1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2015 Linaro Limited. All rights reserved. 4 * Author: Mathieu Poirier <mathieu.poirier@linaro.org> 5 */ 6 7 #include <linux/bitfield.h> 8 #include <linux/coresight.h> 9 #include <linux/coresight-pmu.h> 10 #include <linux/cpumask.h> 11 #include <linux/device.h> 12 #include <linux/list.h> 13 #include <linux/mm.h> 14 #include <linux/init.h> 15 #include <linux/perf_event.h> 16 #include <linux/percpu-defs.h> 17 #include <linux/slab.h> 18 #include <linux/stringhash.h> 19 #include <linux/types.h> 20 #include <linux/workqueue.h> 21 22 #include "coresight-config.h" 23 #include "coresight-etm-perf.h" 24 #include "coresight-priv.h" 25 #include "coresight-syscfg.h" 26 #include "coresight-trace-id.h" 27 28 static struct pmu etm_pmu; 29 static bool etm_perf_up; 30 31 /* 32 * An ETM context for a running event includes the perf aux handle 33 * and aux_data. For ETM, the aux_data (etm_event_data), consists of 34 * the trace path and the sink configuration. The event data is accessible 35 * via perf_get_aux(handle). However, a sink could "end" a perf output 36 * handle via the IRQ handler. And if the "sink" encounters a failure 37 * to "begin" another session (e.g due to lack of space in the buffer), 38 * the handle will be cleared. Thus, the event_data may not be accessible 39 * from the handle when we get to the etm_event_stop(), which is required 40 * for stopping the trace path. The event_data is guaranteed to stay alive 41 * until "free_aux()", which cannot happen as long as the event is active on 42 * the ETM. Thus the event_data for the session must be part of the ETM context 43 * to make sure we can disable the trace path. 44 */ 45 struct etm_ctxt { 46 struct perf_output_handle handle; 47 struct etm_event_data *event_data; 48 }; 49 50 static DEFINE_PER_CPU(struct etm_ctxt, etm_ctxt); 51 static DEFINE_PER_CPU(struct coresight_device *, csdev_src); 52 53 /* 54 * The PMU formats were orignally for ETMv3.5/PTM's ETMCR 'config'; 55 * now take them as general formats and apply on all ETMs. 56 */ 57 PMU_FORMAT_ATTR(branch_broadcast, "config:"__stringify(ETM_OPT_BRANCH_BROADCAST)); 58 PMU_FORMAT_ATTR(cycacc, "config:" __stringify(ETM_OPT_CYCACC)); 59 /* contextid1 enables tracing CONTEXTIDR_EL1 for ETMv4 */ 60 PMU_FORMAT_ATTR(contextid1, "config:" __stringify(ETM_OPT_CTXTID)); 61 /* contextid2 enables tracing CONTEXTIDR_EL2 for ETMv4 */ 62 PMU_FORMAT_ATTR(contextid2, "config:" __stringify(ETM_OPT_CTXTID2)); 63 PMU_FORMAT_ATTR(timestamp, "config:" __stringify(ETM_OPT_TS)); 64 PMU_FORMAT_ATTR(retstack, "config:" __stringify(ETM_OPT_RETSTK)); 65 /* preset - if sink ID is used as a configuration selector */ 66 PMU_FORMAT_ATTR(preset, "config:0-3"); 67 /* Sink ID - same for all ETMs */ 68 PMU_FORMAT_ATTR(sinkid, "config2:0-31"); 69 /* config ID - set if a system configuration is selected */ 70 PMU_FORMAT_ATTR(configid, "config2:32-63"); 71 PMU_FORMAT_ATTR(cc_threshold, "config3:0-11"); 72 73 74 /* 75 * contextid always traces the "PID". The PID is in CONTEXTIDR_EL1 76 * when the kernel is running at EL1; when the kernel is at EL2, 77 * the PID is in CONTEXTIDR_EL2. 