1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2015 Linaro Limited. All rights reserved. 4 * Author: Mathieu Poirier <mathieu.poirier@linaro.org> 5 */ 6 7 #include <linux/bitfield.h> 8 #include <linux/coresight.h> 9 #include <linux/coresight-pmu.h> 10 #include <linux/cpumask.h> 11 #include <linux/device.h> 12 #include <linux/list.h> 13 #include <linux/mm.h> 14 #include <linux/init.h> 15 #include <linux/perf_event.h> 16 #include <linux/percpu-defs.h> 17 #include <linux/slab.h> 18 #include <linux/stringhash.h> 19 #include <linux/types.h> 20 #include <linux/workqueue.h> 21 22 #include "coresight-config.h" 23 #include "coresight-etm-perf.h" 24 #include "coresight-priv.h" 25 #include "coresight-syscfg.h" 26 #include "coresight-trace-id.h" 27 28 static struct pmu etm_pmu; 29 static bool etm_perf_up; 30 31 /* 32 * An ETM context for a running event includes the perf aux handle 33 * and aux_data. For ETM, the aux_data (etm_event_data), consists of 34 * the trace path and the sink configuration. The event data is accessible 35 * via perf_get_aux(handle). However, a sink could "end" a perf output 36 * handle via the IRQ handler. And if the "sink" encounters a failure 37 * to "begin" another session (e.g due to lack of space in the buffer), 38 * the handle will be cleared. Thus, the event_data may not be accessible 39 * from the handle when we get to the etm_event_stop(), which is required 40 * for stopping the trace path. The event_data is guaranteed to stay alive 41 * until "free_aux()", which cannot happen as long as the event is active on 42 * the ETM. Thus the event_data for the session must be part of the ETM context 43 * to make sure we can disable the trace path. 44 */ 45 struct etm_ctxt { 46 struct perf_output_handle handle; 47 struct etm_event_data *event_data; 48 }; 49 50 static DEFINE_PER_CPU(struct etm_ctxt, etm_ctxt); 51 static DEFINE_PER_CPU(struct coresight_device *, csdev_src); 52 53 /* 54 * The PMU formats were orignally for ETMv3.5/PTM's ETMCR 'config'; 55 * now take them as general formats and apply on all ETMs. 56 */ 57 PMU_FORMAT_ATTR(branch_broadcast, "config:"__stringify(ETM_OPT_BRANCH_BROADCAST)); 58 PMU_FORMAT_ATTR(cycacc, "config:" __stringify(ETM_OPT_CYCACC)); 59 /* contextid1 enables tracing CONTEXTIDR_EL1 for ETMv4 */ 60 PMU_FORMAT_ATTR(contextid1, "config:" __stringify(ETM_OPT_CTXTID)); 61 /* contextid2 enables tracing CONTEXTIDR_EL2 for ETMv4 */ 62 PMU_FORMAT_ATTR(contextid2, "config:" __stringify(ETM_OPT_CTXTID2)); 63 PMU_FORMAT_ATTR(timestamp, "config:" __stringify(ETM_OPT_TS)); 64 PMU_FORMAT_ATTR(retstack, "config:" __stringify(ETM_OPT_RETSTK)); 65 /* preset - if sink ID is used as a configuration selector */ 66 PMU_FORMAT_ATTR(preset, "config:0-3"); 67 /* Sink ID - same for all ETMs */ 68 PMU_FORMAT_ATTR(sinkid, "config2:0-31"); 69 /* config ID - set if a system configuration is selected */ 70 PMU_FORMAT_ATTR(configid, "config2:32-63"); 71 PMU_FORMAT_ATTR(cc_threshold, "config3:0-11"); 72 73 74 /* 75 * contextid always traces the "PID". The PID is in CONTEXTIDR_EL1 76 * when the kernel is running at EL1; when the kernel is at EL2, 77 * the PID is in CONTEXTIDR_EL2. 