xref: /linux/drivers/hwtracing/coresight/coresight-tmc-etr.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright(C) 2016 Linaro Limited. All rights reserved.
4  * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
5  */
6 
7 #include <linux/atomic.h>
8 #include <linux/coresight.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/iommu.h>
11 #include <linux/idr.h>
12 #include <linux/mutex.h>
13 #include <linux/refcount.h>
14 #include <linux/slab.h>
15 #include <linux/types.h>
16 #include <linux/vmalloc.h>
17 #include "coresight-catu.h"
18 #include "coresight-etm-perf.h"
19 #include "coresight-priv.h"
20 #include "coresight-tmc.h"
21 
22 struct etr_flat_buf {
23 	struct device	*dev;
24 	dma_addr_t	daddr;
25 	void		*vaddr;
26 	size_t		size;
27 };
28 
29 struct etr_buf_hw {
30 	bool	has_iommu;
31 	bool	has_etr_sg;
32 	bool	has_catu;
33 };
34 
35 /*
36  * etr_perf_buffer - Perf buffer used for ETR
37  * @drvdata		- The ETR drvdaga this buffer has been allocated for.
38  * @etr_buf		- Actual buffer used by the ETR
39  * @pid			- The PID of the session owner that etr_perf_buffer
40  *			  belongs to.
41  * @snaphost		- Perf session mode
42  * @nr_pages		- Number of pages in the ring buffer.
43  * @pages		- Array of Pages in the ring buffer.
44  */
45 struct etr_perf_buffer {
46 	struct tmc_drvdata	*drvdata;
47 	struct etr_buf		*etr_buf;
48 	pid_t			pid;
49 	bool			snapshot;
50 	int			nr_pages;
51 	void			**pages;
52 };
53 
54 /* Convert the perf index to an offset within the ETR buffer */
55 #define PERF_IDX2OFF(idx, buf)		\
56 		((idx) % ((unsigned long)(buf)->nr_pages << PAGE_SHIFT))
57 
58 /* Lower limit for ETR hardware buffer */
59 #define TMC_ETR_PERF_MIN_BUF_SIZE	SZ_1M
60 
61 /*
62  * The TMC ETR SG has a page size of 4K. The SG table contains pointers
63  * to 4KB buffers. However, the OS may use a PAGE_SIZE different from
64  * 4K (i.e, 16KB or 64KB). This implies that a single OS page could
65  * contain more than one SG buffer and tables.
66  *
67  * A table entry has the following format:
68  *
69  * ---Bit31------------Bit4-------Bit1-----Bit0--
70  * |     Address[39:12]    | SBZ |  Entry Type  |
71  * ----------------------------------------------
72  *
73  * Address: Bits [39:12] of a physical page address. Bits [11:0] are
74  *	    always zero.
75  *
76  * Entry type:
77  *	b00 - Reserved.
78  *	b01 - Last entry in the tables, points to 4K page buffer.
79  *	b10 - Normal entry, points to 4K page buffer.
80  *	b11 - Link. The address points to the base of next table.
81  */
82 
83 typedef u32 sgte_t;
84 
85 #define ETR_SG_PAGE_SHIFT		12
86 #define ETR_SG_PAGE_SIZE		(1UL << ETR_SG_PAGE_SHIFT)
87 #define ETR_SG_PAGES_PER_SYSPAGE	(PAGE_SIZE / ETR_SG_PAGE_SIZE)
88 #define ETR_SG_PTRS_PER_PAGE		(ETR_SG_PAGE_SIZE / sizeof(sgte_t))
89 #define ETR_SG_PTRS_PER_SYSPAGE		(PAGE_SIZE / sizeof(sgte_t))
90 
91 #define ETR_SG_ET_MASK			0x3
92 #define ETR_SG_ET_LAST			0x1
93 #define ETR_SG_ET_NORMAL		0x2
94 #define ETR_SG_ET_LINK			0x3
95 
96 #define ETR_SG_ADDR_SHIFT		4
97 
98 #define ETR_SG_ENTRY(addr, type) \
99 	(sgte_t)((((addr) >> ETR_SG_PAGE_SHIFT) << ETR_SG_ADDR_SHIFT) | \
100 		 (type & ETR_SG_ET_MASK))
101 
102 #define ETR_SG_ADDR(entry) \
103 	(((dma_addr_t)(entry) >> ETR_SG_ADDR_SHIFT) << ETR_SG_PAGE_SHIFT)
104 #define ETR_SG_ET(entry)		((entry) & ETR_SG_ET_MASK)
105 
106 /*
107  * struct etr_sg_table : ETR SG Table
108  * @sg_table:		Generic SG Table holding the data/table pages.
109  * @hwaddr:		hwaddress used by the TMC, which is the base
110  *			address of the table.
111  */
112 struct etr_sg_table {
113 	struct tmc_sg_table	*sg_table;
114 	dma_addr_t		hwaddr;
115 };
116 
117 /*
118  * tmc_etr_sg_table_entries: Total number of table entries required to map
119  * @nr_pages system pages.
120  *
121  * We need to map @nr_pages * ETR_SG_PAGES_PER_SYSPAGE data pages.
122  * Each TMC page can map (ETR_SG_PTRS_PER_PAGE - 1) buffer pointers,
123  * with the last entry pointing to another page of table entries.
124  * If we spill over to a new page for mapping 1 entry, we could as
125  * well replace the link entry of the previous page with the last entry.
126  */
127 static inline unsigned long __attribute_const__
128 tmc_etr_sg_table_entries(int nr_pages)
129 {
130 	unsigned long nr_sgpages = nr_pages * ETR_SG_PAGES_PER_SYSPAGE;
131 	unsigned long nr_sglinks = nr_sgpages / (ETR_SG_PTRS_PER_PAGE - 1);
132 	/*
133 	 * If we spill over to a new page for 1 entry, we could as well
134 	 * make it the LAST entry in the previous page, skipping the Link
135 	 * address.
136 	 */
137 	if (nr_sglinks && (nr_sgpages % (ETR_SG_PTRS_PER_PAGE - 1) < 2))
138 		nr_sglinks--;
139 	return nr_sgpages + nr_sglinks;
140 }
141 
142 /*
143  * tmc_pages_get_offset:  Go through all the pages in the tmc_pages
144  * and map the device address @addr to an offset within the virtual
145  * contiguous buffer.
146  */
147 static long
148 tmc_pages_get_offset(struct tmc_pages *tmc_pages, dma_addr_t addr)
149 {
150 	int i;
151 	dma_addr_t page_start;
152 
153 	for (i = 0; i < tmc_pages->nr_pages; i++) {
154 		page_start = tmc_pages->daddrs[i];
155 		if (addr >= page_start && addr < (page_start + PAGE_SIZE))
156 			return i * PAGE_SIZE + (addr - page_start);
157 	}
158 
159 	return -EINVAL;
160 }
161 
162 /*
163  * tmc_pages_free : Unmap and free the pages used by tmc_pages.
164  * If the pages were not allocated in tmc_pages_alloc(), we would
165  * simply drop the refcount.
166  */
167 static void tmc_pages_free(struct tmc_pages *tmc_pages,
168 			   struct device *dev, enum dma_data_direction dir)
169 {
170 	int i;
171 	struct device *real_dev = dev->parent;
172 
173 	for (i = 0; i < tmc_pages->nr_pages; i++) {
174 		if (tmc_pages->daddrs && tmc_pages->daddrs[i])
175 			dma_unmap_page(real_dev, tmc_pages->daddrs[i],
176 					 PAGE_SIZE, dir);
177 		if (tmc_pages->pages && tmc_pages->pages[i])
178 			__free_page(tmc_pages->pages[i]);
179 	}
180 
181 	kfree(tmc_pages->pages);
182 	kfree(tmc_pages->daddrs);
183 	tmc_pages->pages = NULL;
184 	tmc_pages->daddrs = NULL;
185 	tmc_pages->nr_pages = 0;
186 }
187 
188 /*
189  * tmc_pages_alloc : Allocate and map pages for a given @tmc_pages.
190  * If @pages is not NULL, the list of page virtual addresses are
191  * used as the data pages. The pages are then dma_map'ed for @dev
192  * with dma_direction @dir.
193  *
194  * Returns 0 upon success, else the error number.
195  */
196 static int tmc_pages_alloc(struct tmc_pages *tmc_pages,
197 			   struct device *dev, int node,
198 			   enum dma_data_direction dir, void **pages)
199 {
200 	int i, nr_pages;
201 	dma_addr_t paddr;
202 	struct page *page;
203 	struct device *real_dev = dev->parent;
204 
205 	nr_pages = tmc_pages->nr_pages;
206 	tmc_pages->daddrs = kcalloc(nr_pages, sizeof(*tmc_pages->daddrs),
207 					 GFP_KERNEL);
208 	if (!tmc_pages->daddrs)
209 		return -ENOMEM;
210 	tmc_pages->pages = kcalloc(nr_pages, sizeof(*tmc_pages->pages),
211 					 GFP_KERNEL);
212 	if (!tmc_pages->pages) {
213 		kfree(tmc_pages->daddrs);
214 		tmc_pages->daddrs = NULL;
215 		return -ENOMEM;
216 	}
217 
218 	for (i = 0; i < nr_pages; i++) {
219 		if (pages && pages[i]) {
220 			page = virt_to_page(pages[i]);
221 			/* Hold a refcount on the page */
222 			get_page(page);
223 		} else {
224 			page = alloc_pages_node(node,
225 						GFP_KERNEL | __GFP_ZERO, 0);
226 			if (!page)
227 				goto err;
228 		}
229 		paddr = dma_map_page(real_dev, page, 0, PAGE_SIZE, dir);
230 		if (dma_mapping_error(real_dev, paddr))
231 			goto err;
232 		tmc_pages->daddrs[i] = paddr;
233 		tmc_pages->pages[i] = page;
234 	}
235 	return 0;
236 err:
237 	tmc_pages_free(tmc_pages, dev, dir);
238 	return -ENOMEM;
239 }
240 
241 static inline long
242 tmc_sg_get_data_page_offset(struct tmc_sg_table *sg_table, dma_addr_t addr)
243 {
244 	return tmc_pages_get_offset(&sg_table->data_pages, addr);
245 }
246 
247 static inline void tmc_free_table_pages(struct tmc_sg_table *sg_table)
248 {
249 	if (sg_table->table_vaddr)
250 		vunmap(sg_table->table_vaddr);
251 	tmc_pages_free(&sg_table->table_pages, sg_table->dev, DMA_TO_DEVICE);
252 }
253 
254 static void tmc_free_data_pages(struct tmc_sg_table *sg_table)
255 {
256 	if (sg_table->data_vaddr)
257 		vunmap(sg_table->data_vaddr);
258 	tmc_pages_free(&sg_table->data_pages, sg_table->dev, DMA_FROM_DEVICE);
259 }
260 
261 void tmc_free_sg_table(struct tmc_sg_table *sg_table)
262 {
263 	tmc_free_table_pages(sg_table);
264 	tmc_free_data_pages(sg_table);
265 	kfree(sg_table);
266 }
267 EXPORT_SYMBOL_GPL(tmc_free_sg_table);
268 
269 /*
270  * Alloc pages for the table. Since this will be used by the device,
271  * allocate the pages closer to the device (i.e, dev_to_node(dev)
272  * rather than the CPU node).
