1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2015 Linaro Limited. All rights reserved. 4 * Author: Mathieu Poirier <mathieu.poirier@linaro.org> 5 */ 6 7 #include <linux/bitfield.h> 8 #include <linux/coresight.h> 9 #include <linux/coresight-pmu.h> 10 #include <linux/cpumask.h> 11 #include <linux/device.h> 12 #include <linux/list.h> 13 #include <linux/mm.h> 14 #include <linux/init.h> 15 #include <linux/perf_event.h> 16 #include <linux/percpu-defs.h> 17 #include <linux/slab.h> 18 #include <linux/stringhash.h> 19 #include <linux/types.h> 20 #include <linux/workqueue.h> 21 22 #include "coresight-config.h" 23 #include "coresight-etm-perf.h" 24 #include "coresight-priv.h" 25 #include "coresight-syscfg.h" 26 #include "coresight-trace-id.h" 27 28 static struct pmu etm_pmu; 29 static bool etm_perf_up; 30 31 /* 32 * An ETM context for a running event includes the perf aux handle 33 * and aux_data. For ETM, the aux_data (etm_event_data), consists of 34 * the trace path and the sink configuration. The event data is accessible 35 * via perf_get_aux(handle). However, a sink could "end" a perf output 36 * handle via the IRQ handler. And if the "sink" encounters a failure 37 * to "begin" another session (e.g due to lack of space in the buffer), 38 * the handle will be cleared. Thus, the event_data may not be accessible 39 * from the handle when we get to the etm_event_stop(), which is required 40 * for stopping the trace path. The event_data is guaranteed to stay alive 41 * until "free_aux()", which cannot happen as long as the event is active on 42 * the ETM. Thus the event_data for the session must be part of the ETM context 43 * to make sure we can disable the trace path. 44 */ 45 struct etm_ctxt { 46 struct perf_output_handle handle; 47 struct etm_event_data *event_data; 48 }; 49 50 static DEFINE_PER_CPU(struct etm_ctxt, etm_ctxt); 51 static DEFINE_PER_CPU(struct coresight_device *, csdev_src); 52 53 /* 54 * The PMU formats were orignally for ETMv3.5/PTM's ETMCR 'config'; 55 * now take them as general formats and apply on all ETMs. 56 */ 57 PMU_FORMAT_ATTR(branch_broadcast, "config:"__stringify(ETM_OPT_BRANCH_BROADCAST)); 58 PMU_FORMAT_ATTR(cycacc, "config:" __stringify(ETM_OPT_CYCACC)); 59 /* contextid1 enables tracing CONTEXTIDR_EL1 for ETMv4 */ 60 PMU_FORMAT_ATTR(contextid1, "config:" __stringify(ETM_OPT_CTXTID)); 61 /* contextid2 enables tracing CONTEXTIDR_EL2 for ETMv4 */ 62 PMU_FORMAT_ATTR(contextid2, "config:" __stringify(ETM_OPT_CTXTID2)); 63 PMU_FORMAT_ATTR(timestamp, "config:" __stringify(ETM_OPT_TS)); 64 PMU_FORMAT_ATTR(retstack, "config:" __stringify(ETM_OPT_RETSTK)); 65 /* preset - if sink ID is used as a configuration selector */ 66 PMU_FORMAT_ATTR(preset, "config:0-3"); 67 /* Sink ID - same for all ETMs */ 68 PMU_FORMAT_ATTR(sinkid, "config2:0-31"); 69 /* config ID - set if a system configuration is selected */ 70 PMU_FORMAT_ATTR(configid, "config2:32-63"); 71 PMU_FORMAT_ATTR(cc_threshold, "config3:0-11"); 72 73 74 /* 75 * contextid always traces the "PID". The PID is in CONTEXTIDR_EL1 76 * when the kernel is running at EL1; when the kernel is at EL2, 77 * the PID is in CONTEXTIDR_EL2. 