xref: /linux/drivers/hwtracing/coresight/coresight-tmc-etr.c (revision 221013afb459e5deb8bd08e29b37050af5586d1c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright(C) 2016 Linaro Limited. All rights reserved.
4  * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
5  */
6 
7 #include <linux/atomic.h>
8 #include <linux/coresight.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/iommu.h>
11 #include <linux/idr.h>
12 #include <linux/mutex.h>
13 #include <linux/refcount.h>
14 #include <linux/slab.h>
15 #include <linux/types.h>
16 #include <linux/vmalloc.h>
17 #include "coresight-catu.h"
18 #include "coresight-etm-perf.h"
19 #include "coresight-priv.h"
20 #include "coresight-tmc.h"
21 
22 struct etr_flat_buf {
23 	struct device	*dev;
24 	dma_addr_t	daddr;
25 	void		*vaddr;
26 	size_t		size;
27 };
28 
29 struct etr_buf_hw {
30 	bool	has_iommu;
31 	bool	has_etr_sg;
32 	bool	has_catu;
33 };
34 
35 /*
36  * etr_perf_buffer - Perf buffer used for ETR
37  * @drvdata		- The ETR drvdaga this buffer has been allocated for.
38  * @etr_buf		- Actual buffer used by the ETR
39  * @pid			- The PID this etr_perf_buffer belongs to.
40  * @snaphost		- Perf session mode
41  * @nr_pages		- Number of pages in the ring buffer.
42  * @pages		- Array of Pages in the ring buffer.
43  */
44 struct etr_perf_buffer {
45 	struct tmc_drvdata	*drvdata;
46 	struct etr_buf		*etr_buf;
47 	pid_t			pid;
48 	bool			snapshot;
49 	int			nr_pages;
50 	void			**pages;
51 };
52 
53 /* Convert the perf index to an offset within the ETR buffer */
54 #define PERF_IDX2OFF(idx, buf)		\
55 		((idx) % ((unsigned long)(buf)->nr_pages << PAGE_SHIFT))
56 
57 /* Lower limit for ETR hardware buffer */
58 #define TMC_ETR_PERF_MIN_BUF_SIZE	SZ_1M
59 
60 /*
61  * The TMC ETR SG has a page size of 4K. The SG table contains pointers
62  * to 4KB buffers. However, the OS may use a PAGE_SIZE different from
63  * 4K (i.e, 16KB or 64KB). This implies that a single OS page could
64  * contain more than one SG buffer and tables.
65  *
66  * A table entry has the following format:
67  *
68  * ---Bit31------------Bit4-------Bit1-----Bit0--
69  * |     Address[39:12]    | SBZ |  Entry Type  |
70  * ----------------------------------------------
71  *
72  * Address: Bits [39:12] of a physical page address. Bits [11:0] are
73  *	    always zero.
74  *
75  * Entry type:
76  *	b00 - Reserved.
77  *	b01 - Last entry in the tables, points to 4K page buffer.
78  *	b10 - Normal entry, points to 4K page buffer.
79  *	b11 - Link. The address points to the base of next table.
80  */
81 
82 typedef u32 sgte_t;
83 
84 #define ETR_SG_PAGE_SHIFT		12
85 #define ETR_SG_PAGE_SIZE		(1UL << ETR_SG_PAGE_SHIFT)
86 #define ETR_SG_PAGES_PER_SYSPAGE	(PAGE_SIZE / ETR_SG_PAGE_SIZE)
87 #define ETR_SG_PTRS_PER_PAGE		(ETR_SG_PAGE_SIZE / sizeof(sgte_t))
88 #define ETR_SG_PTRS_PER_SYSPAGE		(PAGE_SIZE / sizeof(sgte_t))
89 
90 #define ETR_SG_ET_MASK			0x3
91 #define ETR_SG_ET_LAST			0x1
92 #define ETR_SG_ET_NORMAL		0x2
93 #define ETR_SG_ET_LINK			0x3
94 
95 #define ETR_SG_ADDR_SHIFT		4
96 
97 #define ETR_SG_ENTRY(addr, type) \
98 	(sgte_t)((((addr) >> ETR_SG_PAGE_SHIFT) << ETR_SG_ADDR_SHIFT) | \
99 		 (type & ETR_SG_ET_MASK))
100 
101 #define ETR_SG_ADDR(entry) \
102 	(((dma_addr_t)(entry) >> ETR_SG_ADDR_SHIFT) << ETR_SG_PAGE_SHIFT)
103 #define ETR_SG_ET(entry)		((entry) & ETR_SG_ET_MASK)
104 
105 /*
106  * struct etr_sg_table : ETR SG Table
107  * @sg_table:		Generic SG Table holding the data/table pages.
108  * @hwaddr:		hwaddress used by the TMC, which is the base
109  *			address of the table.
110  */
111 struct etr_sg_table {
112 	struct tmc_sg_table	*sg_table;
113 	dma_addr_t		hwaddr;
114 };
115 
116 /*
117  * tmc_etr_sg_table_entries: Total number of table entries required to map
118  * @nr_pages system pages.
119  *
120  * We need to map @nr_pages * ETR_SG_PAGES_PER_SYSPAGE data pages.
121  * Each TMC page can map (ETR_SG_PTRS_PER_PAGE - 1) buffer pointers,
122  * with the last entry pointing to another page of table entries.
123  * If we spill over to a new page for mapping 1 entry, we could as
124  * well replace the link entry of the previous page with the last entry.
125  */
126 static inline unsigned long __attribute_const__
127 tmc_etr_sg_table_entries(int nr_pages)
128 {
129 	unsigned long nr_sgpages = nr_pages * ETR_SG_PAGES_PER_SYSPAGE;
130 	unsigned long nr_sglinks = nr_sgpages / (ETR_SG_PTRS_PER_PAGE - 1);
131 	/*
132 	 * If we spill over to a new page for 1 entry, we could as well
133 	 * make it the LAST entry in the previous page, skipping the Link
134 	 * address.
135 	 */
136 	if (nr_sglinks && (nr_sgpages % (ETR_SG_PTRS_PER_PAGE - 1) < 2))
137 		nr_sglinks--;
138 	return nr_sgpages + nr_sglinks;
139 }
140 
141 /*
142  * tmc_pages_get_offset:  Go through all the pages in the tmc_pages
143  * and map the device address @addr to an offset within the virtual
144  * contiguous buffer.
145  */
146 static long
147 tmc_pages_get_offset(struct tmc_pages *tmc_pages, dma_addr_t addr)
148 {
149 	int i;
150 	dma_addr_t page_start;
151 
152 	for (i = 0; i < tmc_pages->nr_pages; i++) {
153 		page_start = tmc_pages->daddrs[i];
154 		if (addr >= page_start && addr < (page_start + PAGE_SIZE))
155 			return i * PAGE_SIZE + (addr - page_start);
156 	}
157 
158 	return -EINVAL;
159 }
160 
161 /*
162  * tmc_pages_free : Unmap and free the pages used by tmc_pages.
163  * If the pages were not allocated in tmc_pages_alloc(), we would
164  * simply drop the refcount.
165  */
166 static void tmc_pages_free(struct tmc_pages *tmc_pages,
167 			   struct device *dev, enum dma_data_direction dir)
168 {
169 	int i;
170 	struct device *real_dev = dev->parent;
171 
172 	for (i = 0; i < tmc_pages->nr_pages; i++) {
173 		if (tmc_pages->daddrs && tmc_pages->daddrs[i])
174 			dma_unmap_page(real_dev, tmc_pages->daddrs[i],
175 					 PAGE_SIZE, dir);
176 		if (tmc_pages->pages && tmc_pages->pages[i])
177 			__free_page(tmc_pages->pages[i]);
178 	}
179 
180 	kfree(tmc_pages->pages);
181 	kfree(tmc_pages->daddrs);
182 	tmc_pages->pages = NULL;
183 	tmc_pages->daddrs = NULL;
184 	tmc_pages->nr_pages = 0;
185 }
186 
187 /*
188  * tmc_pages_alloc : Allocate and map pages for a given @tmc_pages.
189  * If @pages is not NULL, the list of page virtual addresses are
190  * used as the data pages. The pages are then dma_map'ed for @dev
191  * with dma_direction @dir.
192  *
193  * Returns 0 upon success, else the error number.
194  */
195 static int tmc_pages_alloc(struct tmc_pages *tmc_pages,
196 			   struct device *dev, int node,
197 			   enum dma_data_direction dir, void **pages)
198 {
199 	int i, nr_pages;
200 	dma_addr_t paddr;
201 	struct page *page;
202 	struct device *real_dev = dev->parent;
203 
204 	nr_pages = tmc_pages->nr_pages;
205 	tmc_pages->daddrs = kcalloc(nr_pages, sizeof(*tmc_pages->daddrs),
206 					 GFP_KERNEL);
207 	if (!tmc_pages->daddrs)
208 		return -ENOMEM;
209 	tmc_pages->pages = kcalloc(nr_pages, sizeof(*tmc_pages->pages),
210 					 GFP_KERNEL);
211 	if (!tmc_pages->pages) {
212 		kfree(tmc_pages->daddrs);
213 		tmc_pages->daddrs = NULL;
214 		return -ENOMEM;
215 	}
216 
217 	for (i = 0; i < nr_pages; i++) {
218 		if (pages && pages[i]) {
219 			page = virt_to_page(pages[i]);
220 			/* Hold a refcount on the page */
221 			get_page(page);
222 		} else {
223 			page = alloc_pages_node(node,
224 						GFP_KERNEL | __GFP_ZERO, 0);
225 			if (!page)
226 				goto err;
227 		}
228 		paddr = dma_map_page(real_dev, page, 0, PAGE_SIZE, dir);
229 		if (dma_mapping_error(real_dev, paddr))
230 			goto err;
231 		tmc_pages->daddrs[i] = paddr;
232 		tmc_pages->pages[i] = page;
233 	}
234 	return 0;
235 err:
236 	tmc_pages_free(tmc_pages, dev, dir);
237 	return -ENOMEM;
238 }
239 
240 static inline long
241 tmc_sg_get_data_page_offset(struct tmc_sg_table *sg_table, dma_addr_t addr)
242 {
243 	return tmc_pages_get_offset(&sg_table->data_pages, addr);
244 }
245 
246 static inline void tmc_free_table_pages(struct tmc_sg_table *sg_table)
247 {
248 	if (sg_table->table_vaddr)
249 		vunmap(sg_table->table_vaddr);
250 	tmc_pages_free(&sg_table->table_pages, sg_table->dev, DMA_TO_DEVICE);
251 }
252 
253 static void tmc_free_data_pages(struct tmc_sg_table *sg_table)
254 {
255 	if (sg_table->data_vaddr)
256 		vunmap(sg_table->data_vaddr);
257 	tmc_pages_free(&sg_table->data_pages, sg_table->dev, DMA_FROM_DEVICE);
258 }
259 
260 void tmc_free_sg_table(struct tmc_sg_table *sg_table)
261 {
262 	tmc_free_table_pages(sg_table);
263 	tmc_free_data_pages(sg_table);
264 }
265 EXPORT_SYMBOL_GPL(tmc_free_sg_table);
266 
267 /*
268  * Alloc pages for the table. Since this will be used by the device,
269  * allocate the pages closer to the device (i.e, dev_to_node(dev)
270  * rather than the CPU node).
