xref: /linux/drivers/hwtracing/coresight/coresight-etm-perf.c (revision 6e7fd890f1d6ac83805409e9c346240de2705584)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright(C) 2015 Linaro Limited. All rights reserved.
4  * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
5  */
6 
7 #include <linux/bitfield.h>
8 #include <linux/coresight.h>
9 #include <linux/coresight-pmu.h>
10 #include <linux/cpumask.h>
11 #include <linux/device.h>
12 #include <linux/list.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/perf_event.h>
16 #include <linux/percpu-defs.h>
17 #include <linux/slab.h>
18 #include <linux/stringhash.h>
19 #include <linux/types.h>
20 #include <linux/workqueue.h>
21 
22 #include "coresight-config.h"
23 #include "coresight-etm-perf.h"
24 #include "coresight-priv.h"
25 #include "coresight-syscfg.h"
26 #include "coresight-trace-id.h"
27 
28 static struct pmu etm_pmu;
29 static bool etm_perf_up;
30 
31 /*
32  * An ETM context for a running event includes the perf aux handle
33  * and aux_data. For ETM, the aux_data (etm_event_data), consists of
34  * the trace path and the sink configuration. The event data is accessible
35  * via perf_get_aux(handle). However, a sink could "end" a perf output
36  * handle via the IRQ handler. And if the "sink" encounters a failure
37  * to "begin" another session (e.g due to lack of space in the buffer),
38  * the handle will be cleared. Thus, the event_data may not be accessible
39  * from the handle when we get to the etm_event_stop(), which is required
40  * for stopping the trace path. The event_data is guaranteed to stay alive
41  * until "free_aux()", which cannot happen as long as the event is active on
42  * the ETM. Thus the event_data for the session must be part of the ETM context
43  * to make sure we can disable the trace path.
44  */
45 struct etm_ctxt {
46 	struct perf_output_handle handle;
47 	struct etm_event_data *event_data;
48 };
49 
50 static DEFINE_PER_CPU(struct etm_ctxt, etm_ctxt);
51 static DEFINE_PER_CPU(struct coresight_device *, csdev_src);
52 
53 /*
54  * The PMU formats were orignally for ETMv3.5/PTM's ETMCR 'config';
55  * now take them as general formats and apply on all ETMs.
56  */
57 PMU_FORMAT_ATTR(branch_broadcast, "config:"__stringify(ETM_OPT_BRANCH_BROADCAST));
58 PMU_FORMAT_ATTR(cycacc,		"config:" __stringify(ETM_OPT_CYCACC));
59 /* contextid1 enables tracing CONTEXTIDR_EL1 for ETMv4 */
60 PMU_FORMAT_ATTR(contextid1,	"config:" __stringify(ETM_OPT_CTXTID));
61 /* contextid2 enables tracing CONTEXTIDR_EL2 for ETMv4 */
62 PMU_FORMAT_ATTR(contextid2,	"config:" __stringify(ETM_OPT_CTXTID2));
63 PMU_FORMAT_ATTR(timestamp,	"config:" __stringify(ETM_OPT_TS));
64 PMU_FORMAT_ATTR(retstack,	"config:" __stringify(ETM_OPT_RETSTK));
65 /* preset - if sink ID is used as a configuration selector */
66 PMU_FORMAT_ATTR(preset,		"config:0-3");
67 /* Sink ID - same for all ETMs */
68 PMU_FORMAT_ATTR(sinkid,		"config2:0-31");
69 /* config ID - set if a system configuration is selected */
70 PMU_FORMAT_ATTR(configid,	"config2:32-63");
71 PMU_FORMAT_ATTR(cc_threshold,	"config3:0-11");
72 
73 
74 /*
75  * contextid always traces the "PID".  The PID is in CONTEXTIDR_EL1
76  * when the kernel is running at EL1; when the kernel is at EL2,
77  * the PID is in CONTEXTIDR_EL2.
