965 rrp = tmc_read_rrp(drvdata); 966 rwp = tmc_read_rwp(drvdata); 967 status = readl_relaxed(drvdata->base + TMC_STS); 968 969 /* 970 * If there were memory errors in the session, truncate the 971 * buffer. 972 */ 973 if (WARN_ON_ONCE(status & TMC_STS_MEMERR)) { 974 dev_dbg(&drvdata->csdev->dev, 975 "tmc memory error detected, truncating buffer\n"); 976 etr_buf->len = 0; 977 etr_buf->full = false; 978 return; 979 } 980 981 etr_buf->full = !!(status & TMC_STS_FULL); 982 983 WARN_ON(!etr_buf->ops || !etr_buf->ops->sync); 984 985 etr_buf->ops->sync(etr_buf, rrp, rwp); 986 } 987 988 static int __tmc_etr_enable_hw(struct tmc_drvdata *drvdata) 989 { 990 u32 axictl, sts; 991 struct etr_buf *etr_buf = drvdata->etr_buf; 992 int rc = 0; 993 994 CS_UNLOCK(drvdata->base); 995 996 /* Wait for TMCSReady bit to be set */ 997 rc = tmc_wait_for_tmcready(drvdata); 998 if (rc) { 999 dev_err(&drvdata->csdev->dev, 1000 "Failed to enable : TMC not ready\n"); 1001 CS_LOCK(drvdata->base); 1002 return rc; 1003 } 1004 1005 writel_relaxed(etr_buf->size / 4, drvdata->base + TMC_RSZ); 1006 writel_relaxed(TMC_MODE_CIRCULAR_BUFFER, drvdata->base + TMC_MODE); 1007 1008 axictl = readl_relaxed(drvdata->base + TMC_AXICTL); 1009 axictl &= ~TMC_AXICTL_CLEAR_MASK; 1010 axictl |= TMC_AXICTL_PROT_CTL_B1; 1011 axictl |= TMC_AXICTL_WR_BURST(drvdata->max_burst_size); 1012 axictl |= TMC_AXICTL_AXCACHE_OS; 1013 1014 if (tmc_etr_has_cap(drvdata, TMC_ETR_AXI_ARCACHE)) { 1015 axictl &= ~TMC_AXICTL_ARCACHE_MASK; 1016 axictl |= TMC_AXICTL_ARCACHE_OS; 1017 } 1018 1019 if (etr_buf->mode == ETR_MODE_ETR_SG) 1020 axictl |= TMC_AXICTL_SCT_GAT_MODE; 1021 1022 writel_relaxed(axictl, drvdata->base + TMC_AXICTL); 1023 tmc_write_dba(drvdata, etr_buf->hwaddr); 1024 /* 1025 * If the TMC pointers must be programmed before the session, 1026 * we have to set it properly (i.e, RRP/RWP to base address and 1027 * STS to "not full"). 1028 */ 1029 if (tmc_etr_has_cap(drvdata, TMC_ETR_SAVE_RESTORE)) { 1030 tmc_write_rrp(drvdata, etr_buf->hwaddr); 1031 tmc_write_rwp(drvdata, etr_buf->hwaddr); 1032 sts = readl_relaxed(drvdata->base + TMC_STS) & ~TMC_STS_FULL; 1033 writel_relaxed(sts, drvdata->base + TMC_STS); 1034 } 1035 1036 writel_relaxed(TMC_FFCR_EN_FMT | TMC_FFCR_EN_TI | 1037 TMC_FFCR_FON_FLIN | TMC_FFCR_FON_TRIG_EVT | 1038 TMC_FFCR_TRIGON_TRIGIN, 1039 drvdata->base + TMC_FFCR); 1040 writel_relaxed(drvdata->trigger_cntr, drvdata->base + TMC_TRG); 1041 tmc_enable_hw(drvdata); 1042 1043 CS_LOCK(drvdata->base); 1044 return rc; 1045 } 1046 1047 static int tmc_etr_enable_hw(struct tmc_drvdata *drvdata, 1048 struct etr_buf *etr_buf) 1049 { 1050 int rc; 1051 1052 /* Callers should provide an appropriate buffer for use */ 1053 if (WARN_ON(!etr_buf)) 1054 return -EINVAL; 1055 1056 if ((etr_buf->mode == ETR_MODE_ETR_SG) && 1057 WARN_ON(!tmc_etr_has_cap(drvdata, TMC_ETR_SG))) 1058 return -EINVAL; 1059 1060 if (WARN_ON(drvdata->etr_buf)) 1061 return -EBUSY; 1062 1063 rc = coresight_claim_device(drvdata->csdev); 1064 if (!rc) { 1065 drvdata->etr_buf = etr_buf; 1066 rc = __tmc_etr_enable_hw(drvdata); 1067 if (rc) { 1068 drvdata->etr_buf = NULL; 1069 coresight_disclaim_device(drvdata->csdev); 1070 } 1071 } 1072 1073 return rc; 1074 } 1075 1076 /* 1077 * Return the available trace data in the buffer (starts at etr_buf->offset, 1078 * limited by etr_buf->len) from @pos, with a maximum limit of @len, 1079 * also updating the @bufpp on where to find it. Since the trace data 1080 * starts at anywhere in the buffer, depending on the RRP, we adjust the 1081 * @len returned to handle buffer wrapping around. 