271  */
272 static int tmc_alloc_table_pages(struct tmc_sg_table *sg_table)
273 {
274 	int rc;
275 	struct tmc_pages *table_pages = &sg_table->table_pages;
276 
277 	rc = tmc_pages_alloc(table_pages, sg_table->dev,
278 			     dev_to_node(sg_table->dev),
279 			     DMA_TO_DEVICE, NULL);
280 	if (rc)
281 		return rc;
282 	sg_table->table_vaddr = vmap(table_pages->pages,
283 				     table_pages->nr_pages,
284 				     VM_MAP,
285 				     PAGE_KERNEL);
286 	if (!sg_table->table_vaddr)
287 		rc = -ENOMEM;
288 	else
289 		sg_table->table_daddr = table_pages->daddrs[0];
290 	return rc;
291 }
292 
293 static int tmc_alloc_data_pages(struct tmc_sg_table *sg_table, void **pages)
294 {
295 	int rc;
296 
297 	/* Allocate data pages on the node requested by the caller */
298 	rc = tmc_pages_alloc(&sg_table->data_pages,
299 			     sg_table->dev, sg_table->node,
300 			     DMA_FROM_DEVICE, pages);
301 	if (!rc) {
302 		sg_table->data_vaddr = vmap(sg_table->data_pages.pages,
303 					    sg_table->data_pages.nr_pages,
304 					    VM_MAP,
305 					    PAGE_KERNEL);
306 		if (!sg_table->data_vaddr)
307 			rc = -ENOMEM;
308 	}
309 	return rc;
310 }
311 
312 /*
313  * tmc_alloc_sg_table: Allocate and setup dma pages for the TMC SG table
314  * and data buffers. TMC writes to the data buffers and reads from the SG
315  * Table pages.
316  *
317  * @dev		- Coresight device to which page should be DMA mapped.
318  * @node	- Numa node for mem allocations
319  * @nr_tpages	- Number of pages for the table entries.
320  * @nr_dpages	- Number of pages for Data buffer.
321  * @pages	- Optional list of virtual address of pages.
322  */
323 struct tmc_sg_table *tmc_alloc_sg_table(struct device *dev,
324 					int node,
325 					int nr_tpages,
326 					int nr_dpages,
327 					void **pages)
328 {
329 	long rc;
330 	struct tmc_sg_table *sg_table;
331 
332 	sg_table = kzalloc(sizeof(*sg_table), GFP_KERNEL);
333 	if (!sg_table)
334 		return ERR_PTR(-ENOMEM);
335 	sg_table->data_pages.nr_pages = nr_dpages;
336 	sg_table->table_pages.nr_pages = nr_tpages;
337 	sg_table->node = node;
338 	sg_table->dev = dev;
339 
340 	rc  = tmc_alloc_data_pages(sg_table, pages);
341 	if (!rc)
342 		rc = tmc_alloc_table_pages(sg_table);
343 	if (rc) {
344 		tmc_free_sg_table(sg_table);
345 		kfree(sg_table);
346 		return ERR_PTR(rc);
347 	}
348 
349 	return sg_table;
350 }
351 EXPORT_SYMBOL_GPL(tmc_alloc_sg_table);
352 
353 /*
354  * tmc_sg_table_sync_data_range: Sync the data buffer written
355  * by the device from @offset upto a @size bytes.
356  */
357 void tmc_sg_table_sync_data_range(struct tmc_sg_table *table,
358 				  u64 offset, u64 size)
359 {
360 	int i, index, start;
361 	int npages = DIV_ROUND_UP(size, PAGE_SIZE);
362 	struct device *real_dev = table->dev->parent;
363 	struct tmc_pages *data = &table->data_pages;
364 
365 	start = offset >> PAGE_SHIFT;
366 	for (i = start; i < (start + npages); i++) {
367 		index = i % data->nr_pages;
368 		dma_sync_single_for_cpu(real_dev, data->daddrs[index],
369 					PAGE_SIZE, DMA_FROM_DEVICE);
370 	}
371 }
372 EXPORT_SYMBOL_GPL(tmc_sg_table_sync_data_range);
373 
374 /* tmc_sg_sync_table: Sync the page table */
375 void tmc_sg_table_sync_table(struct tmc_sg_table *sg_table)
376 {
377 	int i;
378 	struct device *real_dev = sg_table->dev->parent;
379 	struct tmc_pages *table_pages = &sg_table->table_pages;
380 
381 	for (i = 0; i < table_pages->nr_pages; i++)
382 		dma_sync_single_for_device(real_dev, table_pages->daddrs[i],
383 					   PAGE_SIZE, DMA_TO_DEVICE);
384 }
385 EXPORT_SYMBOL_GPL(tmc_sg_table_sync_table);
386 
387 /*
388  * tmc_sg_table_get_data: Get the buffer pointer for data @offset
389  * in the SG buffer. The @bufpp is updated to point to the buffer.
390  * Returns :
391  *	the length of linear data available at @offset.
392  *	or
393  *	<= 0 if no data is available.
394  */
395 ssize_t tmc_sg_table_get_data(struct tmc_sg_table *sg_table,
396 			      u64 offset, size_t len, char **bufpp)
397 {
398 	size_t size;
399 	int pg_idx = offset >> PAGE_SHIFT;
400 	int pg_offset = offset & (PAGE_SIZE - 1);
401 	struct tmc_pages *data_pages = &sg_table->data_pages;
402 
403 	size = tmc_sg_table_buf_size(sg_table);
404 	if (offset >= size)
405 		return -EINVAL;
406 
407 	/* Make sure we don't go beyond the end */
408 	len = (len < (size - offset)) ? len : size - offset;
409 	/* Respect the page boundaries */
410 	len = (len < (PAGE_SIZE - pg_offset)) ? len : (PAGE_SIZE - pg_offset);
411 	if (len > 0)
412 		*bufpp = page_address(data_pages->pages[pg_idx]) + pg_offset;
413 	return len;
414 }
415 EXPORT_SYMBOL_GPL(tmc_sg_table_get_data);
416 
417 #ifdef ETR_SG_DEBUG
418 /* Map a dma address to virtual address */
419 static unsigned long
420 tmc_sg_daddr_to_vaddr(struct tmc_sg_table *sg_table,
421 		      dma_addr_t addr, bool table)
422 {
423 	long offset;
424 	unsigned long base;
425 	struct tmc_pages *tmc_pages;
426 
427 	if (table) {
428 		tmc_pages = &sg_table->table_pages;
429 		base = (unsigned long)sg_table->table_vaddr;
430 	} else {
431 		tmc_pages = &sg_table->data_pages;
432 		base = (unsigned long)sg_table->data_vaddr;
433 	}
434 
435 	offset = tmc_pages_get_offset(tmc_pages, addr);
436 	if (offset < 0)
437 		return 0;
438 	return base + offset;
439 }
440 
441 /* Dump the given sg_table */
442 static void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table)
443 {
444 	sgte_t *ptr;
445 	int i = 0;
446 	dma_addr_t addr;
447 	struct tmc_sg_table *sg_table = etr_table->sg_table;
448 
449 	ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table,
450 					      etr_table->hwaddr, true);
451 	while (ptr) {
452 		addr = ETR_SG_ADDR(*ptr);
453 		switch (ETR_SG_ET(*ptr)) {
454 		case ETR_SG_ET_NORMAL:
455 			dev_dbg(sg_table->dev,
456 				"%05d: %p\t:[N] 0x%llx\n", i, ptr, addr);
457 			ptr++;
458 			break;
459 		case ETR_SG_ET_LINK:
460 			dev_dbg(sg_table->dev,
461 				"%05d: *** %p\t:{L} 0x%llx ***\n",
462 				 i, ptr, addr);
463 			ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table,
464 							      addr, true);
465 			break;
466 		case ETR_SG_ET_LAST:
467 			dev_dbg(sg_table->dev,
468 				"%05d: ### %p\t:[L] 0x%llx ###\n",
469 				 i, ptr, addr);
470 			return;
471 		default:
472 			dev_dbg(sg_table->dev,
473 				"%05d: xxx %p\t:[INVALID] 0x%llx xxx\n",
474 				 i, ptr, addr);
475 			return;
476 		}
477 		i++;
478 	}
479 	dev_dbg(sg_table->dev, "******* End of Table *****\n");
480 }
481 #else
482 static inline void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) {}
483 #endif
484 
485 /*
486  * Populate the SG Table page table entries from table/data
487  * pages allocated. Each Data page has ETR_SG_PAGES_PER_SYSPAGE SG pages.
