1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2015 Linaro Limited. All rights reserved. 4 * Author: Mathieu Poirier <mathieu.poirier@linaro.org> 5 */ 6 7 #include <linux/bitfield.h> 8 #include <linux/coresight.h> 9 #include <linux/coresight-pmu.h> 10 #include <linux/cpumask.h> 11 #include <linux/device.h> 12 #include <linux/list.h> 13 #include <linux/mm.h> 14 #include <linux/init.h> 15 #include <linux/perf_event.h> 16 #include <linux/percpu-defs.h> 17 #include <linux/slab.h> 18 #include <linux/stringhash.h> 19 #include <linux/types.h> 20 #include <linux/workqueue.h> 21 22 #include "coresight-config.h" 23 #include "coresight-etm-perf.h" 24 #include "coresight-priv.h" 25 #include "coresight-syscfg.h" 26 #include "coresight-trace-id.h" 27 28 static struct pmu etm_pmu; 29 static bool etm_perf_up; 30 31 /* 32 * An ETM context for a running event includes the perf aux handle 33 * and aux_data. For ETM, the aux_data (etm_event_data), consists of 34 * the trace path and the sink configuration. The event data is accessible 35 * via perf_get_aux(handle). However, a sink could "end" a perf output 36 * handle via the IRQ handler. And if the "sink" encounters a failure 37 * to "begin" another session (e.g due to lack of space in the buffer), 38 * the handle will be cleared. Thus, the event_data may not be accessible 39 * from the handle when we get to the etm_event_stop(), which is required 40 * for stopping the trace path. The event_data is guaranteed to stay alive 41 * until "free_aux()", which cannot happen as long as the event is active on 42 * the ETM. Thus the event_data for the session must be part of the ETM context 43 * to make sure we can disable the trace path. 44 */ 45 struct etm_ctxt { 46 struct perf_output_handle handle; 47 struct etm_event_data *event_data; 48 }; 49 50 static DEFINE_PER_CPU(struct etm_ctxt, etm_ctxt); 51 static DEFINE_PER_CPU(struct coresight_device *, csdev_src); 52 53 /* 54 * The PMU formats were orignally for ETMv3.5/PTM's ETMCR 'config'; 55 * now take them as general formats and apply on all ETMs. 56 */ 57 PMU_FORMAT_ATTR(branch_broadcast, "config:"__stringify(ETM_OPT_BRANCH_BROADCAST)); 58 PMU_FORMAT_ATTR(cycacc, "config:" __stringify(ETM_OPT_CYCACC)); 59 /* contextid1 enables tracing CONTEXTIDR_EL1 for ETMv4 */ 60 PMU_FORMAT_ATTR(contextid1, "config:" __stringify(ETM_OPT_CTXTID)); 61 /* contextid2 enables tracing CONTEXTIDR_EL2 for ETMv4 */ 62 PMU_FORMAT_ATTR(contextid2, "config:" __stringify(ETM_OPT_CTXTID2)); 63 PMU_FORMAT_ATTR(timestamp, "config:" __stringify(ETM_OPT_TS)); 64 PMU_FORMAT_ATTR(retstack, "config:" __stringify(ETM_OPT_RETSTK)); 65 /* preset - if sink ID is used as a configuration selector */ 66 PMU_FORMAT_ATTR(preset, "config:0-3"); 67 /* Sink ID - same for all ETMs */ 68 PMU_FORMAT_ATTR(sinkid, "config2:0-31"); 69 /* config ID - set if a system configuration is selected */ 70 PMU_FORMAT_ATTR(configid, "config2:32-63"); 71 PMU_FORMAT_ATTR(cc_threshold, "config3:0-11"); 72 73 74 /* 75 * contextid always traces the "PID". The PID is in CONTEXTIDR_EL1 76 * when the kernel is running at EL1; when the kernel is at EL2, 77 * the PID is in CONTEXTIDR_EL2. 