78  */
79 static ssize_t format_attr_contextid_show(struct device *dev,
80 					  struct device_attribute *attr,
81 					  char *page)
82 {
83 	int pid_fmt = ETM_OPT_CTXTID;
84 
85 #if IS_ENABLED(CONFIG_CORESIGHT_SOURCE_ETM4X)
86 	pid_fmt = is_kernel_in_hyp_mode() ? ETM_OPT_CTXTID2 : ETM_OPT_CTXTID;
87 #endif
88 	return sprintf(page, "config:%d\n", pid_fmt);
89 }
90 
91 static struct device_attribute format_attr_contextid =
92 	__ATTR(contextid, 0444, format_attr_contextid_show, NULL);
93 
94 static struct attribute *etm_config_formats_attr[] = {
95 	&format_attr_cycacc.attr,
96 	&format_attr_contextid.attr,
97 	&format_attr_contextid1.attr,
98 	&format_attr_contextid2.attr,
99 	&format_attr_timestamp.attr,
100 	&format_attr_retstack.attr,
101 	&format_attr_sinkid.attr,
102 	&format_attr_preset.attr,
103 	&format_attr_configid.attr,
104 	&format_attr_branch_broadcast.attr,
105 	&format_attr_cc_threshold.attr,
106 	NULL,
107 };
108 
109 static const struct attribute_group etm_pmu_format_group = {
110 	.name   = "format",
111 	.attrs  = etm_config_formats_attr,
112 };
113 
114 static struct attribute *etm_config_sinks_attr[] = {
115 	NULL,
116 };
117 
118 static const struct attribute_group etm_pmu_sinks_group = {
119 	.name   = "sinks",
120 	.attrs  = etm_config_sinks_attr,
121 };
122 
123 static struct attribute *etm_config_events_attr[] = {
124 	NULL,
125 };
126 
127 static const struct attribute_group etm_pmu_events_group = {
128 	.name   = "events",
129 	.attrs  = etm_config_events_attr,
130 };
131 
132 static const struct attribute_group *etm_pmu_attr_groups[] = {
133 	&etm_pmu_format_group,
134 	&etm_pmu_sinks_group,
135 	&etm_pmu_events_group,
136 	NULL,
137 };
138 
139 static inline struct list_head **
140 etm_event_cpu_path_ptr(struct etm_event_data *data, int cpu)
141 {
142 	return per_cpu_ptr(data->path, cpu);
143 }
144 
145 static inline struct list_head *
146 etm_event_cpu_path(struct etm_event_data *data, int cpu)
147 {
148 	return *etm_event_cpu_path_ptr(data, cpu);
149 }
150 
151 static void etm_event_read(struct perf_event *event) {}
152 
153 static int etm_addr_filters_alloc(struct perf_event *event)
154 {
155 	struct etm_filters *filters;
156 	int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu);
157 
158 	filters = kzalloc_node(sizeof(struct etm_filters), GFP_KERNEL, node);
159 	if (!filters)
160 		return -ENOMEM;
161 
162 	if (event->parent)
163 		memcpy(filters, event->parent->hw.addr_filters,
164 		       sizeof(*filters));
165 
166 	event->hw.addr_filters = filters;
167 
168 	return 0;
169 }
170 
171 static void etm_event_destroy(struct perf_event *event)
172 {
173 	kfree(event->hw.addr_filters);
174 	event->hw.addr_filters = NULL;
175 }
176 
177 static int etm_event_init(struct perf_event *event)
178 {
179 	int ret = 0;
180 
181 	if (event->attr.type != etm_pmu.type) {
182 		ret = -ENOENT;
183 		goto out;
184 	}
185 
186 	ret = etm_addr_filters_alloc(event);
187 	if (ret)
188 		goto out;
189 
190 	event->destroy = etm_event_destroy;
191 out:
192 	return ret;
193 }
194 
195 static void free_sink_buffer(struct etm_event_data *event_data)
196 {
197 	int cpu;
198 	cpumask_t *mask = &event_data->mask;
199 	struct coresight_device *sink;
200 
201 	if (!event_data->snk_config)
202 		return;
203 
204 	if (WARN_ON(cpumask_empty(mask)))
205 		return;
206 
207 	cpu = cpumask_first(mask);
208 	sink = coresight_get_sink(etm_event_cpu_path(event_data, cpu));
209 	sink_ops(sink)->free_buffer(event_data->snk_config);
210 }
211 
212 static void free_event_data(struct work_struct *work)
213 {
214 	int cpu;
215 	cpumask_t *mask;
216 	struct etm_event_data *event_data;
217 
218 	event_data = container_of(work, struct etm_event_data, work);
219 	mask = &event_data->mask;
220 
221 	/* Free the sink buffers, if there are any */
222 	free_sink_buffer(event_data);
223 