488  * So does a Table page. So we keep track of indices of the tables
489  * in each system page and move the pointers accordingly.
490  */
491 #define INC_IDX_ROUND(idx, size) ((idx) = ((idx) + 1) % (size))
492 static void tmc_etr_sg_table_populate(struct etr_sg_table *etr_table)
493 {
494 	dma_addr_t paddr;
495 	int i, type, nr_entries;
496 	int tpidx = 0; /* index to the current system table_page */
497 	int sgtidx = 0;	/* index to the sg_table within the current syspage */
498 	int sgtentry = 0; /* the entry within the sg_table */
499 	int dpidx = 0; /* index to the current system data_page */
500 	int spidx = 0; /* index to the SG page within the current data page */
501 	sgte_t *ptr; /* pointer to the table entry to fill */
502 	struct tmc_sg_table *sg_table = etr_table->sg_table;
503 	dma_addr_t *table_daddrs = sg_table->table_pages.daddrs;
504 	dma_addr_t *data_daddrs = sg_table->data_pages.daddrs;
505 
506 	nr_entries = tmc_etr_sg_table_entries(sg_table->data_pages.nr_pages);
507 	/*
508 	 * Use the contiguous virtual address of the table to update entries.
509 	 */
510 	ptr = sg_table->table_vaddr;
511 	/*
512 	 * Fill all the entries, except the last entry to avoid special
513 	 * checks within the loop.
514 	 */
515 	for (i = 0; i < nr_entries - 1; i++) {
516 		if (sgtentry == ETR_SG_PTRS_PER_PAGE - 1) {
517 			/*
518 			 * Last entry in a sg_table page is a link address to
519 			 * the next table page. If this sg_table is the last
520 			 * one in the system page, it links to the first
521 			 * sg_table in the next system page. Otherwise, it
522 			 * links to the next sg_table page within the system
523 			 * page.
524 			 */
525 			if (sgtidx == ETR_SG_PAGES_PER_SYSPAGE - 1) {
526 				paddr = table_daddrs[tpidx + 1];
527 			} else {
528 				paddr = table_daddrs[tpidx] +
529 					(ETR_SG_PAGE_SIZE * (sgtidx + 1));
530 			}
531 			type = ETR_SG_ET_LINK;
532 		} else {
533 			/*
534 			 * Update the indices to the data_pages to point to the
535 			 * next sg_page in the data buffer.
536 			 */
537 			type = ETR_SG_ET_NORMAL;
538 			paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE;
539 			if (!INC_IDX_ROUND(spidx, ETR_SG_PAGES_PER_SYSPAGE))
540 				dpidx++;
541 		}
542 		*ptr++ = ETR_SG_ENTRY(paddr, type);
543 		/*
544 		 * Move to the next table pointer, moving the table page index
545 		 * if necessary
546 		 */
547 		if (!INC_IDX_ROUND(sgtentry, ETR_SG_PTRS_PER_PAGE)) {
548 			if (!INC_IDX_ROUND(sgtidx, ETR_SG_PAGES_PER_SYSPAGE))
549 				tpidx++;
550 		}
551 	}
552 
553 	/* Set up the last entry, which is always a data pointer */
554 	paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE;
555 	*ptr++ = ETR_SG_ENTRY(paddr, ETR_SG_ET_LAST);
556 }
557 
558 /*
559  * tmc_init_etr_sg_table: Allocate a TMC ETR SG table, data buffer of @size and
560  * populate the table.
561  *
562  * @dev		- Device pointer for the TMC
563  * @node	- NUMA node where the memory should be allocated
564  * @size	- Total size of the data buffer
565  * @pages	- Optional list of page virtual address
566  */
567 static struct etr_sg_table *
568 tmc_init_etr_sg_table(struct device *dev, int node,
569 		      unsigned long size, void **pages)
570 {
571 	int nr_entries, nr_tpages;
572 	int nr_dpages = size >> PAGE_SHIFT;
573 	struct tmc_sg_table *sg_table;
574 	struct etr_sg_table *etr_table;
575 
576 	etr_table = kzalloc(sizeof(*etr_table), GFP_KERNEL);
577 	if (!etr_table)
578 		return ERR_PTR(-ENOMEM);
579 	nr_entries = tmc_etr_sg_table_entries(nr_dpages);
580 	nr_tpages = DIV_ROUND_UP(nr_entries, ETR_SG_PTRS_PER_SYSPAGE);
581 
582 	sg_table = tmc_alloc_sg_table(dev, node, nr_tpages, nr_dpages, pages);
583 	if (IS_ERR(sg_table)) {
584 		kfree(etr_table);
585 		return ERR_CAST(sg_table);
586 	}
587 
588 	etr_table->sg_table = sg_table;
589 	/* TMC should use table base address for DBA */
590 	etr_table->hwaddr = sg_table->table_daddr;
591 	tmc_etr_sg_table_populate(etr_table);
592 	/* Sync the table pages for the HW */
593 	tmc_sg_table_sync_table(sg_table);
594 	tmc_etr_sg_table_dump(etr_table);
595 
596 	return etr_table;
597 }
598 
599 /*
600  * tmc_etr_alloc_flat_buf: Allocate a contiguous DMA buffer.
601  */
602 static int tmc_etr_alloc_flat_buf(struct tmc_drvdata *drvdata,
603 				  struct etr_buf *etr_buf, int node,
604 				  void **pages)
605 {
606 	struct etr_flat_buf *flat_buf;
607 	struct device *real_dev = drvdata->csdev->dev.parent;
608 
609 	/* We cannot reuse existing pages for flat buf */
610 	if (pages)
611 		return -EINVAL;
612 
613 	flat_buf = kzalloc(sizeof(*flat_buf), GFP_KERNEL);
614 	if (!flat_buf)
615 		return -ENOMEM;
616 
617 	flat_buf->vaddr = dma_alloc_noncoherent(real_dev, etr_buf->size,
618 						&flat_buf->daddr,
619 						DMA_FROM_DEVICE,
620 						GFP_KERNEL | __GFP_NOWARN);
621 	if (!flat_buf->vaddr) {
622 		kfree(flat_buf);
623 		return -ENOMEM;
624 	}
625 
626 	flat_buf->size = etr_buf->size;
627 	flat_buf->dev = &drvdata->csdev->dev;
628 	etr_buf->hwaddr = flat_buf->daddr;
629 	etr_buf->mode = ETR_MODE_FLAT;
630 	etr_buf->private = flat_buf;
631 	return 0;
632 }
633 
634 static void tmc_etr_free_flat_buf(struct etr_buf *etr_buf)
635 {
636 	struct etr_flat_buf *flat_buf = etr_buf->private;
637 
638 	if (flat_buf && flat_buf->daddr) {
639 		struct device *real_dev = flat_buf->dev->parent;
640 
641 		dma_free_noncoherent(real_dev, etr_buf->size,
642 				     flat_buf->vaddr, flat_buf->daddr,
643 				     DMA_FROM_DEVICE);
644 	}
645 	kfree(flat_buf);
646 }
647 
648 static void tmc_etr_sync_flat_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)
649 {
650 	struct etr_flat_buf *flat_buf = etr_buf->private;
651 	struct device *real_dev = flat_buf->dev->parent;
652 
653 	/*
654 	 * Adjust the buffer to point to the beginning of the trace data
655 	 * and update the available trace data.
656 	 */
657 	etr_buf->offset = rrp - etr_buf->hwaddr;
658 	if (etr_buf->full)
659 		etr_buf->len = etr_buf->size;
660 	else
661 		etr_buf->len = rwp - rrp;
662 
663 	/*
664 	 * The driver always starts tracing at the beginning of the buffer,
665 	 * the only reason why we would get a wrap around is when the buffer
666 	 * is full.  Sync the entire buffer in one go for this case.
667 	 */
668 	if (etr_buf->offset + etr_buf->len > etr_buf->size)
669 		dma_sync_single_for_cpu(real_dev, flat_buf->daddr,
670 					etr_buf->size, DMA_FROM_DEVICE);
671 	else
672 		dma_sync_single_for_cpu(real_dev,
673 					flat_buf->daddr + etr_buf->offset,
674 					etr_buf->len, DMA_FROM_DEVICE);
675 }
676 
677 static ssize_t tmc_etr_get_data_flat_buf(struct etr_buf *etr_buf,
678 					 u64 offset, size_t len, char **bufpp)
679 {
680 	struct etr_flat_buf *flat_buf = etr_buf->private;
681 
682 	*bufpp = (char *)flat_buf->vaddr + offset;
683 	/*
684 	 * tmc_etr_buf_get_data already adjusts the length to handle
685 	 * buffer wrapping around.
686 	 */
687 	return len;
688 }
689 
690 static const struct etr_buf_operations etr_flat_buf_ops = {
691 	.alloc = tmc_etr_alloc_flat_buf,
692 	.free = tmc_etr_free_flat_buf,
693 	.sync = tmc_etr_sync_flat_buf,
694 	.get_data = tmc_etr_get_data_flat_buf,
695 };
696 
697 /*
698  * tmc_etr_alloc_sg_buf: Allocate an SG buf @etr_buf. Setup the parameters
699  * appropriately.