78 */ 79 static ssize_t format_attr_contextid_show(struct device *dev, 80 struct device_attribute *attr, 81 char *page) 82 { 83 int pid_fmt = ETM_OPT_CTXTID; 84 85 #if IS_ENABLED(CONFIG_CORESIGHT_SOURCE_ETM4X) 86 pid_fmt = is_kernel_in_hyp_mode() ? ETM_OPT_CTXTID2 : ETM_OPT_CTXTID; 87 #endif 88 return sprintf(page, "config:%d\n", pid_fmt); 89 } 90 91 static struct device_attribute format_attr_contextid = 92 __ATTR(contextid, 0444, format_attr_contextid_show, NULL); 93 94 static struct attribute *etm_config_formats_attr[] = { 95 &format_attr_cycacc.attr, 96 &format_attr_contextid.attr, 97 &format_attr_contextid1.attr, 98 &format_attr_contextid2.attr, 99 &format_attr_timestamp.attr, 100 &format_attr_retstack.attr, 101 &format_attr_sinkid.attr, 102 &format_attr_preset.attr, 103 &format_attr_configid.attr, 104 &format_attr_branch_broadcast.attr, 105 &format_attr_cc_threshold.attr, 106 NULL, 107 }; 108 109 static const struct attribute_group etm_pmu_format_group = { 110 .name = "format", 111 .attrs = etm_config_formats_attr, 112 }; 113 114 static struct attribute *etm_config_sinks_attr[] = { 115 NULL, 116 }; 117 118 static const struct attribute_group etm_pmu_sinks_group = { 119 .name = "sinks", 120 .attrs = etm_config_sinks_attr, 121 }; 122 123 static struct attribute *etm_config_events_attr[] = { 124 NULL, 125 }; 126 127 static const struct attribute_group etm_pmu_events_group = { 128 .name = "events", 129 .attrs = etm_config_events_attr, 130 }; 131 132 static const struct attribute_group *etm_pmu_attr_groups[] = { 133 &etm_pmu_format_group, 134 &etm_pmu_sinks_group, 135 &etm_pmu_events_group, 136 NULL, 137 }; 138 139 static inline struct coresight_path ** 140 etm_event_cpu_path_ptr(struct etm_event_data *data, int cpu) 141 { 142 return per_cpu_ptr(data->path, cpu); 143 } 144 145 static inline struct coresight_path * 146 etm_event_cpu_path(struct etm_event_data *data, int cpu) 147 { 148 return *etm_event_cpu_path_ptr(data, cpu); 149 } 150 151 static void etm_event_read(struct perf_event *event) {} 152 153 static int etm_addr_filters_alloc(struct perf_event *event) 154 { 155 struct etm_filters *filters; 156 int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu); 157 158 filters = kzalloc_node(sizeof(struct etm_filters), GFP_KERNEL, node); 159 if (!filters) 160 return -ENOMEM; 161 162 if (event->parent) 163 memcpy(filters, event->parent->hw.addr_filters, 164 sizeof(*filters)); 165 166 event->hw.addr_filters = filters; 167 168 return 0; 169 } 170 171 static void etm_event_destroy(struct perf_event *event) 172 { 173 kfree(event->hw.addr_filters); 174 event->hw.addr_filters = NULL; 175 } 176 177 static int etm_event_init(struct perf_event *event) 178 { 179 int ret = 0; 180 181 if (event->attr.type != etm_pmu.type) { 182 ret = -ENOENT; 183 goto out; 184 } 185 186 ret = etm_addr_filters_alloc(event); 187 if (ret) 188 goto out; 189 190 event->destroy = etm_event_destroy; 191 out: 192 return ret; 193 } 194 195 static void free_sink_buffer(struct etm_event_data *event_data) 196 { 197 int cpu; 198 cpumask_t *mask = &event_data->mask; 199 struct coresight_device *sink; 200 201 if (!event_data->snk_config) 202 return; 203 204 if (WARN_ON(cpumask_empty(mask))) 205 return; 206 207 cpu = cpumask_first(mask); 208 sink = coresight_get_sink(etm_event_cpu_path(event_data, cpu)); 209 sink_ops(sink)->free_buffer(event_data->snk_config); 210 } 211 212 static void free_event_data(struct work_struct *work) 213 { 214 int cpu; 215 cpumask_t *mask; 216 struct etm_event_data *event_data; 217 218 event_data = container_of(work, struct etm_event_data, work); 219 mask = &event_data->mask; 220 221 /* Free the sink buffers, if there are any */ 222 free_sink_buffer(event_data); 223 224 /* clear any configuration we were using */ 225 if (event_data->cfg_hash) 226 cscfg_deactivate_config(event_data->cfg_hash); 227 228 for_each_cpu(cpu, mask) { 229 struct coresight_path **ppath; 230 231 ppath = etm_event_cpu_path_ptr(event_data, cpu); 232 if (!