1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2016 Linaro Limited. All rights reserved. 4 * Author: Mathieu Poirier <mathieu.poirier@linaro.org> 5 */ 6 7 #include <linux/atomic.h> 8 #include <linux/coresight.h> 9 #include <linux/dma-mapping.h> 10 #include <linux/iommu.h> 11 #include <linux/idr.h> 12 #include <linux/mutex.h> 13 #include <linux/refcount.h> 14 #include <linux/slab.h> 15 #include <linux/types.h> 16 #include <linux/vmalloc.h> 17 #include "coresight-catu.h" 18 #include "coresight-etm-perf.h" 19 #include "coresight-priv.h" 20 #include "coresight-tmc.h" 21 22 struct etr_flat_buf { 23 struct device *dev; 24 dma_addr_t daddr; 25 void *vaddr; 26 size_t size; 27 }; 28 29 struct etr_buf_hw { 30 bool has_iommu; 31 bool has_etr_sg; 32 bool has_catu; 33 bool has_resrv; 34 }; 35 36 /* 37 * etr_perf_buffer - Perf buffer used for ETR 38 * @drvdata - The ETR drvdaga this buffer has been allocated for. 39 * @etr_buf - Actual buffer used by the ETR 40 * @pid - The PID of the session owner that etr_perf_buffer 41 * belongs to. 42 * @snaphost - Perf session mode 43 * @nr_pages - Number of pages in the ring buffer. 44 * @pages - Array of Pages in the ring buffer. 45 */ 46 struct etr_perf_buffer { 47 struct tmc_drvdata *drvdata; 48 struct etr_buf *etr_buf; 49 pid_t pid; 50 bool snapshot; 51 int nr_pages; 52 void **pages; 53 }; 54 55 /* Convert the perf index to an offset within the ETR buffer */ 56 #define PERF_IDX2OFF(idx, buf) \ 57 ((idx) % ((unsigned long)(buf)->nr_pages << PAGE_SHIFT)) 58 59 /* Lower limit for ETR hardware buffer */ 60 #define TMC_ETR_PERF_MIN_BUF_SIZE SZ_1M 61 62 /* 63 * The TMC ETR SG has a page size of 4K. The SG table contains pointers 64 * to 4KB buffers. However, the OS may use a PAGE_SIZE different from 65 * 4K (i.e, 16KB or 64KB). This implies that a single OS page could 66 * contain more than one SG buffer and tables. 67 * 68 * A table entry has the following format: 69 * 70 * ---Bit31------------Bit4-------Bit1-----Bit0-- 71 * | Address[39:12] | SBZ | Entry Type | 72 * ---------------------------------------------- 73 * 74 * Address: Bits [39:12] of a physical page address. Bits [11:0] are 75 * always zero. 76 * 77 * Entry type: 78 * b00 - Reserved. 79 * b01 - Last entry in the tables, points to 4K page buffer. 80 * b10 - Normal entry, points to 4K page buffer. 81 * b11 - Link. The address points to the base of next table. 82 */ 83 84 typedef u32 sgte_t; 85 86 #define ETR_SG_PAGE_SHIFT 12 87 #define ETR_SG_PAGE_SIZE (1UL << ETR_SG_PAGE_SHIFT) 88 #define ETR_SG_PAGES_PER_SYSPAGE (PAGE_SIZE / ETR_SG_PAGE_SIZE) 89 #define ETR_SG_PTRS_PER_PAGE (ETR_SG_PAGE_SIZE / sizeof(sgte_t)) 90 #define ETR_SG_PTRS_PER_SYSPAGE (PAGE_SIZE / sizeof(sgte_t)) 91 92 #define ETR_SG_ET_MASK 0x3 93 #define ETR_SG_ET_LAST 0x1 94 #define ETR_SG_ET_NORMAL 0x2 95 #define ETR_SG_ET_LINK 0x3 96 97 #define ETR_SG_ADDR_SHIFT 4 98 99 #define ETR_SG_ENTRY(addr, type) \ 100 (sgte_t)((((addr) >> ETR_SG_PAGE_SHIFT) << ETR_SG_ADDR_SHIFT) | \ 101 (type & ETR_SG_ET_MASK)) 102 103 #define ETR_SG_ADDR(entry) \ 104 (((dma_addr_t)(entry) >> ETR_SG_ADDR_SHIFT) << ETR_SG_PAGE_SHIFT) 105 #define ETR_SG_ET(entry) ((entry) & ETR_SG_ET_MASK) 106 107 /* 108 * struct etr_sg_table : ETR SG Table 109 * @sg_table: Generic SG Table holding the data/table pages. 110 * @hwaddr: hwaddress used by the TMC, which is the base 111 * address of the table. 112 */ 113 struct etr_sg_table { 114 struct tmc_sg_table *sg_table; 115 dma_addr_t hwaddr; 116 }; 117 118 /* 119 * tmc_etr_sg_table_entries: Total number of table entries required to map 120 * @nr_pages system pages. 121 * 122 * We need to map @nr_pages * ETR_SG_PAGES_PER_SYSPAGE data pages. 123 * Each TMC page can map (ETR_SG_PTRS_PER_PAGE - 1) buffer pointers, 124 * with the last entry pointing to another page of table entries. 125 * If we spill over to a new page for mapping 1 entry, we could as 126 * well replace the link entry of the previous page with the last entry. 127 */ 128 static unsigned long __attribute_const__ 129 tmc_etr_sg_table_entries(int nr_pages) 130 { 131 unsigned long nr_sgpages = nr_pages * ETR_SG_PAGES_PER_SYSPAGE; 132 unsigned long nr_sglinks = nr_sgpages / (ETR_SG_PTRS_PER_PAGE - 1); 133 /* 134 * If we spill over to a new page for 1 entry, we could as well 135 * make it the LAST entry in the previous page, skipping the Link 136 * address. 137 */ 138 if (nr_sglinks && (nr_sgpages % (ETR_SG_PTRS_PER_PAGE - 1) < 2)) 139 nr_sglinks--; 140 return nr_sgpages + nr_sglinks; 141 } 142 143 /* 144 * tmc_pages_get_offset: Go through all the pages in the tmc_pages 145 * and map the device address @addr to an offset within the virtual 146 * contiguous buffer. 147 */ 148 static long 149 tmc_pages_get_offset(struct tmc_pages *tmc_pages, dma_addr_t addr) 150 { 151 int i; 152 dma_addr_t page_start; 153 154 for (i = 0; i < tmc_pages->nr_pages; i++) { 155 page_start = tmc_pages->daddrs[i]; 156 if (addr >= page_start && addr < (page_start + PAGE_SIZE)) 157 return i * PAGE_SIZE + (addr - page_start); 158 } 159 160 return -EINVAL; 161 } 162 163 /* 164 * tmc_pages_free : Unmap and free the pages used by tmc_pages. 165 * If the pages were not allocated in tmc_pages_alloc(), we would 166 * simply drop the refcount. 167 */ 168 static void tmc_pages_free(struct tmc_pages *tmc_pages, 169 struct device *dev, enum dma_data_direction dir) 170 { 171 int i; 172 struct device *real_dev = dev->parent; 173 174 for (i = 0; i < tmc_pages->nr_pages; i++) { 175 if (tmc_pages->daddrs && tmc_pages->daddrs[i]) 176 dma_unmap_page(real_dev, tmc_pages->daddrs[i], 177 PAGE_SIZE, dir); 178 if (tmc_pages->pages && tmc_pages->pages[i]) 179 __free_page(tmc_pages->pages[i]); 180 } 181 182 kfree(tmc_pages->pages); 183 kfree(tmc_pages->daddrs); 184 tmc_pages->pages = NULL; 185 tmc_pages->daddrs = NULL; 186 tmc_pages->nr_pages = 0; 187 } 188 189 /* 190 * tmc_pages_alloc : Allocate and map pages for a given @tmc_pages. 191 * If @pages is not NULL, the list of page virtual addresses are 192 * used as the data pages. The pages are then dma_map'ed for @dev 193 * with dma_direction @dir. 194 * 195 * Returns 0 upon success, else the error number. 196 */ 197 static int tmc_pages_alloc(struct tmc_pages *tmc_pages, 198 struct device *dev, int node, 199 enum dma_data_direction dir, void **pages) 200 { 201 int i, nr_pages; 202 dma_addr_t paddr; 203 struct page *page; 204 struct device *real_dev = dev->parent; 205 206 nr_pages = tmc_pages->nr_pages; 207 tmc_pages->daddrs = kcalloc(nr_pages, sizeof(*tmc_pages->daddrs), 208 GFP_KERNEL); 209 if (!tmc_pages->daddrs) 210 return -ENOMEM; 211 tmc_pages->pages = kcalloc(nr_pages, sizeof(*tmc_pages->pages), 212 GFP_KERNEL); 213 if (!tmc_pages->pages) { 214 kfree(tmc_pages->daddrs); 215 tmc_pages->daddrs = NULL; 216 return -ENOMEM; 217 } 218 219 for (i = 0; i < nr_pages; i++) { 220 if (pages && pages[i]) { 221 page = virt_to_page(pages[i]); 222 /* Hold a refcount on the page */ 223 get_page(page); 224 } else { 225 page = alloc_pages_node(node, 226 GFP_KERNEL | __GFP_ZERO, 0); 227 if (!page) 228 goto err; 229 } 230 paddr = dma_map_page(real_dev, page, 0, PAGE_SIZE, dir); 231 if (dma_mapping_error(real_dev, paddr)) 232 goto err; 233 tmc_pages->daddrs[i] = paddr; 234 tmc_pages->pages[i] = page; 235 } 236 return 0; 237 err: 238 tmc_pages_free(tmc_pages, dev, dir); 239 return -ENOMEM; 240 } 241 242 static long 243 tmc_sg_get_data_page_offset(struct tmc_sg_table *sg_table, dma_addr_t addr) 244 { 245 return tmc_pages_get_offset(&sg_table->data_pages, addr); 246 } 247 248 static void tmc_free_table_pages(struct tmc_sg_table *sg_table) 249 { 250 if (sg_table->table_vaddr) 251 vunmap(sg_table->table_vaddr); 252 tmc_pages_free(&sg_table->table_pages, sg_table->dev, DMA_TO_DEVICE); 253 } 254 255 static void tmc_free_data_pages(struct tmc_sg_table *sg_table) 256 { 257 if (sg_table->data_vaddr) 258 vunmap(sg_table->data_vaddr); 259 tmc_pages_free(&sg_table->data_pages, sg_table->dev, DMA_FROM_DEVICE); 260 } 261 262 void tmc_free_sg_table(struct tmc_sg_table *sg_table) 263 { 264 tmc_free_table_pages(sg_table); 265 tmc_free_data_pages(sg_table); 266 kfree(sg_table); 267 } 268 EXPORT_SYMBOL_GPL(tmc_free_sg_table); 269 270 /* 271 * Alloc pages for the table. Since this will be used by the device, 272 * allocate the pages closer to the device (i.e, dev_to_node(dev) 273 * rather than the CPU node). 