78 */ 79 static ssize_t format_attr_contextid_show(struct device *dev, 80 struct device_attribute *attr, 81 char *page) 82 { 83 int pid_fmt = ETM_OPT_CTXTID; 84 85 #if IS_ENABLED(CONFIG_CORESIGHT_SOURCE_ETM4X) 86 pid_fmt = is_kernel_in_hyp_mode() ? ETM_OPT_CTXTID2 : ETM_OPT_CTXTID; 87 #endif 88 return sprintf(page, "config:%d\n", pid_fmt); 89 } 90 91 static struct device_attribute format_attr_contextid = 92 __ATTR(contextid, 0444, format_attr_contextid_show, NULL); 93 94 static struct attribute *etm_config_formats_attr[] = { 95 &format_attr_cycacc.attr, 96 &format_attr_contextid.attr, 97 &format_attr_contextid1.attr, 98 &format_attr_contextid2.attr, 99 &format_attr_timestamp.attr, 100 &format_attr_retstack.attr, 101 &format_attr_sinkid.attr, 102 &format_attr_preset.attr, 103 &format_attr_configid.attr, 104 &format_attr_branch_broadcast.attr, 105 &format_attr_cc_threshold.attr, 106 NULL, 107 }; 108 109 static const struct attribute_group etm_pmu_format_group = { 110 .name = "format", 111 .attrs = etm_config_formats_attr, 112 }; 113 114 static struct attribute *etm_config_sinks_attr[] = { 115 NULL, 116 }; 117 118 static const struct attribute_group etm_pmu_sinks_group = { 119 .name = "sinks", 120 .attrs = etm_config_sinks_attr, 121 }; 122 123 static struct attribute *etm_config_events_attr[] = { 124 NULL, 125 }; 126 127 static const struct attribute_group etm_pmu_events_group = { 128 .name = "events", 129 .attrs = etm_config_events_attr, 130 }; 131 132 static const struct attribute_group *etm_pmu_attr_groups[] = { 133 &etm_pmu_format_group, 134 &etm_pmu_sinks_group, 135 &etm_pmu_events_group, 136 NULL, 137 }; 138 139 static inline struct coresight_path ** 140 etm_event_cpu_path_ptr(struct etm_event_data *data, int cpu) 141 { 142 return per_cpu_ptr(data->path, cpu); 143 } 144 145 static inline struct coresight_path * 146 etm_event_cpu_path(struct etm_event_data *data, int cpu) 147 { 148 return *etm_event_cpu_path_ptr(data, cpu); 149 } 150 151 static void etm_event_read(struct perf_event *event) {} 152 153 static int etm_addr_filters_alloc(struct perf_event *event) 154 { 155 struct etm_filters *filters; 156 int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu); 157 158 filters = kzalloc_node(sizeof(struct etm_filters), GFP_KERNEL, node); 159 if (!filters) 160 return -ENOMEM; 161 162 if (event->parent) 163 memcpy(filters, event->parent->hw.addr_filters, 164 sizeof(*filters)); 165 166 event->hw.addr_filters = filters; 167 168 return 0; 169 } 170 171 static void etm_event_destroy(struct perf_event *event) 172 { 173 kfree(event->hw.addr_filters); 174 event->hw.addr_filters = NULL; 175 } 176 177 static int etm_event_init(struct perf_event *event) 178 { 179 int ret = 0; 180 181 if (event->attr.type != etm_pmu.type) { 182 ret = -ENOENT; 183 goto out; 184 } 185 186 ret = etm_addr_filters_alloc(event); 187 if (ret) 188 goto out; 189 190 event->destroy = etm_event_destroy; 191 out: 192 return ret; 193 } 194 195 static void free_sink_buffer(struct etm_event_data *event_data) 196 { 197 int cpu; 198 cpumask_t *mask = &event_data->mask; 199 struct coresight_device *sink; 200 201 if (!event_data->snk_config) 202 return; 203 204 if (WARN_ON(cpumask_empty(mask))) 205 return; 206 207 cpu = cpumask_first(mask); 208 sink = coresight_get_sink(etm_event_cpu_path(event_data, cpu)); 209 sink_ops(sink)->free_buffer(event_data->snk_config); 210 } 211 212 static void free_event_data(struct work_struct *work) 213 { 214 int cpu; 215 cpumask_t *mask; 216 struct etm_event_data *event_data; 217 218 event_data = container_of(work, struct etm_event_data, work); 219 mask = &event_data->mask; 220 221 /* Free the sink buffers, if there are any */ 222 free_sink_buffer(event_data); 223 224 /* clear any configuration we were using */ 225 if (event_data->cfg_hash) 226 cscfg_deactivate_config(event_data->cfg_hash); 227 228 for_each_cpu(cpu, mask) { 229 struct coresight_path **ppath; 230 231 ppath = etm_event_cpu_path_ptr(event_data, cpu); 232 if (!