700  */
701 static int tmc_etr_alloc_sg_buf(struct tmc_drvdata *drvdata,
702 				struct etr_buf *etr_buf, int node,
703 				void **pages)
704 {
705 	struct etr_sg_table *etr_table;
706 	struct device *dev = &drvdata->csdev->dev;
707 
708 	etr_table = tmc_init_etr_sg_table(dev, node,
709 					  etr_buf->size, pages);
710 	if (IS_ERR(etr_table))
711 		return -ENOMEM;
712 	etr_buf->hwaddr = etr_table->hwaddr;
713 	etr_buf->mode = ETR_MODE_ETR_SG;
714 	etr_buf->private = etr_table;
715 	return 0;
716 }
717 
718 static void tmc_etr_free_sg_buf(struct etr_buf *etr_buf)
719 {
720 	struct etr_sg_table *etr_table = etr_buf->private;
721 
722 	if (etr_table) {
723 		tmc_free_sg_table(etr_table->sg_table);
724 		kfree(etr_table);
725 	}
726 }
727 
728 static ssize_t tmc_etr_get_data_sg_buf(struct etr_buf *etr_buf, u64 offset,
729 				       size_t len, char **bufpp)
730 {
731 	struct etr_sg_table *etr_table = etr_buf->private;
732 
733 	return tmc_sg_table_get_data(etr_table->sg_table, offset, len, bufpp);
734 }
735 
736 static void tmc_etr_sync_sg_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)
737 {
738 	long r_offset, w_offset;
739 	struct etr_sg_table *etr_table = etr_buf->private;
740 	struct tmc_sg_table *table = etr_table->sg_table;
741 
742 	/* Convert hw address to offset in the buffer */
743 	r_offset = tmc_sg_get_data_page_offset(table, rrp);
744 	if (r_offset < 0) {
745 		dev_warn(table->dev,
746 			 "Unable to map RRP %llx to offset\n", rrp);
747 		etr_buf->len = 0;
748 		return;
749 	}
750 
751 	w_offset = tmc_sg_get_data_page_offset(table, rwp);
752 	if (w_offset < 0) {
753 		dev_warn(table->dev,
754 			 "Unable to map RWP %llx to offset\n", rwp);
755 		etr_buf->len = 0;
756 		return;
757 	}
758 
759 	etr_buf->offset = r_offset;
760 	if (etr_buf->full)
761 		etr_buf->len = etr_buf->size;
762 	else
763 		etr_buf->len = ((w_offset < r_offset) ? etr_buf->size : 0) +
764 				w_offset - r_offset;
765 	tmc_sg_table_sync_data_range(table, r_offset, etr_buf->len);
766 }
767 
768 static const struct etr_buf_operations etr_sg_buf_ops = {
769 	.alloc = tmc_etr_alloc_sg_buf,
770 	.free = tmc_etr_free_sg_buf,
771 	.sync = tmc_etr_sync_sg_buf,
772 	.get_data = tmc_etr_get_data_sg_buf,
773 };
774 
775 /*
776  * TMC ETR could be connected to a CATU device, which can provide address
777  * translation service. This is represented by the Output port of the TMC
778  * (ETR) connected to the input port of the CATU.
779  *
780  * Returns	: coresight_device ptr for the CATU device if a CATU is found.
781  *		: NULL otherwise.
782  */
783 struct coresight_device *
784 tmc_etr_get_catu_device(struct tmc_drvdata *drvdata)
785 {
786 	struct coresight_device *etr = drvdata->csdev;
787 	union coresight_dev_subtype catu_subtype = {
788 		.helper_subtype = CORESIGHT_DEV_SUBTYPE_HELPER_CATU
789 	};
790 
791 	if (!IS_ENABLED(CONFIG_CORESIGHT_CATU))
792 		return NULL;
793 
794 	return coresight_find_output_type(etr->pdata, CORESIGHT_DEV_TYPE_HELPER,
795 					  catu_subtype);
796 }
797 EXPORT_SYMBOL_GPL(tmc_etr_get_catu_device);
798 
799 static const struct etr_buf_operations *etr_buf_ops[] = {
800 	[ETR_MODE_FLAT] = &etr_flat_buf_ops,
801 	[ETR_MODE_ETR_SG] = &etr_sg_buf_ops,
802 	[ETR_MODE_CATU] = NULL,
803 };
804 
805 void tmc_etr_set_catu_ops(const struct etr_buf_operations *catu)
806 {
807 	etr_buf_ops[ETR_MODE_CATU] = catu;
808 }
809 EXPORT_SYMBOL_GPL(tmc_etr_set_catu_ops);
810 
811 void tmc_etr_remove_catu_ops(void)
812 {
813 	etr_buf_ops[ETR_MODE_CATU] = NULL;
814 }
815 EXPORT_SYMBOL_GPL(tmc_etr_remove_catu_ops);
816 
817 static inline int tmc_etr_mode_alloc_buf(int mode,
818 					 struct tmc_drvdata *drvdata,
819 					 struct etr_buf *etr_buf, int node,
820 					 void **pages)
821 {
822 	int rc = -EINVAL;
823 
824 	switch (mode) {
825 	case ETR_MODE_FLAT:
826 	case ETR_MODE_ETR_SG:
827 	case ETR_MODE_CATU:
828 		if (etr_buf_ops[mode] && etr_buf_ops[mode]->alloc)
829 			rc = etr_buf_ops[mode]->alloc(drvdata, etr_buf,
830 						      node, pages);
831 		if (!rc)
832 			etr_buf->ops = etr_buf_ops[mode];
833 		return rc;
834 	default:
835 		return -EINVAL;
836 	}
837 }
838 
839 static void get_etr_buf_hw(struct device *dev, struct etr_buf_hw *buf_hw)
840 {
841 	struct tmc_drvdata *drvdata = dev_get_drvdata(dev->parent);
842 
843 	buf_hw->has_iommu = iommu_get_domain_for_dev(dev->parent);
844 	buf_hw->has_etr_sg = tmc_etr_has_cap(drvdata, TMC_ETR_SG);
845 	buf_hw->has_catu = !!tmc_etr_get_catu_device(drvdata);
846 }
847 
848 static bool etr_can_use_flat_mode(struct etr_buf_hw *buf_hw, ssize_t etr_buf_size)
849 {
850 	bool has_sg = buf_hw->has_catu || buf_hw->has_etr_sg;
851 
852 	return !has_sg || buf_hw->has_iommu || etr_buf_size < SZ_1M;
853 }
854 
855 /*
856  * tmc_alloc_etr_buf: Allocate a buffer use by ETR.
857  * @drvdata	: ETR device details.
858  * @size	: size of the requested buffer.
859  * @flags	: Required properties for the buffer.
860  * @node	: Node for memory allocations.
861  * @pages	: An optional list of pages.
862  */
863 static struct etr_buf *tmc_alloc_etr_buf(struct tmc_drvdata *drvdata,
864 					 ssize_t size, int flags,
865 					 int node, void **pages)
866 {
867 	int rc = -ENOMEM;
868 	struct etr_buf *etr_buf;
869 	struct etr_buf_hw buf_hw;
870 	struct device *dev = &drvdata->csdev->dev;
871 
872 	get_etr_buf_hw(dev, &buf_hw);
873 	etr_buf = kzalloc(sizeof(*etr_buf), GFP_KERNEL);
874 	if (!etr_buf)
875 		return ERR_PTR(-ENOMEM);
876 
877 	etr_buf->size = size;
878 
879 	/* If there is user directive for buffer mode, try that first */
880 	if (drvdata->etr_mode != ETR_MODE_AUTO)
881 		rc = tmc_etr_mode_alloc_buf(drvdata->etr_mode, drvdata,
882 					    etr_buf, node, pages);
883 
884 	/*
885 	 * If we have to use an existing list of pages, we cannot reliably
886 	 * use a contiguous DMA memory (even if we have an IOMMU). Otherwise,
887 	 * we use the contiguous DMA memory if at least one of the following
888 	 * conditions is true:
889 	 *  a) The ETR cannot use Scatter-Gather.
890 	 *  b) we have a backing IOMMU
891 	 *  c) The requested memory size is smaller (< 1M).
892 	 *
893 	 * Fallback to available mechanisms.
894 	 *
895 	 */
896 	if (rc && !pages && etr_can_use_flat_mode(&buf_hw, size))
897 		rc = tmc_etr_mode_alloc_buf(ETR_MODE_FLAT, drvdata,
898 					    etr_buf, node, pages);
899 	if (rc && buf_hw.has_etr_sg)
900 		rc = tmc_etr_mode_alloc_buf(ETR_MODE_ETR_SG, drvdata,
901 					    etr_buf, node, pages);
902 	if (rc && buf_hw.has_catu)
903 		rc = tmc_etr_mode_alloc_buf(ETR_MODE_CATU, drvdata,
904 					    etr_buf, node, pages);
905 	if (rc) {
906 		kfree(etr_buf);
907 		return ERR_PTR(rc);
908 	}
909 
910 	refcount_set(&etr_buf->refcount, 1);
911 	dev_dbg(dev, "allocated buffer of size %ldKB in mode %d\n",
912 		(unsigned long)size >> 10, etr_buf->mode);
913 	return etr_buf;
914 }
915 
916 static void tmc_free_etr_buf(struct etr_buf *etr_buf)
917 {
918 	WARN_ON(!etr_buf->ops || !etr_buf->ops->free);
919 	etr_buf->ops->free(etr_buf);
920 	kfree(etr_buf);
921 }
922 
923 /*
924  * tmc_etr_buf_get_data: Get the pointer the trace data at @offset
925  * with a maximum of @len bytes.
926  * Returns: The size of the linear data available @pos, with *bufpp
927  * updated to point to the buffer.
928  */
929 static ssize_t tmc_etr_buf_get_data(struct etr_buf *etr_buf,
930 				    u64 offset, size_t len, char **bufpp)
931 {
932 	/* Adjust the length to limit this transaction to end of buffer */
933 	len = (len < (etr_buf->size - offset)) ? len : etr_buf->size - offset;
934 
935 	return etr_buf->ops->get_data(etr_buf, (u64)offset, len, bufpp);
936 }
937 
938 static inline s64
939 tmc_etr_buf_insert_barrier_packet(struct etr_buf *etr_buf, u64 offset)
940 {
941 	ssize_t len;
942 	char *bufp;
943 
944 	len = tmc_etr_buf_get_data(etr_buf, offset,
945 				   CORESIGHT_BARRIER_PKT_SIZE, &bufp);
946 	if (WARN_ON(len < 0 || len < CORESIGHT_BARRIER_PKT_SIZE))
947 		return -EINVAL;
948 	coresight_insert_barrier_packet(bufp);
949 	return offset + CORESIGHT_BARRIER_PKT_SIZE;
950 }
951 
952 /*
953  * tmc_sync_etr_buf: Sync the trace buffer availability with drvdata.