274 */ 275 static int tmc_alloc_table_pages(struct tmc_sg_table *sg_table) 276 { 277 int rc; 278 struct tmc_pages *table_pages = &sg_table->table_pages; 279 280 rc = tmc_pages_alloc(table_pages, sg_table->dev, 281 dev_to_node(sg_table->dev), 282 DMA_TO_DEVICE, NULL); 283 if (rc) 284 return rc; 285 sg_table->table_vaddr = vmap(table_pages->pages, 286 table_pages->nr_pages, 287 VM_MAP, 288 PAGE_KERNEL); 289 if (!sg_table->table_vaddr) 290 rc = -ENOMEM; 291 else 292 sg_table->table_daddr = table_pages->daddrs[0]; 293 return rc; 294 } 295 296 static int tmc_alloc_data_pages(struct tmc_sg_table *sg_table, void **pages) 297 { 298 int rc; 299 300 /* Allocate data pages on the node requested by the caller */ 301 rc = tmc_pages_alloc(&sg_table->data_pages, 302 sg_table->dev, sg_table->node, 303 DMA_FROM_DEVICE, pages); 304 if (!rc) { 305 sg_table->data_vaddr = vmap(sg_table->data_pages.pages, 306 sg_table->data_pages.nr_pages, 307 VM_MAP, 308 PAGE_KERNEL); 309 if (!sg_table->data_vaddr) 310 rc = -ENOMEM; 311 } 312 return rc; 313 } 314 315 /* 316 * tmc_alloc_sg_table: Allocate and setup dma pages for the TMC SG table 317 * and data buffers. TMC writes to the data buffers and reads from the SG 318 * Table pages. 319 * 320 * @dev - Coresight device to which page should be DMA mapped. 321 * @node - Numa node for mem allocations 322 * @nr_tpages - Number of pages for the table entries. 323 * @nr_dpages - Number of pages for Data buffer. 324 * @pages - Optional list of virtual address of pages. 325 */ 326 struct tmc_sg_table *tmc_alloc_sg_table(struct device *dev, 327 int node, 328 int nr_tpages, 329 int nr_dpages, 330 void **pages) 331 { 332 long rc; 333 struct tmc_sg_table *sg_table; 334 335 sg_table = kzalloc(sizeof(*sg_table), GFP_KERNEL); 336 if (!sg_table) 337 return ERR_PTR(-ENOMEM); 338 sg_table->data_pages.nr_pages = nr_dpages; 339 sg_table->table_pages.nr_pages = nr_tpages; 340 sg_table->node = node; 341 sg_table->dev = dev; 342 343 rc = tmc_alloc_data_pages(sg_table, pages); 344 if (!rc) 345 rc = tmc_alloc_table_pages(sg_table); 346 if (rc) { 347 tmc_free_sg_table(sg_table); 348 return ERR_PTR(rc); 349 } 350 351 return sg_table; 352 } 353 EXPORT_SYMBOL_GPL(tmc_alloc_sg_table); 354 355 /* 356 * tmc_sg_table_sync_data_range: Sync the data buffer written 357 * by the device from @offset upto a @size bytes. 358 */ 359 void tmc_sg_table_sync_data_range(struct tmc_sg_table *table, 360 u64 offset, u64 size) 361 { 362 int i, index, start; 363 int npages = DIV_ROUND_UP(size, PAGE_SIZE); 364 struct device *real_dev = table->dev->parent; 365 struct tmc_pages *data = &table->data_pages; 366 367 start = offset >> PAGE_SHIFT; 368 for (i = start; i < (start + npages); i++) { 369 index = i % data->nr_pages; 370 dma_sync_single_for_cpu(real_dev, data->daddrs[index], 371 PAGE_SIZE, DMA_FROM_DEVICE); 372 } 373 } 374 EXPORT_SYMBOL_GPL(tmc_sg_table_sync_data_range); 375 376 /* tmc_sg_sync_table: Sync the page table */ 377 void tmc_sg_table_sync_table(struct tmc_sg_table *sg_table) 378 { 379 int i; 380 struct device *real_dev = sg_table->dev->parent; 381 struct tmc_pages *table_pages = &sg_table->table_pages; 382 383 for (i = 0; i < table_pages->nr_pages; i++) 384 dma_sync_single_for_device(real_dev, table_pages->daddrs[i], 385 PAGE_SIZE, DMA_TO_DEVICE); 386 } 387 EXPORT_SYMBOL_GPL(tmc_sg_table_sync_table); 388 389 /* 390 * tmc_sg_table_get_data: Get the buffer pointer for data @offset 391 * in the SG buffer. The @bufpp is updated to point to the buffer. 392 * Returns : 393 * the length of linear data available at @offset. 394 * or 395 * <= 0 if no data is available. 396 */ 397 ssize_t tmc_sg_table_get_data(struct tmc_sg_table *sg_table, 398 u64 offset, size_t len, char **bufpp) 399 { 400 size_t size; 401 int pg_idx = offset >> PAGE_SHIFT; 402 int pg_offset = offset & (PAGE_SIZE - 1); 403 struct tmc_pages *data_pages = &sg_table->data_pages; 404 405 size = tmc_sg_table_buf_size(sg_table); 406 if (offset >= size) 407 return -EINVAL; 408 409 /* Make sure we don't go beyond the end */ 410 len = (len < (size - offset)) ? len : size - offset; 411 /* Respect the page boundaries */ 412 len = (len < (PAGE_SIZE - pg_offset)) ? len : (PAGE_SIZE - pg_offset); 413 if (len > 0) 414 *bufpp = page_address(data_pages->pages[pg_idx]) + pg_offset; 415 return len; 416 } 417 EXPORT_SYMBOL_GPL(tmc_sg_table_get_data); 418 419 #ifdef ETR_SG_DEBUG 420 /* Map a dma address to virtual address */ 421 static unsigned long 422 tmc_sg_daddr_to_vaddr(struct tmc_sg_table *sg_table, 423 dma_addr_t addr, bool table) 424 { 425 long offset; 426 unsigned long base; 427 struct tmc_pages *tmc_pages; 428 429 if (table) { 430 tmc_pages = &sg_table->table_pages; 431 base = (unsigned long)sg_table->table_vaddr; 432 } else { 433 tmc_pages = &sg_table->data_pages; 434 base = (unsigned long)sg_table->data_vaddr; 435 } 436 437 offset = tmc_pages_get_offset(tmc_pages, addr); 438 if (offset < 0) 439 return 0; 440 return base + offset; 441 } 442 443 /* Dump the given sg_table */ 444 static void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) 445 { 446 sgte_t *ptr; 447 int i = 0; 448 dma_addr_t addr; 449 struct tmc_sg_table *sg_table = etr_table->sg_table; 450 451 ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table, 452 etr_table->hwaddr, true); 453 while (ptr) { 454 addr = ETR_SG_ADDR(*ptr); 455 switch (ETR_SG_ET(*ptr)) { 456 case ETR_SG_ET_NORMAL: 457 dev_dbg(sg_table->dev, 458 "%05d: %p\t:[N] 0x%llx\n", i, ptr, addr); 459 ptr++; 460 break; 461 case ETR_SG_ET_LINK: 462 dev_dbg(sg_table->dev, 463 "%05d: *** %p\t:{L} 0x%llx ***\n", 464 i, ptr, addr); 465 ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table, 466 addr, true); 467 break; 468 case ETR_SG_ET_LAST: 469 dev_dbg(sg_table->dev, 470 "%05d: ### %p\t:[L] 0x%llx ###\n", 471 i, ptr, addr); 472 return; 473 default: 474 dev_dbg(sg_table->dev, 475 "%05d: xxx %p\t:[INVALID] 0x%llx xxx\n", 476 i, ptr, addr); 477 return; 478 } 479 i++; 480 } 481 dev_dbg(sg_table->dev, "******* End of Table *****\n"); 482 } 483 #else 484 static void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) {} 485 #endif 486 487 /* 488 * Populate the SG Table page table entries from table/data 489 * pages allocated. Each Data page has ETR_SG_PAGES_PER_SYSPAGE SG pages. 490 * So does a Table page. So we keep track of indices of the tables 491 * in each system page and move the pointers accordingly. 492 */ 493 #define INC_IDX_ROUND(idx, size) ((idx) = ((idx) + 1) % (size)) 494 static void tmc_etr_sg_table_populate(struct etr_sg_table *etr_table) 495 { 496 dma_addr_t paddr; 497 int i, type, nr_entries; 498 int tpidx = 0; /* index to the current system table_page */ 499 int sgtidx = 0; /* index to the sg_table within the current syspage */ 500 int sgtentry = 0; /* the entry within the sg_table */ 501 int dpidx = 0; /* index to the current system data_page */ 502 int spidx = 0; /* index to the SG page within the current data page */ 503 sgte_t *ptr; /* pointer to the table entry to fill */ 504 struct tmc_sg_table *sg_table = etr_table->sg_table; 505 dma_addr_t *table_daddrs = sg_table->table_pages.daddrs; 506 dma_addr_t *data_daddrs = sg_table->data_pages.daddrs; 507 508 nr_entries = tmc_etr_sg_table_entries(sg_table->data_pages.nr_pages); 509 /* 510 * Use the contiguous virtual address of the table to update entries. 