(IS_ERR_OR_NULL(*ppath))) { 233 struct coresight_device *sink = coresight_get_sink(*ppath); 234 235 /* 236 * Mark perf event as done for trace id allocator, but don't call 237 * coresight_trace_id_put_cpu_id_map() on individual IDs. Perf sessions 238 * never free trace IDs to ensure that the ID associated with a CPU 239 * cannot change during their and other's concurrent sessions. Instead, 240 * a refcount is used so that the last event to call 241 * coresight_trace_id_perf_stop() frees all IDs. 242 */ 243 coresight_trace_id_perf_stop(&sink->perf_sink_id_map); 244 245 coresight_release_path(*ppath); 246 } 247 *ppath = NULL; 248 } 249 250 free_percpu(event_data->path); 251 kfree(event_data); 252 } 253 254 static void *alloc_event_data(int cpu) 255 { 256 cpumask_t *mask; 257 struct etm_event_data *event_data; 258 259 /* First get memory for the session's data */ 260 event_data = kzalloc(sizeof(struct etm_event_data), GFP_KERNEL); 261 if (!event_data) 262 return NULL; 263 264 265 mask = &event_data->mask; 266 if (cpu != -1) 267 cpumask_set_cpu(cpu, mask); 268 else 269 cpumask_copy(mask, cpu_present_mask); 270 271 /* 272 * Each CPU has a single path between source and destination. As such 273 * allocate an array using CPU numbers as indexes. That way a path 274 * for any CPU can easily be accessed at any given time. We proceed 275 * the same way for sessions involving a single CPU. The cost of 276 * unused memory when dealing with single CPU trace scenarios is small 277 * compared to the cost of searching through an optimized array. 278 */ 279 event_data->path = alloc_percpu(struct coresight_path *); 280 281 if (!event_data->path) { 282 kfree(event_data); 283 return NULL; 284 } 285 286 return event_data; 287 } 288 289 static void etm_free_aux(void *data) 290 { 291 struct etm_event_data *event_data = data; 292 293 schedule_work(&event_data->work); 294 } 295 296 /* 297 * Check if two given sinks are compatible with each other, 298 * so that they can use the same sink buffers, when an event 299 * moves around. 300 */ 301 static bool sinks_compatible(struct coresight_device *a, 302 struct coresight_device *b) 303 { 304 if (!a || !b) 305 return false; 306 /* 307 * If the sinks are of the same subtype and driven 308 * by the same driver, we can use the same buffer 309 * on these sinks. 310 */ 311 return (a->subtype.sink_subtype == b->subtype.sink_subtype) && 312 (sink_ops(a) == sink_ops(b)); 313 } 314 315 static void *etm_setup_aux(struct perf_event *event, void **pages, 316 int nr_pages, bool overwrite) 317 { 318 u32 id, cfg_hash; 319 int cpu = event->cpu; 320 cpumask_t *mask; 321 struct coresight_device *sink = NULL; 322 struct coresight_device *user_sink = NULL, *last_sink = NULL; 323 struct etm_event_data *event_data = NULL; 324 325 event_data = alloc_event_data(cpu); 326 if (!event_data) 327 return NULL; 328 INIT_WORK(&event_data->work, free_event_data); 329 330 /* First get the selected sink from user space. */ 331 if (event->attr.config2 & GENMASK_ULL(31, 0)) { 332 id = (u32)event->attr.config2; 333 sink = user_sink = coresight_get_sink_by_id(id); 334 } 335 