224 	/* clear any configuration we were using */
225 	if (event_data->cfg_hash)
226 		cscfg_deactivate_config(event_data->cfg_hash);
227 
228 	for_each_cpu(cpu, mask) {
229 		struct list_head **ppath;
230 
231 		ppath = etm_event_cpu_path_ptr(event_data, cpu);
232 		if (!(IS_ERR_OR_NULL(*ppath)))
233 			coresight_release_path(*ppath);
234 		*ppath = NULL;
235 		coresight_trace_id_put_cpu_id(cpu);
236 	}
237 
238 	/* mark perf event as done for trace id allocator */
239 	coresight_trace_id_perf_stop();
240 
241 	free_percpu(event_data->path);
242 	kfree(event_data);
243 }
244 
245 static void *alloc_event_data(int cpu)
246 {
247 	cpumask_t *mask;
248 	struct etm_event_data *event_data;
249 
250 	/* First get memory for the session's data */
251 	event_data = kzalloc(sizeof(struct etm_event_data), GFP_KERNEL);
252 	if (!event_data)
253 		return NULL;
254 
255 
256 	mask = &event_data->mask;
257 	if (cpu != -1)
258 		cpumask_set_cpu(cpu, mask);
259 	else
260 		cpumask_copy(mask, cpu_present_mask);
261 
262 	/*
263 	 * Each CPU has a single path between source and destination.  As such
264 	 * allocate an array using CPU numbers as indexes.  That way a path
265 	 * for any CPU can easily be accessed at any given time.  We proceed
266 	 * the same way for sessions involving a single CPU.  The cost of
267 	 * unused memory when dealing with single CPU trace scenarios is small
268 	 * compared to the cost of searching through an optimized array.
269 	 */
270 	event_data->path = alloc_percpu(struct list_head *);
271 
272 	if (!event_data->path) {
273 		kfree(event_data);
274 		return NULL;
275 	}
276 
277 	return event_data;
278 }
279 
280 static void etm_free_aux(void *data)
281 {
282 	struct etm_event_data *event_data = data;
283 
284 	schedule_work(&event_data->work);
285 }
286 
287 /*
288  * Check if two given sinks are compatible with each other,
289  * so that they can use the same sink buffers, when an event
290  * moves around.
291  */
292 static bool sinks_compatible(struct coresight_device *a,
293 			     struct coresight_device *b)
294 {
295 	if (!a || !b)
296 		return false;
297 	/*
298 	 * If the sinks are of the same subtype and driven
299 	 * by the same driver, we can use the same buffer
300 	 * on these sinks.
301 	 */
302 	return (a->subtype.sink_subtype == b->subtype.sink_subtype) &&
303 	       (sink_ops(a) == sink_ops(b));
304 }
305 
306 static void *etm_setup_aux(struct perf_event *event, void **pages,
307 			   int nr_pages, bool overwrite)
308 {
309 	u32 id, cfg_hash;
310 	int cpu = event->cpu;
311 	int trace_id;
312 	cpumask_t *mask;
313 	struct coresight_device *sink = NULL;
314 	struct coresight_device *user_sink = NULL, *last_sink = NULL;
315 	struct etm_event_data *event_data = NULL;
316 
317 	event_data = alloc_event_data(cpu);
318 	if (!event_data)
319 		return NULL;
320 	INIT_WORK(&event_data->work, free_event_data);
321 
322 	/* First get the selected sink from user space. */
323 	if (event->attr.config2 & GENMASK_ULL(31, 0)) {
324 		id = (u32)event->attr.config2;
325 		sink = user_sink = coresight_get_sink_by_id(id);
326 	}
327 
328 	/* tell the trace ID allocator that a perf event is starting up */
329 	coresight_trace_id_perf_start();
330 
331 	/* check if user wants a coresight configuration selected */
332 	cfg_hash = (u32)((event->attr.config2 & GENMASK_ULL(63, 32)) >> 32);
333 	if (cfg_hash) {
334 		if (cscfg_activate_config(cfg_hash))
335 			goto err;
336 		event_data->cfg_hash = cfg_hash;
337 	}
338 
339 	mask = &event_data->mask;
340 
341 	/*
342 	 * Setup the path for each CPU in a trace session. We try to build
343 	 * trace path for each CPU in the mask. If we don't find an ETM
344 	 * for the CPU or fail to build a path, we clear the CPU from the
345 	 * mask and continue with the rest. If ever we try to trace on those
346 	 * CPUs, we can handle it and fail the session.