78 */ 79 static ssize_t format_attr_contextid_show(struct device *dev, 80 struct device_attribute *attr, 81 char *page) 82 { 83 int pid_fmt = ETM_OPT_CTXTID; 84 85 #if IS_ENABLED(CONFIG_CORESIGHT_SOURCE_ETM4X) 86 pid_fmt = is_kernel_in_hyp_mode() ? ETM_OPT_CTXTID2 : ETM_OPT_CTXTID; 87 #endif 88 return sprintf(page, "config:%d\n", pid_fmt); 89 } 90 91 static struct device_attribute format_attr_contextid = 92 __ATTR(contextid, 0444, format_attr_contextid_show, NULL); 93 94 static struct attribute *etm_config_formats_attr[] = { 95 &format_attr_cycacc.attr, 96 &format_attr_contextid.attr, 97 &format_attr_contextid1.attr, 98 &format_attr_contextid2.attr, 99 &format_attr_timestamp.attr, 100 &format_attr_retstack.attr, 101 &format_attr_sinkid.attr, 102 &format_attr_preset.attr, 103 &format_attr_configid.attr, 104 &format_attr_branch_broadcast.attr, 105 &format_attr_cc_threshold.attr, 106 NULL, 107 }; 108 109 static const struct attribute_group etm_pmu_format_group = { 110 .name = "format", 111 .attrs = etm_config_formats_attr, 112 }; 113 114 static struct attribute *etm_config_sinks_attr[] = { 115 NULL, 116 }; 117 118 static const struct attribute_group etm_pmu_sinks_group = { 119 .name = "sinks", 120 .attrs = etm_config_sinks_attr, 121 }; 122 123 static struct attribute *etm_config_events_attr[] = { 124 NULL, 125 }; 126 127 static const struct attribute_group etm_pmu_events_group = { 128 .name = "events", 129 .attrs = etm_config_events_attr, 130 }; 131 132 static const struct attribute_group *etm_pmu_attr_groups[] = { 133 &etm_pmu_format_group, 134 &etm_pmu_sinks_group, 135 &etm_pmu_events_group, 136 NULL, 137 }; 138 139 static inline struct list_head ** 140 etm_event_cpu_path_ptr(struct etm_event_data *data, int cpu) 141 { 142 return per_cpu_ptr(data->path, cpu); 143 } 144 145 static inline struct list_head * 146 etm_event_cpu_path(struct etm_event_data *data, int cpu) 147 { 148 return *etm_event_cpu_path_ptr(data, cpu); 149 } 150 151 static void etm_event_read(struct perf_event *event) {} 152 153 static int etm_addr_filters_alloc(struct perf_event *event) 154 { 155 struct etm_filters *filters; 156 int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu); 157 158 filters = kzalloc_node(sizeof(struct etm_filters), GFP_KERNEL, node); 159 if (!filters) 160 return -ENOMEM; 161 162 if (event->parent) 163 memcpy(filters, event->parent->hw.addr_filters, 164 sizeof(*filters)); 165 166 event->hw.addr_filters = filters; 167 168 return 0; 169 } 170 171 static void etm_event_destroy(struct perf_event *event) 172 { 173 kfree(event->hw.addr_filters); 174 event->hw.addr_filters = NULL; 175 } 176 177 static int etm_event_init(struct perf_event *event) 178 { 179 int ret = 0; 180 181 if (event->attr.type != etm_pmu.type) { 182 ret = -ENOENT; 183 goto out; 184 } 185 186 ret = etm_addr_filters_alloc(event); 187 if (ret) 188 goto out; 189 190 event->destroy = etm_event_destroy; 191 out: 192 return ret; 193 } 194 195 static void free_sink_buffer(struct etm_event_data *event_data) 196 { 197 int cpu; 198 cpumask_t *mask = &event_data->mask; 199 struct coresight_device *sink; 200 201 if (!event_data->snk_config) 202 return; 203 204 if (WARN_ON(cpumask_empty(mask))) 205 return; 206 207 cpu = cpumask_first(mask); 208 sink = coresight_get_sink(etm_event_cpu_path(event_data, cpu)); 209 sink_ops(sink)->free_buffer(event_data->snk_config); 210 } 211 212 static void free_event_data(struct work_struct *work) 213 { 214 int cpu; 215 cpumask_t *mask; 216 struct etm_event_data *event_data; 217 218 event_data = container_of(work, struct etm_event_data, work); 219 mask = &event_data->mask; 220 221 /* Free the sink buffers, if there are any */ 222 free_sink_buffer(event_data); 223 224 /* clear any configuration we were using */ 225 if (event_data->cfg_hash) 226 cscfg_deactivate_config(event_data->cfg_hash); 227 228 for_each_cpu(cpu, mask) { 229 struct list_head **ppath; 230 231 ppath = etm_event_cpu_path_ptr(event_data, cpu); 232 if (!