954  * Makes sure the trace data is synced to the memory for consumption.
955  * @etr_buf->offset will hold the offset to the beginning of the trace data
956  * within the buffer, with @etr_buf->len bytes to consume.
957  */
958 static void tmc_sync_etr_buf(struct tmc_drvdata *drvdata)
959 {
960 	struct etr_buf *etr_buf = drvdata->etr_buf;
961 	u64 rrp, rwp;
962 	u32 status;
963 
964 	rrp = tmc_read_rrp(drvdata);
965 	rwp = tmc_read_rwp(drvdata);
966 	status = readl_relaxed(drvdata->base + TMC_STS);
967 
968 	/*
969 	 * If there were memory errors in the session, truncate the
970 	 * buffer.
971 	 */
972 	if (WARN_ON_ONCE(status & TMC_STS_MEMERR)) {
973 		dev_dbg(&drvdata->csdev->dev,
974 			"tmc memory error detected, truncating buffer\n");
975 		etr_buf->len = 0;
976 		etr_buf->full = false;
977 		return;
978 	}
979 
980 	etr_buf->full = !!(status & TMC_STS_FULL);
981 
982 	WARN_ON(!etr_buf->ops || !etr_buf->ops->sync);
983 
984 	etr_buf->ops->sync(etr_buf, rrp, rwp);
985 }
986 
987 static int __tmc_etr_enable_hw(struct tmc_drvdata *drvdata)
988 {
989 	u32 axictl, sts;
990 	struct etr_buf *etr_buf = drvdata->etr_buf;
991 	int rc = 0;
992 
993 	CS_UNLOCK(drvdata->base);
994 
995 	/* Wait for TMCSReady bit to be set */
996 	rc = tmc_wait_for_tmcready(drvdata);
997 	if (rc) {
998 		dev_err(&drvdata->csdev->dev,
999 			"Failed to enable : TMC not ready\n");
1000 		CS_LOCK(drvdata->base);
1001 		return rc;
1002 	}
1003 
1004 	writel_relaxed(etr_buf->size / 4, drvdata->base + TMC_RSZ);
1005 	writel_relaxed(TMC_MODE_CIRCULAR_BUFFER, drvdata->base + TMC_MODE);
1006 
1007 	axictl = readl_relaxed(drvdata->base + TMC_AXICTL);
1008 	axictl &= ~TMC_AXICTL_CLEAR_MASK;
1009 	axictl |= TMC_AXICTL_PROT_CTL_B1;
1010 	axictl |= TMC_AXICTL_WR_BURST(drvdata->max_burst_size);
1011 	axictl |= TMC_AXICTL_AXCACHE_OS;
1012 
1013 	if (tmc_etr_has_cap(drvdata, TMC_ETR_AXI_ARCACHE)) {
1014 		axictl &= ~TMC_AXICTL_ARCACHE_MASK;
1015 		axictl |= TMC_AXICTL_ARCACHE_OS;
1016 	}
1017 
1018 	if (etr_buf->mode == ETR_MODE_ETR_SG)
1019 		axictl |= TMC_AXICTL_SCT_GAT_MODE;
1020 
1021 	writel_relaxed(axictl, drvdata->base + TMC_AXICTL);
1022 	tmc_write_dba(drvdata, etr_buf->hwaddr);
1023 	/*
1024 	 * If the TMC pointers must be programmed before the session,
1025 	 * we have to set it properly (i.e, RRP/RWP to base address and
1026 	 * STS to "not full").
1027 	 */
1028 	if (tmc_etr_has_cap(drvdata, TMC_ETR_SAVE_RESTORE)) {
1029 		tmc_write_rrp(drvdata, etr_buf->hwaddr);
1030 		tmc_write_rwp(drvdata, etr_buf->hwaddr);
1031 		sts = readl_relaxed(drvdata->base + TMC_STS) & ~TMC_STS_FULL;
1032 		writel_relaxed(sts, drvdata->base + TMC_STS);
1033 	}
1034 
1035 	writel_relaxed(TMC_FFCR_EN_FMT | TMC_FFCR_EN_TI |
1036 		       TMC_FFCR_FON_FLIN | TMC_FFCR_FON_TRIG_EVT |
1037 		       TMC_FFCR_TRIGON_TRIGIN,
1038 		       drvdata->base + TMC_FFCR);
1039 	writel_relaxed(drvdata->trigger_cntr, drvdata->base + TMC_TRG);
1040 	tmc_enable_hw(drvdata);
1041 
1042 	CS_LOCK(drvdata->base);
1043 	return rc;
1044 }
1045 
1046 static int tmc_etr_enable_hw(struct tmc_drvdata *drvdata,
1047 			     struct etr_buf *etr_buf)
1048 {
1049 	int rc;
1050 
1051 	/* Callers should provide an appropriate buffer for use */
1052 	if (WARN_ON(!etr_buf))
1053 		return -EINVAL;
1054 
1055 	if ((etr_buf->mode == ETR_MODE_ETR_SG) &&
1056 	    WARN_ON(!tmc_etr_has_cap(drvdata, TMC_ETR_SG)))
1057 		return -EINVAL;
1058 
1059 	if (WARN_ON(drvdata->etr_buf))
1060 		return -EBUSY;
1061 
1062 	rc = coresight_claim_device(drvdata->csdev);
1063 	if (!rc) {
1064 		drvdata->etr_buf = etr_buf;
1065 		rc = __tmc_etr_enable_hw(drvdata);
1066 		if (rc) {
1067 			drvdata->etr_buf = NULL;
1068 			coresight_disclaim_device(drvdata->csdev);
1069 		}
1070 	}
1071 
1072 	return rc;
1073 }
1074 
1075 /*
1076  * Return the available trace data in the buffer (starts at etr_buf->offset,
1077  * limited by etr_buf->len) from @pos, with a maximum limit of @len,
1078  * also updating the @bufpp on where to find it. Since the trace data
1079  * starts at anywhere in the buffer, depending on the RRP, we adjust the
1080  * @len returned to handle buffer wrapping around.
1081  *
1082  * We are protected here by drvdata->reading != 0, which ensures the
1083  * sysfs_buf stays alive.
1084  */
1085 ssize_t tmc_etr_get_sysfs_trace(struct tmc_drvdata *drvdata,
1086 				loff_t pos, size_t len, char **bufpp)
1087 {
1088 	s64 offset;
1089 	ssize_t actual = len;
1090 	struct etr_buf *etr_buf = drvdata->sysfs_buf;
1091 
1092 	if (pos + actual > etr_buf->len)
1093 		actual = etr_buf->len - pos;
1094 	if (actual <= 0)
1095 		return actual;
1096 
1097 	/* Compute the offset from which we read the data */
1098 	offset = etr_buf->offset + pos;
1099 	if (offset >= etr_buf->size)
1100 		offset -= etr_buf->size;
1101 	return tmc_etr_buf_get_data(etr_buf, offset, actual, bufpp);
1102 }
1103 
1104 static struct etr_buf *
1105 tmc_etr_setup_sysfs_buf(struct tmc_drvdata *drvdata)
1106 {
1107 	return tmc_alloc_etr_buf(drvdata, drvdata->size,
1108 				 0, cpu_to_node(0), NULL);
1109 }
1110 
1111 static void
1112 tmc_etr_free_sysfs_buf(struct etr_buf *buf)
1113 {
1114 	if (buf)
1115 		tmc_free_etr_buf(buf);
1116 }
1117 
1118 static void tmc_etr_sync_sysfs_buf(struct tmc_drvdata *drvdata)
1119 {
1120 	struct etr_buf *etr_buf = drvdata->etr_buf;
1121 
1122 	if (WARN_ON(drvdata->sysfs_buf != etr_buf)) {
1123 		tmc_etr_free_sysfs_buf(drvdata->sysfs_buf);
1124 		drvdata->sysfs_buf = NULL;
1125 	} else {
1126 		tmc_sync_etr_buf(drvdata);
1127 		/*
1128 		 * Insert barrier packets at the beginning, if there was
1129 		 * an overflow.
1130 		 */
1131 		if (etr_buf->full)
1132 			tmc_etr_buf_insert_barrier_packet(etr_buf,
1133 							  etr_buf->offset);
1134 	}
1135 }
1136 
1137 static void __tmc_etr_disable_hw(struct tmc_drvdata *drvdata)
1138 {
1139 	CS_UNLOCK(drvdata->base);
1140 
1141 	tmc_flush_and_stop(drvdata);
1142 	/*
1143 	 * When operating in sysFS mode the content of the buffer needs to be
1144 	 * read before the TMC is disabled.
1145 	 */
1146 	if (coresight_get_mode(drvdata->csdev) == CS_MODE_SYSFS)
1147 		tmc_etr_sync_sysfs_buf(drvdata);
1148 
1149 	tmc_disable_hw(drvdata);
1150 
1151 	CS_LOCK(drvdata->base);
1152 
1153 }
1154 
1155 void tmc_etr_disable_hw(struct tmc_drvdata *drvdata)
1156 {
1157 	__tmc_etr_disable_hw(drvdata);
1158 	coresight_disclaim_device(drvdata->csdev);
1159 	/* Reset the ETR buf used by hardware */
1160 	drvdata->etr_buf = NULL;
1161 }
1162 
1163 static struct etr_buf *tmc_etr_get_sysfs_buffer(struct coresight_device *csdev)
1164 {
1165 	int ret = 0;
1166 	unsigned long flags;
1167 	struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1168 	struct etr_buf *sysfs_buf = NULL, *new_buf = NULL, *free_buf = NULL;
1169 
1170 	/*
1171 	 * If we are enabling the ETR from disabled state, we need to make
1172 	 * sure we have a buffer with the right size. The etr_buf is not reset
1173 	 * immediately after we stop the tracing in SYSFS mode as we wait for
1174 	 * the user to collect the data. We may be able to reuse the existing
1175 	 * buffer, provided the size matches. Any allocation has to be done
1176 	 * with the lock released.