1082 * 1083 * We are protected here by drvdata->reading != 0, which ensures the 1084 * sysfs_buf stays alive. 1085 */ 1086 ssize_t tmc_etr_get_sysfs_trace(struct tmc_drvdata *drvdata, 1087 loff_t pos, size_t len, char **bufpp) 1088 { 1089 s64 offset; 1090 ssize_t actual = len; 1091 struct etr_buf *etr_buf = drvdata->sysfs_buf; 1092 1093 if (pos + actual > etr_buf->len) 1094 actual = etr_buf->len - pos; 1095 if (actual <= 0) 1096 return actual; 1097 1098 /* Compute the offset from which we read the data */ 1099 offset = etr_buf->offset + pos; 1100 if (offset >= etr_buf->size) 1101 offset -= etr_buf->size; 1102 return tmc_etr_buf_get_data(etr_buf, offset, actual, bufpp); 1103 } 1104 1105 static struct etr_buf * 1106 tmc_etr_setup_sysfs_buf(struct tmc_drvdata *drvdata) 1107 { 1108 return tmc_alloc_etr_buf(drvdata, drvdata->size, 1109 0, cpu_to_node(0), NULL); 1110 } 1111 1112 static void 1113 tmc_etr_free_sysfs_buf(struct etr_buf *buf) 1114 { 1115 if (buf) 1116 tmc_free_etr_buf(buf); 1117 } 1118 1119 static void tmc_etr_sync_sysfs_buf(struct tmc_drvdata *drvdata) 1120 { 1121 struct etr_buf *etr_buf = drvdata->etr_buf; 1122 1123 if (WARN_ON(drvdata->sysfs_buf != etr_buf)) { 1124 tmc_etr_free_sysfs_buf(drvdata->sysfs_buf); 1125 drvdata->sysfs_buf = NULL; 1126 } else { 1127 tmc_sync_etr_buf(drvdata); 1128 /* 1129 * Insert barrier packets at the beginning, if there was 1130 * an overflow. 1131 */ 1132 if (etr_buf->full) 1133 tmc_etr_buf_insert_barrier_packet(etr_buf, 1134 etr_buf->offset); 1135 } 1136 } 1137 1138 static void __tmc_etr_disable_hw(struct tmc_drvdata *drvdata) 1139 { 1140 CS_UNLOCK(drvdata->base); 1141 1142 tmc_flush_and_stop(drvdata); 1143 /* 1144 * When operating in sysFS mode the content of the buffer needs to be 1145 * read before the TMC is disabled. 1146 */ 1147 if (coresight_get_mode(drvdata->csdev) == CS_MODE_SYSFS) 1148 tmc_etr_sync_sysfs_buf(drvdata); 1149 1150 tmc_disable_hw(drvdata); 1151 1152 CS_LOCK(drvdata->base); 1153 1154 } 1155 1156 void tmc_etr_disable_hw(struct tmc_drvdata *drvdata) 1157 { 1158 __tmc_etr_disable_hw(drvdata); 1159 coresight_disclaim_device(drvdata->csdev); 1160 /* Reset the ETR buf used by hardware */ 1161 drvdata->etr_buf = NULL; 1162 } 1163 1164 static struct etr_buf *tmc_etr_get_sysfs_buffer(struct coresight_device *csdev) 1165 { 1166 int ret = 0; 1167 unsigned long flags; 1168 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1169 struct etr_buf *sysfs_buf = NULL, *new_buf = NULL, *free_buf = NULL; 1170 1171 /* 1172 * If we are enabling the ETR from disabled state, we need to make 1173 * sure we have a buffer with the right size. The etr_buf is not reset 1174 * immediately after we stop the tracing in SYSFS mode as we wait for 1175 * the user to collect the data. We may be able to reuse the existing 1176 * buffer, provided the size matches. Any allocation has to be done 1177 * with the lock released. 1178 */ 1179 spin_lock_irqsave(&drvdata->spinlock, flags); 1180 sysfs_buf = READ_ONCE(drvdata->sysfs_buf); 1181 if (!sysfs_buf || (sysfs_buf->size != drvdata->size)) { 1182 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1183 1184 /* Allocate memory with the locks released */ 1185 free_buf = new_buf = tmc_etr_setup_sysfs_buf(drvdata); 1186 if (IS_ERR(new_buf)) 1187 return new_buf; 1188 1189 /* Let's try again */ 1190 spin_lock_irqsave(&drvdata->spinlock, flags); 1191 } 1192 1193 if (drvdata->reading || coresight_get_mode(csdev) == CS_MODE_PERF) { 1194 ret = -EBUSY; 1195 goto out; 1196 } 1197 1198 /* 1199 * If we don't have a buffer or it doesn't match the requested size, 1200 * use the buffer allocated above. Otherwise reuse the existing buffer. 