(IS_ERR_OR_NULL(*ppath))) 233 coresight_release_path(*ppath); 234 *ppath = NULL; 235 coresight_trace_id_put_cpu_id(cpu); 236 } 237 238 /* mark perf event as done for trace id allocator */ 239 coresight_trace_id_perf_stop(); 240 241 free_percpu(event_data->path); 242 kfree(event_data); 243 } 244 245 static void *alloc_event_data(int cpu) 246 { 247 cpumask_t *mask; 248 struct etm_event_data *event_data; 249 250 /* First get memory for the session's data */ 251 event_data = kzalloc(sizeof(struct etm_event_data), GFP_KERNEL); 252 if (!event_data) 253 return NULL; 254 255 256 mask = &event_data->mask; 257 if (cpu != -1) 258 cpumask_set_cpu(cpu, mask); 259 else 260 cpumask_copy(mask, cpu_present_mask); 261 262 /* 263 * Each CPU has a single path between source and destination. As such 264 * allocate an array using CPU numbers as indexes. That way a path 265 * for any CPU can easily be accessed at any given time. We proceed 266 * the same way for sessions involving a single CPU. The cost of 267 * unused memory when dealing with single CPU trace scenarios is small 268 * compared to the cost of searching through an optimized array. 269 */ 270 event_data->path = alloc_percpu(struct list_head *); 271 272 if (!event_data->path) { 273 kfree(event_data); 274 return NULL; 275 } 276 277 return event_data; 278 } 279 280 static void etm_free_aux(void *data) 281 { 282 struct etm_event_data *event_data = data; 283 284 schedule_work(&event_data->work); 285 } 286 287 /* 288 * Check if two given sinks are compatible with each other, 289 * so that they can use the same sink buffers, when an event 290 * moves around. 291 */ 292 static bool sinks_compatible(struct coresight_device *a, 293 struct coresight_device *b) 294 { 295 if (!a || !b) 296 return false; 297 /* 298 * If the sinks are of the same subtype and driven 299 * by the same driver, we can use the same buffer 300 * on these sinks. 301 */ 302 return (a->subtype.sink_subtype == b->subtype.sink_subtype) && 303 (sink_ops(a) == sink_ops(b)); 304 } 305 306 static void *etm_setup_aux(struct perf_event *event, void **pages, 307 int nr_pages, bool overwrite) 308 { 309 u32 id, cfg_hash; 310 int cpu = event->cpu; 311 int trace_id; 312 cpumask_t *mask; 313 struct coresight_device *sink = NULL; 314 struct coresight_device *user_sink = NULL, *last_sink = NULL; 315 struct etm_event_data *event_data = NULL; 316 317 event_data = alloc_event_data(cpu); 318 if (!event_data) 319 return NULL; 320 INIT_WORK(&event_data->work, free_event_data); 321 322 /* First get the selected sink from user space. */ 323 if (event->attr.config2 & GENMASK_ULL(31, 0)) { 324 id = (u32)event->attr.config2; 325 sink = user_sink = coresight_get_sink_by_id(id); 326 } 327 328 /* tell the trace ID allocator that a perf event is starting up */ 329 coresight_trace_id_perf_start(); 330 331 /* check if user wants a coresight configuration selected */ 332 cfg_hash = (u32)((event->attr.config2 & GENMASK_ULL(63, 32)) >> 32); 333 if (cfg_hash) { 334 if (cscfg_activate_config(cfg_hash)) 335 goto err; 336 event_data->cfg_hash = cfg_hash; 337 } 338 339 mask = &event_data->mask; 340 341 /* 342 * Setup the path for each CPU in a trace session. We try to build 343 * trace path for each CPU in the mask. If we don't find an ETM 344 * for the CPU or fail to build a path, we clear the CPU from the 345 * mask and continue with the rest. If ever we try to trace on those 346 * CPUs, we can handle it and fail the session. 347 */ 348 for_each_cpu(cpu, mask) { 349 struct list_head *path; 350 struct coresight_device *csdev; 351 352 csdev = per_cpu(csdev_src, cpu); 353 /* 354 * If there is no ETM associated with this CPU clear it from 355 * the mask and continue with the rest. If ever we try to trace 356 * on this CPU, we handle it accordingly. 357 */ 358 if (!csdev) { 359 cpumask_clear_cpu(cpu, mask); 360 continue; 361 } 362 363 /* 364 * No sink provided - look for a default sink for all the ETMs, 365 * where this event can be scheduled. 366 * We allocate the sink specific buffers only once for this 367 * event. If the ETMs have different default sink devices, we 368 * can only use a single "type" of sink as the event can carry 369 * only one sink specific buffer. Thus we have to make sure 370 * that the sinks are of the same type and driven by the same 371 * driver, as the one we allocate the buffer for. As such 372 * we choose the first sink and check if the remaining ETMs 373 * have a compatible default sink. We don't trace on a CPU 374 * if the sink is not compatible. 375 */ 376 if (!user_sink) { 377 /* Find the default sink for this ETM */ 378 sink = coresight_find_default_sink(csdev); 379 if (!sink) { 380 cpumask_clear_cpu(cpu, mask); 381 continue; 382 } 383 384 /* Check if this sink compatible with the last sink */ 385 if (last_sink && !sinks_compatible(last_sink, sink)) { 386 cpumask_clear_cpu(cpu, mask); 387 continue; 388 } 389 last_sink = sink; 390 } 391 392 /* 393 * Building a path doesn't enable it, it simply builds a 394 * list of devices from source to sink that can be 395 * referenced later when the path is actually needed. 396 */ 397 path = coresight_build_path(csdev, sink); 398 if (IS_ERR(path)) { 399 cpumask_clear_cpu(cpu, mask); 400 continue; 401 } 402 403 /* ensure we can allocate a trace ID for this CPU */ 404 trace_id = coresight_trace_id_get_cpu_id(cpu); 405 if (!IS_VALID_CS_TRACE_ID(trace_id)) { 406 cpumask_clear_cpu(cpu, mask); 407 coresight_release_path(path); 408 continue; 409 } 410 411 *etm_event_cpu_path_ptr(event_data, cpu) = path; 412 } 413 414 /* no sink found for any CPU - cannot trace */ 415 if (!sink) 416 goto err; 417 418 /* If we don't have any CPUs ready for tracing, abort */ 419 cpu = cpumask_first(mask); 420 if (cpu >= nr_cpu_ids) 421 goto err; 422 423 if (!sink_ops(sink)->alloc_buffer || !sink_ops(sink)->free_buffer) 424 goto err; 425 426 /* 427 * Allocate the sink buffer for this session. All the sinks 428 * where this event can be scheduled are ensured to be of the 429 * same type. Thus the same sink configuration is used by the 430 * sinks. 