1177 	 */
1178 	spin_lock_irqsave(&drvdata->spinlock, flags);
1179 	sysfs_buf = READ_ONCE(drvdata->sysfs_buf);
1180 	if (!sysfs_buf || (sysfs_buf->size != drvdata->size)) {
1181 		spin_unlock_irqrestore(&drvdata->spinlock, flags);
1182 
1183 		/* Allocate memory with the locks released */
1184 		free_buf = new_buf = tmc_etr_setup_sysfs_buf(drvdata);
1185 		if (IS_ERR(new_buf))
1186 			return new_buf;
1187 
1188 		/* Let's try again */
1189 		spin_lock_irqsave(&drvdata->spinlock, flags);
1190 	}
1191 
1192 	if (drvdata->reading || coresight_get_mode(csdev) == CS_MODE_PERF) {
1193 		ret = -EBUSY;
1194 		goto out;
1195 	}
1196 
1197 	/*
1198 	 * If we don't have a buffer or it doesn't match the requested size,
1199 	 * use the buffer allocated above. Otherwise reuse the existing buffer.
1200 	 */
1201 	sysfs_buf = READ_ONCE(drvdata->sysfs_buf);
1202 	if (!sysfs_buf || (new_buf && sysfs_buf->size != new_buf->size)) {
1203 		free_buf = sysfs_buf;
1204 		drvdata->sysfs_buf = new_buf;
1205 	}
1206 
1207 out:
1208 	spin_unlock_irqrestore(&drvdata->spinlock, flags);
1209 
1210 	/* Free memory outside the spinlock if need be */
1211 	if (free_buf)
1212 		tmc_etr_free_sysfs_buf(free_buf);
1213 	return ret ? ERR_PTR(ret) : drvdata->sysfs_buf;
1214 }
1215 
1216 static int tmc_enable_etr_sink_sysfs(struct coresight_device *csdev)
1217 {
1218 	int ret = 0;
1219 	unsigned long flags;
1220 	struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1221 	struct etr_buf *sysfs_buf = tmc_etr_get_sysfs_buffer(csdev);
1222 
1223 	if (IS_ERR(sysfs_buf))
1224 		return PTR_ERR(sysfs_buf);
1225 
1226 	spin_lock_irqsave(&drvdata->spinlock, flags);
1227 
1228 	/*
1229 	 * In sysFS mode we can have multiple writers per sink.  Since this
1230 	 * sink is already enabled no memory is needed and the HW need not be
1231 	 * touched, even if the buffer size has changed.
1232 	 */
1233 	if (coresight_get_mode(csdev) == CS_MODE_SYSFS) {
1234 		csdev->refcnt++;
1235 		goto out;
1236 	}
1237 
1238 	ret = tmc_etr_enable_hw(drvdata, sysfs_buf);
1239 	if (!ret) {
1240 		coresight_set_mode(csdev, CS_MODE_SYSFS);
1241 		csdev->refcnt++;
1242 	}
1243 
1244 out:
1245 	spin_unlock_irqrestore(&drvdata->spinlock, flags);
1246 
1247 	if (!ret)
1248 		dev_dbg(&csdev->dev, "TMC-ETR enabled\n");
1249 
1250 	return ret;
1251 }
1252 
1253 struct etr_buf *tmc_etr_get_buffer(struct coresight_device *csdev,
1254 				   enum cs_mode mode, void *data)
1255 {
1256 	struct perf_output_handle *handle = data;
1257 	struct etr_perf_buffer *etr_perf;
1258 
1259 	switch (mode) {
1260 	case CS_MODE_SYSFS:
1261 		return tmc_etr_get_sysfs_buffer(csdev);
1262 	case CS_MODE_PERF:
1263 		etr_perf = etm_perf_sink_config(handle);
1264 		if (WARN_ON(!etr_perf || !etr_perf->etr_buf))
1265 			return ERR_PTR(-EINVAL);
1266 		return etr_perf->etr_buf;
1267 	default:
1268 		return ERR_PTR(-EINVAL);
1269 	}
1270 }
1271 EXPORT_SYMBOL_GPL(tmc_etr_get_buffer);
1272 
1273 /*
1274  * alloc_etr_buf: Allocate ETR buffer for use by perf.
1275  * The size of the hardware buffer is dependent on the size configured
1276  * via sysfs and the perf ring buffer size. We prefer to allocate the
1277  * largest possible size, scaling down the size by half until it
1278  * reaches a minimum limit (1M), beyond which we give up.
1279  */
1280 static struct etr_buf *
1281 alloc_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1282 	      int nr_pages, void **pages, bool snapshot)
1283 {
1284 	int node;
1285 	struct etr_buf *etr_buf;
1286 	unsigned long size;
1287 
1288 	node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu);
1289 	/*
1290 	 * Try to match the perf ring buffer size if it is larger
1291 	 * than the size requested via sysfs.
1292 	 */
1293 	if ((nr_pages << PAGE_SHIFT) > drvdata->size) {
1294 		etr_buf = tmc_alloc_etr_buf(drvdata, ((ssize_t)nr_pages << PAGE_SHIFT),
1295 					    0, node, NULL);
1296 		if (!IS_ERR(etr_buf))
1297 			goto done;
1298 	}
1299 
1300 	/*
1301 	 * Else switch to configured size for this ETR
1302 	 * and scale down until we hit the minimum limit.
1303 	 */
1304 	size = drvdata->size;
1305 	do {
1306 		etr_buf = tmc_alloc_etr_buf(drvdata, size, 0, node, NULL);
1307 		if (!IS_ERR(etr_buf))
1308 			goto done;
1309 		size /= 2;
1310 	} while (size >= TMC_ETR_PERF_MIN_BUF_SIZE);
1311 
1312 	return ERR_PTR(-ENOMEM);
1313 
1314 done:
1315 	return etr_buf;
1316 }
1317 
1318 static struct etr_buf *
1319 get_perf_etr_buf_cpu_wide(struct tmc_drvdata *drvdata,
1320 			  struct perf_event *event, int nr_pages,
1321 			  void **pages, bool snapshot)
1322 {
1323 	int ret;
1324 	pid_t pid = task_pid_nr(event->owner);
1325 	struct etr_buf *etr_buf;
1326 
1327 retry:
1328 	/*
1329 	 * An etr_perf_buffer is associated with an event and holds a reference
1330 	 * to the AUX ring buffer that was created for that event.  In CPU-wide
1331 	 * N:1 mode multiple events (one per CPU), each with its own AUX ring
1332 	 * buffer, share a sink.  As such an etr_perf_buffer is created for each
1333 	 * event but a single etr_buf associated with the ETR is shared between
1334 	 * them.  The last event in a trace session will copy the content of the
1335 	 * etr_buf to its AUX ring buffer.  Ring buffer associated to other
1336 	 * events are simply not used an freed as events are destoyed.  We still
1337 	 * need to allocate a ring buffer for each event since we don't know
1338 	 * which event will be last.
1339 	 */
1340 
1341 	/*
1342 	 * The first thing to do here is check if an etr_buf has already been
1343 	 * allocated for this session.  If so it is shared with this event,
1344 	 * otherwise it is created.
1345 	 */
1346 	mutex_lock(&drvdata->idr_mutex);
1347 	etr_buf = idr_find(&drvdata->idr, pid);
1348 	if (etr_buf) {
1349 		refcount_inc(&etr_buf->refcount);
1350 		mutex_unlock(&drvdata->idr_mutex);
1351 		return etr_buf;
1352 	}
1353 
1354 	/* If we made it here no buffer has been allocated, do so now. */
1355 	mutex_unlock(&drvdata->idr_mutex);
1356 
1357 	etr_buf = alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1358 	if (IS_ERR(etr_buf))
1359 		return etr_buf;
1360 
1361 	/* Now that we have a buffer, add it to the IDR. */
1362 	mutex_lock(&drvdata->idr_mutex);
1363 	ret = idr_alloc(&drvdata->idr, etr_buf, pid, pid + 1, GFP_KERNEL);
1364 	mutex_unlock(&drvdata->idr_mutex);
1365 
1366 	/* Another event with this session ID has allocated this buffer. */
1367 	if (ret == -ENOSPC) {
1368 		tmc_free_etr_buf(etr_buf);
1369 		goto retry;
1370 	}
1371 
1372 	/* The IDR can't allocate room for a new session, abandon ship. */
1373 	if (ret == -ENOMEM) {
1374 		tmc_free_etr_buf(etr_buf);
1375 		return ERR_PTR(ret);
1376 	}
1377 
1378 
1379 	return etr_buf;
1380 }
1381 
1382 static struct etr_buf *
1383 get_perf_etr_buf_per_thread(struct tmc_drvdata *drvdata,
1384 			    struct perf_event *event, int nr_pages,
1385 			    void **pages, bool snapshot)
1386 {
1387 	/*
1388 	 * In per-thread mode the etr_buf isn't shared, so just go ahead
1389 	 * with memory allocation.