511 */ 512 ptr = sg_table->table_vaddr; 513 /* 514 * Fill all the entries, except the last entry to avoid special 515 * checks within the loop. 516 */ 517 for (i = 0; i < nr_entries - 1; i++) { 518 if (sgtentry == ETR_SG_PTRS_PER_PAGE - 1) { 519 /* 520 * Last entry in a sg_table page is a link address to 521 * the next table page. If this sg_table is the last 522 * one in the system page, it links to the first 523 * sg_table in the next system page. Otherwise, it 524 * links to the next sg_table page within the system 525 * page. 526 */ 527 if (sgtidx == ETR_SG_PAGES_PER_SYSPAGE - 1) { 528 paddr = table_daddrs[tpidx + 1]; 529 } else { 530 paddr = table_daddrs[tpidx] + 531 (ETR_SG_PAGE_SIZE * (sgtidx + 1)); 532 } 533 type = ETR_SG_ET_LINK; 534 } else { 535 /* 536 * Update the indices to the data_pages to point to the 537 * next sg_page in the data buffer. 538 */ 539 type = ETR_SG_ET_NORMAL; 540 paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE; 541 if (!INC_IDX_ROUND(spidx, ETR_SG_PAGES_PER_SYSPAGE)) 542 dpidx++; 543 } 544 *ptr++ = ETR_SG_ENTRY(paddr, type); 545 /* 546 * Move to the next table pointer, moving the table page index 547 * if necessary 548 */ 549 if (!INC_IDX_ROUND(sgtentry, ETR_SG_PTRS_PER_PAGE)) { 550 if (!INC_IDX_ROUND(sgtidx, ETR_SG_PAGES_PER_SYSPAGE)) 551 tpidx++; 552 } 553 } 554 555 /* Set up the last entry, which is always a data pointer */ 556 paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE; 557 *ptr++ = ETR_SG_ENTRY(paddr, ETR_SG_ET_LAST); 558 } 559 560 /* 561 * tmc_init_etr_sg_table: Allocate a TMC ETR SG table, data buffer of @size and 562 * populate the table. 563 * 564 * @dev - Device pointer for the TMC 565 * @node - NUMA node where the memory should be allocated 566 * @size - Total size of the data buffer 567 * @pages - Optional list of page virtual address 568 */ 569 static struct etr_sg_table * 570 tmc_init_etr_sg_table(struct device *dev, int node, 571 unsigned long size, void **pages) 572 { 573 int nr_entries, nr_tpages; 574 int nr_dpages = size >> PAGE_SHIFT; 575 struct tmc_sg_table *sg_table; 576 struct etr_sg_table *etr_table; 577 578 etr_table = kzalloc(sizeof(*etr_table), GFP_KERNEL); 579 if (!etr_table) 580 return ERR_PTR(-ENOMEM); 581 nr_entries = tmc_etr_sg_table_entries(nr_dpages); 582 nr_tpages = DIV_ROUND_UP(nr_entries, ETR_SG_PTRS_PER_SYSPAGE); 583 584 sg_table = tmc_alloc_sg_table(dev, node, nr_tpages, nr_dpages, pages); 585 if (IS_ERR(sg_table)) { 586 kfree(etr_table); 587 return ERR_CAST(sg_table); 588 } 589 590 etr_table->sg_table = sg_table; 591 /* TMC should use table base address for DBA */ 592 etr_table->hwaddr = sg_table->table_daddr; 593 tmc_etr_sg_table_populate(etr_table); 594 /* Sync the table pages for the HW */ 595 tmc_sg_table_sync_table(sg_table); 596 tmc_etr_sg_table_dump(etr_table); 597 598 return etr_table; 599 } 600 601 /* 602 * tmc_etr_alloc_flat_buf: Allocate a contiguous DMA buffer. 603 */ 604 static int tmc_etr_alloc_flat_buf(struct tmc_drvdata *drvdata, 605 struct etr_buf *etr_buf, int node, 606 void **pages) 607 { 608 struct etr_flat_buf *flat_buf; 609 struct device *real_dev = drvdata->csdev->dev.parent; 610 611 /* We cannot reuse existing pages for flat buf */ 612 if (pages) 613 return -EINVAL; 614 615 flat_buf = kzalloc(sizeof(*flat_buf), GFP_KERNEL); 616 if (!flat_buf) 617 return -ENOMEM; 618 619 flat_buf->vaddr = dma_alloc_noncoherent(real_dev, etr_buf->size, 620 &flat_buf->daddr, 621 DMA_FROM_DEVICE, 622 GFP_KERNEL | __GFP_NOWARN); 623 if (!flat_buf->vaddr) { 624 kfree(flat_buf); 625 return -ENOMEM; 626 } 627 628 flat_buf->size = etr_buf->size; 629 flat_buf->dev = &drvdata->csdev->dev; 630 etr_buf->hwaddr = flat_buf->daddr; 631 etr_buf->mode = ETR_MODE_FLAT; 632 etr_buf->private = flat_buf; 633 return 0; 634 } 635 636 static void tmc_etr_free_flat_buf(struct etr_buf *etr_buf) 637 { 638 struct etr_flat_buf *flat_buf = etr_buf->private; 639 640 if (flat_buf && flat_buf->daddr) { 641 struct device *real_dev = flat_buf->dev->parent; 642 643 dma_free_noncoherent(real_dev, etr_buf->size, 644 flat_buf->vaddr, flat_buf->daddr, 645 DMA_FROM_DEVICE); 646 } 647 kfree(flat_buf); 648 } 649 650 static void tmc_etr_sync_flat_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp) 651 { 652 struct etr_flat_buf *flat_buf = etr_buf->private; 653 struct device *real_dev = flat_buf->dev->parent; 654 655 /* 656 * Adjust the buffer to point to the beginning of the trace data 657 * and update the available trace data. 658 */ 659 etr_buf->offset = rrp - etr_buf->hwaddr; 660 if (etr_buf->full) 661 etr_buf->len = etr_buf->size; 662 else 663 etr_buf->len = rwp - rrp; 664 665 /* 666 * The driver always starts tracing at the beginning of the buffer, 667 * the only reason why we would get a wrap around is when the buffer 668 * is full. Sync the entire buffer in one go for this case. 669 */ 670 if (etr_buf->offset + etr_buf->len > etr_buf->size) 671 dma_sync_single_for_cpu(real_dev, flat_buf->daddr, 672 etr_buf->size, DMA_FROM_DEVICE); 673 else 674 dma_sync_single_for_cpu(real_dev, 675 flat_buf->daddr + etr_buf->offset, 676 etr_buf->len, DMA_FROM_DEVICE); 677 } 678 679 static ssize_t tmc_etr_get_data_flat_buf(struct etr_buf *etr_buf, 680 u64 offset, size_t len, char **bufpp) 681 { 682 struct etr_flat_buf *flat_buf = etr_buf->private; 683 684 *bufpp = (char *)flat_buf->vaddr + offset; 685 /* 686 * tmc_etr_buf_get_data already adjusts the length to handle 687 * buffer wrapping around. 688 */ 689 return len; 690 } 691 692 static const struct etr_buf_operations etr_flat_buf_ops = { 693 .alloc = tmc_etr_alloc_flat_buf, 694 .free = tmc_etr_free_flat_buf, 695 .sync = tmc_etr_sync_flat_buf, 696 .get_data = tmc_etr_get_data_flat_buf, 697 }; 698 699 /* 700 * tmc_etr_alloc_resrv_buf: Allocate a contiguous DMA buffer from reserved region. 701 */ 702 static int tmc_etr_alloc_resrv_buf(struct tmc_drvdata *drvdata, 703 struct etr_buf *etr_buf, int node, 704 void **pages) 705 { 706 struct etr_flat_buf *resrv_buf; 707 struct device *real_dev = drvdata->csdev->dev.parent; 708 709 /* We cannot reuse existing pages for resrv buf */ 710 if (pages) 711 return -EINVAL; 712 713 resrv_buf = kzalloc(sizeof(*resrv_buf), GFP_KERNEL); 714 if (!resrv_buf) 715 return -ENOMEM; 716 717 resrv_buf->daddr = dma_map_resource(real_dev, drvdata->resrv_buf.paddr, 718 drvdata->resrv_buf.size, 719 DMA_FROM_DEVICE, 0); 720 if (dma_mapping_error(real_dev, resrv_buf->daddr)) { 721 dev_err(real_dev, "failed to map source buffer address\n"); 722 kfree(resrv_buf); 723 return -ENOMEM; 724 } 725 726 resrv_buf->vaddr = drvdata->resrv_buf.vaddr; 727 resrv_buf->size = etr_buf->size = drvdata->resrv_buf.size; 728 resrv_buf->dev = &drvdata->csdev->dev; 729 etr_buf->hwaddr = resrv_buf->daddr; 730 etr_buf->mode = ETR_MODE_RESRV; 731 etr_buf->private = resrv_buf; 732 return 0; 733 } 734 735 static void tmc_etr_free_resrv_buf(struct etr_buf *etr_buf) 736 { 737 struct etr_flat_buf *resrv_buf = etr_buf->private; 738 739 if (resrv_buf && resrv_buf->daddr) { 740 struct device *real_dev = resrv_buf->dev->parent; 741 742 dma_unmap_resource(real_dev, resrv_buf->daddr, 743 resrv_buf->size, DMA_FROM_DEVICE, 0); 744 } 745 kfree(resrv_buf); 746 } 747 748 static void tmc_etr_sync_resrv_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp) 749 { 750 /* 751 * Adjust the buffer to point to the beginning of the trace data 752 * and update the available trace data. 753 */ 754 etr_buf->offset = rrp - etr_buf->hwaddr; 755 if (etr_buf->full) 756 etr_buf->len = etr_buf->size; 757 else 758 etr_buf->len = rwp - rrp; 759 } 760 761 static const struct etr_buf_operations etr_resrv_buf_ops = { 762 .alloc = tmc_etr_alloc_resrv_buf, 763 .free = tmc_etr_free_resrv_buf, 764 .sync = tmc_etr_sync_resrv_buf, 765 .get_data = tmc_etr_get_data_flat_buf, 766 }; 767 768 /* 769 * tmc_etr_alloc_sg_buf: Allocate an SG buf @etr_buf. Setup the parameters 770 * appropriately. 