78 */ 79 static ssize_t format_attr_contextid_show(struct device *dev, 80 struct device_attribute *attr, 81 char *page) 82 { 83 int pid_fmt = ETM_OPT_CTXTID; 84 85 #if IS_ENABLED(CONFIG_CORESIGHT_SOURCE_ETM4X) 86 pid_fmt = is_kernel_in_hyp_mode() ? ETM_OPT_CTXTID2 : ETM_OPT_CTXTID; 87 #endif 88 return sprintf(page, "config:%d\n", pid_fmt); 89 } 90 91 static struct device_attribute format_attr_contextid = 92 __ATTR(contextid, 0444, format_attr_contextid_show, NULL); 93 94 static struct attribute *etm_config_formats_attr[] = { 95 &format_attr_cycacc.attr, 96 &format_attr_contextid.attr, 97 &format_attr_contextid1.attr, 98 &format_attr_contextid2.attr, 99 &format_attr_timestamp.attr, 100 &format_attr_retstack.attr, 101 &format_attr_sinkid.attr, 102 &format_attr_preset.attr, 103 &format_attr_configid.attr, 104 &format_attr_branch_broadcast.attr, 105 &format_attr_cc_threshold.attr, 106 NULL, 107 }; 108 109 static const struct attribute_group etm_pmu_format_group = { 110 .name = "format", 111 .attrs = etm_config_formats_attr, 112 }; 113 114 static struct attribute *etm_config_sinks_attr[] = { 115 NULL, 116 }; 117 118 static const struct attribute_group etm_pmu_sinks_group = { 119 .name = "sinks", 120 .attrs = etm_config_sinks_attr, 121 }; 122 123 static struct attribute *etm_config_events_attr[] = { 124 NULL, 125 }; 126 127 static const struct attribute_group etm_pmu_events_group = { 128 .name = "events", 129 .attrs = etm_config_events_attr, 130 }; 131 132 static const struct attribute_group *etm_pmu_attr_groups[] = { 133 &etm_pmu_format_group, 134 &etm_pmu_sinks_group, 135 &etm_pmu_events_group, 136 NULL, 137 }; 138 139 static inline struct list_head ** 140 etm_event_cpu_path_ptr(struct etm_event_data *data, int cpu) 141 { 142 return per_cpu_ptr(data->path, cpu); 143 } 144 145 static inline struct list_head * 146 etm_event_cpu_path(struct etm_event_data *data, int cpu) 147 { 148 return *etm_event_cpu_path_ptr(data, cpu); 149 } 150 151 static void etm_event_read(struct perf_event *event) {} 152 153 static int etm_addr_filters_alloc(struct perf_event *event) 154 { 155 struct etm_filters *filters; 156 int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu); 157 158 filters = kzalloc_node(sizeof(struct etm_filters), GFP_KERNEL, node); 159 if (!filters) 160 return -ENOMEM; 161 162 if (event->parent) 163 memcpy(filters, event->parent->hw.addr_filters, 164 sizeof(*filters)); 165 166 event->hw.addr_filters = filters; 167 168 return 0; 169 } 170 171 static void etm_event_destroy(struct perf_event *event) 172 { 173 kfree(event->hw.addr_filters); 174 event->hw.addr_filters = NULL; 175 } 176 177 static int etm_event_init(struct perf_event *event) 178 { 179 int ret = 0; 180 181 if (event->attr.type != etm_pmu.type) { 182 ret = -ENOENT; 183 goto out; 184 } 185 186 ret = etm_addr_filters_alloc(event); 187 if (ret) 188 goto out; 189 190 event->destroy = etm_event_destroy; 191 out: 192 return ret; 193 } 194 195 static void free_sink_buffer(struct etm_event_data *event_data) 196 { 197 int cpu; 198 cpumask_t *mask = &event_data->mask; 199 struct coresight_device *sink; 200 201 if (!event_data->snk_config) 202 return; 203 204 if (WARN_ON(cpumask_empty(mask))) 205 return; 206 207 cpu = cpumask_first(mask); 208 sink = coresight_get_sink(etm_event_cpu_path(event_data, cpu)); 209 sink_ops(sink)->free_buffer(event_data->snk_config); 210 } 211 212 static void free_event_data(struct work_struct *work) 213 { 214 int cpu; 215 cpumask_t *mask; 216 struct etm_event_data *event_data; 217 218 event_data = container_of(work, struct etm_event_data, work); 219 mask = &event_data->mask; 220 221 /* Free the sink buffers, if there are any */ 222 free_sink_buffer(event_data); 223 224 /* clear any configuration we were using */ 225 if (event_data->cfg_hash) 226 cscfg_deactivate_config(event_data->cfg_hash); 227 228 for_each_cpu(cpu, mask) { 229 struct list_head **ppath; 230 231 ppath = etm_event_cpu_path_ptr(event_data, cpu); 232 if (!