(IS_ERR_OR_NULL(*ppath))) { 233 struct coresight_device *sink = coresight_get_sink(*ppath); 234 235 /* 236 * Mark perf event as done for trace id allocator, but don't call 237 * coresight_trace_id_put_cpu_id_map() on individual IDs. Perf sessions 238 * never free trace IDs to ensure that the ID associated with a CPU 239 * cannot change during their and other's concurrent sessions. Instead, 240 * a refcount is used so that the last event to call 241 * coresight_trace_id_perf_stop() frees all IDs. 242 */ 243 coresight_trace_id_perf_stop(&sink->perf_sink_id_map); 244 245 coresight_release_path(*ppath); 246 } 247 *ppath = NULL; 248 } 249 250 free_percpu(event_data->path); 251 kfree(event_data); 252 } 253 254 static void *alloc_event_data(int cpu) 255 { 256 cpumask_t *mask; 257 struct etm_event_data *event_data; 258 259 /* First get memory for the session's data */ 260 event_data = kzalloc(sizeof(struct etm_event_data), GFP_KERNEL); 261 if (!event_data) 262 return NULL; 263 264 265 mask = &event_data->mask; 266 if (cpu != -1) 267 cpumask_set_cpu(cpu, mask); 268 else 269 cpumask_copy(mask, cpu_present_mask); 270 271 /* 272 * Each CPU has a single path between source and destination. As such 273 * allocate an array using CPU numbers as indexes. That way a path 274 * for any CPU can easily be accessed at any given time. We proceed 275 * the same way for sessions involving a single CPU. The cost of 276 * unused memory when dealing with single CPU trace scenarios is small 277 * compared to the cost of searching through an optimized array. 278 */ 279 event_data->path = alloc_percpu(struct coresight_path *); 280 281 if (!event_data->path) { 282 kfree(event_data); 283 return NULL; 284 } 285 286 return event_data; 287 } 288 289 static void etm_free_aux(void *data) 290 { 291 struct etm_event_data *event_data = data; 292 293 schedule_work(&event_data->work); 294 } 295 296 /* 297 * Check if two given sinks are compatible with each other, 298 * so that they can use the same sink buffers, when an event 299 * moves around. 300 */ 301 static bool sinks_compatible(struct coresight_device *a, 302 struct coresight_device *b) 303 { 304 if (!a || !b) 305 return false; 306 /* 307 * If the sinks are of the same subtype and driven 308 * by the same driver, we can use the same buffer 309 * on these sinks. 310 */ 311 return (a->subtype.sink_subtype == b->subtype.sink_subtype) && 312 (sink_ops(a) == sink_ops(b)); 313 } 314 315 static void *etm_setup_aux(struct perf_event *event, void **pages, 316 int nr_pages, bool overwrite) 317 { 318 u32 id, cfg_hash; 319 int cpu = event->cpu; 320 cpumask_t *mask; 321 struct coresight_device *sink = NULL; 322 struct coresight_device *user_sink = NULL, *last_sink = NULL; 323 struct etm_event_data *event_data = NULL; 324 325 event_data = alloc_event_data(cpu); 326 if (!event_data) 327 return NULL; 328 INIT_WORK(&event_data->work, free_event_data); 329 330 /* First get the selected sink from user space. */ 331 if (event->attr.config2 & GENMASK_ULL(31, 0)) { 332 id = (u32)event->attr.config2; 333 sink = user_sink = coresight_get_sink_by_id(id); 334 } 335 336 /* check if user wants a coresight configuration selected */ 337 cfg_hash = (u32)((event->attr.config2 & GENMASK_ULL(63, 32)) >> 32); 338 if (cfg_hash) { 339 if (cscfg_activate_config(cfg_hash)) 340 goto err; 341 event_data->cfg_hash = cfg_hash; 342 } 343 344 mask = &event_data->mask; 345 346 /* 347 * Setup the path for each CPU in a trace session. We try to build 348 * trace path for each CPU in the mask. If we don't find an ETM 349 * for the CPU or fail to build a path, we clear the CPU from the 350 * mask and continue with the rest. If ever we try to trace on those 351 * CPUs, we can handle it and fail the session. 352 */ 353 for_each_cpu(cpu, mask) { 354 struct coresight_path *path; 355 struct coresight_device *csdev; 356 357 csdev = per_cpu(csdev_src, cpu); 358 /* 359 * If there is no ETM associated with this CPU clear it from 360 * the mask and continue with the rest. If ever we try to trace 361 * on this CPU, we handle it accordingly. 