273  */
274 static int tmc_alloc_table_pages(struct tmc_sg_table *sg_table)
275 {
276 	int rc;
277 	struct tmc_pages *table_pages = &sg_table->table_pages;
278 
279 	rc = tmc_pages_alloc(table_pages, sg_table->dev,
280 			     dev_to_node(sg_table->dev),
281 			     DMA_TO_DEVICE, NULL);
282 	if (rc)
283 		return rc;
284 	sg_table->table_vaddr = vmap(table_pages->pages,
285 				     table_pages->nr_pages,
286 				     VM_MAP,
287 				     PAGE_KERNEL);
288 	if (!sg_table->table_vaddr)
289 		rc = -ENOMEM;
290 	else
291 		sg_table->table_daddr = table_pages->daddrs[0];
292 	return rc;
293 }
294 
295 static int tmc_alloc_data_pages(struct tmc_sg_table *sg_table, void **pages)
296 {
297 	int rc;
298 
299 	/* Allocate data pages on the node requested by the caller */
300 	rc = tmc_pages_alloc(&sg_table->data_pages,
301 			     sg_table->dev, sg_table->node,
302 			     DMA_FROM_DEVICE, pages);
303 	if (!rc) {
304 		sg_table->data_vaddr = vmap(sg_table->data_pages.pages,
305 					    sg_table->data_pages.nr_pages,
306 					    VM_MAP,
307 					    PAGE_KERNEL);
308 		if (!sg_table->data_vaddr)
309 			rc = -ENOMEM;
310 	}
311 	return rc;
312 }
313 
314 /*
315  * tmc_alloc_sg_table: Allocate and setup dma pages for the TMC SG table
316  * and data buffers. TMC writes to the data buffers and reads from the SG
317  * Table pages.
318  *
319  * @dev		- Coresight device to which page should be DMA mapped.
320  * @node	- Numa node for mem allocations
321  * @nr_tpages	- Number of pages for the table entries.
322  * @nr_dpages	- Number of pages for Data buffer.
323  * @pages	- Optional list of virtual address of pages.
324  */
325 struct tmc_sg_table *tmc_alloc_sg_table(struct device *dev,
326 					int node,
327 					int nr_tpages,
328 					int nr_dpages,
329 					void **pages)
330 {
331 	long rc;
332 	struct tmc_sg_table *sg_table;
333 
334 	sg_table = kzalloc(sizeof(*sg_table), GFP_KERNEL);
335 	if (!sg_table)
336 		return ERR_PTR(-ENOMEM);
337 	sg_table->data_pages.nr_pages = nr_dpages;
338 	sg_table->table_pages.nr_pages = nr_tpages;
339 	sg_table->node = node;
340 	sg_table->dev = dev;
341 
342 	rc  = tmc_alloc_data_pages(sg_table, pages);
343 	if (!rc)
344 		rc = tmc_alloc_table_pages(sg_table);
345 	if (rc) {
346 		tmc_free_sg_table(sg_table);
347 		return ERR_PTR(rc);
348 	}
349 
350 	return sg_table;
351 }
352 EXPORT_SYMBOL_GPL(tmc_alloc_sg_table);
353 
354 /*
355  * tmc_sg_table_sync_data_range: Sync the data buffer written
356  * by the device from @offset upto a @size bytes.
357  */
358 void tmc_sg_table_sync_data_range(struct tmc_sg_table *table,
359 				  u64 offset, u64 size)
360 {
361 	int i, index, start;
362 	int npages = DIV_ROUND_UP(size, PAGE_SIZE);
363 	struct device *real_dev = table->dev->parent;
364 	struct tmc_pages *data = &table->data_pages;
365 
366 	start = offset >> PAGE_SHIFT;
367 	for (i = start; i < (start + npages); i++) {
368 		index = i % data->nr_pages;
369 		dma_sync_single_for_cpu(real_dev, data->daddrs[index],
370 					PAGE_SIZE, DMA_FROM_DEVICE);
371 	}
372 }
373 EXPORT_SYMBOL_GPL(tmc_sg_table_sync_data_range);
374 
375 /* tmc_sg_sync_table: Sync the page table */
376 void tmc_sg_table_sync_table(struct tmc_sg_table *sg_table)
377 {
378 	int i;
379 	struct device *real_dev = sg_table->dev->parent;
380 	struct tmc_pages *table_pages = &sg_table->table_pages;
381 
382 	for (i = 0; i < table_pages->nr_pages; i++)
383 		dma_sync_single_for_device(real_dev, table_pages->daddrs[i],
384 					   PAGE_SIZE, DMA_TO_DEVICE);
385 }
386 EXPORT_SYMBOL_GPL(tmc_sg_table_sync_table);
387 
388 /*
389  * tmc_sg_table_get_data: Get the buffer pointer for data @offset
390  * in the SG buffer. The @bufpp is updated to point to the buffer.
391  * Returns :
392  *	the length of linear data available at @offset.
393  *	or
394  *	<= 0 if no data is available.
395  */
396 ssize_t tmc_sg_table_get_data(struct tmc_sg_table *sg_table,
397 			      u64 offset, size_t len, char **bufpp)
398 {
399 	size_t size;
400 	int pg_idx = offset >> PAGE_SHIFT;
401 	int pg_offset = offset & (PAGE_SIZE - 1);
402 	struct tmc_pages *data_pages = &sg_table->data_pages;
403 
404 	size = tmc_sg_table_buf_size(sg_table);
405 	if (offset >= size)
406 		return -EINVAL;
407 
408 	/* Make sure we don't go beyond the end */
409 	len = (len < (size - offset)) ? len : size - offset;
410 	/* Respect the page boundaries */
411 	len = (len < (PAGE_SIZE - pg_offset)) ? len : (PAGE_SIZE - pg_offset);
412 	if (len > 0)
413 		*bufpp = page_address(data_pages->pages[pg_idx]) + pg_offset;
414 	return len;
415 }
416 EXPORT_SYMBOL_GPL(tmc_sg_table_get_data);
417 
418 #ifdef ETR_SG_DEBUG
419 /* Map a dma address to virtual address */
420 static unsigned long
421 tmc_sg_daddr_to_vaddr(struct tmc_sg_table *sg_table,
422 		      dma_addr_t addr, bool table)
423 {
424 	long offset;
425 	unsigned long base;
426 	struct tmc_pages *tmc_pages;
427 
428 	if (table) {
429 		tmc_pages = &sg_table->table_pages;
430 		base = (unsigned long)sg_table->table_vaddr;
431 	} else {
432 		tmc_pages = &sg_table->data_pages;
433 		base = (unsigned long)sg_table->data_vaddr;
434 	}
435 
436 	offset = tmc_pages_get_offset(tmc_pages, addr);
437 	if (offset < 0)
438 		return 0;
439 	return base + offset;
440 }
441 
442 /* Dump the given sg_table */
443 static void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table)
444 {
445 	sgte_t *ptr;
446 	int i = 0;
447 	dma_addr_t addr;
448 	struct tmc_sg_table *sg_table = etr_table->sg_table;
449 
450 	ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table,
451 					      etr_table->hwaddr, true);
452 	while (ptr) {
453 		addr = ETR_SG_ADDR(*ptr);
454 		switch (ETR_SG_ET(*ptr)) {
455 		case ETR_SG_ET_NORMAL:
456 			dev_dbg(sg_table->dev,
457 				"%05d: %p\t:[N] 0x%llx\n", i, ptr, addr);
458 			ptr++;
459 			break;
460 		case ETR_SG_ET_LINK:
461 			dev_dbg(sg_table->dev,
462 				"%05d: *** %p\t:{L} 0x%llx ***\n",
463 				 i, ptr, addr);
464 			ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table,
465 							      addr, true);
466 			break;
467 		case ETR_SG_ET_LAST:
468 			dev_dbg(sg_table->dev,
469 				"%05d: ### %p\t:[L] 0x%llx ###\n",
470 				 i, ptr, addr);
471 			return;
472 		default:
473 			dev_dbg(sg_table->dev,
474 				"%05d: xxx %p\t:[INVALID] 0x%llx xxx\n",
475 				 i, ptr, addr);
476 			return;
477 		}
478 		i++;
479 	}
480 	dev_dbg(sg_table->dev, "******* End of Table *****\n");
481 }
482 #else
483 static inline void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) {}
484 #endif
485 
486 /*
487  * Populate the SG Table page table entries from table/data
488  * pages allocated. Each Data page has ETR_SG_PAGES_PER_SYSPAGE SG pages.