336 /* check if user wants a coresight configuration selected */ 337 cfg_hash = (u32)((event->attr.config2 & GENMASK_ULL(63, 32)) >> 32); 338 if (cfg_hash) { 339 if (cscfg_activate_config(cfg_hash)) 340 goto err; 341 event_data->cfg_hash = cfg_hash; 342 } 343 344 mask = &event_data->mask; 345 346 /* 347 * Setup the path for each CPU in a trace session. We try to build 348 * trace path for each CPU in the mask. If we don't find an ETM 349 * for the CPU or fail to build a path, we clear the CPU from the 350 * mask and continue with the rest. If ever we try to trace on those 351 * CPUs, we can handle it and fail the session. 352 */ 353 for_each_cpu(cpu, mask) { 354 struct coresight_path *path; 355 struct coresight_device *csdev; 356 357 csdev = per_cpu(csdev_src, cpu); 358 /* 359 * If there is no ETM associated with this CPU clear it from 360 * the mask and continue with the rest. If ever we try to trace 361 * on this CPU, we handle it accordingly. 362 */ 363 if (!csdev) { 364 cpumask_clear_cpu(cpu, mask); 365 continue; 366 } 367 368 /* 369 * No sink provided - look for a default sink for all the ETMs, 370 * where this event can be scheduled. 371 * We allocate the sink specific buffers only once for this 372 * event. If the ETMs have different default sink devices, we 373 * can only use a single "type" of sink as the event can carry 374 * only one sink specific buffer. Thus we have to make sure 375 * that the sinks are of the same type and driven by the same 376 * driver, as the one we allocate the buffer for. As such 377 * we choose the first sink and check if the remaining ETMs 378 * have a compatible default sink. We don't trace on a CPU 379 * if the sink is not compatible. 380 */ 381 if (!user_sink) { 382 /* Find the default sink for this ETM */ 383 sink = coresight_find_default_sink(csdev); 384 if (!sink) { 385 cpumask_clear_cpu(cpu, mask); 386 continue; 387 } 388 389 /* Check if this sink compatible with the last sink */ 390 if (last_sink && !sinks_compatible(last_sink, sink)) { 391 cpumask_clear_cpu(cpu, mask); 392 continue; 393 } 394 last_sink = sink; 395 } 396 397 /* 398 * Building a path doesn't enable it, it simply builds a 399 * list of devices from source to sink that can be 400 * referenced later when the path is actually needed. 401 */ 402 path = coresight_build_path(csdev, sink); 403 if (IS_ERR(path)) { 404 cpumask_clear_cpu(cpu, mask); 405 continue; 406 } 407 408 /* ensure we can allocate a trace ID for this CPU */ 409 coresight_path_assign_trace_id(path, CS_MODE_PERF); 410 if (!IS_VALID_CS_TRACE_ID(path->trace_id)) { 411 cpumask_clear_cpu(cpu, mask); 412 coresight_release_path(path); 413 continue; 414 } 415 416 coresight_trace_id_perf_start(&sink->perf_sink_id_map); 417 *etm_event_cpu_path_ptr(event_data, cpu) = path; 418 } 419 420 /* no sink found for any CPU - cannot trace */ 421 if (!sink) 422 goto err; 423 424 /* If we don't have any CPUs ready for tracing, abort */ 425 cpu = cpumask_first(mask); 426 if (cpu >= nr_cpu_ids) 427 goto err; 428 429 if (!sink_ops(sink)->alloc_buffer || !sink_ops(sink)->free_buffer) 430 goto err; 431 432 /* 433 * Allocate the sink buffer for this session. All the sinks 434 * where this event can be scheduled are ensured to be of the 435 * same type. Thus the same sink configuration is used by the 436 * sinks. 