362 */ 363 if (!csdev) { 364 cpumask_clear_cpu(cpu, mask); 365 continue; 366 } 367 368 /* 369 * If AUX pause feature is enabled but the ETM driver does not 370 * support the operations, clear this CPU from the mask and 371 * continue to next one. 372 */ 373 if (event->attr.aux_start_paused && 374 (!source_ops(csdev)->pause_perf || !source_ops(csdev)->resume_perf)) { 375 dev_err_once(&csdev->dev, "AUX pause is not supported.\n"); 376 cpumask_clear_cpu(cpu, mask); 377 continue; 378 } 379 380 /* 381 * No sink provided - look for a default sink for all the ETMs, 382 * where this event can be scheduled. 383 * We allocate the sink specific buffers only once for this 384 * event. If the ETMs have different default sink devices, we 385 * can only use a single "type" of sink as the event can carry 386 * only one sink specific buffer. Thus we have to make sure 387 * that the sinks are of the same type and driven by the same 388 * driver, as the one we allocate the buffer for. As such 389 * we choose the first sink and check if the remaining ETMs 390 * have a compatible default sink. We don't trace on a CPU 391 * if the sink is not compatible. 392 */ 393 if (!user_sink) { 394 /* Find the default sink for this ETM */ 395 sink = coresight_find_default_sink(csdev); 396 if (!sink) { 397 cpumask_clear_cpu(cpu, mask); 398 continue; 399 } 400 401 /* Check if this sink compatible with the last sink */ 402 if (last_sink && !sinks_compatible(last_sink, sink)) { 403 cpumask_clear_cpu(cpu, mask); 404 continue; 405 } 406 last_sink = sink; 407 } 408 409 /* 410 * Building a path doesn't enable it, it simply builds a 411 * list of devices from source to sink that can be 412 * referenced later when the path is actually needed. 413 */ 414 path = coresight_build_path(csdev, sink); 415 if (IS_ERR(path)) { 416 cpumask_clear_cpu(cpu, mask); 417 continue; 418 } 419 420 /* ensure we can allocate a trace ID for this CPU */ 421 coresight_path_assign_trace_id(path, CS_MODE_PERF); 422 if (!IS_VALID_CS_TRACE_ID(path->trace_id)) { 423 cpumask_clear_cpu(cpu, mask); 424 coresight_release_path(path); 425 continue; 426 } 427 428 coresight_trace_id_perf_start(&sink->perf_sink_id_map); 429 *etm_event_cpu_path_ptr(event_data, cpu) = path; 430 } 431 432 /* no sink found for any CPU - cannot trace */ 433 if (!sink) 434 goto err; 435 436 /* If we don't have any CPUs ready for tracing, abort */ 437 cpu = cpumask_first(mask); 438 if (cpu >= nr_cpu_ids) 439 goto err; 440 441 if (!sink_ops(sink)->alloc_buffer || !sink_ops(sink)->free_buffer) 442 goto err; 443 444 /* 445 * Allocate the sink buffer for this session. All the sinks 446 * where this event can be scheduled are ensured to be of the 447 * same type. Thus the same sink configuration is used by the 448 * sinks. 449 */ 450 event_data->snk_config = 451 sink_ops(sink)->alloc_buffer(sink, event, pages, 452 nr_pages, overwrite); 453 if (!event_data->snk_config) 454 goto err; 455 456 out: 457 return event_data; 458 459 err: 460 etm_free_aux(event_data); 461 event_data = NULL; 462 goto out; 463 } 464 465 static int etm_event_resume(struct coresight_device *csdev, 466 struct etm_ctxt *ctxt) 467 { 468 if (!ctxt->event_data) 469 return 0; 470 471 return coresight_resume_source(csdev); 472 } 473 474 static void etm_event_start(struct perf_event *event, int flags) 475 { 476 int cpu = smp_processor_id(); 477 struct etm_event_data *event_data; 478 struct etm_ctxt *ctxt = this_cpu_ptr(&etm_ctxt); 479 struct perf_output_handle *handle = &ctxt->handle; 480 struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu); 481 struct coresight_path *path; 482 u64 hw_id; 483 484 if (!csdev) 485 goto fail; 486 487 if (flags & PERF_EF_RESUME) { 488 if (etm_event_resume(csdev, ctxt) < 0) { 489 dev_err(&csdev->dev, "Failed to resume ETM event.