489  * So does a Table page. So we keep track of indices of the tables
490  * in each system page and move the pointers accordingly.
491  */
492 #define INC_IDX_ROUND(idx, size) ((idx) = ((idx) + 1) % (size))
493 static void tmc_etr_sg_table_populate(struct etr_sg_table *etr_table)
494 {
495 	dma_addr_t paddr;
496 	int i, type, nr_entries;
497 	int tpidx = 0; /* index to the current system table_page */
498 	int sgtidx = 0;	/* index to the sg_table within the current syspage */
499 	int sgtentry = 0; /* the entry within the sg_table */
500 	int dpidx = 0; /* index to the current system data_page */
501 	int spidx = 0; /* index to the SG page within the current data page */
502 	sgte_t *ptr; /* pointer to the table entry to fill */
503 	struct tmc_sg_table *sg_table = etr_table->sg_table;
504 	dma_addr_t *table_daddrs = sg_table->table_pages.daddrs;
505 	dma_addr_t *data_daddrs = sg_table->data_pages.daddrs;
506 
507 	nr_entries = tmc_etr_sg_table_entries(sg_table->data_pages.nr_pages);
508 	/*
509 	 * Use the contiguous virtual address of the table to update entries.
510 	 */
511 	ptr = sg_table->table_vaddr;
512 	/*
513 	 * Fill all the entries, except the last entry to avoid special
514 	 * checks within the loop.
515 	 */
516 	for (i = 0; i < nr_entries - 1; i++) {
517 		if (sgtentry == ETR_SG_PTRS_PER_PAGE - 1) {
518 			/*
519 			 * Last entry in a sg_table page is a link address to
520 			 * the next table page. If this sg_table is the last
521 			 * one in the system page, it links to the first
522 			 * sg_table in the next system page. Otherwise, it
523 			 * links to the next sg_table page within the system
524 			 * page.
525 			 */
526 			if (sgtidx == ETR_SG_PAGES_PER_SYSPAGE - 1) {
527 				paddr = table_daddrs[tpidx + 1];
528 			} else {
529 				paddr = table_daddrs[tpidx] +
530 					(ETR_SG_PAGE_SIZE * (sgtidx + 1));
531 			}
532 			type = ETR_SG_ET_LINK;
533 		} else {
534 			/*
535 			 * Update the indices to the data_pages to point to the
536 			 * next sg_page in the data buffer.
537 			 */
538 			type = ETR_SG_ET_NORMAL;
539 			paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE;
540 			if (!INC_IDX_ROUND(spidx, ETR_SG_PAGES_PER_SYSPAGE))
541 				dpidx++;
542 		}
543 		*ptr++ = ETR_SG_ENTRY(paddr, type);
544 		/*
545 		 * Move to the next table pointer, moving the table page index
546 		 * if necessary
547 		 */
548 		if (!INC_IDX_ROUND(sgtentry, ETR_SG_PTRS_PER_PAGE)) {
549 			if (!INC_IDX_ROUND(sgtidx, ETR_SG_PAGES_PER_SYSPAGE))
550 				tpidx++;
551 		}
552 	}
553 
554 	/* Set up the last entry, which is always a data pointer */
555 	paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE;
556 	*ptr++ = ETR_SG_ENTRY(paddr, ETR_SG_ET_LAST);
557 }
558 
559 /*
560  * tmc_init_etr_sg_table: Allocate a TMC ETR SG table, data buffer of @size and
561  * populate the table.
562  *
563  * @dev		- Device pointer for the TMC
564  * @node	- NUMA node where the memory should be allocated
565  * @size	- Total size of the data buffer
566  * @pages	- Optional list of page virtual address
567  */
568 static struct etr_sg_table *
569 tmc_init_etr_sg_table(struct device *dev, int node,
570 		      unsigned long size, void **pages)
571 {
572 	int nr_entries, nr_tpages;
573 	int nr_dpages = size >> PAGE_SHIFT;
574 	struct tmc_sg_table *sg_table;
575 	struct etr_sg_table *etr_table;
576 
577 	etr_table = kzalloc(sizeof(*etr_table), GFP_KERNEL);
578 	if (!etr_table)
579 		return ERR_PTR(-ENOMEM);
580 	nr_entries = tmc_etr_sg_table_entries(nr_dpages);
581 	nr_tpages = DIV_ROUND_UP(nr_entries, ETR_SG_PTRS_PER_SYSPAGE);
582 
583 	sg_table = tmc_alloc_sg_table(dev, node, nr_tpages, nr_dpages, pages);
584 	if (IS_ERR(sg_table)) {
585 		kfree(etr_table);
586 		return ERR_CAST(sg_table);
587 	}
588 
589 	etr_table->sg_table = sg_table;
590 	/* TMC should use table base address for DBA */
591 	etr_table->hwaddr = sg_table->table_daddr;
592 	tmc_etr_sg_table_populate(etr_table);
593 	/* Sync the table pages for the HW */
594 	tmc_sg_table_sync_table(sg_table);
595 	tmc_etr_sg_table_dump(etr_table);
596 
597 	return etr_table;
598 }
599 
600 /*
601  * tmc_etr_alloc_flat_buf: Allocate a contiguous DMA buffer.
602  */
603 static int tmc_etr_alloc_flat_buf(struct tmc_drvdata *drvdata,
604 				  struct etr_buf *etr_buf, int node,
605 				  void **pages)
606 {
607 	struct etr_flat_buf *flat_buf;
608 	struct device *real_dev = drvdata->csdev->dev.parent;
609 
610 	/* We cannot reuse existing pages for flat buf */
611 	if (pages)
612 		return -EINVAL;
613 
614 	flat_buf = kzalloc(sizeof(*flat_buf), GFP_KERNEL);
615 	if (!flat_buf)
616 		return -ENOMEM;
617 
618 	flat_buf->vaddr = dma_alloc_noncoherent(real_dev, etr_buf->size,
619 						&flat_buf->daddr,
620 						DMA_FROM_DEVICE,
621 						GFP_KERNEL | __GFP_NOWARN);
622 	if (!flat_buf->vaddr) {
623 		kfree(flat_buf);
624 		return -ENOMEM;
625 	}
626 
627 	flat_buf->size = etr_buf->size;
628 	flat_buf->dev = &drvdata->csdev->dev;
629 	etr_buf->hwaddr = flat_buf->daddr;
630 	etr_buf->mode = ETR_MODE_FLAT;
631 	etr_buf->private = flat_buf;
632 	return 0;
633 }
634 
635 static void tmc_etr_free_flat_buf(struct etr_buf *etr_buf)
636 {
637 	struct etr_flat_buf *flat_buf = etr_buf->private;
638 
639 	if (flat_buf && flat_buf->daddr) {
640 		struct device *real_dev = flat_buf->dev->parent;
641 
642 		dma_free_noncoherent(real_dev, etr_buf->size,
643 				     flat_buf->vaddr, flat_buf->daddr,
644 				     DMA_FROM_DEVICE);
645 	}
646 	kfree(flat_buf);
647 }
648 
649 static void tmc_etr_sync_flat_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)
650 {
651 	struct etr_flat_buf *flat_buf = etr_buf->private;
652 	struct device *real_dev = flat_buf->dev->parent;
653 
654 	/*
655 	 * Adjust the buffer to point to the beginning of the trace data
656 	 * and update the available trace data.
657 	 */
658 	etr_buf->offset = rrp - etr_buf->hwaddr;
659 	if (etr_buf->full)
660 		etr_buf->len = etr_buf->size;
661 	else
662 		etr_buf->len = rwp - rrp;
663 
664 	/*
665 	 * The driver always starts tracing at the beginning of the buffer,
666 	 * the only reason why we would get a wrap around is when the buffer
667 	 * is full.  Sync the entire buffer in one go for this case.
668 	 */
669 	if (etr_buf->offset + etr_buf->len > etr_buf->size)
670 		dma_sync_single_for_cpu(real_dev, flat_buf->daddr,
671 					etr_buf->size, DMA_FROM_DEVICE);
672 	else
673 		dma_sync_single_for_cpu(real_dev,
674 					flat_buf->daddr + etr_buf->offset,
675 					etr_buf->len, DMA_FROM_DEVICE);
676 }
677 
678 static ssize_t tmc_etr_get_data_flat_buf(struct etr_buf *etr_buf,
679 					 u64 offset, size_t len, char **bufpp)
680 {
681 	struct etr_flat_buf *flat_buf = etr_buf->private;
682 
683 	*bufpp = (char *)flat_buf->vaddr + offset;
684 	/*
685 	 * tmc_etr_buf_get_data already adjusts the length to handle
686 	 * buffer wrapping around.
687 	 */
688 	return len;
689 }
690 
691 static const struct etr_buf_operations etr_flat_buf_ops = {
692 	.alloc = tmc_etr_alloc_flat_buf,
693 	.free = tmc_etr_free_flat_buf,
694 	.sync = tmc_etr_sync_flat_buf,
695 	.get_data = tmc_etr_get_data_flat_buf,
696 };
697 
698 /*
699  * tmc_etr_alloc_sg_buf: Allocate an SG buf @etr_buf. Setup the parameters
700  * appropriately.