437 */ 438 event_data->snk_config = 439 sink_ops(sink)->alloc_buffer(sink, event, pages, 440 nr_pages, overwrite); 441 if (!event_data->snk_config) 442 goto err; 443 444 out: 445 return event_data; 446 447 err: 448 etm_free_aux(event_data); 449 event_data = NULL; 450 goto out; 451 } 452 453 static void etm_event_start(struct perf_event *event, int flags) 454 { 455 int cpu = smp_processor_id(); 456 struct etm_event_data *event_data; 457 struct etm_ctxt *ctxt = this_cpu_ptr(&etm_ctxt); 458 struct perf_output_handle *handle = &ctxt->handle; 459 struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu); 460 struct coresight_path *path; 461 u64 hw_id; 462 463 if (!csdev) 464 goto fail; 465 466 /* Have we messed up our tracking ? */ 467 if (WARN_ON(ctxt->event_data)) 468 goto fail; 469 470 /* 471 * Deal with the ring buffer API and get a handle on the 472 * session's information. 473 */ 474 event_data = perf_aux_output_begin(handle, event); 475 if (!event_data) 476 goto fail; 477 478 /* 479 * Check if this ETM is allowed to trace, as decided 480 * at etm_setup_aux(). This could be due to an unreachable 481 * sink from this ETM. We can't do much in this case if 482 * the sink was specified or hinted to the driver. For 483 * now, simply don't record anything on this ETM. 484 * 485 * As such we pretend that everything is fine, and let 486 * it continue without actually tracing. The event could 487 * continue tracing when it moves to a CPU where it is 488 * reachable to a sink. 489 */ 490 if (!cpumask_test_cpu(cpu, &event_data->mask)) 491 goto out; 492 493 path = etm_event_cpu_path(event_data, cpu); 494 /* We need a sink, no need to continue without one */ 495 sink = coresight_get_sink(path); 496 if (WARN_ON_ONCE(!sink)) 497 goto fail_end_stop; 498 499 /* Nothing will happen without a path */ 500 if (coresight_enable_path(path, CS_MODE_PERF, handle)) 501 goto fail_end_stop; 502 503 /* Finally enable the tracer */ 504 if (source_ops(csdev)->enable(csdev, event, CS_MODE_PERF, path)) 505 goto fail_disable_path; 506 507 /* 508 * output cpu / trace ID in perf record, once for the lifetime 509 * of the event. 510 */ 511 if (!cpumask_test_cpu(cpu, &event_data->aux_hwid_done)) { 512 cpumask_set_cpu(cpu, &event_data->aux_hwid_done); 513 514 hw_id = FIELD_PREP(CS_AUX_HW_ID_MAJOR_VERSION_MASK, 515 CS_AUX_HW_ID_MAJOR_VERSION); 516 hw_id |= FIELD_PREP(CS_AUX_HW_ID_MINOR_VERSION_MASK, 517 CS_AUX_HW_ID_MINOR_VERSION); 518 hw_id |= FIELD_PREP(CS_AUX_HW_ID_TRACE_ID_MASK, path->trace_id); 519 hw_id |= FIELD_PREP(CS_AUX_HW_ID_SINK_ID_MASK, coresight_get_sink_id(sink)); 520 521 perf_report_aux_output_id(event, hw_id); 522 } 523 524 out: 525 /* Tell the perf core the event is alive */ 526 event->hw.state = 0; 527 /* Save the event_data for this ETM */ 528 ctxt->event_data = event_data; 529 return; 530 531 fail_disable_path: 532 coresight_disable_path(path); 533 fail_end_stop: 534 /* 535 * Check if the handle is still associated with the event, 536 * to handle cases where if the sink failed to start the 537 * trace and TRUNCATED the handle already. 538 */ 539 if (READ_ONCE(handle->event)) { 540 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED); 541 perf_aux_output_end(handle, 0); 542 } 543 fail: 544 event->hw.state = PERF_HES_STOPPED; 545 return; 546 } 547 548 static void etm_event_stop(struct perf_event *event, int mode) 549 { 550 int cpu = smp_processor_id(); 551 unsigned long size; 552 struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu); 553 struct etm_ctxt *ctxt = this_cpu_ptr(&etm_ctxt); 554 struct perf_output_handle *handle = &ctxt->handle; 555 struct etm_event_data *event_data; 556 struct coresight_path *path; 557 558 /* 559 * If we still have access to the event_data via handle, 560 * confirm that we haven't messed up the tracking. 