1201 */ 1202 sysfs_buf = READ_ONCE(drvdata->sysfs_buf); 1203 if (!sysfs_buf || (new_buf && sysfs_buf->size != new_buf->size)) { 1204 free_buf = sysfs_buf; 1205 drvdata->sysfs_buf = new_buf; 1206 } 1207 1208 out: 1209 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1210 1211 /* Free memory outside the spinlock if need be */ 1212 if (free_buf) 1213 tmc_etr_free_sysfs_buf(free_buf); 1214 return ret ? ERR_PTR(ret) : drvdata->sysfs_buf; 1215 } 1216 1217 static int tmc_enable_etr_sink_sysfs(struct coresight_device *csdev) 1218 { 1219 int ret = 0; 1220 unsigned long flags; 1221 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1222 struct etr_buf *sysfs_buf = tmc_etr_get_sysfs_buffer(csdev); 1223 1224 if (IS_ERR(sysfs_buf)) 1225 return PTR_ERR(sysfs_buf); 1226 1227 spin_lock_irqsave(&drvdata->spinlock, flags); 1228 1229 /* 1230 * In sysFS mode we can have multiple writers per sink. Since this 1231 * sink is already enabled no memory is needed and the HW need not be 1232 * touched, even if the buffer size has changed. 1233 */ 1234 if (coresight_get_mode(csdev) == CS_MODE_SYSFS) { 1235 csdev->refcnt++; 1236 goto out; 1237 } 1238 1239 ret = tmc_etr_enable_hw(drvdata, sysfs_buf); 1240 if (!ret) { 1241 coresight_set_mode(csdev, CS_MODE_SYSFS); 1242 csdev->refcnt++; 1243 } 1244 1245 out: 1246 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1247 1248 if (!ret) 1249 dev_dbg(&csdev->dev, "TMC-ETR enabled\n"); 1250 1251 return ret; 1252 } 1253 1254 struct etr_buf *tmc_etr_get_buffer(struct coresight_device *csdev, 1255 enum cs_mode mode, void *data) 1256 { 1257 struct perf_output_handle *handle = data; 1258 struct etr_perf_buffer *etr_perf; 1259 1260 switch (mode) { 1261 case CS_MODE_SYSFS: 1262 return tmc_etr_get_sysfs_buffer(csdev); 1263 case CS_MODE_PERF: 1264 etr_perf = etm_perf_sink_config(handle); 1265 if (WARN_ON(!etr_perf || !etr_perf->etr_buf)) 1266 return ERR_PTR(-EINVAL); 1267 return etr_perf->etr_buf; 1268 default: 1269 return ERR_PTR(-EINVAL); 1270 } 1271 } 1272 EXPORT_SYMBOL_GPL(tmc_etr_get_buffer); 1273 1274 /* 1275 * alloc_etr_buf: Allocate ETR buffer for use by perf. 1276 * The size of the hardware buffer is dependent on the size configured 1277 * via sysfs and the perf ring buffer size. We prefer to allocate the 1278 * largest possible size, scaling down the size by half until it 1279 * reaches a minimum limit (1M), beyond which we give up. 1280 */ 1281 static struct etr_buf * 1282 alloc_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event, 1283 int nr_pages, void **pages, bool snapshot) 1284 { 1285 int node; 1286 struct etr_buf *etr_buf; 1287 unsigned long size; 1288 1289 node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu); 1290 /* 1291 * Try to match the perf ring buffer size if it is larger 1292 * than the size requested via sysfs. 1293 */ 1294 if ((nr_pages << PAGE_SHIFT) > drvdata->size) { 1295 etr_buf = tmc_alloc_etr_buf(drvdata, ((ssize_t)nr_pages << PAGE_SHIFT), 1296 0, node, NULL); 1297 if (!IS_ERR(etr_buf)) 1298 goto done; 1299 } 1300 1301 /* 1302 * Else switch to configured size for this ETR 1303 * and scale down until we hit the minimum limit. 