701  */
702 static int tmc_etr_alloc_sg_buf(struct tmc_drvdata *drvdata,
703 				struct etr_buf *etr_buf, int node,
704 				void **pages)
705 {
706 	struct etr_sg_table *etr_table;
707 	struct device *dev = &drvdata->csdev->dev;
708 
709 	etr_table = tmc_init_etr_sg_table(dev, node,
710 					  etr_buf->size, pages);
711 	if (IS_ERR(etr_table))
712 		return -ENOMEM;
713 	etr_buf->hwaddr = etr_table->hwaddr;
714 	etr_buf->mode = ETR_MODE_ETR_SG;
715 	etr_buf->private = etr_table;
716 	return 0;
717 }
718 
719 static void tmc_etr_free_sg_buf(struct etr_buf *etr_buf)
720 {
721 	struct etr_sg_table *etr_table = etr_buf->private;
722 
723 	if (etr_table) {
724 		tmc_free_sg_table(etr_table->sg_table);
725 		kfree(etr_table);
726 	}
727 }
728 
729 static ssize_t tmc_etr_get_data_sg_buf(struct etr_buf *etr_buf, u64 offset,
730 				       size_t len, char **bufpp)
731 {
732 	struct etr_sg_table *etr_table = etr_buf->private;
733 
734 	return tmc_sg_table_get_data(etr_table->sg_table, offset, len, bufpp);
735 }
736 
737 static void tmc_etr_sync_sg_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)
738 {
739 	long r_offset, w_offset;
740 	struct etr_sg_table *etr_table = etr_buf->private;
741 	struct tmc_sg_table *table = etr_table->sg_table;
742 
743 	/* Convert hw address to offset in the buffer */
744 	r_offset = tmc_sg_get_data_page_offset(table, rrp);
745 	if (r_offset < 0) {
746 		dev_warn(table->dev,
747 			 "Unable to map RRP %llx to offset\n", rrp);
748 		etr_buf->len = 0;
749 		return;
750 	}
751 
752 	w_offset = tmc_sg_get_data_page_offset(table, rwp);
753 	if (w_offset < 0) {
754 		dev_warn(table->dev,
755 			 "Unable to map RWP %llx to offset\n", rwp);
756 		etr_buf->len = 0;
757 		return;
758 	}
759 
760 	etr_buf->offset = r_offset;
761 	if (etr_buf->full)
762 		etr_buf->len = etr_buf->size;
763 	else
764 		etr_buf->len = ((w_offset < r_offset) ? etr_buf->size : 0) +
765 				w_offset - r_offset;
766 	tmc_sg_table_sync_data_range(table, r_offset, etr_buf->len);
767 }
768 
769 static const struct etr_buf_operations etr_sg_buf_ops = {
770 	.alloc = tmc_etr_alloc_sg_buf,
771 	.free = tmc_etr_free_sg_buf,
772 	.sync = tmc_etr_sync_sg_buf,
773 	.get_data = tmc_etr_get_data_sg_buf,
774 };
775 
776 /*
777  * TMC ETR could be connected to a CATU device, which can provide address
778  * translation service. This is represented by the Output port of the TMC
779  * (ETR) connected to the input port of the CATU.
780  *
781  * Returns	: coresight_device ptr for the CATU device if a CATU is found.
782  *		: NULL otherwise.
783  */
784 struct coresight_device *
785 tmc_etr_get_catu_device(struct tmc_drvdata *drvdata)
786 {
787 	struct coresight_device *etr = drvdata->csdev;
788 	union coresight_dev_subtype catu_subtype = {
789 		.helper_subtype = CORESIGHT_DEV_SUBTYPE_HELPER_CATU
790 	};
791 
792 	if (!IS_ENABLED(CONFIG_CORESIGHT_CATU))
793 		return NULL;
794 
795 	return coresight_find_output_type(etr->pdata, CORESIGHT_DEV_TYPE_HELPER,
796 					  catu_subtype);
797 }
798 EXPORT_SYMBOL_GPL(tmc_etr_get_catu_device);
799 
800 static const struct etr_buf_operations *etr_buf_ops[] = {
801 	[ETR_MODE_FLAT] = &etr_flat_buf_ops,
802 	[ETR_MODE_ETR_SG] = &etr_sg_buf_ops,
803 	[ETR_MODE_CATU] = NULL,
804 };
805 
806 void tmc_etr_set_catu_ops(const struct etr_buf_operations *catu)
807 {
808 	etr_buf_ops[ETR_MODE_CATU] = catu;
809 }
810 EXPORT_SYMBOL_GPL(tmc_etr_set_catu_ops);
811 
812 void tmc_etr_remove_catu_ops(void)
813 {
814 	etr_buf_ops[ETR_MODE_CATU] = NULL;
815 }
816 EXPORT_SYMBOL_GPL(tmc_etr_remove_catu_ops);
817 
818 static inline int tmc_etr_mode_alloc_buf(int mode,
819 					 struct tmc_drvdata *drvdata,
820 					 struct etr_buf *etr_buf, int node,
821 					 void **pages)
822 {
823 	int rc = -EINVAL;
824 
825 	switch (mode) {
826 	case ETR_MODE_FLAT:
827 	case ETR_MODE_ETR_SG:
828 	case ETR_MODE_CATU:
829 		if (etr_buf_ops[mode] && etr_buf_ops[mode]->alloc)
830 			rc = etr_buf_ops[mode]->alloc(drvdata, etr_buf,
831 						      node, pages);
832 		if (!rc)
833 			etr_buf->ops = etr_buf_ops[mode];
834 		return rc;
835 	default:
836 		return -EINVAL;
837 	}
838 }
839 
840 static void get_etr_buf_hw(struct device *dev, struct etr_buf_hw *buf_hw)
841 {
842 	struct tmc_drvdata *drvdata = dev_get_drvdata(dev->parent);
843 
844 	buf_hw->has_iommu = iommu_get_domain_for_dev(dev->parent);
845 	buf_hw->has_etr_sg = tmc_etr_has_cap(drvdata, TMC_ETR_SG);
846 	buf_hw->has_catu = !!tmc_etr_get_catu_device(drvdata);
847 }
848 
849 static bool etr_can_use_flat_mode(struct etr_buf_hw *buf_hw, ssize_t etr_buf_size)
850 {
851 	bool has_sg = buf_hw->has_catu || buf_hw->has_etr_sg;
852 
853 	return !has_sg || buf_hw->has_iommu || etr_buf_size < SZ_1M;
854 }
855 
856 /*
857  * tmc_alloc_etr_buf: Allocate a buffer use by ETR.
858  * @drvdata	: ETR device details.
859  * @size	: size of the requested buffer.
860  * @flags	: Required properties for the buffer.
861  * @node	: Node for memory allocations.
862  * @pages	: An optional list of pages.
863  */
864 static struct etr_buf *tmc_alloc_etr_buf(struct tmc_drvdata *drvdata,
865 					 ssize_t size, int flags,
866 					 int node, void **pages)
867 {
868 	int rc = -ENOMEM;
869 	struct etr_buf *etr_buf;
870 	struct etr_buf_hw buf_hw;
871 	struct device *dev = &drvdata->csdev->dev;
872 
873 	get_etr_buf_hw(dev, &buf_hw);
874 	etr_buf = kzalloc(sizeof(*etr_buf), GFP_KERNEL);
875 	if (!etr_buf)
876 		return ERR_PTR(-ENOMEM);
877 
878 	etr_buf->size = size;
879 
880 	/* If there is user directive for buffer mode, try that first */
881 	if (drvdata->etr_mode != ETR_MODE_AUTO)
882 		rc = tmc_etr_mode_alloc_buf(drvdata->etr_mode, drvdata,
883 					    etr_buf, node, pages);
884 
885 	/*
886 	 * If we have to use an existing list of pages, we cannot reliably
887 	 * use a contiguous DMA memory (even if we have an IOMMU). Otherwise,
888 	 * we use the contiguous DMA memory if at least one of the following
889 	 * conditions is true:
890 	 *  a) The ETR cannot use Scatter-Gather.
891 	 *  b) we have a backing IOMMU
892 	 *  c) The requested memory size is smaller (< 1M).
893 	 *
894 	 * Fallback to available mechanisms.
895 	 *
896 	 */
897 	if (rc && !pages && etr_can_use_flat_mode(&buf_hw, size))
898 		rc = tmc_etr_mode_alloc_buf(ETR_MODE_FLAT, drvdata,
899 					    etr_buf, node, pages);
900 	if (rc && buf_hw.has_etr_sg)
901 		rc = tmc_etr_mode_alloc_buf(ETR_MODE_ETR_SG, drvdata,
902 					    etr_buf, node, pages);
903 	if (rc && buf_hw.has_catu)
904 		rc = tmc_etr_mode_alloc_buf(ETR_MODE_CATU, drvdata,
905 					    etr_buf, node, pages);
906 	if (rc) {
907 		kfree(etr_buf);
908 		return ERR_PTR(rc);
909 	}
910 
911 	refcount_set(&etr_buf->refcount, 1);
912 	dev_dbg(dev, "allocated buffer of size %ldKB in mode %d\n",
913 		(unsigned long)size >> 10, etr_buf->mode);
914 	return etr_buf;
915 }
916 
917 static void tmc_free_etr_buf(struct etr_buf *etr_buf)
918 {
919 	WARN_ON(!etr_buf->ops || !etr_buf->ops->free);
920 	etr_buf->ops->free(etr_buf);
921 	kfree(etr_buf);
922 }
923 
924 /*
925  * tmc_etr_buf_get_data: Get the pointer the trace data at @offset
926  * with a maximum of @len bytes.
927  * Returns: The size of the linear data available @pos, with *bufpp
928  * updated to point to the buffer.
929  */
930 static ssize_t tmc_etr_buf_get_data(struct etr_buf *etr_buf,
931 				    u64 offset, size_t len, char **bufpp)
932 {
933 	/* Adjust the length to limit this transaction to end of buffer */
934 	len = (len < (etr_buf->size - offset)) ? len : etr_buf->size - offset;
935 
936 	return etr_buf->ops->get_data(etr_buf, (u64)offset, len, bufpp);
937 }
938 
939 static inline s64
940 tmc_etr_buf_insert_barrier_packet(struct etr_buf *etr_buf, u64 offset)
941 {
942 	ssize_t len;
943 	char *bufp;
944 
945 	len = tmc_etr_buf_get_data(etr_buf, offset,
946 				   CORESIGHT_BARRIER_PKT_SIZE, &bufp);
947 	if (WARN_ON(len < 0 || len < CORESIGHT_BARRIER_PKT_SIZE))
948 		return -EINVAL;
949 	coresight_insert_barrier_packet(bufp);
950 	return offset + CORESIGHT_BARRIER_PKT_SIZE;
951 }
952 
953 /*
954  * tmc_sync_etr_buf: Sync the trace buffer availability with drvdata.