(IS_ERR_OR_NULL(*ppath))) { 233 struct coresight_device *sink = coresight_get_sink(*ppath); 234 235 /* 236 * Mark perf event as done for trace id allocator, but don't call 237 * coresight_trace_id_put_cpu_id_map() on individual IDs. Perf sessions 238 * never free trace IDs to ensure that the ID associated with a CPU 239 * cannot change during their and other's concurrent sessions. Instead, 240 * a refcount is used so that the last event to call 241 * coresight_trace_id_perf_stop() frees all IDs. 242 */ 243 coresight_trace_id_perf_stop(&sink->perf_sink_id_map); 244 245 coresight_release_path(*ppath); 246 } 247 *ppath = NULL; 248 } 249 250 free_percpu(event_data->path); 251 kfree(event_data); 252 } 253 254 static void *alloc_event_data(int cpu) 255 { 256 cpumask_t *mask; 257 struct etm_event_data *event_data; 258 259 /* First get memory for the session's data */ 260 event_data = kzalloc(sizeof(struct etm_event_data), GFP_KERNEL); 261 if (!event_data) 262 return NULL; 263 264 265 mask = &event_data->mask; 266 if (cpu != -1) 267 cpumask_set_cpu(cpu, mask); 268 else 269 cpumask_copy(mask, cpu_present_mask); 270 271 /* 272 * Each CPU has a single path between source and destination. As such 273 * allocate an array using CPU numbers as indexes. That way a path 274 * for any CPU can easily be accessed at any given time. We proceed 275 * the same way for sessions involving a single CPU. The cost of 276 * unused memory when dealing with single CPU trace scenarios is small 277 * compared to the cost of searching through an optimized array. 278 */ 279 event_data->path = alloc_percpu(struct list_head *); 280 281 if (!event_data->path) { 282 kfree(event_data); 283 return NULL; 284 } 285 286 return event_data; 287 } 288 289 static void etm_free_aux(void *data) 290 { 291 struct etm_event_data *event_data = data; 292 293 schedule_work(&event_data->work); 294 } 295 296 /* 297 * Check if two given sinks are compatible with each other, 298 * so that they can use the same sink buffers, when an event 299 * moves around. 300 */ 301 static bool sinks_compatible(struct coresight_device *a, 302 struct coresight_device *b) 303 { 304 if (!a || !b) 305 return false; 306 /* 307 * If the sinks are of the same subtype and driven 308 * by the same driver, we can use the same buffer 309 * on these sinks. 310 */ 311 return (a->subtype.sink_subtype == b->subtype.sink_subtype) && 312 (sink_ops(a) == sink_ops(b)); 313 } 314 315 static void *etm_setup_aux(struct perf_event *event, void **pages, 316 int nr_pages, bool overwrite) 317 { 318 u32 id, cfg_hash; 319 int cpu = event->cpu; 320 int trace_id; 321 cpumask_t *mask; 322 struct coresight_device *sink = NULL; 323 struct coresight_device *user_sink = NULL, *last_sink = NULL; 324 struct etm_event_data *event_data = NULL; 325 326 event_data = alloc_event_data(cpu); 327 if (!event_data) 328 return NULL; 329 INIT_WORK(&event_data->work, free_event_data); 330 331 /* First get the selected sink from user space. */ 332 if (event->attr.config2 & GENMASK_ULL(31, 0)) { 333 id = (u32)event->attr.config2; 334 sink = user_sink = coresight_get_sink_by_id(id); 335 } 336 337 /* check if user wants a coresight configuration