1304 */ 1305 size = drvdata->size; 1306 do { 1307 etr_buf = tmc_alloc_etr_buf(drvdata, size, 0, node, NULL); 1308 if (!IS_ERR(etr_buf)) 1309 goto done; 1310 size /= 2; 1311 } while (size >= TMC_ETR_PERF_MIN_BUF_SIZE); 1312 1313 return ERR_PTR(-ENOMEM); 1314 1315 done: 1316 return etr_buf; 1317 } 1318 1319 static struct etr_buf * 1320 get_perf_etr_buf_cpu_wide(struct tmc_drvdata *drvdata, 1321 struct perf_event *event, int nr_pages, 1322 void **pages, bool snapshot) 1323 { 1324 int ret; 1325 pid_t pid = task_pid_nr(event->owner); 1326 struct etr_buf *etr_buf; 1327 1328 retry: 1329 /* 1330 * An etr_perf_buffer is associated with an event and holds a reference 1331 * to the AUX ring buffer that was created for that event. In CPU-wide 1332 * N:1 mode multiple events (one per CPU), each with its own AUX ring 1333 * buffer, share a sink. As such an etr_perf_buffer is created for each 1334 * event but a single etr_buf associated with the ETR is shared between 1335 * them. The last event in a trace session will copy the content of the 1336 * etr_buf to its AUX ring buffer. Ring buffer associated to other 1337 * events are simply not used an freed as events are destoyed. We still 1338 * need to allocate a ring buffer for each event since we don't know 1339 * which event will be last. 1340 */ 1341 1342 /* 1343 * The first thing to do here is check if an etr_buf has already been 1344 * allocated for this session. If so it is shared with this event, 1345 * otherwise it is created. 1346 */ 1347 mutex_lock(&drvdata->idr_mutex); 1348 etr_buf = idr_find(&drvdata->idr, pid); 1349 if (etr_buf) { 1350 refcount_inc(&etr_buf->refcount); 1351 mutex_unlock(&drvdata->idr_mutex); 1352 return etr_buf; 1353 } 1354 1355 /* If we made it here no buffer has been allocated, do so now. */ 1356 mutex_unlock(&drvdata->idr_mutex); 1357 1358 etr_buf = alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot); 1359 if (IS_ERR(etr_buf)) 1360 return etr_buf; 1361 1362 /* Now that we have a buffer, add it to the IDR. */ 1363 mutex_lock(&drvdata->idr_mutex); 1364 ret = idr_alloc(&drvdata->idr, etr_buf, pid, pid + 1, GFP_KERNEL); 1365 mutex_unlock(&drvdata->idr_mutex); 1366 1367 /* Another event with this session ID has allocated this buffer. */ 1368 if (ret == -ENOSPC) { 1369 tmc_free_etr_buf(etr_buf); 1370 goto retry; 1371 } 1372 1373 /* The IDR can't allocate room for a new session, abandon ship. */ 1374 if (ret == -ENOMEM) { 1375 tmc_free_etr_buf(etr_buf); 1376 return ERR_PTR(ret); 1377 } 1378 1379 1380 return etr_buf; 1381 } 1382 1383 static struct etr_buf * 1384 get_perf_etr_buf_per_thread(struct tmc_drvdata *drvdata, 1385 struct perf_event *event, int nr_pages, 1386 void **pages, bool snapshot) 1387 { 1388 /* 1389 * In per-thread mode the etr_buf isn't shared, so just go ahead 1390 * with memory allocation. 1391 */ 1392 return alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot); 1393 } 1394 1395 static struct etr_buf * 1396 get_perf_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event, 1397 int nr_pages, void **pages, bool snapshot) 1398 { 1399 if (event->cpu == -1) 1400 return get_perf_etr_buf_per_thread(drvdata, event, nr_pages, 1401 pages, snapshot); 1402 1403 return get_perf_etr_buf_cpu_wide(drvdata, event, nr_pages, 1404 pages, snapshot); 1405 } 1406 1407 static struct etr_perf_buffer * 1408 tmc_etr_setup_perf_buf(struct tmc_drvdata *drvdata, struct perf_event *event, 1409 int nr_pages, void **pages, bool snapshot) 1410 { 1411 int node; 1412 struct etr_buf *etr_buf; 1413 struct etr_perf_buffer *etr_perf; 1414 1415 node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu); 1416 1417 etr_perf = kzalloc_node(sizeof(*etr_perf), GFP_KERNEL, node); 1418 if (!etr_perf) 1419 return ERR_PTR(-ENOMEM); 1420 1421 etr_buf = get_perf_etr_buf(drvdata, event, nr_pages, pages, snapshot); 1422 if (!IS_ERR(etr_buf)) 1423 goto done; 1424 1425 kfree(etr_perf); 1426 return ERR_PTR(-ENOMEM); 1427 1428 done: 1429 /* 1430 * Keep a reference to the ETR this buffer has been allocated for 1431 * in order to have access to the IDR in tmc_free_etr_buffer(). 