771 */ 772 static int tmc_etr_alloc_sg_buf(struct tmc_drvdata *drvdata, 773 struct etr_buf *etr_buf, int node, 774 void **pages) 775 { 776 struct etr_sg_table *etr_table; 777 struct device *dev = &drvdata->csdev->dev; 778 779 etr_table = tmc_init_etr_sg_table(dev, node, 780 etr_buf->size, pages); 781 if (IS_ERR(etr_table)) 782 return -ENOMEM; 783 etr_buf->hwaddr = etr_table->hwaddr; 784 etr_buf->mode = ETR_MODE_ETR_SG; 785 etr_buf->private = etr_table; 786 return 0; 787 } 788 789 static void tmc_etr_free_sg_buf(struct etr_buf *etr_buf) 790 { 791 struct etr_sg_table *etr_table = etr_buf->private; 792 793 if (etr_table) { 794 tmc_free_sg_table(etr_table->sg_table); 795 kfree(etr_table); 796 } 797 } 798 799 static ssize_t tmc_etr_get_data_sg_buf(struct etr_buf *etr_buf, u64 offset, 800 size_t len, char **bufpp) 801 { 802 struct etr_sg_table *etr_table = etr_buf->private; 803 804 return tmc_sg_table_get_data(etr_table->sg_table, offset, len, bufpp); 805 } 806 807 static void tmc_etr_sync_sg_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp) 808 { 809 long r_offset, w_offset; 810 struct etr_sg_table *etr_table = etr_buf->private; 811 struct tmc_sg_table *table = etr_table->sg_table; 812 813 /* Convert hw address to offset in the buffer */ 814 r_offset = tmc_sg_get_data_page_offset(table, rrp); 815 if (r_offset < 0) { 816 dev_warn(table->dev, 817 "Unable to map RRP %llx to offset\n", rrp); 818 etr_buf->len = 0; 819 return; 820 } 821 822 w_offset = tmc_sg_get_data_page_offset(table, rwp); 823 if (w_offset < 0) { 824 dev_warn(table->dev, 825 "Unable to map RWP %llx to offset\n", rwp); 826 etr_buf->len = 0; 827 return; 828 } 829 830 etr_buf->offset = r_offset; 831 if (etr_buf->full) 832 etr_buf->len = etr_buf->size; 833 else 834 etr_buf->len = ((w_offset < r_offset) ? etr_buf->size : 0) + 835 w_offset - r_offset; 836 tmc_sg_table_sync_data_range(table, r_offset, etr_buf->len); 837 } 838 839 static const struct etr_buf_operations etr_sg_buf_ops = { 840 .alloc = tmc_etr_alloc_sg_buf, 841 .free = tmc_etr_free_sg_buf, 842 .sync = tmc_etr_sync_sg_buf, 843 .get_data = tmc_etr_get_data_sg_buf, 844 }; 845 846 /* 847 * TMC ETR could be connected to a CATU device, which can provide address 848 * translation service. This is represented by the Output port of the TMC 849 * (ETR) connected to the input port of the CATU. 850 * 851 * Returns : coresight_device ptr for the CATU device if a CATU is found. 852 * : NULL otherwise. 853 */ 854 struct coresight_device * 855 tmc_etr_get_catu_device(struct tmc_drvdata *drvdata) 856 { 857 struct coresight_device *etr = drvdata->csdev; 858 union coresight_dev_subtype catu_subtype = { 859 .helper_subtype = CORESIGHT_DEV_SUBTYPE_HELPER_CATU 860 }; 861 862 if (!IS_ENABLED(CONFIG_CORESIGHT_CATU)) 863 return NULL; 864 865 return coresight_find_output_type(etr->pdata, CORESIGHT_DEV_TYPE_HELPER, 866 catu_subtype); 867 } 868 EXPORT_SYMBOL_GPL(tmc_etr_get_catu_device); 869 870 static const struct etr_buf_operations *etr_buf_ops[] = { 871 [ETR_MODE_FLAT] = &etr_flat_buf_ops, 872 [ETR_MODE_ETR_SG] = &etr_sg_buf_ops, 873 [ETR_MODE_CATU] = NULL, 874 [ETR_MODE_RESRV] = &etr_resrv_buf_ops 875 }; 876 877 void tmc_etr_set_catu_ops(const struct etr_buf_operations *catu) 878 { 879 etr_buf_ops[ETR_MODE_CATU] = catu; 880 } 881 EXPORT_SYMBOL_GPL(tmc_etr_set_catu_ops); 882 883 void tmc_etr_remove_catu_ops(void) 884 { 885 etr_buf_ops[ETR_MODE_CATU] = NULL; 886 } 887 EXPORT_SYMBOL_GPL(tmc_etr_remove_catu_ops); 888 889 static int tmc_etr_mode_alloc_buf(int mode, struct tmc_drvdata *drvdata, struct etr_buf *etr_buf, 890 int node, void **pages) 891 { 892 int rc = -EINVAL; 893 894 switch (mode) { 895 case ETR_MODE_FLAT: 896 case ETR_MODE_ETR_SG: 897 case ETR_MODE_CATU: 898 case ETR_MODE_RESRV: 899 if (etr_buf_ops[mode] && etr_buf_ops[mode]->alloc) 900 rc = etr_buf_ops[mode]->alloc(drvdata, etr_buf, 901 node, pages); 902 if (!rc) 903 etr_buf->ops = etr_buf_ops[mode]; 904 return rc; 905 default: 906 return -EINVAL; 907 } 908 } 909 910 static void get_etr_buf_hw(struct device *dev, struct etr_buf_hw *buf_hw) 911 { 912 struct tmc_drvdata *drvdata = dev_get_drvdata(dev->parent); 913 914 buf_hw->has_iommu = iommu_get_domain_for_dev(dev->parent); 915 buf_hw->has_etr_sg = tmc_etr_has_cap(drvdata, TMC_ETR_SG); 916 buf_hw->has_catu = !!tmc_etr_get_catu_device(drvdata); 917 buf_hw->has_resrv = tmc_has_reserved_buffer(drvdata); 918 } 919 920 static bool etr_can_use_flat_mode(struct etr_buf_hw *buf_hw, ssize_t etr_buf_size) 921 { 922 bool has_sg = buf_hw->has_catu || buf_hw->has_etr_sg; 923 924 return !has_sg || buf_hw->has_iommu || etr_buf_size < SZ_1M; 925 } 926 927 /* 928 * tmc_alloc_etr_buf: Allocate a buffer use by ETR. 929 * @drvdata : ETR device details. 930 * @size : size of the requested buffer. 931 * @flags : Required properties for the buffer. 932 * @node : Node for memory allocations. 933 * @pages : An optional list of pages. 934 */ 935 static struct etr_buf *tmc_alloc_etr_buf(struct tmc_drvdata *drvdata, 936 ssize_t size, int flags, 937 int node, void **pages) 938 { 939 int rc = -ENOMEM; 940 struct etr_buf *etr_buf; 941 struct etr_buf_hw buf_hw; 942 struct device *dev = &drvdata->csdev->dev; 943 944 get_etr_buf_hw(dev, &buf_hw); 945 etr_buf = kzalloc(sizeof(*etr_buf), GFP_KERNEL); 946 if (!etr_buf) 947 return ERR_PTR(-ENOMEM); 948 949 etr_buf->size = size; 950 951 /* If there is user directive for buffer mode, try that first */ 952 if (drvdata->etr_mode != ETR_MODE_AUTO) 953 rc = tmc_etr_mode_alloc_buf(drvdata->etr_mode, drvdata, 954 etr_buf, node, pages); 955 956 /* 957 * If we have to use an existing list of pages, we cannot reliably 958 * use a contiguous DMA memory (even if we have an IOMMU). Otherwise, 959 * we use the contiguous DMA memory if at least one of the following 960 * conditions is true: 961 * a) The ETR cannot use Scatter-Gather. 962 * b) we have a backing IOMMU 963 * c) The requested memory size is smaller (< 1M). 964 * 965 * Fallback to available mechanisms. 966 * 967 */ 968 if (rc && !pages && etr_can_use_flat_mode(&buf_hw, size)) 969 rc = tmc_etr_mode_alloc_buf(ETR_MODE_FLAT, drvdata, 970 etr_buf, node, pages); 971 if (rc && buf_hw.has_etr_sg) 972 rc = tmc_etr_mode_alloc_buf(ETR_MODE_ETR_SG, drvdata, 973 etr_buf, node, pages); 974 if (rc && buf_hw.has_catu) 975 rc = tmc_etr_mode_alloc_buf(ETR_MODE_CATU, drvdata, 976 etr_buf, node, pages); 977 if (rc) { 978 kfree(etr_buf); 979 return ERR_PTR(rc); 980 } 981 982 refcount_set(&etr_buf->refcount, 1); 983 dev_dbg(dev, "allocated buffer of size %ldKB in mode %d\n", 984 (unsigned long)size >> 10, etr_buf->mode); 985 return etr_buf; 986 } 987 988 static void tmc_free_etr_buf(struct etr_buf *etr_buf) 989 { 990 WARN_ON(!etr_buf->ops || !etr_buf->ops->free); 991 etr_buf->ops->free(etr_buf); 992 kfree(etr_buf); 993 } 994 995 /* 996 * tmc_etr_buf_get_data: Get the pointer the trace data at @offset 997 * with a maximum of @len bytes. 998 * Returns: The size of the linear data available @pos, with *bufpp 999 * updated to point to the buffer. 1000 */ 1001 static ssize_t tmc_etr_buf_get_data(struct etr_buf *etr_buf, 1002 u64 offset, size_t len, char **bufpp) 1003 { 1004 /* Adjust the length to limit this transaction to end of buffer */ 1005 len = (len < (etr_buf->size - offset)) ? len : etr_buf->size - offset; 1006 1007 return etr_buf->ops->get_data(etr_buf, (u64)offset, len, bufpp); 1008 } 1009 1010 static s64 1011 tmc_etr_buf_insert_barrier_packet(struct etr_buf *etr_buf, u64 offset) 1012 { 1013 ssize_t len; 1014 char *bufp; 1015 1016 len = tmc_etr_buf_get_data(etr_buf, offset, 1017 CORESIGHT_BARRIER_PKT_SIZE, &bufp); 1018 if (WARN_ON(len < 0 || len < CORESIGHT_BARRIER_PKT_SIZE)) 1019 return -EINVAL; 1020 coresight_insert_barrier_packet(bufp); 1021 return offset + CORESIGHT_BARRIER_PKT_SIZE; 1022 } 1023 1024 /* 1025 * tmc_sync_etr_buf: Sync the trace buffer availability with drvdata. 1026 * Makes sure the trace data is synced to the memory for consumption. 1027 * @etr_buf->offset will hold the offset to the beginning of the trace data 1028 * within the buffer, with @etr_buf->len bytes to consume. 1029 */ 1030 static void tmc_sync_etr_buf(struct tmc_drvdata *drvdata) 1031 { 1032 struct etr_buf *etr_buf = drvdata->etr_buf; 1033 u64 rrp, rwp; 1034 u32 status; 1035 1036 rrp = tmc_read_rrp(drvdata); 1037 rwp = tmc_read_rwp(drvdata); 1038 status = readl_relaxed(drvdata->base + TMC_STS); 1039 1040 /* 1041 * If there were memory errors in the session, truncate the 1042 * buffer. 