431 */ 432 event_data->snk_config = 433 sink_ops(sink)->alloc_buffer(sink, event, pages, 434 nr_pages, overwrite); 435 if (!event_data->snk_config) 436 goto err; 437 438 out: 439 return event_data; 440 441 err: 442 etm_free_aux(event_data); 443 event_data = NULL; 444 goto out; 445 } 446 447 static void etm_event_start(struct perf_event *event, int flags) 448 { 449 int cpu = smp_processor_id(); 450 struct etm_event_data *event_data; 451 struct etm_ctxt *ctxt = this_cpu_ptr(&etm_ctxt); 452 struct perf_output_handle *handle = &ctxt->handle; 453 struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu); 454 struct list_head *path; 455 u64 hw_id; 456 457 if (!csdev) 458 goto fail; 459 460 /* Have we messed up our tracking ? */ 461 if (WARN_ON(ctxt->event_data)) 462 goto fail; 463 464 /* 465 * Deal with the ring buffer API and get a handle on the 466 * session's information. 467 */ 468 event_data = perf_aux_output_begin(handle, event); 469 if (!event_data) 470 goto fail; 471 472 /* 473 * Check if this ETM is allowed to trace, as decided 474 * at etm_setup_aux(). This could be due to an unreachable 475 * sink from this ETM. We can't do much in this case if 476 * the sink was specified or hinted to the driver. For 477 * now, simply don't record anything on this ETM. 478 * 479 * As such we pretend that everything is fine, and let 480 * it continue without actually tracing. The event could 481 * continue tracing when it moves to a CPU where it is 482 * reachable to a sink. 483 */ 484 if (!cpumask_test_cpu(cpu, &event_data->mask)) 485 goto out; 486 487 path = etm_event_cpu_path(event_data, cpu); 488 /* We need a sink, no need to continue without one */ 489 sink = coresight_get_sink(path); 490 if (WARN_ON_ONCE(!sink)) 491 goto fail_end_stop; 492 493 /* Nothing will happen without a path */ 494 if (coresight_enable_path(path, CS_MODE_PERF, handle)) 495 goto fail_end_stop; 496 497 /* Finally enable the tracer */ 498 if (source_ops(csdev)->enable(csdev, event, CS_MODE_PERF)) 499 goto fail_disable_path; 500 501 /* 502 * output cpu / trace ID in perf record, once for the lifetime 503 * of the event. 504 */ 505 if (!cpumask_test_cpu(cpu, &event_data->aux_hwid_done)) { 506 cpumask_set_cpu(cpu, &event_data->aux_hwid_done); 507 hw_id = FIELD_PREP(CS_AUX_HW_ID_VERSION_MASK, 508 CS_AUX_HW_ID_CURR_VERSION); 509 hw_id |= FIELD_PREP(CS_AUX_HW_ID_TRACE_ID_MASK, 510 coresight_trace_id_read_cpu_id(cpu)); 511 perf_report_aux_output_id(event, hw_id); 512 } 513 514 out: 515 /* Tell the perf core the event is alive */ 516 event->hw.state = 0; 517 /* Save the event_data for this ETM */ 518 ctxt->event_data = event_data; 519 return; 520 521 fail_disable_path: 522 coresight_disable_path(path); 523 fail_end_stop: 524 /* 525 * Check if the handle is still associated with the event, 526 * to handle cases where if the sink failed to start the 527 * trace and TRUNCATED the handle already. 528 */ 529 if (READ_ONCE(handle->event)) { 530 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED); 531 perf_aux_output_end(handle, 0); 532 } 533 fail: 534 event->hw.state = PERF_HES_STOPPED; 535 return; 536 } 537 538 static void etm_event_stop(struct perf_event *event, int mode) 539 { 540 int cpu = smp_processor_id(); 541 unsigned long size; 542 struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu); 543 struct etm_ctxt *ctxt = this_cpu_ptr(&etm_ctxt); 544 struct perf_output_handle *handle = &ctxt->handle; 545 struct etm_event_data *event_data; 546 struct list_head *path; 547 548 /* 549 * If we still have access to the event_data via handle, 550 * confirm that we haven't messed up the tracking. 