1432 */ 1433 etr_perf->drvdata = drvdata; 1434 etr_perf->etr_buf = etr_buf; 1435 1436 return etr_perf; 1437 } 1438 1439 1440 static void *tmc_alloc_etr_buffer(struct coresight_device *csdev, 1441 struct perf_event *event, void **pages, 1442 int nr_pages, bool snapshot) 1443 { 1444 struct etr_perf_buffer *etr_perf; 1445 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1446 1447 etr_perf = tmc_etr_setup_perf_buf(drvdata, event, 1448 nr_pages, pages, snapshot); 1449 if (IS_ERR(etr_perf)) { 1450 dev_dbg(&csdev->dev, "Unable to allocate ETR buffer\n"); 1451 return NULL; 1452 } 1453 1454 etr_perf->pid = task_pid_nr(event->owner); 1455 etr_perf->snapshot = snapshot; 1456 etr_perf->nr_pages = nr_pages; 1457 etr_perf->pages = pages; 1458 1459 return etr_perf; 1460 } 1461 1462 static void tmc_free_etr_buffer(void *config) 1463 { 1464 struct etr_perf_buffer *etr_perf = config; 1465 struct tmc_drvdata *drvdata = etr_perf->drvdata; 1466 struct etr_buf *buf, *etr_buf = etr_perf->etr_buf; 1467 1468 if (!etr_buf) 1469 goto free_etr_perf_buffer; 1470 1471 mutex_lock(&drvdata->idr_mutex); 1472 /* If we are not the last one to use the buffer, don't touch it. */ 1473 if (!refcount_dec_and_test(&etr_buf->refcount)) { 1474 mutex_unlock(&drvdata->idr_mutex); 1475 goto free_etr_perf_buffer; 1476 } 1477 1478 /* We are the last one, remove from the IDR and free the buffer. */ 1479 buf = idr_remove(&drvdata->idr, etr_perf->pid); 1480 mutex_unlock(&drvdata->idr_mutex); 1481 1482 /* 1483 * Something went very wrong if the buffer associated with this ID 1484 * is not the same in the IDR. Leak to avoid use after free. 1485 */ 1486 if (buf && WARN_ON(buf != etr_buf)) 1487 goto free_etr_perf_buffer; 1488 1489 tmc_free_etr_buf(etr_perf->etr_buf); 1490 1491 free_etr_perf_buffer: 1492 kfree(etr_perf); 1493 } 1494 1495 /* 1496 * tmc_etr_sync_perf_buffer: Copy the actual trace data from the hardware 1497 * buffer to the perf ring buffer. 1498 */ 1499 static void tmc_etr_sync_perf_buffer(struct etr_perf_buffer *etr_perf, 1500 unsigned long head, 1501 unsigned long src_offset, 1502 unsigned long to_copy) 1503 { 1504 long bytes; 1505 long pg_idx, pg_offset; 1506 char **dst_pages, *src_buf; 1507 struct etr_buf *etr_buf = etr_perf->etr_buf; 1508 1509 head = PERF_IDX2OFF(head, etr_perf); 1510 pg_idx = head >> PAGE_SHIFT; 1511 pg_offset = head & (PAGE_SIZE - 1); 1512 dst_pages = (char **)etr_perf->pages; 1513 1514 while (to_copy > 0) { 1515 /* 1516 * In one iteration, we can copy minimum of : 1517 * 1) what is available in the source buffer, 1518 * 2) what is available in the source buffer, before it 1519 * wraps around. 1520 * 3) what is available in the destination page. 1521 * in one iteration. 1522 */ 1523 if (src_offset >= etr_buf->size) 1524 src_offset -= etr_buf->size; 1525 bytes = tmc_etr_buf_get_data(etr_buf, src_offset, to_copy, 1526 &src_buf); 1527 if (WARN_ON_ONCE(bytes <= 0)) 1528 break; 1529 bytes = min(bytes, (long)(PAGE_SIZE - pg_offset)); 1530 1531 memcpy(dst_pages[pg_idx] + pg_offset, src_buf, bytes); 1532 1533 to_copy -= bytes; 1534 1535 /* Move destination pointers */ 1536 pg_offset += bytes; 1537 if (pg_offset == PAGE_SIZE) { 1538 pg_offset = 0; 1539 if (++pg_idx == etr_perf->nr_pages) 1540 pg_idx = 0; 1541 } 1542 1543 /* Move source pointers */ 1544 src_offset += bytes; 1545 } 1546 } 1547 1548 /* 1549 * tmc_update_etr_buffer : Update the perf ring buffer with the 1550 * available trace data. We use software double buffering at the moment. 