1043 */ 1044 if (WARN_ON_ONCE(status & TMC_STS_MEMERR)) { 1045 dev_dbg(&drvdata->csdev->dev, 1046 "tmc memory error detected, truncating buffer\n"); 1047 etr_buf->len = 0; 1048 etr_buf->full = false; 1049 return; 1050 } 1051 1052 etr_buf->full = !!(status & TMC_STS_FULL); 1053 1054 WARN_ON(!etr_buf->ops || !etr_buf->ops->sync); 1055 1056 etr_buf->ops->sync(etr_buf, rrp, rwp); 1057 } 1058 1059 static int __tmc_etr_enable_hw(struct tmc_drvdata *drvdata) 1060 { 1061 u32 axictl, sts, ffcr; 1062 struct etr_buf *etr_buf = drvdata->etr_buf; 1063 int rc = 0; 1064 1065 CS_UNLOCK(drvdata->base); 1066 1067 /* Wait for TMCSReady bit to be set */ 1068 rc = tmc_wait_for_tmcready(drvdata); 1069 if (rc) { 1070 dev_err(&drvdata->csdev->dev, 1071 "Failed to enable : TMC not ready\n"); 1072 CS_LOCK(drvdata->base); 1073 return rc; 1074 } 1075 1076 writel_relaxed(etr_buf->size / 4, drvdata->base + TMC_RSZ); 1077 writel_relaxed(TMC_MODE_CIRCULAR_BUFFER, drvdata->base + TMC_MODE); 1078 1079 axictl = readl_relaxed(drvdata->base + TMC_AXICTL); 1080 axictl &= ~TMC_AXICTL_CLEAR_MASK; 1081 axictl |= TMC_AXICTL_PROT_CTL_B1; 1082 axictl |= TMC_AXICTL_WR_BURST(drvdata->max_burst_size); 1083 axictl |= TMC_AXICTL_AXCACHE_OS; 1084 1085 if (tmc_etr_has_cap(drvdata, TMC_ETR_AXI_ARCACHE)) { 1086 axictl &= ~TMC_AXICTL_ARCACHE_MASK; 1087 axictl |= TMC_AXICTL_ARCACHE_OS; 1088 } 1089 1090 if (etr_buf->mode == ETR_MODE_ETR_SG) 1091 axictl |= TMC_AXICTL_SCT_GAT_MODE; 1092 1093 writel_relaxed(axictl, drvdata->base + TMC_AXICTL); 1094 tmc_write_dba(drvdata, etr_buf->hwaddr); 1095 /* 1096 * If the TMC pointers must be programmed before the session, 1097 * we have to set it properly (i.e, RRP/RWP to base address and 1098 * STS to "not full"). 1099 */ 1100 if (tmc_etr_has_cap(drvdata, TMC_ETR_SAVE_RESTORE)) { 1101 tmc_write_rrp(drvdata, etr_buf->hwaddr); 1102 tmc_write_rwp(drvdata, etr_buf->hwaddr); 1103 sts = readl_relaxed(drvdata->base + TMC_STS) & ~TMC_STS_FULL; 1104 writel_relaxed(sts, drvdata->base + TMC_STS); 1105 } 1106 1107 ffcr = TMC_FFCR_EN_FMT | TMC_FFCR_EN_TI | TMC_FFCR_FON_FLIN | 1108 TMC_FFCR_FON_TRIG_EVT | TMC_FFCR_TRIGON_TRIGIN; 1109 if (drvdata->stop_on_flush) 1110 ffcr |= TMC_FFCR_STOP_ON_FLUSH; 1111 writel_relaxed(ffcr, drvdata->base + TMC_FFCR); 1112 1113 writel_relaxed(drvdata->trigger_cntr, drvdata->base + TMC_TRG); 1114 tmc_enable_hw(drvdata); 1115 1116 CS_LOCK(drvdata->base); 1117 return rc; 1118 } 1119 1120 static int tmc_etr_enable_hw(struct tmc_drvdata *drvdata, 1121 struct etr_buf *etr_buf) 1122 { 1123 int rc; 1124 1125 /* Callers should provide an appropriate buffer for use */ 1126 if (WARN_ON(!etr_buf)) 1127 return -EINVAL; 1128 1129 if ((etr_buf->mode == ETR_MODE_ETR_SG) && 1130 WARN_ON(!tmc_etr_has_cap(drvdata, TMC_ETR_SG))) 1131 return -EINVAL; 1132 1133 if (WARN_ON(drvdata->etr_buf)) 1134 return -EBUSY; 1135 1136 rc = coresight_claim_device(drvdata->csdev); 1137 if (!rc) { 1138 drvdata->etr_buf = etr_buf; 1139 rc = __tmc_etr_enable_hw(drvdata); 1140 if (rc) { 1141 drvdata->etr_buf = NULL; 1142 coresight_disclaim_device(drvdata->csdev); 1143 } 1144 } 1145 1146 return rc; 1147 } 1148 1149 /* 1150 * Return the available trace data in the buffer (starts at etr_buf->offset, 1151 * limited by etr_buf->len) from @pos, with a maximum limit of @len, 1152 * also updating the @bufpp on where to find it. Since the trace data 1153 * starts at anywhere in the buffer, depending on the RRP, we adjust the 1154 * @len returned to handle buffer wrapping around. 1155 * 1156 * We are protected here by drvdata->reading != 0, which ensures the 1157 * sysfs_buf stays alive. 1158 */ 1159 ssize_t tmc_etr_get_sysfs_trace(struct tmc_drvdata *drvdata, 1160 loff_t pos, size_t len, char **bufpp) 1161 { 1162 s64 offset; 1163 ssize_t actual = len; 1164 struct etr_buf *etr_buf = drvdata->sysfs_buf; 1165 1166 if (pos + actual > etr_buf->len) 1167 actual = etr_buf->len - pos; 1168 if (actual <= 0) 1169 return actual; 1170 1171 /* Compute the offset from which we read the data */ 1172 offset = etr_buf->offset + pos; 1173 if (offset >= etr_buf->size) 1174 offset -= etr_buf->size; 1175 return tmc_etr_buf_get_data(etr_buf, offset, actual, bufpp); 1176 } 1177 1178 static struct etr_buf * 1179 tmc_etr_setup_sysfs_buf(struct tmc_drvdata *drvdata) 1180 { 1181 return tmc_alloc_etr_buf(drvdata, drvdata->size, 1182 0, cpu_to_node(0), NULL); 1183 } 1184 1185 static void 1186 tmc_etr_free_sysfs_buf(struct etr_buf *buf) 1187 { 1188 if (buf) 1189 tmc_free_etr_buf(buf); 1190 } 1191 1192 static void tmc_etr_sync_sysfs_buf(struct tmc_drvdata *drvdata) 1193 { 1194 struct etr_buf *etr_buf = drvdata->etr_buf; 1195 1196 if (WARN_ON(drvdata->sysfs_buf != etr_buf)) { 1197 tmc_etr_free_sysfs_buf(drvdata->sysfs_buf); 1198 drvdata->sysfs_buf = NULL; 1199 } else { 1200 tmc_sync_etr_buf(drvdata); 1201 /* 1202 * Insert barrier packets at the beginning, if there was 1203 * an overflow. 1204 */ 1205 if (etr_buf->full) 1206 tmc_etr_buf_insert_barrier_packet(etr_buf, 1207 etr_buf->offset); 1208 } 1209 } 1210 1211 static void __tmc_etr_disable_hw(struct tmc_drvdata *drvdata) 1212 { 1213 CS_UNLOCK(drvdata->base); 1214 1215 tmc_flush_and_stop(drvdata); 1216 /* 1217 * When operating in sysFS mode the content of the buffer needs to be 1218 * read before the TMC is disabled. 1219 */ 1220 if (coresight_get_mode(drvdata->csdev) == CS_MODE_SYSFS) 1221 tmc_etr_sync_sysfs_buf(drvdata); 1222 1223 tmc_disable_hw(drvdata); 1224 1225 CS_LOCK(drvdata->base); 1226 1227 } 1228 1229 void tmc_etr_disable_hw(struct tmc_drvdata *drvdata) 1230 { 1231 __tmc_etr_disable_hw(drvdata); 1232 coresight_disclaim_device(drvdata->csdev); 1233 /* Reset the ETR buf used by hardware */ 1234 drvdata->etr_buf = NULL; 1235 } 1236 1237 static struct etr_buf *tmc_etr_get_sysfs_buffer(struct coresight_device *csdev) 1238 { 1239 int ret = 0; 1240 unsigned long flags; 1241 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1242 struct etr_buf *sysfs_buf = NULL, *new_buf = NULL, *free_buf = NULL; 1243 1244 /* 1245 * If we are enabling the ETR from disabled state, we need to make 1246 * sure we have a buffer with the right size. The etr_buf is not reset 1247 * immediately after we stop the tracing in SYSFS mode as we wait for 1248 * the user to collect the data. We may be able to reuse the existing 1249 * buffer, provided the size matches. Any allocation has to be done 1250 * with the lock released. 1251 */ 1252 raw_spin_lock_irqsave(&drvdata->spinlock, flags); 1253 sysfs_buf = READ_ONCE(drvdata->sysfs_buf); 1254 if (!sysfs_buf || (sysfs_buf->size != drvdata->size)) { 1255 raw_spin_unlock_irqrestore(&drvdata->spinlock, flags); 1256 1257 /* Allocate memory with the locks released */ 1258 free_buf = new_buf = tmc_etr_setup_sysfs_buf(drvdata); 1259 if (IS_ERR(new_buf)) 1260 return new_buf; 1261 1262 /* Let's try again */ 1263 raw_spin_lock_irqsave(&drvdata->spinlock, flags); 1264 } 1265 1266 if (drvdata->reading || coresight_get_mode(csdev) == CS_MODE_PERF) { 1267 ret = -EBUSY; 1268 goto out; 1269 } 1270 1271 /* 1272 * If we don't have a buffer or it doesn't match the requested size, 1273 * use the buffer allocated above. Otherwise reuse the existing buffer. 1274 */ 1275 sysfs_buf = READ_ONCE(drvdata->sysfs_buf); 1276 if (!sysfs_buf || (new_buf && sysfs_buf->size != new_buf->size)) { 1277 free_buf = sysfs_buf; 1278 drvdata->sysfs_buf = new_buf; 1279 } 1280 1281 out: 1282 raw_spin_unlock_irqrestore(&drvdata->spinlock, flags); 1283 1284 /* Free memory outside the spinlock if need be */ 1285 if (free_buf) 1286 tmc_etr_free_sysfs_buf(free_buf); 1287 return ret ? ERR_PTR(ret) : drvdata->sysfs_buf; 1288 } 1289 1290 static int tmc_enable_etr_sink_sysfs(struct coresight_device *csdev) 1291 { 1292 int ret = 0; 1293 unsigned long flags; 1294 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1295 struct etr_buf *sysfs_buf = tmc_etr_get_sysfs_buffer(csdev); 1296 1297 if (IS_ERR(sysfs_buf)) 1298 return PTR_ERR(sysfs_buf); 1299 1300 raw_spin_lock_irqsave(&drvdata->spinlock, flags); 1301 1302 /* 1303 * In sysFS mode we can have multiple writers per sink. Since this 1304 * sink is already enabled no memory is needed and the HW need not be 1305 * touched, even if the buffer size has changed. 