955  * Makes sure the trace data is synced to the memory for consumption.
956  * @etr_buf->offset will hold the offset to the beginning of the trace data
957  * within the buffer, with @etr_buf->len bytes to consume.
958  */
959 static void tmc_sync_etr_buf(struct tmc_drvdata *drvdata)
960 {
961 	struct etr_buf *etr_buf = drvdata->etr_buf;
962 	u64 rrp, rwp;
963 	u32 status;
964 
965 	rrp = tmc_read_rrp(drvdata);
966 	rwp = tmc_read_rwp(drvdata);
967 	status = readl_relaxed(drvdata->base + TMC_STS);
968 
969 	/*
970 	 * If there were memory errors in the session, truncate the
971 	 * buffer.
972 	 */
973 	if (WARN_ON_ONCE(status & TMC_STS_MEMERR)) {
974 		dev_dbg(&drvdata->csdev->dev,
975 			"tmc memory error detected, truncating buffer\n");
976 		etr_buf->len = 0;
977 		etr_buf->full = false;
978 		return;
979 	}
980 
981 	etr_buf->full = !!(status & TMC_STS_FULL);
982 
983 	WARN_ON(!etr_buf->ops || !etr_buf->ops->sync);
984 
985 	etr_buf->ops->sync(etr_buf, rrp, rwp);
986 }
987 
988 static int __tmc_etr_enable_hw(struct tmc_drvdata *drvdata)
989 {
990 	u32 axictl, sts;
991 	struct etr_buf *etr_buf = drvdata->etr_buf;
992 	int rc = 0;
993 
994 	CS_UNLOCK(drvdata->base);
995 
996 	/* Wait for TMCSReady bit to be set */
997 	rc = tmc_wait_for_tmcready(drvdata);
998 	if (rc) {
999 		dev_err(&drvdata->csdev->dev,
1000 			"Failed to enable : TMC not ready\n");
1001 		CS_LOCK(drvdata->base);
1002 		return rc;
1003 	}
1004 
1005 	writel_relaxed(etr_buf->size / 4, drvdata->base + TMC_RSZ);
1006 	writel_relaxed(TMC_MODE_CIRCULAR_BUFFER, drvdata->base + TMC_MODE);
1007 
1008 	axictl = readl_relaxed(drvdata->base + TMC_AXICTL);
1009 	axictl &= ~TMC_AXICTL_CLEAR_MASK;
1010 	axictl |= TMC_AXICTL_PROT_CTL_B1;
1011 	axictl |= TMC_AXICTL_WR_BURST(drvdata->max_burst_size);
1012 	axictl |= TMC_AXICTL_AXCACHE_OS;
1013 
1014 	if (tmc_etr_has_cap(drvdata, TMC_ETR_AXI_ARCACHE)) {
1015 		axictl &= ~TMC_AXICTL_ARCACHE_MASK;
1016 		axictl |= TMC_AXICTL_ARCACHE_OS;
1017 	}
1018 
1019 	if (etr_buf->mode == ETR_MODE_ETR_SG)
1020 		axictl |= TMC_AXICTL_SCT_GAT_MODE;
1021 
1022 	writel_relaxed(axictl, drvdata->base + TMC_AXICTL);
1023 	tmc_write_dba(drvdata, etr_buf->hwaddr);
1024 	/*
1025 	 * If the TMC pointers must be programmed before the session,
1026 	 * we have to set it properly (i.e, RRP/RWP to base address and
1027 	 * STS to "not full").
1028 	 */
1029 	if (tmc_etr_has_cap(drvdata, TMC_ETR_SAVE_RESTORE)) {
1030 		tmc_write_rrp(drvdata, etr_buf->hwaddr);
1031 		tmc_write_rwp(drvdata, etr_buf->hwaddr);
1032 		sts = readl_relaxed(drvdata->base + TMC_STS) & ~TMC_STS_FULL;
1033 		writel_relaxed(sts, drvdata->base + TMC_STS);
1034 	}
1035 
1036 	writel_relaxed(TMC_FFCR_EN_FMT | TMC_FFCR_EN_TI |
1037 		       TMC_FFCR_FON_FLIN | TMC_FFCR_FON_TRIG_EVT |
1038 		       TMC_FFCR_TRIGON_TRIGIN,
1039 		       drvdata->base + TMC_FFCR);
1040 	writel_relaxed(drvdata->trigger_cntr, drvdata->base + TMC_TRG);
1041 	tmc_enable_hw(drvdata);
1042 
1043 	CS_LOCK(drvdata->base);
1044 	return rc;
1045 }
1046 
1047 static int tmc_etr_enable_hw(struct tmc_drvdata *drvdata,
1048 			     struct etr_buf *etr_buf)
1049 {
1050 	int rc;
1051 
1052 	/* Callers should provide an appropriate buffer for use */
1053 	if (WARN_ON(!etr_buf))
1054 		return -EINVAL;
1055 
1056 	if ((etr_buf->mode == ETR_MODE_ETR_SG) &&
1057 	    WARN_ON(!tmc_etr_has_cap(drvdata, TMC_ETR_SG)))
1058 		return -EINVAL;
1059 
1060 	if (WARN_ON(drvdata->etr_buf))
1061 		return -EBUSY;
1062 
1063 	rc = coresight_claim_device(drvdata->csdev);
1064 	if (!rc) {
1065 		drvdata->etr_buf = etr_buf;
1066 		rc = __tmc_etr_enable_hw(drvdata);
1067 		if (rc) {
1068 			drvdata->etr_buf = NULL;
1069 			coresight_disclaim_device(drvdata->csdev);
1070 		}
1071 	}
1072 
1073 	return rc;
1074 }
1075 
1076 /*
1077  * Return the available trace data in the buffer (starts at etr_buf->offset,
1078  * limited by etr_buf->len) from @pos, with a maximum limit of @len,
1079  * also updating the @bufpp on where to find it. Since the trace data
1080  * starts at anywhere in the buffer, depending on the RRP, we adjust the
1081  * @len returned to handle buffer wrapping around.
1082  *
1083  * We are protected here by drvdata->reading != 0, which ensures the
1084  * sysfs_buf stays alive.
1085  */
1086 ssize_t tmc_etr_get_sysfs_trace(struct tmc_drvdata *drvdata,
1087 				loff_t pos, size_t len, char **bufpp)
1088 {
1089 	s64 offset;
1090 	ssize_t actual = len;
1091 	struct etr_buf *etr_buf = drvdata->sysfs_buf;
1092 
1093 	if (pos + actual > etr_buf->len)
1094 		actual = etr_buf->len - pos;
1095 	if (actual <= 0)
1096 		return actual;
1097 
1098 	/* Compute the offset from which we read the data */
1099 	offset = etr_buf->offset + pos;
1100 	if (offset >= etr_buf->size)
1101 		offset -= etr_buf->size;
1102 	return tmc_etr_buf_get_data(etr_buf, offset, actual, bufpp);
1103 }
1104 
1105 static struct etr_buf *
1106 tmc_etr_setup_sysfs_buf(struct tmc_drvdata *drvdata)
1107 {
1108 	return tmc_alloc_etr_buf(drvdata, drvdata->size,
1109 				 0, cpu_to_node(0), NULL);
1110 }
1111 
1112 static void
1113 tmc_etr_free_sysfs_buf(struct etr_buf *buf)
1114 {
1115 	if (buf)
1116 		tmc_free_etr_buf(buf);
1117 }
1118 
1119 static void tmc_etr_sync_sysfs_buf(struct tmc_drvdata *drvdata)
1120 {
1121 	struct etr_buf *etr_buf = drvdata->etr_buf;
1122 
1123 	if (WARN_ON(drvdata->sysfs_buf != etr_buf)) {
1124 		tmc_etr_free_sysfs_buf(drvdata->sysfs_buf);
1125 		drvdata->sysfs_buf = NULL;
1126 	} else {
1127 		tmc_sync_etr_buf(drvdata);
1128 		/*
1129 		 * Insert barrier packets at the beginning, if there was
1130 		 * an overflow.
1131 		 */
1132 		if (etr_buf->full)
1133 			tmc_etr_buf_insert_barrier_packet(etr_buf,
1134 							  etr_buf->offset);
1135 	}
1136 }
1137 
1138 static void __tmc_etr_disable_hw(struct tmc_drvdata *drvdata)
1139 {
1140 	CS_UNLOCK(drvdata->base);
1141 
1142 	tmc_flush_and_stop(drvdata);
1143 	/*
1144 	 * When operating in sysFS mode the content of the buffer needs to be
1145 	 * read before the TMC is disabled.
1146 	 */
1147 	if (coresight_get_mode(drvdata->csdev) == CS_MODE_SYSFS)
1148 		tmc_etr_sync_sysfs_buf(drvdata);
1149 
1150 	tmc_disable_hw(drvdata);
1151 
1152 	CS_LOCK(drvdata->base);
1153 
1154 }
1155 
1156 void tmc_etr_disable_hw(struct tmc_drvdata *drvdata)
1157 {
1158 	__tmc_etr_disable_hw(drvdata);
1159 	coresight_disclaim_device(drvdata->csdev);
1160 	/* Reset the ETR buf used by hardware */
1161 	drvdata->etr_buf = NULL;
1162 }
1163 
1164 static struct etr_buf *tmc_etr_get_sysfs_buffer(struct coresight_device *csdev)
1165 {
1166 	int ret = 0;
1167 	unsigned long flags;
1168 	struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1169 	struct etr_buf *sysfs_buf = NULL, *new_buf = NULL, *free_buf = NULL;
1170 
1171 	/*
1172 	 * If we are enabling the ETR from disabled state, we need to make
1173 	 * sure we have a buffer with the right size. The etr_buf is not reset
1174 	 * immediately after we stop the tracing in SYSFS mode as we wait for
1175 	 * the user to collect the data. We may be able to reuse the existing
1176 	 * buffer, provided the size matches. Any allocation has to be done
1177 	 * with the lock released.