1390 	 */
1391 	return alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1392 }
1393 
1394 static struct etr_buf *
1395 get_perf_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1396 		 int nr_pages, void **pages, bool snapshot)
1397 {
1398 	if (event->cpu == -1)
1399 		return get_perf_etr_buf_per_thread(drvdata, event, nr_pages,
1400 						   pages, snapshot);
1401 
1402 	return get_perf_etr_buf_cpu_wide(drvdata, event, nr_pages,
1403 					 pages, snapshot);
1404 }
1405 
1406 static struct etr_perf_buffer *
1407 tmc_etr_setup_perf_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1408 		       int nr_pages, void **pages, bool snapshot)
1409 {
1410 	int node;
1411 	struct etr_buf *etr_buf;
1412 	struct etr_perf_buffer *etr_perf;
1413 
1414 	node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu);
1415 
1416 	etr_perf = kzalloc_node(sizeof(*etr_perf), GFP_KERNEL, node);
1417 	if (!etr_perf)
1418 		return ERR_PTR(-ENOMEM);
1419 
1420 	etr_buf = get_perf_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1421 	if (!IS_ERR(etr_buf))
1422 		goto done;
1423 
1424 	kfree(etr_perf);
1425 	return ERR_PTR(-ENOMEM);
1426 
1427 done:
1428 	/*
1429 	 * Keep a reference to the ETR this buffer has been allocated for
1430 	 * in order to have access to the IDR in tmc_free_etr_buffer().
1431 	 */
1432 	etr_perf->drvdata = drvdata;
1433 	etr_perf->etr_buf = etr_buf;
1434 
1435 	return etr_perf;
1436 }
1437 
1438 
1439 static void *tmc_alloc_etr_buffer(struct coresight_device *csdev,
1440 				  struct perf_event *event, void **pages,
1441 				  int nr_pages, bool snapshot)
1442 {
1443 	struct etr_perf_buffer *etr_perf;
1444 	struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1445 
1446 	etr_perf = tmc_etr_setup_perf_buf(drvdata, event,
1447 					  nr_pages, pages, snapshot);
1448 	if (IS_ERR(etr_perf)) {
1449 		dev_dbg(&csdev->dev, "Unable to allocate ETR buffer\n");
1450 		return NULL;
1451 	}
1452 
1453 	etr_perf->pid = task_pid_nr(event->owner);
1454 	etr_perf->snapshot = snapshot;
1455 	etr_perf->nr_pages = nr_pages;
1456 	etr_perf->pages = pages;
1457 
1458 	return etr_perf;
1459 }
1460 
1461 static void tmc_free_etr_buffer(void *config)
1462 {
1463 	struct etr_perf_buffer *etr_perf = config;
1464 	struct tmc_drvdata *drvdata = etr_perf->drvdata;
1465 	struct etr_buf *buf, *etr_buf = etr_perf->etr_buf;
1466 
1467 	if (!etr_buf)
1468 		goto free_etr_perf_buffer;
1469 
1470 	mutex_lock(&drvdata->idr_mutex);
1471 	/* If we are not the last one to use the buffer, don't touch it. */
1472 	if (!refcount_dec_and_test(&etr_buf->refcount)) {
1473 		mutex_unlock(&drvdata->idr_mutex);
1474 		goto free_etr_perf_buffer;
1475 	}
1476 
1477 	/* We are the last one, remove from the IDR and free the buffer. */
1478 	buf = idr_remove(&drvdata->idr, etr_perf->pid);
1479 	mutex_unlock(&drvdata->idr_mutex);
1480 
1481 	/*
1482 	 * Something went very wrong if the buffer associated with this ID
1483 	 * is not the same in the IDR.  Leak to avoid use after free.
1484 	 */
1485 	if (buf && WARN_ON(buf != etr_buf))
1486 		goto free_etr_perf_buffer;
1487 
1488 	tmc_free_etr_buf(etr_perf->etr_buf);
1489 
1490 free_etr_perf_buffer:
1491 	kfree(etr_perf);
1492 }
1493 
1494 /*
1495  * tmc_etr_sync_perf_buffer: Copy the actual trace data from the hardware
1496  * buffer to the perf ring buffer.
1497  */
1498 static void tmc_etr_sync_perf_buffer(struct etr_perf_buffer *etr_perf,
1499 				     unsigned long head,
1500 				     unsigned long src_offset,
1501 				     unsigned long to_copy)
1502 {
1503 	long bytes;
1504 	long pg_idx, pg_offset;
1505 	char **dst_pages, *src_buf;
1506 	struct etr_buf *etr_buf = etr_perf->etr_buf;
1507 
1508 	head = PERF_IDX2OFF(head, etr_perf);
1509 	pg_idx = head >> PAGE_SHIFT;
1510 	pg_offset = head & (PAGE_SIZE - 1);
1511 	dst_pages = (char **)etr_perf->pages;
1512 
1513 	while (to_copy > 0) {
1514 		/*
1515 		 * In one iteration, we can copy minimum of :
1516 		 *  1) what is available in the source buffer,
1517 		 *  2) what is available in the source buffer, before it
1518 		 *     wraps around.
1519 		 *  3) what is available in the destination page.
1520 		 * in one iteration.
1521 		 */
1522 		if (src_offset >= etr_buf->size)
1523 			src_offset -= etr_buf->size;
1524 		bytes = tmc_etr_buf_get_data(etr_buf, src_offset, to_copy,
1525 					     &src_buf);
1526 		if (WARN_ON_ONCE(bytes <= 0))
1527 			break;
1528 		bytes = min(bytes, (long)(PAGE_SIZE - pg_offset));
1529 
1530 		memcpy(dst_pages[pg_idx] + pg_offset, src_buf, bytes);
1531 
1532 		to_copy -= bytes;
1533 
1534 		/* Move destination pointers */
1535 		pg_offset += bytes;
1536 		if (pg_offset == PAGE_SIZE) {
1537 			pg_offset = 0;
1538 			if (++pg_idx == etr_perf->nr_pages)
1539 				pg_idx = 0;
1540 		}
1541 
1542 		/* Move source pointers */
1543 		src_offset += bytes;
1544 	}
1545 }
1546 
1547 /*
1548  * tmc_update_etr_buffer : Update the perf ring buffer with the
1549  * available trace data. We use software double buffering at the moment.
1550  *
1551  * TODO: Add support for reusing the perf ring buffer.
1552  */
1553 static unsigned long
1554 tmc_update_etr_buffer(struct coresight_device *csdev,
1555 		      struct perf_output_handle *handle,
1556 		      void *config)
1557 {
1558 	bool lost = false;
1559 	unsigned long flags, offset, size = 0;
1560 	struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1561 	struct etr_perf_buffer *etr_perf = config;
1562 	struct etr_buf *etr_buf = etr_perf->etr_buf;
1563 
1564 	spin_lock_irqsave(&drvdata->spinlock, flags);
1565 
1566 	/* Don't do anything if another tracer is using this sink */
1567 	if (csdev->refcnt != 1) {
1568 		spin_unlock_irqrestore(&drvdata->spinlock, flags);
1569 		goto out;
1570 	}
1571 
1572 	if (WARN_ON(drvdata->perf_buf != etr_buf)) {
1573 		lost = true;
1574 		spin_unlock_irqrestore(&drvdata->spinlock, flags);
1575 		goto out;
1576 	}
1577 
1578 	CS_UNLOCK(drvdata->base);
1579 
1580 	tmc_flush_and_stop(drvdata);
1581 	tmc_sync_etr_buf(drvdata);
1582 
1583 	CS_LOCK(drvdata->base);
1584 	spin_unlock_irqrestore(&drvdata->spinlock, flags);
1585 
1586 	lost = etr_buf->full;
1587 	offset = etr_buf->offset;
1588 	size = etr_buf->len;
1589 
1590 	/*
1591 	 * The ETR buffer may be bigger than the space available in the
1592 	 * perf ring buffer (handle->size).  If so advance the offset so that we
1593 	 * get the latest trace data.  In snapshot mode none of that matters
1594 	 * since we are expected to clobber stale data in favour of the latest
1595 	 * traces.
1596 	 */
1597 	if (!etr_perf->snapshot && size > handle->size) {
1598 		u32 mask = tmc_get_memwidth_mask(drvdata);
1599 
1600 		/*
1601 		 * Make sure the new size is aligned in accordance with the
1602 		 * requirement explained in function tmc_get_memwidth_mask().
1603 		 */
1604 		size = handle->size & mask;
1605 		offset = etr_buf->offset + etr_buf->len - size;
1606 
1607 		if (offset >= etr_buf->size)
1608 			offset -= etr_buf->size;
1609 		lost = true;
1610 	}
1611 
1612 	/* Insert barrier packets at the beginning, if there was an overflow */
1613 	if (lost)
1614 		tmc_etr_buf_insert_barrier_packet(etr_buf, offset);
1615 	tmc_etr_sync_perf_buffer(etr_perf, handle->head, offset, size);
1616 
1617 	/*
1618 	 * In snapshot mode we simply increment the head by the number of byte
1619 	 * that were written.  User space will figure out how many bytes to get
1620 	 * from the AUX buffer based on the position of the head.
1621 	 */
1622 	if (etr_perf->snapshot)
1623 		handle->head += size;
1624 
1625 	/*
1626 	 * Ensure that the AUX trace data is visible before the aux_head
1627 	 * is updated via perf_aux_output_end(), as expected by the
1628 	 * perf ring buffer.
1629 	 */
1630 	smp_wmb();
1631 
1632 out:
1633 	/*
1634 	 * Don't set the TRUNCATED flag in snapshot mode because 1) the
1635 	 * captured buffer is expected to be truncated and 2) a full buffer
1636 	 * prevents the event from being re-enabled by the perf core,
1637 	 * resulting in stale data being send to user space.
1638 	 */
1639 	if (!etr_perf->snapshot && lost)
1640 		perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
1641 	return size;
1642 }
1643 
1644 static int tmc_enable_etr_sink_perf(struct coresight_device *csdev, void *data)
1645 {
1646 	int rc = 0;
1647 	pid_t pid;
1648 	unsigned long flags;
1649 	struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1650 	struct perf_output_handle *handle = data;
1651 	struct etr_perf_buffer *etr_perf = etm_perf_sink_config(handle);
1652 
1653 	spin_lock_irqsave(&drvdata->spinlock, flags);
1654 	 /* Don't use this sink if it is already claimed by sysFS */
1655 	if (coresight_get_mode(csdev) == CS_MODE_SYSFS) {
1656 		rc = -EBUSY;
1657 		goto unlock_out;
1658 	}
1659 
1660 	if (WARN_ON(!etr_perf || !etr_perf->etr_buf)) {
1661 		rc = -EINVAL;
1662 		goto unlock_out;
1663 	}
1664 
1665 	/* Get a handle on the pid of the process to monitor */
1666 	pid = etr_perf->pid;
1667 
1668 	/* Do not proceed if this device is associated with another session */
1669 	if (drvdata->pid != -1 && drvdata->pid != pid) {
1670 		rc = -EBUSY;
1671 		goto unlock_out;
1672 	}
1673 
1674 	/*
1675 	 * No HW configuration is needed if the sink is already in
1676 	 * use for this session.