1306 */ 1307 if (coresight_get_mode(csdev) == CS_MODE_SYSFS) { 1308 csdev->refcnt++; 1309 goto out; 1310 } 1311 1312 ret = tmc_etr_enable_hw(drvdata, sysfs_buf); 1313 if (!ret) { 1314 coresight_set_mode(csdev, CS_MODE_SYSFS); 1315 csdev->refcnt++; 1316 } 1317 1318 out: 1319 raw_spin_unlock_irqrestore(&drvdata->spinlock, flags); 1320 1321 if (!ret) 1322 dev_dbg(&csdev->dev, "TMC-ETR enabled\n"); 1323 1324 return ret; 1325 } 1326 1327 struct etr_buf *tmc_etr_get_buffer(struct coresight_device *csdev, 1328 enum cs_mode mode, void *data) 1329 { 1330 struct perf_output_handle *handle = data; 1331 struct etr_perf_buffer *etr_perf; 1332 1333 switch (mode) { 1334 case CS_MODE_SYSFS: 1335 return tmc_etr_get_sysfs_buffer(csdev); 1336 case CS_MODE_PERF: 1337 etr_perf = etm_perf_sink_config(handle); 1338 if (WARN_ON(!etr_perf || !etr_perf->etr_buf)) 1339 return ERR_PTR(-EINVAL); 1340 return etr_perf->etr_buf; 1341 default: 1342 return ERR_PTR(-EINVAL); 1343 } 1344 } 1345 EXPORT_SYMBOL_GPL(tmc_etr_get_buffer); 1346 1347 /* 1348 * alloc_etr_buf: Allocate ETR buffer for use by perf. 1349 * The size of the hardware buffer is dependent on the size configured 1350 * via sysfs and the perf ring buffer size. We prefer to allocate the 1351 * largest possible size, scaling down the size by half until it 1352 * reaches a minimum limit (1M), beyond which we give up. 1353 */ 1354 static struct etr_buf * 1355 alloc_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event, 1356 int nr_pages, void **pages, bool snapshot) 1357 { 1358 int node; 1359 struct etr_buf *etr_buf; 1360 unsigned long size; 1361 1362 node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu); 1363 /* 1364 * Try to match the perf ring buffer size if it is larger 1365 * than the size requested via sysfs. 1366 */ 1367 if ((nr_pages << PAGE_SHIFT) > drvdata->size) { 1368 etr_buf = tmc_alloc_etr_buf(drvdata, ((ssize_t)nr_pages << PAGE_SHIFT), 1369 0, node, NULL); 1370 if (!IS_ERR(etr_buf)) 1371 goto done; 1372 } 1373 1374 /* 1375 * Else switch to configured size for this ETR 1376 * and scale down until we hit the minimum limit. 1377 */ 1378 size = drvdata->size; 1379 do { 1380 etr_buf = tmc_alloc_etr_buf(drvdata, size, 0, node, NULL); 1381 if (!IS_ERR(etr_buf)) 1382 goto done; 1383 size /= 2; 1384 } while (size >= TMC_ETR_PERF_MIN_BUF_SIZE); 1385 1386 return ERR_PTR(-ENOMEM); 1387 1388 done: 1389 return etr_buf; 1390 } 1391 1392 static struct etr_buf * 1393 get_perf_etr_buf_cpu_wide(struct tmc_drvdata *drvdata, 1394 struct perf_event *event, int nr_pages, 1395 void **pages, bool snapshot) 1396 { 1397 int ret; 1398 pid_t pid = task_pid_nr(event->owner); 1399 struct etr_buf *etr_buf; 1400 1401 retry: 1402 /* 1403 * An etr_perf_buffer is associated with an event and holds a reference 1404 * to the AUX ring buffer that was created for that event. In CPU-wide 1405 * N:1 mode multiple events (one per CPU), each with its own AUX ring 1406 * buffer, share a sink. As such an etr_perf_buffer is created for each 1407 * event but a single etr_buf associated with the ETR is shared between 1408 * them. The last event in a trace session will copy the content of the 1409 * etr_buf to its AUX ring buffer. Ring buffer associated to other 1410 * events are simply not used an freed as events are destoyed. We still 1411 * need to allocate a ring buffer for each event since we don't know 1412 * which event will be last. 1413 */ 1414 1415 /* 1416 * The first thing to do here is check if an etr_buf has already been 1417 * allocated for this session. If so it is shared with this event, 1418 * otherwise it is created. 1419 */ 1420 mutex_lock(&drvdata->idr_mutex); 1421 etr_buf = idr_find(&drvdata->idr, pid); 1422 if (etr_buf) { 1423 refcount_inc(&etr_buf->refcount); 1424 mutex_unlock(&drvdata->idr_mutex); 1425 return etr_buf; 1426 } 1427 1428 /* If we made it here no buffer has been allocated, do so now. */ 1429 mutex_unlock(&drvdata->idr_mutex); 1430 1431 etr_buf = alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot); 1432 if (IS_ERR(etr_buf)) 1433 return etr_buf; 1434 1435 /* Now that we have a buffer, add it to the IDR. */ 1436 mutex_lock(&drvdata->idr_mutex); 1437 ret = idr_alloc(&drvdata->idr, etr_buf, pid, pid + 1, GFP_KERNEL); 1438 mutex_unlock(&drvdata->idr_mutex); 1439 1440 /* Another event with this session ID has allocated this buffer. */ 1441 if (ret == -ENOSPC) { 1442 tmc_free_etr_buf(etr_buf); 1443 goto retry; 1444 } 1445 1446 /* The IDR can't allocate room for a new session, abandon ship. */ 1447 if (ret == -ENOMEM) { 1448 tmc_free_etr_buf(etr_buf); 1449 return ERR_PTR(ret); 1450 } 1451 1452 1453 return etr_buf; 1454 } 1455 1456 static struct etr_buf * 1457 get_perf_etr_buf_per_thread(struct tmc_drvdata *drvdata, 1458 struct perf_event *event, int nr_pages, 1459 void **pages, bool snapshot) 1460 { 1461 /* 1462 * In per-thread mode the etr_buf isn't shared, so just go ahead 1463 * with memory allocation. 1464 */ 1465 return alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot); 1466 } 1467 1468 static struct etr_buf * 1469 get_perf_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event, 1470 int nr_pages, void **pages, bool snapshot) 1471 { 1472 if (event->cpu == -1) 1473 return get_perf_etr_buf_per_thread(drvdata, event, nr_pages, 1474 pages, snapshot); 1475 1476 return get_perf_etr_buf_cpu_wide(drvdata, event, nr_pages, 1477 pages, snapshot); 1478 } 1479 1480 static struct etr_perf_buffer * 1481 tmc_etr_setup_perf_buf(struct tmc_drvdata *drvdata, struct perf_event *event, 1482 int nr_pages, void **pages, bool snapshot) 1483 { 1484 int node; 1485 struct etr_buf *etr_buf; 1486 struct etr_perf_buffer *etr_perf; 1487 1488 node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu); 1489 1490 etr_perf = kzalloc_node(sizeof(*etr_perf), GFP_KERNEL, node); 1491 if (!etr_perf) 1492 return ERR_PTR(-ENOMEM); 1493 1494 etr_buf = get_perf_etr_buf(drvdata, event, nr_pages, pages, snapshot); 1495 if (!IS_ERR(etr_buf)) 1496 goto done; 1497 1498 kfree(etr_perf); 1499 return ERR_PTR(-ENOMEM); 1500 1501 done: 1502 /* 1503 * Keep a reference to the ETR this buffer has been allocated for 1504 * in order to have access to the IDR in tmc_free_etr_buffer(). 1505 */ 1506 etr_perf->drvdata = drvdata; 1507 etr_perf->etr_buf = etr_buf; 1508 1509 return etr_perf; 1510 } 1511 1512 1513 static void *tmc_alloc_etr_buffer(struct coresight_device *csdev, 1514 struct perf_event *event, void **pages, 1515 int nr_pages, bool snapshot) 1516 { 1517 struct etr_perf_buffer *etr_perf; 1518 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1519 1520 etr_perf = tmc_etr_setup_perf_buf(drvdata, event, 1521 nr_pages, pages, snapshot); 1522 if (IS_ERR(etr_perf)) { 1523 dev_dbg(&csdev->dev, "Unable to allocate ETR buffer\n"); 1524 return NULL; 1525 } 1526 1527 etr_perf->pid = task_pid_nr(event->owner); 1528 etr_perf->snapshot = snapshot; 1529 etr_perf->nr_pages = nr_pages; 1530 etr_perf->pages = pages; 1531 1532 return etr_perf; 1533 } 1534 1535 static void tmc_free_etr_buffer(void *config) 1536 { 1537 struct etr_perf_buffer *etr_perf = config; 1538 struct tmc_drvdata *drvdata = etr_perf->drvdata; 1539 struct etr_buf *buf, *etr_buf = etr_perf->etr_buf; 1540 1541 if (!etr_buf) 1542 goto free_etr_perf_buffer; 1543 1544 mutex_lock(&drvdata->idr_mutex); 1545 /* If we are not the last one to use the buffer, don't touch it. */ 1546 if (!refcount_dec_and_test(&etr_buf->refcount)) { 1547 mutex_unlock(&drvdata->idr_mutex); 1548 goto free_etr_perf_buffer; 1549 } 1550 1551 /* We are the last one, remove from the IDR and free the buffer. */ 1552 buf = idr_remove(&drvdata->idr, etr_perf->pid); 1553 mutex_unlock(&drvdata->idr_mutex); 1554 1555 /* 1556 * Something went very wrong if the buffer associated with this ID 1557 * is not the same in the IDR. Leak to avoid use after free. 1558 */ 1559 if (buf && WARN_ON(buf != etr_buf)) 1560 goto free_etr_perf_buffer; 1561 1562 tmc_free_etr_buf(etr_perf->etr_buf); 1563 1564 free_etr_perf_buffer: 1565 kfree(etr_perf); 1566 } 1567 1568 /* 1569 * tmc_etr_sync_perf_buffer: Copy the actual trace data from the hardware 1570 * buffer to the perf ring buffer. 