561 */ 562 if (handle->event && 563 WARN_ON(perf_get_aux(handle) != ctxt->event_data)) 564 return; 565 566 event_data = ctxt->event_data; 567 /* Clear the event_data as this ETM is stopping the trace. */ 568 ctxt->event_data = NULL; 569 570 if (event->hw.state == PERF_HES_STOPPED) 571 return; 572 573 /* We must have a valid event_data for a running event */ 574 if (WARN_ON(!event_data)) 575 return; 576 577 /* 578 * Check if this ETM was allowed to trace, as decided at 579 * etm_setup_aux(). If it wasn't allowed to trace, then 580 * nothing needs to be torn down other than outputting a 581 * zero sized record. 582 */ 583 if (handle->event && (mode & PERF_EF_UPDATE) && 584 !cpumask_test_cpu(cpu, &event_data->mask)) { 585 event->hw.state = PERF_HES_STOPPED; 586 perf_aux_output_end(handle, 0); 587 return; 588 } 589 590 if (!csdev) 591 return; 592 593 path = etm_event_cpu_path(event_data, cpu); 594 if (!path) 595 return; 596 597 sink = coresight_get_sink(path); 598 if (!sink) 599 return; 600 601 /* stop tracer */ 602 coresight_disable_source(csdev, event); 603 604 /* tell the core */ 605 event->hw.state = PERF_HES_STOPPED; 606 607 /* 608 * If the handle is not bound to an event anymore 609 * (e.g, the sink driver was unable to restart the 610 * handle due to lack of buffer space), we don't 611 * have to do anything here. 612 */ 613 if (handle->event && (mode & PERF_EF_UPDATE)) { 614 if (WARN_ON_ONCE(handle->event != event)) 615 return; 616 617 /* update trace information */ 618 if (!sink_ops(sink)->update_buffer) 619 return; 620 621 size = sink_ops(sink)->update_buffer(sink, handle, 622 event_data->snk_config); 623 /* 624 * Make sure the handle is still valid as the 625 * sink could have closed it from an IRQ. 626 * The sink driver must handle the race with 627 * update_buffer() and IRQ. Thus either we 628 * should get a valid handle and valid size 629 * (which may be 0). 630 * 631 * But we should never get a non-zero size with 632 * an invalid handle. 633 */ 634 if (READ_ONCE(handle->event)) 635 perf_aux_output_end(handle, size); 636 else 637 WARN_ON(size); 638 } 639 640 /* Disabling the path make its elements available to other sessions */ 641 coresight_disable_path(path); 642 } 643 644 static int etm_event_add(struct perf_event *event, int mode) 645 { 646 int ret = 0; 647 struct hw_perf_event *hwc = &event->hw; 648 649 if (mode & PERF_EF_START) { 650 etm_event_start(event, 0); 651 if (hwc->state & PERF_HES_STOPPED) 652 ret = -EINVAL; 653 } else { 654 hwc->state = PERF_HES_STOPPED; 655 } 656 657 return ret; 658 } 659 660 static void etm_event_del(struct perf_event *event, int mode) 661 { 662 etm_event_stop(event, PERF_EF_UPDATE); 663 } 664 665 static int etm_addr_filters_validate(struct list_head *filters) 666 { 667 bool range = false, address = false; 668 int index = 0; 669 struct perf_addr_filter *filter; 670 671 list_for_each_entry(filter, filters, entry) { 672 /* 673 * No need to go further if there's no more 674 * room for filters. 675 */ 676 if (++index > ETM_ADDR_CMP_MAX) 677 return -EOPNOTSUPP; 678 679 /* filter::size==0 means single address trigger */ 680 if (filter->size) { 681 /* 682 * The existing code relies on START/STOP filters 683 * being address filters. 