selected */ 338 cfg_hash = (u32)((event->attr.config2 & GENMASK_ULL(63, 32)) >> 32); 339 if (cfg_hash) { 340 if (cscfg_activate_config(cfg_hash)) 341 goto err; 342 event_data->cfg_hash = cfg_hash; 343 } 344 345 mask = &event_data->mask; 346 347 /* 348 * Setup the path for each CPU in a trace session. We try to build 349 * trace path for each CPU in the mask. If we don't find an ETM 350 * for the CPU or fail to build a path, we clear the CPU from the 351 * mask and continue with the rest. If ever we try to trace on those 352 * CPUs, we can handle it and fail the session. 353 */ 354 for_each_cpu(cpu, mask) { 355 struct list_head *path; 356 struct coresight_device *csdev; 357 358 csdev = per_cpu(csdev_src, cpu); 359 /* 360 * If there is no ETM associated with this CPU clear it from 361 * the mask and continue with the rest. If ever we try to trace 362 * on this CPU, we handle it accordingly. 363 */ 364 if (!csdev) { 365 cpumask_clear_cpu(cpu, mask); 366 continue; 367 } 368 369 /* 370 * No sink provided - look for a default sink for all the ETMs, 371 * where this event can be scheduled. 372 * We allocate the sink specific buffers only once for this 373 * event. If the ETMs have different default sink devices, we 374 * can only use a single "type" of sink as the event can carry 375 * only one sink specific buffer. Thus we have to make sure 376 * that the sinks are of the same type and driven by the same 377 * driver, as the one we allocate the buffer for. As such 378 * we choose the first sink and check if the remaining ETMs 379 * have a compatible default sink. We don't trace on a CPU 380 * if the sink is not compatible. 381 */ 382 if (!user_sink) { 383 /* Find the default sink for this ETM */ 384 sink = coresight_find_default_sink(csdev); 385 if (!sink) { 386 cpumask_clear_cpu(cpu, mask); 387 continue; 388 } 389 390 /* Check if this sink compatible with the last sink */ 391 if (last_sink && !sinks_compatible(last_sink, sink)) { 392 cpumask_clear_cpu(cpu, mask); 393 continue; 394 } 395 last_sink = sink; 396 } 397 398 /* 399 * Building a path doesn't enable it, it simply builds a 400 * list of devices from source to sink that can be 401 * referenced later when the path is actually needed. 402 */ 403 path = coresight_build_path(csdev, sink); 404 if (IS_ERR(path)) { 405 cpumask_clear_cpu(cpu, mask); 406 continue; 407 } 408 409 /* ensure we can allocate a trace ID for this CPU */ 410 trace_id = coresight_trace_id_get_cpu_id_map(cpu, &sink->perf_sink_id_map); 411 if (!IS_VALID_CS_TRACE_ID(trace_id)) { 412 cpumask_clear_cpu(cpu, mask); 413 coresight_release_path(path); 414 continue; 415 } 416 417 coresight_trace_id_perf_start(&sink->perf_sink_id_map); 418 *etm_event_cpu_path_ptr(event_data, cpu) = path; 419 } 420 421 /* no sink found for any CPU - cannot trace */ 422 if (!sink) 423 goto err; 424 425 /* If we don't have any CPUs ready for tracing, abort */ 426 cpu = cpumask_first(mask); 427 if (cpu >= nr_cpu_ids) 428 goto err; 429 430 if (!sink_ops(sink)->alloc_buffer || !sink_ops(sink)->free_buffer) 431 goto err; 432 433 /* 434 * Allocate the sink buffer for this session. All the sinks 435 * where this event can be scheduled are ensured to be of the 436 * same type. Thus the same sink configuration is used by the 437 * sinks. 