1571 */ 1572 static void tmc_etr_sync_perf_buffer(struct etr_perf_buffer *etr_perf, 1573 unsigned long head, 1574 unsigned long src_offset, 1575 unsigned long to_copy) 1576 { 1577 long bytes; 1578 long pg_idx, pg_offset; 1579 char **dst_pages, *src_buf; 1580 struct etr_buf *etr_buf = etr_perf->etr_buf; 1581 1582 head = PERF_IDX2OFF(head, etr_perf); 1583 pg_idx = head >> PAGE_SHIFT; 1584 pg_offset = head & (PAGE_SIZE - 1); 1585 dst_pages = (char **)etr_perf->pages; 1586 1587 while (to_copy > 0) { 1588 /* 1589 * In one iteration, we can copy minimum of : 1590 * 1) what is available in the source buffer, 1591 * 2) what is available in the source buffer, before it 1592 * wraps around. 1593 * 3) what is available in the destination page. 1594 * in one iteration. 1595 */ 1596 if (src_offset >= etr_buf->size) 1597 src_offset -= etr_buf->size; 1598 bytes = tmc_etr_buf_get_data(etr_buf, src_offset, to_copy, 1599 &src_buf); 1600 if (WARN_ON_ONCE(bytes <= 0)) 1601 break; 1602 bytes = min(bytes, (long)(PAGE_SIZE - pg_offset)); 1603 1604 memcpy(dst_pages[pg_idx] + pg_offset, src_buf, bytes); 1605 1606 to_copy -= bytes; 1607 1608 /* Move destination pointers */ 1609 pg_offset += bytes; 1610 if (pg_offset == PAGE_SIZE) { 1611 pg_offset = 0; 1612 if (++pg_idx == etr_perf->nr_pages) 1613 pg_idx = 0; 1614 } 1615 1616 /* Move source pointers */ 1617 src_offset += bytes; 1618 } 1619 } 1620 1621 /* 1622 * tmc_update_etr_buffer : Update the perf ring buffer with the 1623 * available trace data. We use software double buffering at the moment. 1624 * 1625 * TODO: Add support for reusing the perf ring buffer. 1626 */ 1627 static unsigned long 1628 tmc_update_etr_buffer(struct coresight_device *csdev, 1629 struct perf_output_handle *handle, 1630 void *config) 1631 { 1632 bool lost = false; 1633 unsigned long flags, offset, size = 0; 1634 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1635 struct etr_perf_buffer *etr_perf = config; 1636 struct etr_buf *etr_buf = etr_perf->etr_buf; 1637 struct perf_event *event = handle->event; 1638 1639 raw_spin_lock_irqsave(&drvdata->spinlock, flags); 1640 1641 /* Don't do anything if another tracer is using this sink */ 1642 if (csdev->refcnt != 1) { 1643 raw_spin_unlock_irqrestore(&drvdata->spinlock, flags); 1644 goto out; 1645 } 1646 1647 if (WARN_ON(drvdata->perf_buf != etr_buf)) { 1648 lost = true; 1649 raw_spin_unlock_irqrestore(&drvdata->spinlock, flags); 1650 goto out; 1651 } 1652 1653 CS_UNLOCK(drvdata->base); 1654 1655 tmc_flush_and_stop(drvdata); 1656 tmc_sync_etr_buf(drvdata); 1657 1658 CS_LOCK(drvdata->base); 1659 raw_spin_unlock_irqrestore(&drvdata->spinlock, flags); 1660 1661 lost = etr_buf->full; 1662 offset = etr_buf->offset; 1663 size = etr_buf->len; 1664 1665 /* 1666 * The ETR buffer may be bigger than the space available in the 1667 * perf ring buffer (handle->size). If so advance the offset so that we 1668 * get the latest trace data. In snapshot mode none of that matters 1669 * since we are expected to clobber stale data in favour of the latest 1670 * traces. 1671 */ 1672 if (!etr_perf->snapshot && size > handle->size) { 1673 u32 mask = tmc_get_memwidth_mask(drvdata); 1674 1675 /* 1676 * Make sure the new size is aligned in accordance with the 1677 * requirement explained in function tmc_get_memwidth_mask(). 1678 */ 1679 size = handle->size & mask; 1680 offset = etr_buf->offset + etr_buf->len - size; 1681 1682 if (offset >= etr_buf->size) 1683 offset -= etr_buf->size; 1684 lost = true; 1685 } 1686 1687 /* Insert barrier packets at the beginning, if there was an overflow */ 1688 if (lost) 1689 tmc_etr_buf_insert_barrier_packet(etr_buf, offset); 1690 tmc_etr_sync_perf_buffer(etr_perf, handle->head, offset, size); 1691 1692 /* 1693 * In snapshot mode we simply increment the head by the number of byte 1694 * that were written. User space will figure out how many bytes to get 1695 * from the AUX buffer based on the position of the head. 1696 */ 1697 if (etr_perf->snapshot) 1698 handle->head += size; 1699 1700 /* 1701 * Ensure that the AUX trace data is visible before the aux_head 1702 * is updated via perf_aux_output_end(), as expected by the 1703 * perf ring buffer. 1704 */ 1705 smp_wmb(); 1706 1707 /* 1708 * If the event is active, it is triggered during an AUX pause. 1709 * Re-enable the sink so that it is ready when AUX resume is invoked. 1710 */ 1711 raw_spin_lock_irqsave(&drvdata->spinlock, flags); 1712 if (csdev->refcnt && !event->hw.state) 1713 __tmc_etr_enable_hw(drvdata); 1714 raw_spin_unlock_irqrestore(&drvdata->spinlock, flags); 1715 1716 out: 1717 /* 1718 * Don't set the TRUNCATED flag in snapshot mode because 1) the 1719 * captured buffer is expected to be truncated and 2) a full buffer 1720 * prevents the event from being re-enabled by the perf core, 1721 * resulting in stale data being send to user space. 1722 */ 1723 if (!etr_perf->snapshot && lost) 1724 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED); 1725 return size; 1726 } 1727 1728 static int tmc_enable_etr_sink_perf(struct coresight_device *csdev, void *data) 1729 { 1730 int rc = 0; 1731 pid_t pid; 1732 unsigned long flags; 1733 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1734 struct perf_output_handle *handle = data; 1735 struct etr_perf_buffer *etr_perf = etm_perf_sink_config(handle); 1736 1737 raw_spin_lock_irqsave(&drvdata->spinlock, flags); 1738 /* Don't use this sink if it is already claimed by sysFS */ 1739 if (coresight_get_mode(csdev) == CS_MODE_SYSFS) { 1740 rc = -EBUSY; 1741 goto unlock_out; 1742 } 1743 1744 if (WARN_ON(!etr_perf || !etr_perf->etr_buf)) { 1745 rc = -EINVAL; 1746 goto unlock_out; 1747 } 1748 1749 /* Get a handle on the pid of the session owner */ 1750 pid = etr_perf->pid; 1751 1752 /* Do not proceed if this device is associated with another session */ 1753 if (drvdata->pid != -1 && drvdata->pid != pid) { 1754 rc = -EBUSY; 1755 goto unlock_out; 1756 } 1757 1758 /* 1759 * No HW configuration is needed if the sink is already in 1760 * use for this session. 1761 */ 1762 if (drvdata->pid == pid) { 1763 csdev->refcnt++; 1764 goto unlock_out; 1765 } 1766 1767 rc = tmc_etr_enable_hw(drvdata, etr_perf->etr_buf); 1768 if (!rc) { 1769 /* Associate with monitored process. */ 1770 drvdata->pid = pid; 1771 coresight_set_mode(csdev, CS_MODE_PERF); 1772 drvdata->perf_buf = etr_perf->etr_buf; 1773 csdev->refcnt++; 1774 } 1775 1776 unlock_out: 1777 raw_spin_unlock_irqrestore(&drvdata->spinlock, flags); 1778 return rc; 1779 } 1780 1781 static int tmc_enable_etr_sink(struct coresight_device *csdev, 1782 enum cs_mode mode, void *data) 1783 { 1784 switch (mode) { 1785 case CS_MODE_SYSFS: 1786 return tmc_enable_etr_sink_sysfs(csdev); 1787 case CS_MODE_PERF: 1788 return tmc_enable_etr_sink_perf(csdev, data); 1789 default: 1790 return -EINVAL; 1791 } 1792 } 1793 1794 static int tmc_disable_etr_sink(struct coresight_device *csdev) 1795 { 1796 unsigned long flags; 1797 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1798 1799 raw_spin_lock_irqsave(&drvdata->spinlock, flags); 1800 1801 if (drvdata->reading) { 1802 raw_spin_unlock_irqrestore(&drvdata->spinlock, flags); 1803 return -EBUSY; 1804 } 1805 1806 csdev->refcnt--; 1807 if (csdev->refcnt) { 1808 raw_spin_unlock_irqrestore(&drvdata->spinlock, flags); 1809 return -EBUSY; 1810 } 1811 1812 /* Complain if we (somehow) got out of sync */ 1813 WARN_ON_ONCE(coresight_get_mode(csdev) == CS_MODE_DISABLED); 1814 tmc_etr_disable_hw(drvdata); 1815 /* Dissociate from monitored process. */ 1816 drvdata->pid = -1; 1817 coresight_set_mode(csdev, CS_MODE_DISABLED); 1818 /* Reset perf specific data */ 1819 drvdata->perf_buf = NULL; 1820 1821 raw_spin_unlock_irqrestore(&drvdata->spinlock, flags); 1822 1823 dev_dbg(&csdev->dev, "TMC-ETR disabled\n"); 1824 return 0; 1825 } 1826 1827 static int tmc_panic_sync_etr(struct coresight_device *csdev) 1828 { 1829 u32 val; 1830 struct tmc_crash_metadata *mdata; 1831 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1832 1833 mdata = (struct tmc_crash_metadata *)drvdata->crash_mdata.vaddr; 1834 1835 if (!drvdata->etr_buf) 1836 return 0; 1837 1838 /* Being in RESRV mode implies valid reserved memory as well */ 1839 if (drvdata->etr_buf->mode != ETR_MODE_RESRV) 1840 return 0; 1841 1842 if (!tmc_has_crash_mdata_buffer(drvdata)) 1843 return 0; 1844 1845 CS_UNLOCK(drvdata->base); 1846 1847 /* Proceed only if ETR is enabled */ 1848 val = readl(drvdata->base + TMC_CTL); 1849 if (!