1178 	 */
1179 	spin_lock_irqsave(&drvdata->spinlock, flags);
1180 	sysfs_buf = READ_ONCE(drvdata->sysfs_buf);
1181 	if (!sysfs_buf || (sysfs_buf->size != drvdata->size)) {
1182 		spin_unlock_irqrestore(&drvdata->spinlock, flags);
1183 
1184 		/* Allocate memory with the locks released */
1185 		free_buf = new_buf = tmc_etr_setup_sysfs_buf(drvdata);
1186 		if (IS_ERR(new_buf))
1187 			return new_buf;
1188 
1189 		/* Let's try again */
1190 		spin_lock_irqsave(&drvdata->spinlock, flags);
1191 	}
1192 
1193 	if (drvdata->reading || coresight_get_mode(csdev) == CS_MODE_PERF) {
1194 		ret = -EBUSY;
1195 		goto out;
1196 	}
1197 
1198 	/*
1199 	 * If we don't have a buffer or it doesn't match the requested size,
1200 	 * use the buffer allocated above. Otherwise reuse the existing buffer.
1201 	 */
1202 	sysfs_buf = READ_ONCE(drvdata->sysfs_buf);
1203 	if (!sysfs_buf || (new_buf && sysfs_buf->size != new_buf->size)) {
1204 		free_buf = sysfs_buf;
1205 		drvdata->sysfs_buf = new_buf;
1206 	}
1207 
1208 out:
1209 	spin_unlock_irqrestore(&drvdata->spinlock, flags);
1210 
1211 	/* Free memory outside the spinlock if need be */
1212 	if (free_buf)
1213 		tmc_etr_free_sysfs_buf(free_buf);
1214 	return ret ? ERR_PTR(ret) : drvdata->sysfs_buf;
1215 }
1216 
1217 static int tmc_enable_etr_sink_sysfs(struct coresight_device *csdev)
1218 {
1219 	int ret = 0;
1220 	unsigned long flags;
1221 	struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1222 	struct etr_buf *sysfs_buf = tmc_etr_get_sysfs_buffer(csdev);
1223 
1224 	if (IS_ERR(sysfs_buf))
1225 		return PTR_ERR(sysfs_buf);
1226 
1227 	spin_lock_irqsave(&drvdata->spinlock, flags);
1228 
1229 	/*
1230 	 * In sysFS mode we can have multiple writers per sink.  Since this
1231 	 * sink is already enabled no memory is needed and the HW need not be
1232 	 * touched, even if the buffer size has changed.
1233 	 */
1234 	if (coresight_get_mode(csdev) == CS_MODE_SYSFS) {
1235 		csdev->refcnt++;
1236 		goto out;
1237 	}
1238 
1239 	ret = tmc_etr_enable_hw(drvdata, sysfs_buf);
1240 	if (!ret) {
1241 		coresight_set_mode(csdev, CS_MODE_SYSFS);
1242 		csdev->refcnt++;
1243 	}
1244 
1245 out:
1246 	spin_unlock_irqrestore(&drvdata->spinlock, flags);
1247 
1248 	if (!ret)
1249 		dev_dbg(&csdev->dev, "TMC-ETR enabled\n");
1250 
1251 	return ret;
1252 }
1253 
1254 struct etr_buf *tmc_etr_get_buffer(struct coresight_device *csdev,
1255 				   enum cs_mode mode, void *data)
1256 {
1257 	struct perf_output_handle *handle = data;
1258 	struct etr_perf_buffer *etr_perf;
1259 
1260 	switch (mode) {
1261 	case CS_MODE_SYSFS:
1262 		return tmc_etr_get_sysfs_buffer(csdev);
1263 	case CS_MODE_PERF:
1264 		etr_perf = etm_perf_sink_config(handle);
1265 		if (WARN_ON(!etr_perf || !etr_perf->etr_buf))
1266 			return ERR_PTR(-EINVAL);
1267 		return etr_perf->etr_buf;
1268 	default:
1269 		return ERR_PTR(-EINVAL);
1270 	}
1271 }
1272 EXPORT_SYMBOL_GPL(tmc_etr_get_buffer);
1273 
1274 /*
1275  * alloc_etr_buf: Allocate ETR buffer for use by perf.
1276  * The size of the hardware buffer is dependent on the size configured
1277  * via sysfs and the perf ring buffer size. We prefer to allocate the
1278  * largest possible size, scaling down the size by half until it
1279  * reaches a minimum limit (1M), beyond which we give up.
1280  */
1281 static struct etr_buf *
1282 alloc_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1283 	      int nr_pages, void **pages, bool snapshot)
1284 {
1285 	int node;
1286 	struct etr_buf *etr_buf;
1287 	unsigned long size;
1288 
1289 	node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu);
1290 	/*
1291 	 * Try to match the perf ring buffer size if it is larger
1292 	 * than the size requested via sysfs.
1293 	 */
1294 	if ((nr_pages << PAGE_SHIFT) > drvdata->size) {
1295 		etr_buf = tmc_alloc_etr_buf(drvdata, ((ssize_t)nr_pages << PAGE_SHIFT),
1296 					    0, node, NULL);
1297 		if (!IS_ERR(etr_buf))
1298 			goto done;
1299 	}
1300 
1301 	/*
1302 	 * Else switch to configured size for this ETR
1303 	 * and scale down until we hit the minimum limit.
1304 	 */
1305 	size = drvdata->size;
1306 	do {
1307 		etr_buf = tmc_alloc_etr_buf(drvdata, size, 0, node, NULL);
1308 		if (!IS_ERR(etr_buf))
1309 			goto done;
1310 		size /= 2;
1311 	} while (size >= TMC_ETR_PERF_MIN_BUF_SIZE);
1312 
1313 	return ERR_PTR(-ENOMEM);
1314 
1315 done:
1316 	return etr_buf;
1317 }
1318 
1319 static struct etr_buf *
1320 get_perf_etr_buf_cpu_wide(struct tmc_drvdata *drvdata,
1321 			  struct perf_event *event, int nr_pages,
1322 			  void **pages, bool snapshot)
1323 {
1324 	int ret;
1325 	pid_t pid = task_pid_nr(event->owner);
1326 	struct etr_buf *etr_buf;
1327 
1328 retry:
1329 	/*
1330 	 * An etr_perf_buffer is associated with an event and holds a reference
1331 	 * to the AUX ring buffer that was created for that event.  In CPU-wide
1332 	 * N:1 mode multiple events (one per CPU), each with its own AUX ring
1333 	 * buffer, share a sink.  As such an etr_perf_buffer is created for each
1334 	 * event but a single etr_buf associated with the ETR is shared between
1335 	 * them.  The last event in a trace session will copy the content of the
1336 	 * etr_buf to its AUX ring buffer.  Ring buffer associated to other
1337 	 * events are simply not used an freed as events are destoyed.  We still
1338 	 * need to allocate a ring buffer for each event since we don't know
1339 	 * which event will be last.
1340 	 */
1341 
1342 	/*
1343 	 * The first thing to do here is check if an etr_buf has already been
1344 	 * allocated for this session.  If so it is shared with this event,
1345 	 * otherwise it is created.
1346 	 */
1347 	mutex_lock(&drvdata->idr_mutex);
1348 	etr_buf = idr_find(&drvdata->idr, pid);
1349 	if (etr_buf) {
1350 		refcount_inc(&etr_buf->refcount);
1351 		mutex_unlock(&drvdata->idr_mutex);
1352 		return etr_buf;
1353 	}
1354 
1355 	/* If we made it here no buffer has been allocated, do so now. */
1356 	mutex_unlock(&drvdata->idr_mutex);
1357 
1358 	etr_buf = alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1359 	if (IS_ERR(etr_buf))
1360 		return etr_buf;
1361 
1362 	/* Now that we have a buffer, add it to the IDR. */
1363 	mutex_lock(&drvdata->idr_mutex);
1364 	ret = idr_alloc(&drvdata->idr, etr_buf, pid, pid + 1, GFP_KERNEL);
1365 	mutex_unlock(&drvdata->idr_mutex);
1366 
1367 	/* Another event with this session ID has allocated this buffer. */
1368 	if (ret == -ENOSPC) {
1369 		tmc_free_etr_buf(etr_buf);
1370 		goto retry;
1371 	}
1372 
1373 	/* The IDR can't allocate room for a new session, abandon ship. */
1374 	if (ret == -ENOMEM) {
1375 		tmc_free_etr_buf(etr_buf);
1376 		return ERR_PTR(ret);
1377 	}
1378 
1379 
1380 	return etr_buf;
1381 }
1382 
1383 static struct etr_buf *
1384 get_perf_etr_buf_per_thread(struct tmc_drvdata *drvdata,
1385 			    struct perf_event *event, int nr_pages,
1386 			    void **pages, bool snapshot)
1387 {
1388 	/*
1389 	 * In per-thread mode the etr_buf isn't shared, so just go ahead
1390 	 * with memory allocation.