1551 * 1552 * TODO: Add support for reusing the perf ring buffer. 1553 */ 1554 static unsigned long 1555 tmc_update_etr_buffer(struct coresight_device *csdev, 1556 struct perf_output_handle *handle, 1557 void *config) 1558 { 1559 bool lost = false; 1560 unsigned long flags, offset, size = 0; 1561 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1562 struct etr_perf_buffer *etr_perf = config; 1563 struct etr_buf *etr_buf = etr_perf->etr_buf; 1564 1565 spin_lock_irqsave(&drvdata->spinlock, flags); 1566 1567 /* Don't do anything if another tracer is using this sink */ 1568 if (csdev->refcnt != 1) { 1569 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1570 goto out; 1571 } 1572 1573 if (WARN_ON(drvdata->perf_buf != etr_buf)) { 1574 lost = true; 1575 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1576 goto out; 1577 } 1578 1579 CS_UNLOCK(drvdata->base); 1580 1581 tmc_flush_and_stop(drvdata); 1582 tmc_sync_etr_buf(drvdata); 1583 1584 CS_LOCK(drvdata->base); 1585 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1586 1587 lost = etr_buf->full; 1588 offset = etr_buf->offset; 1589 size = etr_buf->len; 1590 1591 /* 1592 * The ETR buffer may be bigger than the space available in the 1593 * perf ring buffer (handle->size). If so advance the offset so that we 1594 * get the latest trace data. In snapshot mode none of that matters 1595 * since we are expected to clobber stale data in favour of the latest 1596 * traces. 1597 */ 1598 if (!etr_perf->snapshot && size > handle->size) { 1599 u32 mask = tmc_get_memwidth_mask(drvdata); 1600 1601 /* 1602 * Make sure the new size is aligned in accordance with the 1603 * requirement explained in function tmc_get_memwidth_mask(). 1604 */ 1605 size = handle->size & mask; 1606 offset = etr_buf->offset + etr_buf->len - size; 1607 1608 if (offset >= etr_buf->size) 1609 offset -= etr_buf->size; 1610 lost = true; 1611 } 1612 1613 /* Insert barrier packets at the beginning, if there was an overflow */ 1614 if (lost) 1615 tmc_etr_buf_insert_barrier_packet(etr_buf, offset); 1616 tmc_etr_sync_perf_buffer(etr_perf, handle->head, offset, size); 1617 1618 /* 1619 * In snapshot mode we simply increment the head by the number of byte 1620 * that were written. User space will figure out how many bytes to get 1621 * from the AUX buffer based on the position of the head. 1622 */ 1623 if (etr_perf->snapshot) 1624 handle->head += size; 1625 1626 /* 1627 * Ensure that the AUX trace data is visible before the aux_head 1628 * is updated via perf_aux_output_end(), as expected by the 1629 * perf ring buffer. 1630 */ 1631 smp_wmb(); 1632 1633 out: 1634 /* 1635 * Don't set the TRUNCATED flag in snapshot mode because 1) the 1636 * captured buffer is expected to be truncated and 2) a full buffer 1637 * prevents the event from being re-enabled by the perf core, 1638 * resulting in stale data being send to user space. 1639 */ 1640 if (!etr_perf->snapshot && lost) 1641 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED); 1642 return size; 1643 } 1644 1645 static int tmc_enable_etr_sink_perf(struct coresight_device *csdev, void *data) 1646 { 1647 int rc = 0; 1648 pid_t pid; 1649 unsigned long flags; 1650 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1651 struct perf_output_handle *handle = data; 1652 struct etr_perf_buffer *etr_perf = etm_perf_sink_config(handle); 1653 1654 spin_lock_irqsave(&drvdata->spinlock, flags); 1655 /* Don't use this sink if it is already