551 */ 552 if (handle->event && 553 WARN_ON(perf_get_aux(handle) != ctxt->event_data)) 554 return; 555 556 event_data = ctxt->event_data; 557 /* Clear the event_data as this ETM is stopping the trace. */ 558 ctxt->event_data = NULL; 559 560 if (event->hw.state == PERF_HES_STOPPED) 561 return; 562 563 /* We must have a valid event_data for a running event */ 564 if (WARN_ON(!event_data)) 565 return; 566 567 /* 568 * Check if this ETM was allowed to trace, as decided at 569 * etm_setup_aux(). If it wasn't allowed to trace, then 570 * nothing needs to be torn down other than outputting a 571 * zero sized record. 572 */ 573 if (handle->event && (mode & PERF_EF_UPDATE) && 574 !cpumask_test_cpu(cpu, &event_data->mask)) { 575 event->hw.state = PERF_HES_STOPPED; 576 perf_aux_output_end(handle, 0); 577 return; 578 } 579 580 if (!csdev) 581 return; 582 583 path = etm_event_cpu_path(event_data, cpu); 584 if (!path) 585 return; 586 587 sink = coresight_get_sink(path); 588 if (!sink) 589 return; 590 591 /* stop tracer */ 592 coresight_disable_source(csdev, event); 593 594 /* tell the core */ 595 event->hw.state = PERF_HES_STOPPED; 596 597 /* 598 * If the handle is not bound to an event anymore 599 * (e.g, the sink driver was unable to restart the 600 * handle due to lack of buffer space), we don't 601 * have to do anything here. 602 */ 603 if (handle->event && (mode & PERF_EF_UPDATE)) { 604 if (WARN_ON_ONCE(handle->event != event)) 605 return; 606 607 /* update trace information */ 608 if (!sink_ops(sink)->update_buffer) 609 return; 610 611 size = sink_ops(sink)->update_buffer(sink, handle, 612 event_data->snk_config); 613 /* 614 * Make sure the handle is still valid as the 615 * sink could have closed it from an IRQ. 616 * The sink driver must handle the race with 617 * update_buffer() and IRQ. Thus either we 618 * should get a valid handle and valid size 619 * (which may be 0). 620 * 621 * But we should never get a non-zero size with 622 * an invalid handle. 623 */ 624 if (READ_ONCE(handle->event)) 625 perf_aux_output_end(handle, size); 626 else 627 WARN_ON(size); 628 } 629 630 /* Disabling the path make its elements available to other sessions */ 631 coresight_disable_path(path); 632 } 633 634 static int etm_event_add(struct perf_event *event, int mode) 635 { 636 int ret = 0; 637 struct hw_perf_event *hwc = &event->hw; 638 639 if (mode & PERF_EF_START) { 640 etm_event_start(event, 0); 641 if (hwc->state & PERF_HES_STOPPED) 642 ret = -EINVAL; 643 } else { 644 hwc->state = PERF_HES_STOPPED; 645 } 646 647 return ret; 648 } 649 650 static void etm_event_del(struct perf_event *event, int mode) 651 { 652 etm_event_stop(event, PERF_EF_UPDATE); 653 } 654 655 static int etm_addr_filters_validate(struct list_head *filters) 656 { 657 bool range = false, address = false; 658 int index = 0; 659 struct perf_addr_filter *filter; 660 661 list_for_each_entry(filter, filters, entry) { 662 /* 663 * No need to go further if there's no more 664 * room for filters. 665 */ 666 if (++index > ETM_ADDR_CMP_MAX) 667 return -EOPNOTSUPP; 668 669 /* filter::size==0 means single address trigger */ 670 if (filter->size) { 671 /* 672 * The existing code relies on START/STOP filters 673 * being address filters. 