438 */ 439 event_data->snk_config = 440 sink_ops(sink)->alloc_buffer(sink, event, pages, 441 nr_pages, overwrite); 442 if (!event_data->snk_config) 443 goto err; 444 445 out: 446 return event_data; 447 448 err: 449 etm_free_aux(event_data); 450 event_data = NULL; 451 goto out; 452 } 453 454 static void etm_event_start(struct perf_event *event, int flags) 455 { 456 int cpu = smp_processor_id(); 457 struct etm_event_data *event_data; 458 struct etm_ctxt *ctxt = this_cpu_ptr(&etm_ctxt); 459 struct perf_output_handle *handle = &ctxt->handle; 460 struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu); 461 struct list_head *path; 462 u64 hw_id; 463 u8 trace_id; 464 465 if (!csdev) 466 goto fail; 467 468 /* Have we messed up our tracking ? */ 469 if (WARN_ON(ctxt->event_data)) 470 goto fail; 471 472 /* 473 * Deal with the ring buffer API and get a handle on the 474 * session's information. 475 */ 476 event_data = perf_aux_output_begin(handle, event); 477 if (!event_data) 478 goto fail; 479 480 /* 481 * Check if this ETM is allowed to trace, as decided 482 * at etm_setup_aux(). This could be due to an unreachable 483 * sink from this ETM. We can't do much in this case if 484 * the sink was specified or hinted to the driver. For 485 * now, simply don't record anything on this ETM. 486 * 487 * As such we pretend that everything is fine, and let 488 * it continue without actually tracing. The event could 489 * continue tracing when it moves to a CPU where it is 490 * reachable to a sink. 491 */ 492 if (!cpumask_test_cpu(cpu, &event_data->mask)) 493 goto out; 494 495 path = etm_event_cpu_path(event_data, cpu); 496 /* We need a sink, no need to continue without one */ 497 sink = coresight_get_sink(path); 498 if (WARN_ON_ONCE(!sink)) 499 goto fail_end_stop; 500 501 /* Nothing will happen without a path */ 502 if (coresight_enable_path(path, CS_MODE_PERF, handle)) 503 goto fail_end_stop; 504 505 /* Finally enable the tracer */ 506 if (source_ops(csdev)->enable(csdev, event, CS_MODE_PERF, 507 &sink->perf_sink_id_map)) 508 goto fail_disable_path; 509 510 /* 511 * output cpu / trace ID in perf record, once for the lifetime 512 * of the event. 513 */ 514 if (!cpumask_test_cpu(cpu, &event_data->aux_hwid_done)) { 515 cpumask_set_cpu(cpu, &event_data->aux_hwid_done); 516 517 trace_id = coresight_trace_id_read_cpu_id_map(cpu, &sink->perf_sink_id_map); 518 519 hw_id = FIELD_PREP(CS_AUX_HW_ID_MAJOR_VERSION_MASK, 520 CS_AUX_HW_ID_MAJOR_VERSION); 521 hw_id |= FIELD_PREP(CS_AUX_HW_ID_MINOR_VERSION_MASK, 522 CS_AUX_HW_ID_MINOR_VERSION); 523 hw_id |= FIELD_PREP(CS_AUX_HW_ID_TRACE_ID_MASK, trace_id); 524 hw_id |= FIELD_PREP(CS_AUX_HW_ID_SINK_ID_MASK, coresight_get_sink_id(sink)); 525 526 perf_report_aux_output_id(event, hw_id); 527 } 528 529 out: 530 /* Tell the perf core the event is alive */ 531 event->hw.state = 0; 532 /* Save the event_data for this ETM */ 533 ctxt->event_data = event_data; 534 return; 535 536 fail_disable_path: 537 coresight_disable_path(path); 538 fail_end_stop: 539 /* 540 * Check if the handle is still associated with the event, 541 * to handle cases where if the sink failed to start the 542 * trace and TRUNCATED the handle already. 543 */ 544 if (READ_ONCE(handle->event)) { 545 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED); 546 perf_aux_output_end(handle, 0); 547 } 548 fail: 549 event->hw.state = PERF_HES_STOPPED; 550 return; 551 } 552 553 static void etm_event_stop(struct perf_event *event, int mode) 554 { 555 int cpu = smp_processor_id(); 556 unsigned long size; 557 struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu); 558 struct etm_ctxt *ctxt = this_cpu_ptr(&etm_ctxt); 559 struct perf_output_handle *handle = &ctxt->handle; 560 struct etm_event_data *event_data; 561 struct list_head *path; 562 563 /* 564 * If we still have access to the event_data via handle, 565 * confirm that we haven't messed up the tracking. 