claimed by sysFS */ 1656 if (coresight_get_mode(csdev) == CS_MODE_SYSFS) { 1657 rc = -EBUSY; 1658 goto unlock_out; 1659 } 1660 1661 if (WARN_ON(!etr_perf || !etr_perf->etr_buf)) { 1662 rc = -EINVAL; 1663 goto unlock_out; 1664 } 1665 1666 /* Get a handle on the pid of the session owner */ 1667 pid = etr_perf->pid; 1668 1669 /* Do not proceed if this device is associated with another session */ 1670 if (drvdata->pid != -1 && drvdata->pid != pid) { 1671 rc = -EBUSY; 1672 goto unlock_out; 1673 } 1674 1675 /* 1676 * No HW configuration is needed if the sink is already in 1677 * use for this session. 1678 */ 1679 if (drvdata->pid == pid) { 1680 csdev->refcnt++; 1681 goto unlock_out; 1682 } 1683 1684 rc = tmc_etr_enable_hw(drvdata, etr_perf->etr_buf); 1685 if (!rc) { 1686 /* Associate with monitored process. */ 1687 drvdata->pid = pid; 1688 coresight_set_mode(csdev, CS_MODE_PERF); 1689 drvdata->perf_buf = etr_perf->etr_buf; 1690 csdev->refcnt++; 1691 } 1692 1693 unlock_out: 1694 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1695 return rc; 1696 } 1697 1698 static int tmc_enable_etr_sink(struct coresight_device *csdev, 1699 enum cs_mode mode, void *data) 1700 { 1701 switch (mode) { 1702 case CS_MODE_SYSFS: 1703 return tmc_enable_etr_sink_sysfs(csdev); 1704 case CS_MODE_PERF: 1705 return tmc_enable_etr_sink_perf(csdev, data); 1706 default: 1707 return -EINVAL; 1708 } 1709 } 1710 1711 static int tmc_disable_etr_sink(struct coresight_device *csdev) 1712 { 1713 unsigned long flags; 1714 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1715 1716 spin_lock_irqsave(&drvdata->spinlock, flags); 1717 1718 if (drvdata->reading) { 1719 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1720 return -EBUSY; 1721 } 1722 1723 csdev->refcnt--; 1724 if (csdev->refcnt) { 1725 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1726 return -EBUSY; 1727 } 1728 1729 /* Complain if we (somehow) got out of sync */ 1730 WARN_ON_ONCE(coresight_get_mode(csdev) == CS_MODE_DISABLED); 1731 tmc_etr_disable_hw(drvdata); 1732 /* Dissociate from monitored process. */ 1733 drvdata->pid = -1; 1734 coresight_set_mode(csdev, CS_MODE_DISABLED); 1735 /* Reset perf specific data */ 1736 drvdata->perf_buf = NULL; 1737 1738 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1739 1740 dev_dbg(&csdev->dev, "TMC-ETR disabled\n"); 1741 return 0; 1742 } 1743 1744 static const struct coresight_ops_sink tmc_etr_sink_ops = { 1745 .enable = tmc_enable_etr_sink, 1746 .disable = tmc_disable_etr_sink, 1747 .alloc_buffer = tmc_alloc_etr_buffer, 1748 .update_buffer = tmc_update_etr_buffer, 1749 .free_buffer = tmc_free_etr_buffer, 1750 }; 1751 1752 const struct coresight_ops tmc_etr_cs_ops = { 1753 .sink_ops = &tmc_etr_sink_ops, 1754 }; 1755 1756 int tmc_read_prepare_etr(struct tmc_drvdata *drvdata) 1757 { 1758 int ret = 0; 1759 unsigned long flags; 1760 1761 /* config types are set a boot time and never change */ 1762 if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR)) 1763 return -EINVAL; 1764 1765 spin_lock_irqsave(&drvdata->spinlock, flags); 1766 if (drvdata->reading) { 1767 ret = -EBUSY; 1768 goto out; 1769 } 1770 1771 /* 1772 * We can safely allow reads even if the ETR is operating in PERF mode, 1773 * since the sysfs session is captured in mode specific data. 1774 * If drvdata::sysfs_data is NULL the trace data has been read already. 