674 */ 675 if (filter->action == PERF_ADDR_FILTER_ACTION_START || 676 filter->action == PERF_ADDR_FILTER_ACTION_STOP) 677 return -EOPNOTSUPP; 678 679 range = true; 680 } else 681 address = true; 682 683 /* 684 * At this time we don't allow range and start/stop filtering 685 * to cohabitate, they have to be mutually exclusive. 686 */ 687 if (range && address) 688 return -EOPNOTSUPP; 689 } 690 691 return 0; 692 } 693 694 static void etm_addr_filters_sync(struct perf_event *event) 695 { 696 struct perf_addr_filters_head *head = perf_event_addr_filters(event); 697 unsigned long start, stop; 698 struct perf_addr_filter_range *fr = event->addr_filter_ranges; 699 struct etm_filters *filters = event->hw.addr_filters; 700 struct etm_filter *etm_filter; 701 struct perf_addr_filter *filter; 702 int i = 0; 703 704 list_for_each_entry(filter, &head->list, entry) { 705 start = fr[i].start; 706 stop = start + fr[i].size; 707 etm_filter = &filters->etm_filter[i]; 708 709 switch (filter->action) { 710 case PERF_ADDR_FILTER_ACTION_FILTER: 711 etm_filter->start_addr = start; 712 etm_filter->stop_addr = stop; 713 etm_filter->type = ETM_ADDR_TYPE_RANGE; 714 break; 715 case PERF_ADDR_FILTER_ACTION_START: 716 etm_filter->start_addr = start; 717 etm_filter->type = ETM_ADDR_TYPE_START; 718 break; 719 case PERF_ADDR_FILTER_ACTION_STOP: 720 etm_filter->stop_addr = stop; 721 etm_filter->type = ETM_ADDR_TYPE_STOP; 722 break; 723 } 724 i++; 725 } 726 727 filters->nr_filters = i; 728 } 729 730 int etm_perf_symlink(struct coresight_device *csdev, bool link) 731 { 732 char entry[sizeof("cpu9999999")]; 733 int ret = 0, cpu = source_ops(csdev)->cpu_id(csdev); 734 struct device *pmu_dev = etm_pmu.dev; 735 struct device *cs_dev = &csdev->dev; 736 737 sprintf(entry, "cpu%d", cpu); 738 739 if (!etm_perf_up) 740 return -EPROBE_DEFER; 741 742 if (link) { 743 ret = sysfs_create_link(&pmu_dev->kobj, &cs_dev->kobj, entry); 744 if (ret) 745 return ret; 746 per_cpu(csdev_src, cpu) = csdev; 747 } else { 748 sysfs_remove_link(&pmu_dev->kobj, entry); 749 per_cpu(csdev_src, cpu) = NULL; 750 } 751 752 return 0; 753 } 754 EXPORT_SYMBOL_GPL(etm_perf_symlink); 755 756 static ssize_t etm_perf_sink_name_show(struct device *dev, 757 struct device_attribute *dattr, 758 char *buf) 759 { 760 struct dev_ext_attribute *ea; 761 762 ea = container_of(dattr, struct dev_ext_attribute, attr); 763 return scnprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)(ea->var)); 764 } 765 766 static struct dev_ext_attribute * 767 etm_perf_add_symlink_group(struct device *dev, const char *name, const char *group_name) 768 { 769 struct dev_ext_attribute *ea; 770 unsigned long hash; 771 int ret; 772 struct device *pmu_dev = etm_pmu.dev; 773 774 if (!etm_perf_up) 775 return ERR_PTR(-EPROBE_DEFER); 776 777 ea = devm_kzalloc(dev, sizeof(*ea), GFP_KERNEL); 778 if (!ea) 779 return ERR_PTR(-ENOMEM); 780 781 /* 782 * If this function is called adding a sink then the hash is used for 783 * sink selection - see function coresight_get_sink_by_id(). 