684 */ 685 if (filter->action == PERF_ADDR_FILTER_ACTION_START || 686 filter->action == PERF_ADDR_FILTER_ACTION_STOP) 687 return -EOPNOTSUPP; 688 689 range = true; 690 } else 691 address = true; 692 693 /* 694 * At this time we don't allow range and start/stop filtering 695 * to cohabitate, they have to be mutually exclusive. 696 */ 697 if (range && address) 698 return -EOPNOTSUPP; 699 } 700 701 return 0; 702 } 703 704 static void etm_addr_filters_sync(struct perf_event *event) 705 { 706 struct perf_addr_filters_head *head = perf_event_addr_filters(event); 707 unsigned long start, stop; 708 struct perf_addr_filter_range *fr = event->addr_filter_ranges; 709 struct etm_filters *filters = event->hw.addr_filters; 710 struct etm_filter *etm_filter; 711 struct perf_addr_filter *filter; 712 int i = 0; 713 714 list_for_each_entry(filter, &head->list, entry) { 715 start = fr[i].start; 716 stop = start + fr[i].size; 717 etm_filter = &filters->etm_filter[i]; 718 719 switch (filter->action) { 720 case PERF_ADDR_FILTER_ACTION_FILTER: 721 etm_filter->start_addr = start; 722 etm_filter->stop_addr = stop; 723 etm_filter->type = ETM_ADDR_TYPE_RANGE; 724 break; 725 case PERF_ADDR_FILTER_ACTION_START: 726 etm_filter->start_addr = start; 727 etm_filter->type = ETM_ADDR_TYPE_START; 728 break; 729 case PERF_ADDR_FILTER_ACTION_STOP: 730 etm_filter->stop_addr = stop; 731 etm_filter->type = ETM_ADDR_TYPE_STOP; 732 break; 733 } 734 i++; 735 } 736 737 filters->nr_filters = i; 738 } 739 740 int etm_perf_symlink(struct coresight_device *csdev, bool link) 741 { 742 char entry[sizeof("cpu9999999")]; 743 int ret = 0, cpu = source_ops(csdev)->cpu_id(csdev); 744 struct device *pmu_dev = etm_pmu.dev; 745 struct device *cs_dev = &csdev->dev; 746 747 sprintf(entry, "cpu%d", cpu); 748 749 if (!etm_perf_up) 750 return -EPROBE_DEFER; 751 752 if (link) { 753 ret = sysfs_create_link(&pmu_dev->kobj, &cs_dev->kobj, entry); 754 if (ret) 755 return ret; 756 per_cpu(csdev_src, cpu) = csdev; 757 } else { 758 sysfs_remove_link(&pmu_dev->kobj, entry); 759 per_cpu(csdev_src, cpu) = NULL; 760 } 761 762 return 0; 763 } 764 EXPORT_SYMBOL_GPL(etm_perf_symlink); 765 766 static ssize_t etm_perf_sink_name_show(struct device *dev, 767 struct device_attribute *dattr, 768 char *buf) 769 { 770 struct dev_ext_attribute *ea; 771 772 ea = container_of(dattr, struct dev_ext_attribute, attr); 773 return scnprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)(ea->var)); 774 } 775 776 static struct dev_ext_attribute * 777 etm_perf_add_symlink_group(struct device *dev, const char *name, const char *group_name) 778 { 779 struct dev_ext_attribute *ea; 780 unsigned long hash; 781 int ret; 782 struct device *pmu_dev = etm_pmu.dev; 783 784 if (!etm_perf_up) 785 return ERR_PTR(-EPROBE_DEFER); 786 787 ea = devm_kzalloc(dev, sizeof(*ea), GFP_KERNEL); 788 if (!ea) 789 return ERR_PTR(-ENOMEM); 790 791 /* 792 * If this function is called adding a sink then the hash is used for 793 * sink selection - see function coresight_get_sink_by_id(). 