1391 	 */
1392 	return alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1393 }
1394 
1395 static struct etr_buf *
1396 get_perf_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1397 		 int nr_pages, void **pages, bool snapshot)
1398 {
1399 	if (event->cpu == -1)
1400 		return get_perf_etr_buf_per_thread(drvdata, event, nr_pages,
1401 						   pages, snapshot);
1402 
1403 	return get_perf_etr_buf_cpu_wide(drvdata, event, nr_pages,
1404 					 pages, snapshot);
1405 }
1406 
1407 static struct etr_perf_buffer *
1408 tmc_etr_setup_perf_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1409 		       int nr_pages, void **pages, bool snapshot)
1410 {
1411 	int node;
1412 	struct etr_buf *etr_buf;
1413 	struct etr_perf_buffer *etr_perf;
1414 
1415 	node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu);
1416 
1417 	etr_perf = kzalloc_node(sizeof(*etr_perf), GFP_KERNEL, node);
1418 	if (!etr_perf)
1419 		return ERR_PTR(-ENOMEM);
1420 
1421 	etr_buf = get_perf_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1422 	if (!IS_ERR(etr_buf))
1423 		goto done;
1424 
1425 	kfree(etr_perf);
1426 	return ERR_PTR(-ENOMEM);
1427 
1428 done:
1429 	/*
1430 	 * Keep a reference to the ETR this buffer has been allocated for
1431 	 * in order to have access to the IDR in tmc_free_etr_buffer().
1432 	 */
1433 	etr_perf->drvdata = drvdata;
1434 	etr_perf->etr_buf = etr_buf;
1435 
1436 	return etr_perf;
1437 }
1438 
1439 
1440 static void *tmc_alloc_etr_buffer(struct coresight_device *csdev,
1441 				  struct perf_event *event, void **pages,
1442 				  int nr_pages, bool snapshot)
1443 {
1444 	struct etr_perf_buffer *etr_perf;
1445 	struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1446 
1447 	etr_perf = tmc_etr_setup_perf_buf(drvdata, event,
1448 					  nr_pages, pages, snapshot);
1449 	if (IS_ERR(etr_perf)) {
1450 		dev_dbg(&csdev->dev, "Unable to allocate ETR buffer\n");
1451 		return NULL;
1452 	}
1453 
1454 	etr_perf->pid = task_pid_nr(event->owner);
1455 	etr_perf->snapshot = snapshot;
1456 	etr_perf->nr_pages = nr_pages;
1457 	etr_perf->pages = pages;
1458 
1459 	return etr_perf;
1460 }
1461 
1462 static void tmc_free_etr_buffer(void *config)
1463 {
1464 	struct etr_perf_buffer *etr_perf = config;
1465 	struct tmc_drvdata *drvdata = etr_perf->drvdata;
1466 	struct etr_buf *buf, *etr_buf = etr_perf->etr_buf;
1467 
1468 	if (!etr_buf)
1469 		goto free_etr_perf_buffer;
1470 
1471 	mutex_lock(&drvdata->idr_mutex);
1472 	/* If we are not the last one to use the buffer, don't touch it. */
1473 	if (!refcount_dec_and_test(&etr_buf->refcount)) {
1474 		mutex_unlock(&drvdata->idr_mutex);
1475 		goto free_etr_perf_buffer;
1476 	}
1477 
1478 	/* We are the last one, remove from the IDR and free the buffer. */
1479 	buf = idr_remove(&drvdata->idr, etr_perf->pid);
1480 	mutex_unlock(&drvdata->idr_mutex);
1481 
1482 	/*
1483 	 * Something went very wrong if the buffer associated with this ID
1484 	 * is not the same in the IDR.  Leak to avoid use after free.
1485 	 */
1486 	if (buf && WARN_ON(buf != etr_buf))
1487 		goto free_etr_perf_buffer;
1488 
1489 	tmc_free_etr_buf(etr_perf->etr_buf);
1490 
1491 free_etr_perf_buffer:
1492 	kfree(etr_perf);
1493 }
1494 
1495 /*
1496  * tmc_etr_sync_perf_buffer: Copy the actual trace data from the hardware
1497  * buffer to the perf ring buffer.
1498  */
1499 static void tmc_etr_sync_perf_buffer(struct etr_perf_buffer *etr_perf,
1500 				     unsigned long head,
1501 				     unsigned long src_offset,
1502 				     unsigned long to_copy)
1503 {
1504 	long bytes;
1505 	long pg_idx, pg_offset;
1506 	char **dst_pages, *src_buf;
1507 	struct etr_buf *etr_buf = etr_perf->etr_buf;
1508 
1509 	head = PERF_IDX2OFF(head, etr_perf);
1510 	pg_idx = head >> PAGE_SHIFT;
1511 	pg_offset = head & (PAGE_SIZE - 1);
1512 	dst_pages = (char **)etr_perf->pages;
1513 
1514 	while (to_copy > 0) {
1515 		/*
1516 		 * In one iteration, we can copy minimum of :
1517 		 *  1) what is available in the source buffer,
1518 		 *  2) what is available in the source buffer, before it
1519 		 *     wraps around.
1520 		 *  3) what is available in the destination page.
1521 		 * in one iteration.
1522 		 */
1523 		if (src_offset >= etr_buf->size)
1524 			src_offset -= etr_buf->size;
1525 		bytes = tmc_etr_buf_get_data(etr_buf, src_offset, to_copy,
1526 					     &src_buf);
1527 		if (WARN_ON_ONCE(bytes <= 0))
1528 			break;
1529 		bytes = min(bytes, (long)(PAGE_SIZE - pg_offset));
1530 
1531 		memcpy(dst_pages[pg_idx] + pg_offset, src_buf, bytes);
1532 
1533 		to_copy -= bytes;
1534 
1535 		/* Move destination pointers */
1536 		pg_offset += bytes;
1537 		if (pg_offset == PAGE_SIZE) {
1538 			pg_offset = 0;
1539 			if (++pg_idx == etr_perf->nr_pages)
1540 				pg_idx = 0;
1541 		}
1542 
1543 		/* Move source pointers */
1544 		src_offset += bytes;
1545 	}
1546 }
1547 
1548 /*
1549  * tmc_update_etr_buffer : Update the perf ring buffer with the
1550  * available trace data. We use software double buffering at the moment.
1551  *
1552  * TODO: Add support for reusing the perf ring buffer.
1553  */
1554 static unsigned long
1555 tmc_update_etr_buffer(struct coresight_device *csdev,
1556 		      struct perf_output_handle *handle,
1557 		      void *config)
1558 {
1559 	bool lost = false;
1560 	unsigned long flags, offset, size = 0;
1561 	struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1562 	struct etr_perf_buffer *etr_perf = config;
1563 	struct etr_buf *etr_buf = etr_perf->etr_buf;
1564 
1565 	spin_lock_irqsave(&drvdata->spinlock, flags);
1566 
1567 	/* Don't do anything if another tracer is using this sink */
1568 	if (csdev->refcnt != 1) {
1569 		spin_unlock_irqrestore(&drvdata->spinlock, flags);
1570 		goto out;
1571 	}
1572 
1573 	if (WARN_ON(drvdata->perf_buf != etr_buf)) {
1574 		lost = true;
1575 		spin_unlock_irqrestore(&drvdata->spinlock, flags);
1576 		goto out;
1577 	}
1578 
1579 	CS_UNLOCK(drvdata->base);
1580 
1581 	tmc_flush_and_stop(drvdata);
1582 	tmc_sync_etr_buf(drvdata);
1583 
1584 	CS_LOCK(drvdata->base);
1585 	spin_unlock_irqrestore(&drvdata->spinlock, flags);
1586 
1587 	lost = etr_buf->full;
1588 	offset = etr_buf->offset;
1589 	size = etr_buf->len;
1590 
1591 	/*
1592 	 * The ETR buffer may be bigger than the space available in the
1593 	 * perf ring buffer (handle->size).  If so advance the offset so that we
1594 	 * get the latest trace data.  In snapshot mode none of that matters
1595 	 * since we are expected to clobber stale data in favour of the latest
1596 	 * traces.
1597 	 */
1598 	if (!etr_perf->snapshot && size > handle->size) {
1599 		u32 mask = tmc_get_memwidth_mask(drvdata);
1600 
1601 		/*
1602 		 * Make sure the new size is aligned in accordance with the
1603 		 * requirement explained in function tmc_get_memwidth_mask().
1604 		 */
1605 		size = handle->size & mask;
1606 		offset = etr_buf->offset + etr_buf->len - size;
1607 
1608 		if (offset >= etr_buf->size)
1609 			offset -= etr_buf->size;
1610 		lost = true;
1611 	}
1612 
1613 	/* Insert barrier packets at the beginning, if there was an overflow */
1614 	if (lost)
1615 		tmc_etr_buf_insert_barrier_packet(etr_buf, offset);
1616 	tmc_etr_sync_perf_buffer(etr_perf, handle->head, offset, size);
1617 
1618 	/*
1619 	 * In snapshot mode we simply increment the head by the number of byte
1620 	 * that were written.  User space will figure out how many bytes to get
1621 	 * from the AUX buffer based on the position of the head.
1622 	 */
1623 	if (etr_perf->snapshot)
1624 		handle->head += size;
1625 
1626 	/*
1627 	 * Ensure that the AUX trace data is visible before the aux_head
1628 	 * is updated via perf_aux_output_end(), as expected by the
1629 	 * perf ring buffer.
1630 	 */
1631 	smp_wmb();
1632 
1633 out:
1634 	/*
1635 	 * Don't set the TRUNCATED flag in snapshot mode because 1) the
1636 	 * captured buffer is expected to be truncated and 2) a full buffer
1637 	 * prevents the event from being re-enabled by the perf core,
1638 	 * resulting in stale data being send to user space.
1639 	 */
1640 	if (!etr_perf->snapshot && lost)
1641 		perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
1642 	return size;
1643 }
1644 
1645 static int tmc_enable_etr_sink_perf(struct coresight_device *csdev, void *data)
1646 {
1647 	int rc = 0;
1648 	pid_t pid;
1649 	unsigned long flags;
1650 	struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1651 	struct perf_output_handle *handle = data;
1652 	struct etr_perf_buffer *etr_perf = etm_perf_sink_config(handle);
1653 
1654 	spin_lock_irqsave(&drvdata->spinlock, flags);
1655 	 /* Don't use this sink if it is already claimed by sysFS */
1656 	if (coresight_get_mode(csdev) == CS_MODE_SYSFS) {
1657 		rc = -EBUSY;
1658 		goto unlock_out;
1659 	}
1660 
1661 	if (WARN_ON(!etr_perf || !etr_perf->etr_buf)) {
1662 		rc = -EINVAL;
1663 		goto unlock_out;
1664 	}
1665 
1666 	/* Get a handle on the pid of the session owner */
1667 	pid = etr_perf->pid;
1668 
1669 	/* Do not proceed if this device is associated with another session */
1670 	if (drvdata->pid != -1 && drvdata->pid != pid) {
1671 		rc = -EBUSY;
1672 		goto unlock_out;
1673 	}
1674 
1675 	/*
1676 	 * No HW configuration is needed if the sink is already in
1677 	 * use for this session.