\n"); 490 goto fail; 491 } 492 return; 493 } 494 495 /* Have we messed up our tracking ? */ 496 if (WARN_ON(ctxt->event_data)) 497 goto fail; 498 499 /* 500 * Deal with the ring buffer API and get a handle on the 501 * session's information. 502 */ 503 event_data = perf_aux_output_begin(handle, event); 504 if (!event_data) 505 goto fail; 506 507 /* 508 * Check if this ETM is allowed to trace, as decided 509 * at etm_setup_aux(). This could be due to an unreachable 510 * sink from this ETM. We can't do much in this case if 511 * the sink was specified or hinted to the driver. For 512 * now, simply don't record anything on this ETM. 513 * 514 * As such we pretend that everything is fine, and let 515 * it continue without actually tracing. The event could 516 * continue tracing when it moves to a CPU where it is 517 * reachable to a sink. 518 */ 519 if (!cpumask_test_cpu(cpu, &event_data->mask)) 520 goto out; 521 522 path = etm_event_cpu_path(event_data, cpu); 523 /* We need a sink, no need to continue without one */ 524 sink = coresight_get_sink(path); 525 if (WARN_ON_ONCE(!sink)) 526 goto fail_end_stop; 527 528 /* Nothing will happen without a path */ 529 if (coresight_enable_path(path, CS_MODE_PERF, handle)) 530 goto fail_end_stop; 531 532 /* Finally enable the tracer */ 533 if (source_ops(csdev)->enable(csdev, event, CS_MODE_PERF, path)) 534 goto fail_disable_path; 535 536 /* 537 * output cpu / trace ID in perf record, once for the lifetime 538 * of the event. 539 */ 540 if (!cpumask_test_cpu(cpu, &event_data->aux_hwid_done)) { 541 cpumask_set_cpu(cpu, &event_data->aux_hwid_done); 542 543 hw_id = FIELD_PREP(CS_AUX_HW_ID_MAJOR_VERSION_MASK, 544 CS_AUX_HW_ID_MAJOR_VERSION); 545 hw_id |= FIELD_PREP(CS_AUX_HW_ID_MINOR_VERSION_MASK, 546 CS_AUX_HW_ID_MINOR_VERSION); 547 hw_id |= FIELD_PREP(CS_AUX_HW_ID_TRACE_ID_MASK, path->trace_id); 548 hw_id |= FIELD_PREP(CS_AUX_HW_ID_SINK_ID_MASK, coresight_get_sink_id(sink)); 549 550 perf_report_aux_output_id(event, hw_id); 551 } 552 553 out: 554 /* Tell the perf core the event is alive */ 555 event->hw.state = 0; 556 /* Save the event_data for this ETM */ 557 ctxt->event_data = event_data; 558 return; 559 560 fail_disable_path: 561 coresight_disable_path(path); 562 fail_end_stop: 563 /* 564 * Check if the handle is still associated with the event, 565 * to handle cases where if the sink failed to start the 566 * trace and TRUNCATED the handle already. 567 */ 568 if (READ_ONCE(handle->event)) { 569 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED); 570 perf_aux_output_end(handle, 0); 571 } 572 fail: 573 event->hw.state = PERF_HES_STOPPED; 574 return; 575 } 576 577 static void etm_event_pause(struct perf_event *event, 578 struct coresight_device *csdev, 579 struct etm_ctxt *ctxt) 580 { 581 int cpu = smp_processor_id(); 582 struct coresight_device *sink; 583 struct perf_output_handle *handle = &ctxt->handle; 584 struct coresight_path *path; 585 unsigned long size; 586 587 if (!ctxt->event_data) 588 return; 589 590 /* Stop tracer */ 591 coresight_pause_source(csdev); 592 593 path = etm_event_cpu_path(ctxt->event_data, cpu); 594 sink = coresight_get_sink(path); 595 if (WARN_ON_ONCE(!sink)) 596 return; 597 598 /* 599 * The per CPU sink has own interrupt handling, it might have 600 * race condition with updating buffer on AUX trace pause if 601 * it is invoked from NMI. To avoid the race condition, 602 * disallows updating buffer for the per CPU sink case. 