784 * If adding a configuration then the hash is used for selection in 785 * cscfg_activate_config() 786 */ 787 hash = hashlen_hash(hashlen_string(NULL, name)); 788 789 sysfs_attr_init(&ea->attr.attr); 790 ea->attr.attr.name = devm_kstrdup(dev, name, GFP_KERNEL); 791 if (!ea->attr.attr.name) 792 return ERR_PTR(-ENOMEM); 793 794 ea->attr.attr.mode = 0444; 795 ea->var = (unsigned long *)hash; 796 797 ret = sysfs_add_file_to_group(&pmu_dev->kobj, 798 &ea->attr.attr, group_name); 799 800 return ret ? ERR_PTR(ret) : ea; 801 } 802 803 int etm_perf_add_symlink_sink(struct coresight_device *csdev) 804 { 805 const char *name; 806 struct device *dev = &csdev->dev; 807 int err = 0; 808 809 if (csdev->type != CORESIGHT_DEV_TYPE_SINK && 810 csdev->type != CORESIGHT_DEV_TYPE_LINKSINK) 811 return -EINVAL; 812 813 if (csdev->ea != NULL) 814 return -EINVAL; 815 816 name = dev_name(dev); 817 csdev->ea = etm_perf_add_symlink_group(dev, name, "sinks"); 818 if (IS_ERR(csdev->ea)) { 819 err = PTR_ERR(csdev->ea); 820 csdev->ea = NULL; 821 } else 822 csdev->ea->attr.show = etm_perf_sink_name_show; 823 824 return err; 825 } 826 827 static void etm_perf_del_symlink_group(struct dev_ext_attribute *ea, const char *group_name) 828 { 829 struct device *pmu_dev = etm_pmu.dev; 830 831 sysfs_remove_file_from_group(&pmu_dev->kobj, 832 &ea->attr.attr, group_name); 833 } 834 835 void etm_perf_del_symlink_sink(struct coresight_device *csdev) 836 { 837 if (csdev->type != CORESIGHT_DEV_TYPE_SINK && 838 csdev->type != CORESIGHT_DEV_TYPE_LINKSINK) 839 return; 840 841 if (!csdev->ea) 842 return; 843 844 etm_perf_del_symlink_group(csdev->ea, "sinks"); 845 csdev->ea = NULL; 846 } 847 848 static ssize_t etm_perf_cscfg_event_show(struct device *dev, 849 struct device_attribute *dattr, 850 char *buf) 851 { 852 struct dev_ext_attribute *ea; 853 854 ea = container_of(dattr, struct dev_ext_attribute, attr); 855 return scnprintf(buf, PAGE_SIZE, "configid=0x%lx\n", (unsigned long)(ea->var)); 856 } 857 858 int etm_perf_add_symlink_cscfg(struct device *dev, struct cscfg_config_desc *config_desc) 859 { 860 int err = 0; 861 862 if (config_desc->event_ea != NULL) 863 return 0; 864 865 config_desc->event_ea = etm_perf_add_symlink_group(dev, config_desc->name, "events"); 866 867 /* set the show function to the custom cscfg event */ 868 if (!IS_ERR(config_desc->event_ea)) 869 config_desc->event_ea->attr.show = etm_perf_cscfg_event_show; 870 else { 871 err = PTR_ERR(config_desc->event_ea); 872 config_desc->event_ea = NULL; 873 } 874 875 return err; 876 } 877 878 void etm_perf_del_symlink_cscfg(struct cscfg_config_desc *config_desc) 879 { 880 if (!config_desc->event_ea) 881 return; 882 883 etm_perf_del_symlink_group(config_desc->event_ea, "events"); 884 config_desc->event_ea = NULL; 885 } 886 887 int __init etm_perf_init(void) 888 { 889 int ret; 890 891 etm_pmu.capabilities = (PERF_PMU_CAP_EXCLUSIVE | 892 PERF_PMU_CAP_ITRACE); 893 894 etm_pmu.attr_groups = etm_pmu_attr_groups; 895 etm_pmu.task_ctx_nr = perf_sw_context; 896 etm_pmu.read = etm_event_read; 897 etm_pmu.event_init = etm_event_init; 898 etm_pmu.setup_aux = etm_setup_aux; 899 etm_pmu.free_aux = etm_free_aux; 900 etm_pmu.start = etm_event_start; 901 etm_pmu.stop = etm_event_stop; 902 etm_pmu.add = etm_event_add; 903 etm_pmu.del = etm_event_del; 904 etm_pmu.addr_filters_sync = etm_addr_filters_sync; 905 etm_pmu.addr_filters_validate = etm_addr_filters_validate; 906 etm_pmu.nr_addr_filters = ETM_ADDR_CMP_MAX; 907 etm_pmu.module = THIS_MODULE; 908 909 ret = perf_pmu_register(&etm_pmu, CORESIGHT_ETM_PMU_NAME, -1); 910 if (ret == 0) 911 etm_perf_up = true; 912 913 return ret; 914 } 915 916 void etm_perf_exit(void) 917 { 918 perf_pmu_unregister(&etm_pmu); 919 } 920