566 */ 567 if (handle->event && 568 WARN_ON(perf_get_aux(handle) != ctxt->event_data)) 569 return; 570 571 event_data = ctxt->event_data; 572 /* Clear the event_data as this ETM is stopping the trace. */ 573 ctxt->event_data = NULL; 574 575 if (event->hw.state == PERF_HES_STOPPED) 576 return; 577 578 /* We must have a valid event_data for a running event */ 579 if (WARN_ON(!event_data)) 580 return; 581 582 /* 583 * Check if this ETM was allowed to trace, as decided at 584 * etm_setup_aux(). If it wasn't allowed to trace, then 585 * nothing needs to be torn down other than outputting a 586 * zero sized record. 587 */ 588 if (handle->event && (mode & PERF_EF_UPDATE) && 589 !cpumask_test_cpu(cpu, &event_data->mask)) { 590 event->hw.state = PERF_HES_STOPPED; 591 perf_aux_output_end(handle, 0); 592 return; 593 } 594 595 if (!csdev) 596 return; 597 598 path = etm_event_cpu_path(event_data, cpu); 599 if (!path) 600 return; 601 602 sink = coresight_get_sink(path); 603 if (!sink) 604 return; 605 606 /* stop tracer */ 607 coresight_disable_source(csdev, event); 608 609 /* tell the core */ 610 event->hw.state = PERF_HES_STOPPED; 611 612 /* 613 * If the handle is not bound to an event anymore 614 * (e.g, the sink driver was unable to restart the 615 * handle due to lack of buffer space), we don't 616 * have to do anything here. 617 */ 618 if (handle->event && (mode & PERF_EF_UPDATE)) { 619 if (WARN_ON_ONCE(handle->event != event)) 620 return; 621 622 /* update trace information */ 623 if (!sink_ops(sink)->update_buffer) 624 return; 625 626 size = sink_ops(sink)->update_buffer(sink, handle, 627 event_data->snk_config); 628 /* 629 * Make sure the handle is still valid as the 630 * sink could have closed it from an IRQ. 631 * The sink driver must handle the race with 632 * update_buffer() and IRQ. Thus either we 633 * should get a valid handle and valid size 634 * (which may be 0). 635 * 636 * But we should never get a non-zero size with 637 * an invalid handle. 638 */ 639 if (READ_ONCE(handle->event)) 640 perf_aux_output_end(handle, size); 641 else 642 WARN_ON(size); 643 } 644 645 /* Disabling the path make its elements available to other sessions */ 646 coresight_disable_path(path); 647 } 648 649 static int etm_event_add(struct perf_event *event, int mode) 650 { 651 int ret = 0; 652 struct hw_perf_event *hwc = &event->hw; 653 654 if (mode & PERF_EF_START) { 655 etm_event_start(event, 0); 656 if (hwc->state & PERF_HES_STOPPED) 657 ret = -EINVAL; 658 } else { 659 hwc->state = PERF_HES_STOPPED; 660 } 661 662 return ret; 663 } 664 665 static void etm_event_del(struct perf_event *event, int mode) 666 { 667 etm_event_stop(event, PERF_EF_UPDATE); 668 } 669 670 static int etm_addr_filters_validate(struct list_head *filters) 671 { 672 bool range = false, address = false; 673 int index = 0; 674 struct perf_addr_filter *filter; 675 676 list_for_each_entry(filter, filters, entry) { 677 /* 678 * No need to go further if there's no more 679 * room for filters. 680 */ 681 if (++index > ETM_ADDR_CMP_MAX) 682 return -EOPNOTSUPP; 683 684 /* filter::size==0 means single address trigger */ 685 if (filter->size) { 686 /* 687 * The existing code relies on START/STOP filters 688 * being address filters. 