347 	 */
348 	for_each_cpu(cpu, mask) {
349 		struct list_head *path;
350 		struct coresight_device *csdev;
351 
352 		csdev = per_cpu(csdev_src, cpu);
353 		/*
354 		 * If there is no ETM associated with this CPU clear it from
355 		 * the mask and continue with the rest. If ever we try to trace
356 		 * on this CPU, we handle it accordingly.
357 		 */
358 		if (!csdev) {
359 			cpumask_clear_cpu(cpu, mask);
360 			continue;
361 		}
362 
363 		/*
364 		 * No sink provided - look for a default sink for all the ETMs,
365 		 * where this event can be scheduled.
366 		 * We allocate the sink specific buffers only once for this
367 		 * event. If the ETMs have different default sink devices, we
368 		 * can only use a single "type" of sink as the event can carry
369 		 * only one sink specific buffer. Thus we have to make sure
370 		 * that the sinks are of the same type and driven by the same
371 		 * driver, as the one we allocate the buffer for. As such
372 		 * we choose the first sink and check if the remaining ETMs
373 		 * have a compatible default sink. We don't trace on a CPU
374 		 * if the sink is not compatible.
375 		 */
376 		if (!user_sink) {
377 			/* Find the default sink for this ETM */
378 			sink = coresight_find_default_sink(csdev);
379 			if (!sink) {
380 				cpumask_clear_cpu(cpu, mask);
381 				continue;
382 			}
383 
384 			/* Check if this sink compatible with the last sink */
385 			if (last_sink && !sinks_compatible(last_sink, sink)) {
386 				cpumask_clear_cpu(cpu, mask);
387 				continue;
388 			}
389 			last_sink = sink;
390 		}
391 
392 		/*
393 		 * Building a path doesn't enable it, it simply builds a
394 		 * list of devices from source to sink that can be
395 		 * referenced later when the path is actually needed.
396 		 */
397 		path = coresight_build_path(csdev, sink);
398 		if (IS_ERR(path)) {
399 			cpumask_clear_cpu(cpu, mask);
400 			continue;
401 		}
402 
403 		/* ensure we can allocate a trace ID for this CPU */
404 		trace_id = coresight_trace_id_get_cpu_id(cpu);
405 		if (!IS_VALID_CS_TRACE_ID(trace_id)) {
406 			cpumask_clear_cpu(cpu, mask);
407 			coresight_release_path(path);
408 			continue;
409 		}
410 
411 		*etm_event_cpu_path_ptr(event_data, cpu) = path;
412 	}
413 
414 	/* no sink found for any CPU - cannot trace */
415 	if (!sink)
416 		goto err;
417 
418 	/* If we don't have any CPUs ready for tracing, abort */
419 	cpu = cpumask_first(mask);
420 	if (cpu >= nr_cpu_ids)
421 		goto err;
422 
423 	if (!sink_ops(sink)->alloc_buffer || !sink_ops(sink)->free_buffer)
424 		goto err;
425 
426 	/*
427 	 * Allocate the sink buffer for this session. All the sinks
428 	 * where this event can be scheduled are ensured to be of the
429 	 * same type. Thus the same sink configuration is used by the
430 	 * sinks.
431 	 */
432 	event_data->snk_config =
433 			sink_ops(sink)->alloc_buffer(sink, event, pages,
434 						     nr_pages, overwrite);
435 	if (!event_data->snk_config)
436 		goto err;
437 
438 out:
439 	return event_data;
440 
441 err:
442 	etm_free_aux(event_data);
443 	event_data = NULL;
444 	goto out;
445 }
446 
447 static void etm_event_start(struct perf_event *event, int flags)
448 {
449 	int cpu = smp_processor_id();
450 	struct etm_event_data *event_data;
451 	struct etm_ctxt *ctxt = this_cpu_ptr(&etm_ctxt);
452 	struct perf_output_handle *handle = &ctxt->handle;
453 	struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
454 	struct list_head *path;
455 	u64 hw_id;
456 
457 	if (!csdev)
458 		goto fail;
459 
460 	/* Have we messed up our tracking ? */
461 	if (WARN_ON(ctxt->event_data))
462 		goto fail;
463 
464 	/*
465 	 * Deal with the ring buffer API and get a handle on the
466 	 * session's information.
467 	 */
468 	event_data = perf_aux_output_begin(handle, event);
469 	if (!event_data)
470 		goto fail;
471 
472 	/*
473 	 * Check if this ETM is allowed to trace, as decided
474 	 * at etm_setup_aux(). This could be due to an unreachable
475 	 * sink from this ETM. We can't do much in this case if
476 	 * the sink was specified or hinted to the driver. For
477 	 * now, simply don't record anything on this ETM.