603 */ 604 if (coresight_is_percpu_sink(sink)) 605 return; 606 607 if (WARN_ON_ONCE(handle->event != event)) 608 return; 609 610 if (!sink_ops(sink)->update_buffer) 611 return; 612 613 size = sink_ops(sink)->update_buffer(sink, handle, 614 ctxt->event_data->snk_config); 615 if (READ_ONCE(handle->event)) { 616 if (!size) 617 return; 618 619 perf_aux_output_end(handle, size); 620 perf_aux_output_begin(handle, event); 621 } else { 622 WARN_ON_ONCE(size); 623 } 624 } 625 626 static void etm_event_stop(struct perf_event *event, int mode) 627 { 628 int cpu = smp_processor_id(); 629 unsigned long size; 630 struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu); 631 struct etm_ctxt *ctxt = this_cpu_ptr(&etm_ctxt); 632 struct perf_output_handle *handle = &ctxt->handle; 633 struct etm_event_data *event_data; 634 struct coresight_path *path; 635 636 if (mode & PERF_EF_PAUSE) 637 return etm_event_pause(event, csdev, ctxt); 638 639 /* 640 * If we still have access to the event_data via handle, 641 * confirm that we haven't messed up the tracking. 642 */ 643 if (handle->event && 644 WARN_ON(perf_get_aux(handle) != ctxt->event_data)) 645 return; 646 647 event_data = ctxt->event_data; 648 /* Clear the event_data as this ETM is stopping the trace. */ 649 ctxt->event_data = NULL; 650 651 if (event->hw.state == PERF_HES_STOPPED) 652 return; 653 654 /* We must have a valid event_data for a running event */ 655 if (WARN_ON(!event_data)) 656 return; 657 658 /* 659 * Check if this ETM was allowed to trace, as decided at 660 * etm_setup_aux(). If it wasn't allowed to trace, then 661 * nothing needs to be torn down other than outputting a 662 * zero sized record. 663 */ 664 if (handle->event && (mode & PERF_EF_UPDATE) && 665 !cpumask_test_cpu(cpu, &event_data->mask)) { 666 event->hw.state = PERF_HES_STOPPED; 667 perf_aux_output_end(handle, 0); 668 return; 669 } 670 671 if (!csdev) 672 return; 673 674 path = etm_event_cpu_path(event_data, cpu); 675 if (!path) 676 return; 677 678 sink = coresight_get_sink(path); 679 if (!sink) 680 return; 681 682 /* stop tracer */ 683 coresight_disable_source(csdev, event); 684 685 /* tell the core */ 686 event->hw.state = PERF_HES_STOPPED; 687 688 /* 689 * If the handle is not bound to an event anymore 690 * (e.g, the sink driver was unable to restart the 691 * handle due to lack of buffer space), we don't 692 * have to do anything here. 693 */ 694 if (handle->event && (mode & PERF_EF_UPDATE)) { 695 if (WARN_ON_ONCE(handle->event != event)) 696 return; 697 698 /* update trace information */ 699 if (!sink_ops(sink)->update_buffer) 700 return; 701 702 size = sink_ops(sink)->update_buffer(sink, handle, 703 event_data->snk_config); 704 /* 705 * Make sure the handle is still valid as the 706 * sink could have closed it from an IRQ. 707 * The sink driver must handle the race with 708 * update_buffer() and IRQ. Thus either we 709 * should get a valid handle and valid size 710 * (which may be 0). 711 * 712 * But we should never get a non-zero size with 713 * an invalid handle. 714 */ 715 if (READ_ONCE(handle->event)) 716 perf_aux_output_end(handle, size); 717 else 718 WARN_ON(size); 719 } 720 721 /* Disabling the path make its elements available to other sessions */ 722 coresight_disable_path(path); 723 } 724 725 static int etm_event_add(struct perf_event *event, int mode) 726 { 727 int ret = 0; 728 struct hw_perf_event *hwc = &event->hw; 729 730 if (mode & PERF_EF_START) { 731 etm_event_start(event, 0); 732 if (hwc->state & PERF_HES_STOPPED) 733 ret = -EINVAL; 734 } else { 735 hwc->state = PERF_HES_STOPPED; 736 } 737 738 return ret; 739 } 740 741 static void etm_event_del(struct perf_event *event, int mode) 742 { 743 etm_event_stop(event, PERF_EF_UPDATE); 744 } 745 746 static int etm_addr_filters_validate(struct list_head *filters) 747 { 748 bool range = false, address = false; 749 int index = 0; 750 struct perf_addr_filter *filter; 751 752 list_for_each_entry(filter, filters, entry) { 753 /* 754 * No need to go further if there's no more 755 * room for filters. 