689 */ 690 if (filter->action == PERF_ADDR_FILTER_ACTION_START || 691 filter->action == PERF_ADDR_FILTER_ACTION_STOP) 692 return -EOPNOTSUPP; 693 694 range = true; 695 } else 696 address = true; 697 698 /* 699 * At this time we don't allow range and start/stop filtering 700 * to cohabitate, they have to be mutually exclusive. 701 */ 702 if (range && address) 703 return -EOPNOTSUPP; 704 } 705 706 return 0; 707 } 708 709 static void etm_addr_filters_sync(struct perf_event *event) 710 { 711 struct perf_addr_filters_head *head = perf_event_addr_filters(event); 712 unsigned long start, stop; 713 struct perf_addr_filter_range *fr = event->addr_filter_ranges; 714 struct etm_filters *filters = event->hw.addr_filters; 715 struct etm_filter *etm_filter; 716 struct perf_addr_filter *filter; 717 int i = 0; 718 719 list_for_each_entry(filter, &head->list, entry) { 720 start = fr[i].start; 721 stop = start + fr[i].size; 722 etm_filter = &filters->etm_filter[i]; 723 724 switch (filter->action) { 725 case PERF_ADDR_FILTER_ACTION_FILTER: 726 etm_filter->start_addr = start; 727 etm_filter->stop_addr = stop; 728 etm_filter->type = ETM_ADDR_TYPE_RANGE; 729 break; 730 case PERF_ADDR_FILTER_ACTION_START: 731 etm_filter->start_addr = start; 732 etm_filter->type = ETM_ADDR_TYPE_START; 733 break; 734 case PERF_ADDR_FILTER_ACTION_STOP: 735 etm_filter->stop_addr = stop; 736 etm_filter->type = ETM_ADDR_TYPE_STOP; 737 break; 738 } 739 i++; 740 } 741 742 filters->nr_filters = i; 743 } 744 745 int etm_perf_symlink(struct coresight_device *csdev, bool link) 746 { 747 char entry[sizeof("cpu9999999")]; 748 int ret = 0, cpu = source_ops(csdev)->cpu_id(csdev); 749 struct device *pmu_dev = etm_pmu.dev; 750 struct device *cs_dev = &csdev->dev; 751 752 sprintf(entry, "cpu%d", cpu); 753 754 if (!etm_perf_up) 755 return -EPROBE_DEFER; 756 757 if (link) { 758 ret = sysfs_create_link(&pmu_dev->kobj, &cs_dev->kobj, entry); 759 if (ret) 760 return ret; 761 per_cpu(csdev_src, cpu) = csdev; 762 } else { 763 sysfs_remove_link(&pmu_dev->kobj, entry); 764 per_cpu(csdev_src, cpu) = NULL; 765 } 766 767 return 0; 768 } 769 EXPORT_SYMBOL_GPL(etm_perf_symlink); 770 771 static ssize_t etm_perf_sink_name_show(struct device *dev, 772 struct device_attribute *dattr, 773 char *buf) 774 { 775 struct dev_ext_attribute *ea; 776 777 ea = container_of(dattr, struct dev_ext_attribute, attr); 778 return scnprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)(ea->var)); 779 } 780 781 static struct dev_ext_attribute * 782 etm_perf_add_symlink_group(struct device *dev, const char *name, const char *group_name) 783 { 784 struct dev_ext_attribute *ea; 785 unsigned long hash; 786 int ret; 787 struct device *pmu_dev = etm_pmu.dev; 788 789 if (!etm_perf_up) 790 return ERR_PTR(-EPROBE_DEFER); 791 792 ea = devm_kzalloc(dev, sizeof(*ea), GFP_KERNEL); 793 if (!ea) 794 return ERR_PTR(-ENOMEM); 795 796 /* 797 * If this function is called adding a sink then the hash is used for 798 * sink selection - see function coresight_get_sink_by_id(). 