1678 	 */
1679 	if (drvdata->pid == pid) {
1680 		csdev->refcnt++;
1681 		goto unlock_out;
1682 	}
1683 
1684 	rc = tmc_etr_enable_hw(drvdata, etr_perf->etr_buf);
1685 	if (!rc) {
1686 		/* Associate with monitored process. */
1687 		drvdata->pid = pid;
1688 		coresight_set_mode(csdev, CS_MODE_PERF);
1689 		drvdata->perf_buf = etr_perf->etr_buf;
1690 		csdev->refcnt++;
1691 	}
1692 
1693 unlock_out:
1694 	spin_unlock_irqrestore(&drvdata->spinlock, flags);
1695 	return rc;
1696 }
1697 
1698 static int tmc_enable_etr_sink(struct coresight_device *csdev,
1699 			       enum cs_mode mode, void *data)
1700 {
1701 	switch (mode) {
1702 	case CS_MODE_SYSFS:
1703 		return tmc_enable_etr_sink_sysfs(csdev);
1704 	case CS_MODE_PERF:
1705 		return tmc_enable_etr_sink_perf(csdev, data);
1706 	default:
1707 		return -EINVAL;
1708 	}
1709 }
1710 
1711 static int tmc_disable_etr_sink(struct coresight_device *csdev)
1712 {
1713 	unsigned long flags;
1714 	struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1715 
1716 	spin_lock_irqsave(&drvdata->spinlock, flags);
1717 
1718 	if (drvdata->reading) {
1719 		spin_unlock_irqrestore(&drvdata->spinlock, flags);
1720 		return -EBUSY;
1721 	}
1722 
1723 	csdev->refcnt--;
1724 	if (csdev->refcnt) {
1725 		spin_unlock_irqrestore(&drvdata->spinlock, flags);
1726 		return -EBUSY;
1727 	}
1728 
1729 	/* Complain if we (somehow) got out of sync */
1730 	WARN_ON_ONCE(coresight_get_mode(csdev) == CS_MODE_DISABLED);
1731 	tmc_etr_disable_hw(drvdata);
1732 	/* Dissociate from monitored process. */
1733 	drvdata->pid = -1;
1734 	coresight_set_mode(csdev, CS_MODE_DISABLED);
1735 	/* Reset perf specific data */
1736 	drvdata->perf_buf = NULL;
1737 
1738 	spin_unlock_irqrestore(&drvdata->spinlock, flags);
1739 
1740 	dev_dbg(&csdev->dev, "TMC-ETR disabled\n");
1741 	return 0;
1742 }
1743 
1744 static const struct coresight_ops_sink tmc_etr_sink_ops = {
1745 	.enable		= tmc_enable_etr_sink,
1746 	.disable	= tmc_disable_etr_sink,
1747 	.alloc_buffer	= tmc_alloc_etr_buffer,
1748 	.update_buffer	= tmc_update_etr_buffer,
1749 	.free_buffer	= tmc_free_etr_buffer,
1750 };
1751 
1752 const struct coresight_ops tmc_etr_cs_ops = {
1753 	.sink_ops	= &tmc_etr_sink_ops,
1754 };
1755 
1756 int tmc_read_prepare_etr(struct tmc_drvdata *drvdata)
1757 {
1758 	int ret = 0;
1759 	unsigned long flags;
1760 
1761 	/* config types are set a boot time and never change */
1762 	if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
1763 		return -EINVAL;
1764 
1765 	spin_lock_irqsave(&drvdata->spinlock, flags);
1766 	if (drvdata->reading) {
1767 		ret = -EBUSY;
1768 		goto out;
1769 	}
1770 
1771 	/*
1772 	 * We can safely allow reads even if the ETR is operating in PERF mode,
1773 	 * since the sysfs session is captured in mode specific data.
1774 	 * If drvdata::sysfs_data is NULL the trace data has been read already.
1775 	 */
1776 	if (!drvdata->sysfs_buf) {
1777 		ret = -EINVAL;
1778 		goto out;
1779 	}
1780 
1781 	/* Disable the TMC if we are trying to read from a running session. */
1782 	if (coresight_get_mode(drvdata->csdev) == CS_MODE_SYSFS)
1783 		__tmc_etr_disable_hw(drvdata);
1784 
1785 	drvdata->reading = true;
1786 out:
1787 	spin_unlock_irqrestore(&drvdata->spinlock, flags);
1788 
1789 	return ret;
1790 }
1791 
1792 int tmc_read_unprepare_etr(struct tmc_drvdata *drvdata)
1793 {
1794 	unsigned long flags;
1795 	struct etr_buf *sysfs_buf = NULL;
1796 
1797 	/* config types are set a boot time and never change */
1798 	if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
1799 		return -EINVAL;
1800 
1801 	spin_lock_irqsave(&drvdata->spinlock, flags);
1802 
1803 	/* RE-enable the TMC if need be */
1804 	if (coresight_get_mode(drvdata->csdev) == CS_MODE_SYSFS) {
1805 		/*
1806 		 * The trace run will continue with the same allocated trace
1807 		 * buffer. Since the tracer is still enabled drvdata::buf can't
1808 		 * be NULL.
1809 		 */
1810 		__tmc_etr_enable_hw(drvdata);
1811 	} else {
1812 		/*
1813 		 * The ETR is not tracing and the buffer was just read.
1814 		 * As such prepare to free the trace buffer.
1815 		 */
1816 		sysfs_buf = drvdata->sysfs_buf;
1817 		drvdata->sysfs_buf = NULL;
1818 	}
1819 
1820 	drvdata->reading = false;
1821 	spin_unlock_irqrestore(&drvdata->spinlock, flags);
1822 
1823 	/* Free allocated memory out side of the spinlock */
1824 	if (sysfs_buf)
1825 		tmc_etr_free_sysfs_buf(sysfs_buf);
1826 
1827 	return 0;
1828 }
1829 
1830 static const char *const buf_modes_str[] = {
1831 	[ETR_MODE_FLAT]		= "flat",
1832 	[ETR_MODE_ETR_SG]	= "tmc-sg",
1833 	[ETR_MODE_CATU]		= "catu",
1834 	[ETR_MODE_AUTO]		= "auto",
1835 };
1836 
1837 static ssize_t buf_modes_available_show(struct device *dev,
1838 					    struct device_attribute *attr, char *buf)
1839 {
1840 	struct etr_buf_hw buf_hw;
1841 	ssize_t size = 0;
1842 
1843 	get_etr_buf_hw(dev, &buf_hw);
1844 	size += sysfs_emit(buf, "%s ", buf_modes_str[ETR_MODE_AUTO]);
1845 	size += sysfs_emit_at(buf, size, "%s ", buf_modes_str[ETR_MODE_FLAT]);
1846 	if (buf_hw.has_etr_sg)
1847 		size += sysfs_emit_at(buf, size, "%s ", buf_modes_str[ETR_MODE_ETR_SG]);
1848 
1849 	if (buf_hw.has_catu)
1850 		size += sysfs_emit_at(buf, size, "%s ", buf_modes_str[ETR_MODE_CATU]);
1851 
1852 	size += sysfs_emit_at(buf, size, "\n");
1853 	return size;
1854 }
1855 static DEVICE_ATTR_RO(buf_modes_available);
1856 
1857 static ssize_t buf_mode_preferred_show(struct device *dev,
1858 					 struct device_attribute *attr, char *buf)
1859 {
1860 	struct tmc_drvdata *drvdata = dev_get_drvdata(dev->parent);
1861 
1862 	return sysfs_emit(buf, "%s\n", buf_modes_str[drvdata->etr_mode]);
1863 }
1864 
1865 static ssize_t buf_mode_preferred_store(struct device *dev,
1866 					  struct device_attribute *attr,
1867 					  const char *buf, size_t size)
1868 {
1869 	struct tmc_drvdata *drvdata = dev_get_drvdata(dev->parent);
1870 	struct etr_buf_hw buf_hw;
1871 
1872 	get_etr_buf_hw(dev, &buf_hw);
1873 	if (sysfs_streq(buf, buf_modes_str[ETR_MODE_FLAT]))
1874 		drvdata->etr_mode = ETR_MODE_FLAT;
1875 	else if (sysfs_streq(buf, buf_modes_str[ETR_MODE_ETR_SG]) && buf_hw.has_etr_sg)
1876 		drvdata->etr_mode = ETR_MODE_ETR_SG;
1877 	else if (sysfs_streq(buf, buf_modes_str[ETR_MODE_CATU]) && buf_hw.has_catu)
1878 		drvdata->etr_mode = ETR_MODE_CATU;
1879 	else if (sysfs_streq(buf, buf_modes_str[ETR_MODE_AUTO]))
1880 		drvdata->etr_mode = ETR_MODE_AUTO;
1881 	else
1882 		return -EINVAL;
1883 	return size;
1884 }
1885 static DEVICE_ATTR_RW(buf_mode_preferred);
1886 
1887 static struct attribute *coresight_etr_attrs[] = {
1888 	&dev_attr_buf_modes_available.attr,
1889 	&dev_attr_buf_mode_preferred.attr,
1890 	NULL,
1891 };
1892 
1893 const struct attribute_group coresight_etr_group = {
1894 	.attrs = coresight_etr_attrs,
1895 };
1896