756 */ 757 if (++index > ETM_ADDR_CMP_MAX) 758 return -EOPNOTSUPP; 759 760 /* filter::size==0 means single address trigger */ 761 if (filter->size) { 762 /* 763 * The existing code relies on START/STOP filters 764 * being address filters. 765 */ 766 if (filter->action == PERF_ADDR_FILTER_ACTION_START || 767 filter->action == PERF_ADDR_FILTER_ACTION_STOP) 768 return -EOPNOTSUPP; 769 770 range = true; 771 } else 772 address = true; 773 774 /* 775 * At this time we don't allow range and start/stop filtering 776 * to cohabitate, they have to be mutually exclusive. 777 */ 778 if (range && address) 779 return -EOPNOTSUPP; 780 } 781 782 return 0; 783 } 784 785 static void etm_addr_filters_sync(struct perf_event *event) 786 { 787 struct perf_addr_filters_head *head = perf_event_addr_filters(event); 788 unsigned long start, stop; 789 struct perf_addr_filter_range *fr = event->addr_filter_ranges; 790 struct etm_filters *filters = event->hw.addr_filters; 791 struct etm_filter *etm_filter; 792 struct perf_addr_filter *filter; 793 int i = 0; 794 795 list_for_each_entry(filter, &head->list, entry) { 796 start = fr[i].start; 797 stop = start + fr[i].size; 798 etm_filter = &filters->etm_filter[i]; 799 800 switch (filter->action) { 801 case PERF_ADDR_FILTER_ACTION_FILTER: 802 etm_filter->start_addr = start; 803 etm_filter->stop_addr = stop; 804 etm_filter->type = ETM_ADDR_TYPE_RANGE; 805 break; 806 case PERF_ADDR_FILTER_ACTION_START: 807 etm_filter->start_addr = start; 808 etm_filter->type = ETM_ADDR_TYPE_START; 809 break; 810 case PERF_ADDR_FILTER_ACTION_STOP: 811 etm_filter->stop_addr = stop; 812 etm_filter->type = ETM_ADDR_TYPE_STOP; 813 break; 814 } 815 i++; 816 } 817 818 filters->nr_filters = i; 819 } 820 821 int etm_perf_symlink(struct coresight_device *csdev, bool link) 822 { 823 char entry[sizeof("cpu9999999")]; 824 int ret = 0, cpu = source_ops(csdev)->cpu_id(csdev); 825 struct device *pmu_dev = etm_pmu.dev; 826 struct device *cs_dev = &csdev->dev; 827 828 sprintf(entry, "cpu%d", cpu); 829 830 if (!etm_perf_up) 831 return -EPROBE_DEFER; 832 833 if (link) { 834 ret = sysfs_create_link(&pmu_dev->kobj, &cs_dev->kobj, entry); 835 if (ret) 836 return ret; 837 per_cpu(csdev_src, cpu) = csdev; 838 } else { 839 sysfs_remove_link(&pmu_dev->kobj, entry); 840 per_cpu(csdev_src, cpu) = NULL; 841 } 842 843 return 0; 844 } 845 EXPORT_SYMBOL_GPL(etm_perf_symlink); 846 847 static ssize_t etm_perf_sink_name_show(struct device *dev, 848 struct device_attribute *dattr, 849 char *buf) 850 { 851 struct dev_ext_attribute *ea; 852 853 ea = container_of(dattr, struct dev_ext_attribute, attr); 854 return scnprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)(ea->var)); 855 } 856 857 static struct dev_ext_attribute * 858 etm_perf_add_symlink_group(struct device *dev, const char *name, const char *group_name) 859 { 860 struct dev_ext_attribute *ea; 861 unsigned long hash; 862 int ret; 863 struct device *pmu_dev = etm_pmu.dev; 864 865 if (!etm_perf_up) 866 return ERR_PTR(-EPROBE_DEFER); 867 868 ea = devm_kzalloc(dev, sizeof(*ea), GFP_KERNEL); 869 if (!ea) 870 return ERR_PTR(-ENOMEM); 871 872 /* 873 * If this function is called adding a sink then the hash is used for 874 * sink selection - see function coresight_get_sink_by_id(). 