799 * If adding a configuration then the hash is used for selection in 800 * cscfg_activate_config() 801 */ 802 hash = hashlen_hash(hashlen_string(NULL, name)); 803 804 sysfs_attr_init(&ea->attr.attr); 805 ea->attr.attr.name = devm_kstrdup(dev, name, GFP_KERNEL); 806 if (!ea->attr.attr.name) 807 return ERR_PTR(-ENOMEM); 808 809 ea->attr.attr.mode = 0444; 810 ea->var = (unsigned long *)hash; 811 812 ret = sysfs_add_file_to_group(&pmu_dev->kobj, 813 &ea->attr.attr, group_name); 814 815 return ret ? ERR_PTR(ret) : ea; 816 } 817 818 int etm_perf_add_symlink_sink(struct coresight_device *csdev) 819 { 820 const char *name; 821 struct device *dev = &csdev->dev; 822 int err = 0; 823 824 if (csdev->type != CORESIGHT_DEV_TYPE_SINK && 825 csdev->type != CORESIGHT_DEV_TYPE_LINKSINK) 826 return -EINVAL; 827 828 if (csdev->ea != NULL) 829 return -EINVAL; 830 831 name = dev_name(dev); 832 csdev->ea = etm_perf_add_symlink_group(dev, name, "sinks"); 833 if (IS_ERR(csdev->ea)) { 834 err = PTR_ERR(csdev->ea); 835 csdev->ea = NULL; 836 } else 837 csdev->ea->attr.show = etm_perf_sink_name_show; 838 839 return err; 840 } 841 842 static void etm_perf_del_symlink_group(struct dev_ext_attribute *ea, const char *group_name) 843 { 844 struct device *pmu_dev = etm_pmu.dev; 845 846 sysfs_remove_file_from_group(&pmu_dev->kobj, 847 &ea->attr.attr, group_name); 848 } 849 850 void etm_perf_del_symlink_sink(struct coresight_device *csdev) 851 { 852 if (csdev->type != CORESIGHT_DEV_TYPE_SINK && 853 csdev->type != CORESIGHT_DEV_TYPE_LINKSINK) 854 return; 855 856 if (!csdev->ea) 857 return; 858 859 etm_perf_del_symlink_group(csdev->ea, "sinks"); 860 csdev->ea = NULL; 861 } 862 863 static ssize_t etm_perf_cscfg_event_show(struct device *dev, 864 struct device_attribute *dattr, 865 char *buf) 866 { 867 struct dev_ext_attribute *ea; 868 869 ea = container_of(dattr, struct dev_ext_attribute, attr); 870 return scnprintf(buf, PAGE_SIZE, "configid=0x%lx\n", (unsigned long)(ea->var)); 871 } 872 873 int etm_perf_add_symlink_cscfg(struct device *dev, struct cscfg_config_desc *config_desc) 874 { 875 int err = 0; 876 877 if (config_desc->event_ea != NULL) 878 return 0; 879 880 config_desc->event_ea = etm_perf_add_symlink_group(dev, config_desc->name, "events"); 881 882 /* set the show function to the custom cscfg event */ 883 if (!IS_ERR(config_desc->event_ea)) 884 config_desc->event_ea->attr.show = etm_perf_cscfg_event_show; 885 else { 886 err = PTR_ERR(config_desc->event_ea); 887 config_desc->event_ea = NULL; 888 } 889 890 return err; 891 } 892 893 void etm_perf_del_symlink_cscfg(struct cscfg_config_desc *config_desc) 894 { 895 if (!config_desc->event_ea) 896 return; 897 898 etm_perf_del_symlink_group(config_desc->event_ea, "events"); 899 config_desc->event_ea = NULL; 900 } 901 902 int __init etm_perf_init(void) 903 { 904 int ret; 905 906 etm_pmu.capabilities = (PERF_PMU_CAP_EXCLUSIVE | 907 PERF_PMU_CAP_ITRACE); 908 909 etm_pmu.attr_groups = etm_pmu_attr_groups; 910 etm_pmu.task_ctx_nr = perf_sw_context; 911 etm_pmu.read = etm_event_read; 912 etm_pmu.event_init = etm_event_init; 913 etm_pmu.setup_aux = etm_setup_aux; 914 etm_pmu.free_aux = etm_free_aux; 915 etm_pmu.start = etm_event_start; 916 etm_pmu.stop = etm_event_stop; 917 etm_pmu.add = etm_event_add; 918 etm_pmu.del = etm_event_del; 919 etm_pmu.addr_filters_sync = etm_addr_filters_sync; 920 etm_pmu.addr_filters_validate = etm_addr_filters_validate; 921 etm_pmu.nr_addr_filters = ETM_ADDR_CMP_MAX; 922 etm_pmu.module = THIS_MODULE; 923 924 ret = perf_pmu_register(&etm_pmu, CORESIGHT_ETM_PMU_NAME, -1); 925 if (ret == 0) 926 etm_perf_up = true; 927 928 return ret; 929 } 930 931 void etm_perf_exit(void) 932 { 933 perf_pmu_unregister(&etm_pmu); 934 } 935