1775 */ 1776 if (!drvdata->sysfs_buf) { 1777 ret = -EINVAL; 1778 goto out; 1779 } 1780 1781 /* Disable the TMC if we are trying to read from a running session. */ 1782 if (coresight_get_mode(drvdata->csdev) == CS_MODE_SYSFS) 1783 __tmc_etr_disable_hw(drvdata); 1784 1785 drvdata->reading = true; 1786 out: 1787 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1788 1789 return ret; 1790 } 1791 1792 int tmc_read_unprepare_etr(struct tmc_drvdata *drvdata) 1793 { 1794 unsigned long flags; 1795 struct etr_buf *sysfs_buf = NULL; 1796 1797 /* config types are set a boot time and never change */ 1798 if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR)) 1799 return -EINVAL; 1800 1801 spin_lock_irqsave(&drvdata->spinlock, flags); 1802 1803 /* RE-enable the TMC if need be */ 1804 if (coresight_get_mode(drvdata->csdev) == CS_MODE_SYSFS) { 1805 /* 1806 * The trace run will continue with the same allocated trace 1807 * buffer. Since the tracer is still enabled drvdata::buf can't 1808 * be NULL. 1809 */ 1810 __tmc_etr_enable_hw(drvdata); 1811 } else { 1812 /* 1813 * The ETR is not tracing and the buffer was just read. 1814 * As such prepare to free the trace buffer. 1815 */ 1816 sysfs_buf = drvdata->sysfs_buf; 1817 drvdata->sysfs_buf = NULL; 1818 } 1819 1820 drvdata->reading = false; 1821 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1822 1823 /* Free allocated memory out side of the spinlock */ 1824 if (sysfs_buf) 1825 tmc_etr_free_sysfs_buf(sysfs_buf); 1826 1827 return 0; 1828 } 1829 1830 static const char *const buf_modes_str[] = { 1831 [ETR_MODE_FLAT] = "flat", 1832 [ETR_MODE_ETR_SG] = "tmc-sg", 1833 [ETR_MODE_CATU] = "catu", 1834 [ETR_MODE_AUTO] = "auto", 1835 }; 1836 1837 static ssize_t buf_modes_available_show(struct device *dev, 1838 struct device_attribute *attr, char *buf) 1839 { 1840 struct etr_buf_hw buf_hw; 1841 ssize_t size = 0; 1842 1843 get_etr_buf_hw(dev, &buf_hw); 1844 size += sysfs_emit(buf, "%s ", buf_modes_str[ETR_MODE_AUTO]); 1845 size += sysfs_emit_at(buf, size, "%s ", buf_modes_str[ETR_MODE_FLAT]); 1846 if (buf_hw.has_etr_sg) 1847 size += sysfs_emit_at(buf, size, "%s ", buf_modes_str[ETR_MODE_ETR_SG]); 1848 1849 if (buf_hw.has_catu) 1850 size += sysfs_emit_at(buf, size, "%s ", buf_modes_str[ETR_MODE_CATU]); 1851 1852 size += sysfs_emit_at(buf, size, "\n"); 1853 return size; 1854 } 1855 static DEVICE_ATTR_RO(buf_modes_available); 1856 1857 static ssize_t buf_mode_preferred_show(struct device *dev, 1858 struct device_attribute *attr, char *buf) 1859 { 1860 struct tmc_drvdata *drvdata = dev_get_drvdata(dev->parent); 1861 1862 return sysfs_emit(buf, "%s\n", buf_modes_str[drvdata->etr_mode]); 1863 } 1864 1865 static ssize_t buf_mode_preferred_store(struct device *dev, 1866 struct device_attribute *attr, 1867 const char *buf, size_t size) 1868 { 1869 struct tmc_drvdata *drvdata = dev_get_drvdata(dev->parent); 1870 struct etr_buf_hw buf_hw; 1871 1872 get_etr_buf_hw(dev, &buf_hw); 1873 if (sysfs_streq(buf, buf_modes_str[ETR_MODE_FLAT])) 1874 drvdata->etr_mode = ETR_MODE_FLAT; 1875 else if (sysfs_streq(buf, buf_modes_str[ETR_MODE_ETR_SG]) && buf_hw.has_etr_sg) 1876 drvdata->etr_mode = ETR_MODE_ETR_SG; 1877 else if (sysfs_streq(buf, buf_modes_str[ETR_MODE_CATU]) && buf_hw.has_catu) 1878 drvdata->etr_mode = ETR_MODE_CATU; 1879 else if (sysfs_streq(buf, buf_modes_str[ETR_MODE_AUTO])) 1880 drvdata->etr_mode = ETR_MODE_AUTO; 1881 else 1882 return -EINVAL; 1883 return size; 1884 } 1885 static DEVICE_ATTR_RW(buf_mode_preferred); 1886 1887 static struct attribute *coresight_etr_attrs[] = { 1888 &dev_attr_buf_modes_available.attr, 1889 &dev_attr_buf_mode_preferred.attr, 1890 NULL, 1891 }; 1892 1893 const struct attribute_group coresight_etr_group = { 1894 .attrs = coresight_etr_attrs, 1895 }; 1896