875 * If adding a configuration then the hash is used for selection in 876 * cscfg_activate_config() 877 */ 878 hash = hashlen_hash(hashlen_string(NULL, name)); 879 880 sysfs_attr_init(&ea->attr.attr); 881 ea->attr.attr.name = devm_kstrdup(dev, name, GFP_KERNEL); 882 if (!ea->attr.attr.name) 883 return ERR_PTR(-ENOMEM); 884 885 ea->attr.attr.mode = 0444; 886 ea->var = (unsigned long *)hash; 887 888 ret = sysfs_add_file_to_group(&pmu_dev->kobj, 889 &ea->attr.attr, group_name); 890 891 return ret ? ERR_PTR(ret) : ea; 892 } 893 894 int etm_perf_add_symlink_sink(struct coresight_device *csdev) 895 { 896 const char *name; 897 struct device *dev = &csdev->dev; 898 int err = 0; 899 900 if (csdev->type != CORESIGHT_DEV_TYPE_SINK && 901 csdev->type != CORESIGHT_DEV_TYPE_LINKSINK) 902 return -EINVAL; 903 904 if (csdev->ea != NULL) 905 return -EINVAL; 906 907 name = dev_name(dev); 908 csdev->ea = etm_perf_add_symlink_group(dev, name, "sinks"); 909 if (IS_ERR(csdev->ea)) { 910 err = PTR_ERR(csdev->ea); 911 csdev->ea = NULL; 912 } else 913 csdev->ea->attr.show = etm_perf_sink_name_show; 914 915 return err; 916 } 917 918 static void etm_perf_del_symlink_group(struct dev_ext_attribute *ea, const char *group_name) 919 { 920 struct device *pmu_dev = etm_pmu.dev; 921 922 sysfs_remove_file_from_group(&pmu_dev->kobj, 923 &ea->attr.attr, group_name); 924 } 925 926 void etm_perf_del_symlink_sink(struct coresight_device *csdev) 927 { 928 if (csdev->type != CORESIGHT_DEV_TYPE_SINK && 929 csdev->type != CORESIGHT_DEV_TYPE_LINKSINK) 930 return; 931 932 if (!csdev->ea) 933 return; 934 935 etm_perf_del_symlink_group(csdev->ea, "sinks"); 936 csdev->ea = NULL; 937 } 938 939 static ssize_t etm_perf_cscfg_event_show(struct device *dev, 940 struct device_attribute *dattr, 941 char *buf) 942 { 943 struct dev_ext_attribute *ea; 944 945 ea = container_of(dattr, struct dev_ext_attribute, attr); 946 return scnprintf(buf, PAGE_SIZE, "configid=0x%lx\n", (unsigned long)(ea->var)); 947 } 948 949 int etm_perf_add_symlink_cscfg(struct device *dev, struct cscfg_config_desc *config_desc) 950 { 951 int err = 0; 952 953 if (config_desc->event_ea != NULL) 954 return 0; 955 956 config_desc->event_ea = etm_perf_add_symlink_group(dev, config_desc->name, "events"); 957 958 /* set the show function to the custom cscfg event */ 959 if (!IS_ERR(config_desc->event_ea)) 960 config_desc->event_ea->attr.show = etm_perf_cscfg_event_show; 961 else { 962 err = PTR_ERR(config_desc->event_ea); 963 config_desc->event_ea = NULL; 964 } 965 966 return err; 967 } 968 969 void etm_perf_del_symlink_cscfg(struct cscfg_config_desc *config_desc) 970 { 971 if (!config_desc->event_ea) 972 return; 973 974 etm_perf_del_symlink_group(config_desc->event_ea, "events"); 975 config_desc->event_ea = NULL; 976 } 977 978 int __init etm_perf_init(void) 979 { 980 int ret; 981 982 etm_pmu.capabilities = (PERF_PMU_CAP_EXCLUSIVE | 983 PERF_PMU_CAP_ITRACE | 984 PERF_PMU_CAP_AUX_PAUSE); 985 986 etm_pmu.attr_groups = etm_pmu_attr_groups; 987 etm_pmu.task_ctx_nr = perf_sw_context; 988 etm_pmu.read = etm_event_read; 989 etm_pmu.event_init = etm_event_init; 990 etm_pmu.setup_aux = etm_setup_aux; 991 etm_pmu.free_aux = etm_free_aux; 992 etm_pmu.start = etm_event_start; 993 etm_pmu.stop = etm_event_stop; 994 etm_pmu.add = etm_event_add; 995 etm_pmu.del = etm_event_del; 996 etm_pmu.addr_filters_sync = etm_addr_filters_sync; 997 etm_pmu.addr_filters_validate = etm_addr_filters_validate; 998 etm_pmu.nr_addr_filters = ETM_ADDR_CMP_MAX; 999 etm_pmu.module = THIS_MODULE; 1000 1001 ret = perf_pmu_register(&etm_pmu, CORESIGHT_ETM_PMU_NAME, -1); 1002 if (ret == 0) 1003 etm_perf_up = true; 1004 1005 return ret; 1006 } 1007 1008 void etm_perf_exit(void) 1009 { 1010 perf_pmu_unregister(&etm_pmu); 1011 } 1012