(val & TMC_CTL_CAPT_EN)) 1850 goto out; 1851 1852 val = readl(drvdata->base + TMC_FFSR); 1853 /* Do manual flush and stop only if its not auto-stopped */ 1854 if (!(val & TMC_FFSR_FT_STOPPED)) { 1855 dev_dbg(&csdev->dev, 1856 "%s: Triggering manual flush\n", __func__); 1857 tmc_flush_and_stop(drvdata); 1858 } else 1859 tmc_wait_for_tmcready(drvdata); 1860 1861 /* Sync registers from hardware to metadata region */ 1862 mdata->tmc_ram_size = readl(drvdata->base + TMC_RSZ); 1863 mdata->tmc_sts = readl(drvdata->base + TMC_STS); 1864 mdata->tmc_mode = readl(drvdata->base + TMC_MODE); 1865 mdata->tmc_ffcr = readl(drvdata->base + TMC_FFCR); 1866 mdata->tmc_ffsr = readl(drvdata->base + TMC_FFSR); 1867 mdata->tmc_rrp = tmc_read_rrp(drvdata); 1868 mdata->tmc_rwp = tmc_read_rwp(drvdata); 1869 mdata->tmc_dba = tmc_read_dba(drvdata); 1870 mdata->trace_paddr = drvdata->resrv_buf.paddr; 1871 mdata->version = CS_CRASHDATA_VERSION; 1872 1873 /* 1874 * Make sure all previous writes are ordered, 1875 * before we mark valid 1876 */ 1877 dmb(sy); 1878 mdata->valid = true; 1879 /* 1880 * Below order need to maintained, since crc of metadata 1881 * is dependent on first 1882 */ 1883 mdata->crc32_tdata = find_crash_tracedata_crc(drvdata, mdata); 1884 mdata->crc32_mdata = find_crash_metadata_crc(mdata); 1885 1886 tmc_disable_hw(drvdata); 1887 1888 dev_dbg(&csdev->dev, "%s: success\n", __func__); 1889 out: 1890 CS_UNLOCK(drvdata->base); 1891 1892 return 0; 1893 } 1894 1895 static const struct coresight_ops_sink tmc_etr_sink_ops = { 1896 .enable = tmc_enable_etr_sink, 1897 .disable = tmc_disable_etr_sink, 1898 .alloc_buffer = tmc_alloc_etr_buffer, 1899 .update_buffer = tmc_update_etr_buffer, 1900 .free_buffer = tmc_free_etr_buffer, 1901 }; 1902 1903 static const struct coresight_ops_panic tmc_etr_sync_ops = { 1904 .sync = tmc_panic_sync_etr, 1905 }; 1906 1907 const struct coresight_ops tmc_etr_cs_ops = { 1908 .sink_ops = &tmc_etr_sink_ops, 1909 .panic_ops = &tmc_etr_sync_ops, 1910 }; 1911 1912 int tmc_read_prepare_etr(struct tmc_drvdata *drvdata) 1913 { 1914 int ret = 0; 1915 unsigned long flags; 1916 1917 /* config types are set a boot time and never change */ 1918 if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR)) 1919 return -EINVAL; 1920 1921 raw_spin_lock_irqsave(&drvdata->spinlock, flags); 1922 if (drvdata->reading) { 1923 ret = -EBUSY; 1924 goto out; 1925 } 1926 1927 /* 1928 * We can safely allow reads even if the ETR is operating in PERF mode, 1929 * since the sysfs session is captured in mode specific data. 1930 * If drvdata::sysfs_data is NULL the trace data has been read already. 1931 */ 1932 if (!drvdata->sysfs_buf) { 1933 ret = -EINVAL; 1934 goto out; 1935 } 1936 1937 /* Disable the TMC if we are trying to read from a running session. */ 1938 if (coresight_get_mode(drvdata->csdev) == CS_MODE_SYSFS) 1939 __tmc_etr_disable_hw(drvdata); 1940 1941 drvdata->reading = true; 1942 out: 1943 raw_spin_unlock_irqrestore(&drvdata->spinlock, flags); 1944 1945 return ret; 1946 } 1947 1948 int tmc_read_unprepare_etr(struct tmc_drvdata *drvdata) 1949 { 1950 unsigned long flags; 1951 struct etr_buf *sysfs_buf = NULL; 1952 1953 /* config types are set a boot time and never change */ 1954 if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR)) 1955 return -EINVAL; 1956 1957 raw_spin_lock_irqsave(&drvdata->spinlock, flags); 1958 1959 /* RE-enable the TMC if need be */ 1960 if (coresight_get_mode(drvdata->csdev) == CS_MODE_SYSFS) { 1961 /* 1962 * The trace run will continue with the same allocated trace 1963 * buffer. Since the tracer is still enabled drvdata::buf can't 1964 * be NULL. 1965 */ 1966 __tmc_etr_enable_hw(drvdata); 1967 } else { 1968 /* 1969 * The ETR is not tracing and the buffer was just read. 1970 * As such prepare to free the trace buffer. 1971 */ 1972 sysfs_buf = drvdata->sysfs_buf; 1973 drvdata->sysfs_buf = NULL; 1974 } 1975 1976 drvdata->reading = false; 1977 raw_spin_unlock_irqrestore(&drvdata->spinlock, flags); 1978 1979 /* Free allocated memory out side of the spinlock */ 1980 if (sysfs_buf) 1981 tmc_etr_free_sysfs_buf(sysfs_buf); 1982 1983 return 0; 1984 } 1985 1986 static const char *const buf_modes_str[] = { 1987 [ETR_MODE_FLAT] = "flat", 1988 [ETR_MODE_ETR_SG] = "tmc-sg", 1989 [ETR_MODE_CATU] = "catu", 1990 [ETR_MODE_RESRV] = "resrv", 1991 [ETR_MODE_AUTO] = "auto", 1992 }; 1993 1994 static ssize_t buf_modes_available_show(struct device *dev, 1995 struct device_attribute *attr, char *buf) 1996 { 1997 struct etr_buf_hw buf_hw; 1998 ssize_t size = 0; 1999 2000 get_etr_buf_hw(dev, &buf_hw); 2001 size += sysfs_emit(buf, "%s ", buf_modes_str[ETR_MODE_AUTO]); 2002 size += sysfs_emit_at(buf, size, "%s ", buf_modes_str[ETR_MODE_FLAT]); 2003 if (buf_hw.has_etr_sg) 2004 size += sysfs_emit_at(buf, size, "%s ", buf_modes_str[ETR_MODE_ETR_SG]); 2005 2006 if (buf_hw.has_catu) 2007 size += sysfs_emit_at(buf, size, "%s ", buf_modes_str[ETR_MODE_CATU]); 2008 2009 if (buf_hw.has_resrv) 2010 size += sysfs_emit_at(buf, size, "%s ", buf_modes_str[ETR_MODE_RESRV]); 2011 2012 size += sysfs_emit_at(buf, size, "\n"); 2013 return size; 2014 } 2015 static DEVICE_ATTR_RO(buf_modes_available); 2016 2017 static ssize_t buf_mode_preferred_show(struct device *dev, 2018 struct device_attribute *attr, char *buf) 2019 { 2020 struct tmc_drvdata *drvdata = dev_get_drvdata(dev->parent); 2021 2022 return sysfs_emit(buf, "%s\n", buf_modes_str[drvdata->etr_mode]); 2023 } 2024 2025 static int buf_mode_set_resrv(struct tmc_drvdata *drvdata) 2026 { 2027 int err = -EBUSY; 2028 unsigned long flags; 2029 struct tmc_resrv_buf *rbuf; 2030 2031 rbuf = &drvdata->resrv_buf; 2032 2033 /* Ensure there are no active crashdata read sessions */ 2034 raw_spin_lock_irqsave(&drvdata->spinlock, flags); 2035 if (!rbuf->reading) { 2036 tmc_crashdata_set_invalid(drvdata); 2037 rbuf->len = 0; 2038 drvdata->etr_mode = ETR_MODE_RESRV; 2039 err = 0; 2040 } 2041 raw_spin_unlock_irqrestore(&drvdata->spinlock, flags); 2042 return err; 2043 } 2044 2045 static ssize_t buf_mode_preferred_store(struct device *dev, 2046 struct device_attribute *attr, 2047 const char *buf, size_t size) 2048 { 2049 struct tmc_drvdata *drvdata = dev_get_drvdata(dev->parent); 2050 struct etr_buf_hw buf_hw; 2051 2052 get_etr_buf_hw(dev, &buf_hw); 2053 if (sysfs_streq(buf, buf_modes_str[ETR_MODE_FLAT])) 2054 drvdata->etr_mode = ETR_MODE_FLAT; 2055 else if (sysfs_streq(buf, buf_modes_str[ETR_MODE_ETR_SG]) && buf_hw.has_etr_sg) 2056 drvdata->etr_mode = ETR_MODE_ETR_SG; 2057 else if (sysfs_streq(buf, buf_modes_str[ETR_MODE_CATU]) && buf_hw.has_catu) 2058 drvdata->etr_mode = ETR_MODE_CATU; 2059 else if (sysfs_streq(buf, buf_modes_str[ETR_MODE_RESRV]) && buf_hw.has_resrv) 2060 return buf_mode_set_resrv(drvdata) ? : size; 2061 else if (sysfs_streq(buf, buf_modes_str[ETR_MODE_AUTO])) 2062 drvdata->etr_mode = ETR_MODE_AUTO; 2063 else 2064 return -EINVAL; 2065 return size; 2066 } 2067 static DEVICE_ATTR_RW(buf_mode_preferred); 2068 2069 static struct attribute *coresight_etr_attrs[] = { 2070 &dev_attr_buf_modes_available.attr, 2071 &dev_attr_buf_mode_preferred.attr, 2072 NULL, 2073 }; 2074 2075 const struct attribute_group coresight_etr_group = { 2076 .attrs = coresight_etr_attrs, 2077 }; 2078