794 * If adding a configuration then the hash is used for selection in 795 * cscfg_activate_config() 796 */ 797 hash = hashlen_hash(hashlen_string(NULL, name)); 798 799 sysfs_attr_init(&ea->attr.attr); 800 ea->attr.attr.name = devm_kstrdup(dev, name, GFP_KERNEL); 801 if (!ea->attr.attr.name) 802 return ERR_PTR(-ENOMEM); 803 804 ea->attr.attr.mode = 0444; 805 ea->var = (unsigned long *)hash; 806 807 ret = sysfs_add_file_to_group(&pmu_dev->kobj, 808 &ea->attr.attr, group_name); 809 810 return ret ? ERR_PTR(ret) : ea; 811 } 812 813 int etm_perf_add_symlink_sink(struct coresight_device *csdev) 814 { 815 const char *name; 816 struct device *dev = &csdev->dev; 817 int err = 0; 818 819 if (csdev->type != CORESIGHT_DEV_TYPE_SINK && 820 csdev->type != CORESIGHT_DEV_TYPE_LINKSINK) 821 return -EINVAL; 822 823 if (csdev->ea != NULL) 824 return -EINVAL; 825 826 name = dev_name(dev); 827 csdev->ea = etm_perf_add_symlink_group(dev, name, "sinks"); 828 if (IS_ERR(csdev->ea)) { 829 err = PTR_ERR(csdev->ea); 830 csdev->ea = NULL; 831 } else 832 csdev->ea->attr.show = etm_perf_sink_name_show; 833 834 return err; 835 } 836 837 static void etm_perf_del_symlink_group(struct dev_ext_attribute *ea, const char *group_name) 838 { 839 struct device *pmu_dev = etm_pmu.dev; 840 841 sysfs_remove_file_from_group(&pmu_dev->kobj, 842 &ea->attr.attr, group_name); 843 } 844 845 void etm_perf_del_symlink_sink(struct coresight_device *csdev) 846 { 847 if (csdev->type != CORESIGHT_DEV_TYPE_SINK && 848 csdev->type != CORESIGHT_DEV_TYPE_LINKSINK) 849 return; 850 851 if (!csdev->ea) 852 return; 853 854 etm_perf_del_symlink_group(csdev->ea, "sinks"); 855 csdev->ea = NULL; 856 } 857 858 static ssize_t etm_perf_cscfg_event_show(struct device *dev, 859 struct device_attribute *dattr, 860 char *buf) 861 { 862 struct dev_ext_attribute *ea; 863 864 ea = container_of(dattr, struct dev_ext_attribute, attr); 865 return scnprintf(buf, PAGE_SIZE, "configid=0x%lx\n", (unsigned long)(ea->var)); 866 } 867 868 int etm_perf_add_symlink_cscfg(struct device *dev, struct cscfg_config_desc *config_desc) 869 { 870 int err = 0; 871 872 if (config_desc->event_ea != NULL) 873 return 0; 874 875 config_desc->event_ea = etm_perf_add_symlink_group(dev, config_desc->name, "events"); 876 877 /* set the show function to the custom cscfg event */ 878 if (!IS_ERR(config_desc->event_ea)) 879 config_desc->event_ea->attr.show = etm_perf_cscfg_event_show; 880 else { 881 err = PTR_ERR(config_desc->event_ea); 882 config_desc->event_ea = NULL; 883 } 884 885 return err; 886 } 887 888 void etm_perf_del_symlink_cscfg(struct cscfg_config_desc *config_desc) 889 { 890 if (!config_desc->event_ea) 891 return; 892 893 etm_perf_del_symlink_group(config_desc->event_ea, "events"); 894 config_desc->event_ea = NULL; 895 } 896 897 int __init etm_perf_init(void) 898 { 899 int ret; 900 901 etm_pmu.capabilities = (PERF_PMU_CAP_EXCLUSIVE | 902 PERF_PMU_CAP_ITRACE); 903 904 etm_pmu.attr_groups = etm_pmu_attr_groups; 905 etm_pmu.task_ctx_nr = perf_sw_context; 906 etm_pmu.read = etm_event_read; 907 etm_pmu.event_init = etm_event_init; 908 etm_pmu.setup_aux = etm_setup_aux; 909 etm_pmu.free_aux = etm_free_aux; 910 etm_pmu.start = etm_event_start; 911 etm_pmu.stop = etm_event_stop; 912 etm_pmu.add = etm_event_add; 913 etm_pmu.del = etm_event_del; 914 etm_pmu.addr_filters_sync = etm_addr_filters_sync; 915 etm_pmu.addr_filters_validate = etm_addr_filters_validate; 916 etm_pmu.nr_addr_filters = ETM_ADDR_CMP_MAX; 917 etm_pmu.module = THIS_MODULE; 918 919 ret = perf_pmu_register(&etm_pmu, CORESIGHT_ETM_PMU_NAME, -1); 920 if (ret == 0) 921 etm_perf_up = true; 922 923 return ret; 924 } 925 926 void etm_perf_exit(void) 927 { 928 perf_pmu_unregister(&etm_pmu); 929 } 930