1677 	 */
1678 	if (drvdata->pid == pid) {
1679 		csdev->refcnt++;
1680 		goto unlock_out;
1681 	}
1682 
1683 	rc = tmc_etr_enable_hw(drvdata, etr_perf->etr_buf);
1684 	if (!rc) {
1685 		/* Associate with monitored process. */
1686 		drvdata->pid = pid;
1687 		coresight_set_mode(csdev, CS_MODE_PERF);
1688 		drvdata->perf_buf = etr_perf->etr_buf;
1689 		csdev->refcnt++;
1690 	}
1691 
1692 unlock_out:
1693 	spin_unlock_irqrestore(&drvdata->spinlock, flags);
1694 	return rc;
1695 }
1696 
1697 static int tmc_enable_etr_sink(struct coresight_device *csdev,
1698 			       enum cs_mode mode, void *data)
1699 {
1700 	switch (mode) {
1701 	case CS_MODE_SYSFS:
1702 		return tmc_enable_etr_sink_sysfs(csdev);
1703 	case CS_MODE_PERF:
1704 		return tmc_enable_etr_sink_perf(csdev, data);
1705 	default:
1706 		return -EINVAL;
1707 	}
1708 }
1709 
1710 static int tmc_disable_etr_sink(struct coresight_device *csdev)
1711 {
1712 	unsigned long flags;
1713 	struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1714 
1715 	spin_lock_irqsave(&drvdata->spinlock, flags);
1716 
1717 	if (drvdata->reading) {
1718 		spin_unlock_irqrestore(&drvdata->spinlock, flags);
1719 		return -EBUSY;
1720 	}
1721 
1722 	csdev->refcnt--;
1723 	if (csdev->refcnt) {
1724 		spin_unlock_irqrestore(&drvdata->spinlock, flags);
1725 		return -EBUSY;
1726 	}
1727 
1728 	/* Complain if we (somehow) got out of sync */
1729 	WARN_ON_ONCE(coresight_get_mode(csdev) == CS_MODE_DISABLED);
1730 	tmc_etr_disable_hw(drvdata);
1731 	/* Dissociate from monitored process. */
1732 	drvdata->pid = -1;
1733 	coresight_set_mode(csdev, CS_MODE_DISABLED);
1734 	/* Reset perf specific data */
1735 	drvdata->perf_buf = NULL;
1736 
1737 	spin_unlock_irqrestore(&drvdata->spinlock, flags);
1738 
1739 	dev_dbg(&csdev->dev, "TMC-ETR disabled\n");
1740 	return 0;
1741 }
1742 
1743 static const struct coresight_ops_sink tmc_etr_sink_ops = {
1744 	.enable		= tmc_enable_etr_sink,
1745 	.disable	= tmc_disable_etr_sink,
1746 	.alloc_buffer	= tmc_alloc_etr_buffer,
1747 	.update_buffer	= tmc_update_etr_buffer,
1748 	.free_buffer	= tmc_free_etr_buffer,
1749 };
1750 
1751 const struct coresight_ops tmc_etr_cs_ops = {
1752 	.sink_ops	= &tmc_etr_sink_ops,
1753 };
1754 
1755 int tmc_read_prepare_etr(struct tmc_drvdata *drvdata)
1756 {
1757 	int ret = 0;
1758 	unsigned long flags;
1759 
1760 	/* config types are set a boot time and never change */
1761 	if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
1762 		return -EINVAL;
1763 
1764 	spin_lock_irqsave(&drvdata->spinlock, flags);
1765 	if (drvdata->reading) {
1766 		ret = -EBUSY;
1767 		goto out;
1768 	}
1769 
1770 	/*
1771 	 * We can safely allow reads even if the ETR is operating in PERF mode,
1772 	 * since the sysfs session is captured in mode specific data.
1773 	 * If drvdata::sysfs_data is NULL the trace data has been read already.
1774 	 */
1775 	if (!drvdata->sysfs_buf) {
1776 		ret = -EINVAL;
1777 		goto out;
1778 	}
1779 
1780 	/* Disable the TMC if we are trying to read from a running session. */
1781 	if (coresight_get_mode(drvdata->csdev) == CS_MODE_SYSFS)
1782 		__tmc_etr_disable_hw(drvdata);
1783 
1784 	drvdata->reading = true;
1785 out:
1786 	spin_unlock_irqrestore(&drvdata->spinlock, flags);
1787 
1788 	return ret;
1789 }
1790 
1791 int tmc_read_unprepare_etr(struct tmc_drvdata *drvdata)
1792 {
1793 	unsigned long flags;
1794 	struct etr_buf *sysfs_buf = NULL;
1795 
1796 	/* config types are set a boot time and never change */
1797 	if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
1798 		return -EINVAL;
1799 
1800 	spin_lock_irqsave(&drvdata->spinlock, flags);
1801 
1802 	/* RE-enable the TMC if need be */
1803 	if (coresight_get_mode(drvdata->csdev) == CS_MODE_SYSFS) {
1804 		/*
1805 		 * The trace run will continue with the same allocated trace
1806 		 * buffer. Since the tracer is still enabled drvdata::buf can't
1807 		 * be NULL.
1808 		 */
1809 		__tmc_etr_enable_hw(drvdata);
1810 	} else {
1811 		/*
1812 		 * The ETR is not tracing and the buffer was just read.
1813 		 * As such prepare to free the trace buffer.
1814 		 */
1815 		sysfs_buf = drvdata->sysfs_buf;
1816 		drvdata->sysfs_buf = NULL;
1817 	}
1818 
1819 	drvdata->reading = false;
1820 	spin_unlock_irqrestore(&drvdata->spinlock, flags);
1821 
1822 	/* Free allocated memory out side of the spinlock */
1823 	if (sysfs_buf)
1824 		tmc_etr_free_sysfs_buf(sysfs_buf);
1825 
1826 	return 0;
1827 }
1828 
1829 static const char *const buf_modes_str[] = {
1830 	[ETR_MODE_FLAT]		= "flat",
1831 	[ETR_MODE_ETR_SG]	= "tmc-sg",
1832 	[ETR_MODE_CATU]		= "catu",
1833 	[ETR_MODE_AUTO]		= "auto",
1834 };
1835 
1836 static ssize_t buf_modes_available_show(struct device *dev,
1837 					    struct device_attribute *attr, char *buf)
1838 {
1839 	struct etr_buf_hw buf_hw;
1840 	ssize_t size = 0;
1841 
1842 	get_etr_buf_hw(dev, &buf_hw);
1843 	size += sysfs_emit(buf, "%s ", buf_modes_str[ETR_MODE_AUTO]);
1844 	size += sysfs_emit_at(buf, size, "%s ", buf_modes_str[ETR_MODE_FLAT]);
1845 	if (buf_hw.has_etr_sg)
1846 		size += sysfs_emit_at(buf, size, "%s ", buf_modes_str[ETR_MODE_ETR_SG]);
1847 
1848 	if (buf_hw.has_catu)
1849 		size += sysfs_emit_at(buf, size, "%s ", buf_modes_str[ETR_MODE_CATU]);
1850 
1851 	size += sysfs_emit_at(buf, size, "\n");
1852 	return size;
1853 }
1854 static DEVICE_ATTR_RO(buf_modes_available);
1855 
1856 static ssize_t buf_mode_preferred_show(struct device *dev,
1857 					 struct device_attribute *attr, char *buf)
1858 {
1859 	struct tmc_drvdata *drvdata = dev_get_drvdata(dev->parent);
1860 
1861 	return sysfs_emit(buf, "%s\n", buf_modes_str[drvdata->etr_mode]);
1862 }
1863 
1864 static ssize_t buf_mode_preferred_store(struct device *dev,
1865 					  struct device_attribute *attr,
1866 					  const char *buf, size_t size)
1867 {
1868 	struct tmc_drvdata *drvdata = dev_get_drvdata(dev->parent);
1869 	struct etr_buf_hw buf_hw;
1870 
1871 	get_etr_buf_hw(dev, &buf_hw);
1872 	if (sysfs_streq(buf, buf_modes_str[ETR_MODE_FLAT]))
1873 		drvdata->etr_mode = ETR_MODE_FLAT;
1874 	else if (sysfs_streq(buf, buf_modes_str[ETR_MODE_ETR_SG]) && buf_hw.has_etr_sg)
1875 		drvdata->etr_mode = ETR_MODE_ETR_SG;
1876 	else if (sysfs_streq(buf, buf_modes_str[ETR_MODE_CATU]) && buf_hw.has_catu)
1877 		drvdata->etr_mode = ETR_MODE_CATU;
1878 	else if (sysfs_streq(buf, buf_modes_str[ETR_MODE_AUTO]))
1879 		drvdata->etr_mode = ETR_MODE_AUTO;
1880 	else
1881 		return -EINVAL;
1882 	return size;
1883 }
1884 static DEVICE_ATTR_RW(buf_mode_preferred);
1885 
1886 static struct attribute *coresight_etr_attrs[] = {
1887 	&dev_attr_buf_modes_available.attr,
1888 	&dev_attr_buf_mode_preferred.attr,
1889 	NULL,
1890 };
1891 
1892 const struct attribute_group coresight_etr_group = {
1893 	.attrs = coresight_etr_attrs,
1894 };
1895