478 	 *
479 	 * As such we pretend that everything is fine, and let
480 	 * it continue without actually tracing. The event could
481 	 * continue tracing when it moves to a CPU where it is
482 	 * reachable to a sink.
483 	 */
484 	if (!cpumask_test_cpu(cpu, &event_data->mask))
485 		goto out;
486 
487 	path = etm_event_cpu_path(event_data, cpu);
488 	/* We need a sink, no need to continue without one */
489 	sink = coresight_get_sink(path);
490 	if (WARN_ON_ONCE(!sink))
491 		goto fail_end_stop;
492 
493 	/* Nothing will happen without a path */
494 	if (coresight_enable_path(path, CS_MODE_PERF, handle))
495 		goto fail_end_stop;
496 
497 	/* Finally enable the tracer */
498 	if (source_ops(csdev)->enable(csdev, event, CS_MODE_PERF))
499 		goto fail_disable_path;
500 
501 	/*
502 	 * output cpu / trace ID in perf record, once for the lifetime
503 	 * of the event.
504 	 */
505 	if (!cpumask_test_cpu(cpu, &event_data->aux_hwid_done)) {
506 		cpumask_set_cpu(cpu, &event_data->aux_hwid_done);
507 		hw_id = FIELD_PREP(CS_AUX_HW_ID_VERSION_MASK,
508 				   CS_AUX_HW_ID_CURR_VERSION);
509 		hw_id |= FIELD_PREP(CS_AUX_HW_ID_TRACE_ID_MASK,
510 				    coresight_trace_id_read_cpu_id(cpu));
511 		perf_report_aux_output_id(event, hw_id);
512 	}
513 
514 out:
515 	/* Tell the perf core the event is alive */
516 	event->hw.state = 0;
517 	/* Save the event_data for this ETM */
518 	ctxt->event_data = event_data;
519 	return;
520 
521 fail_disable_path:
522 	coresight_disable_path(path);
523 fail_end_stop:
524 	/*
525 	 * Check if the handle is still associated with the event,
526 	 * to handle cases where if the sink failed to start the
527 	 * trace and TRUNCATED the handle already.
528 	 */
529 	if (READ_ONCE(handle->event)) {
530 		perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
531 		perf_aux_output_end(handle, 0);
532 	}
533 fail:
534 	event->hw.state = PERF_HES_STOPPED;
535 	return;
536 }
537 
538 static void etm_event_stop(struct perf_event *event, int mode)
539 {
540 	int cpu = smp_processor_id();
541 	unsigned long size;
542 	struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
543 	struct etm_ctxt *ctxt = this_cpu_ptr(&etm_ctxt);
544 	struct perf_output_handle *handle = &ctxt->handle;
545 	struct etm_event_data *event_data;
546 	struct list_head *path;
547 
548 	/*
549 	 * If we still have access to the event_data via handle,
550 	 * confirm that we haven't messed up the tracking.
551 	 */
552 	if (handle->event &&
553 	    WARN_ON(perf_get_aux(handle) != ctxt->event_data))
554 		return;
555 
556 	event_data = ctxt->event_data;
557 	/* Clear the event_data as this ETM is stopping the trace. */
558 	ctxt->event_data = NULL;
559 
560 	if (event->hw.state == PERF_HES_STOPPED)
561 		return;
562 
563 	/* We must have a valid event_data for a running event */
564 	if (WARN_ON(!event_data))
565 		return;
566 
567 	/*
568 	 * Check if this ETM was allowed to trace, as decided at
569 	 * etm_setup_aux(). If it wasn't allowed to trace, then
570 	 * nothing needs to be torn down other than outputting a
571 	 * zero sized record.
572 	 */
573 	if (handle->event && (mode & PERF_EF_UPDATE) &&
574 	    !cpumask_test_cpu(cpu, &event_data->mask)) {
575 		event->hw.state = PERF_HES_STOPPED;
576 		perf_aux_output_end(handle, 0);
577 		return;
578 	}
579 
580 	if (!csdev)
581 		return;
582 
583 	path = etm_event_cpu_path(event_data, cpu);
584 	if (!path)
585 		return;
586 
587 	sink = coresight_get_sink(path);
588 	if (!sink)
589 		return;
590 
591 	/* stop tracer */
592 	coresight_disable_source(csdev, event);
593 
594 	/* tell the core */
595 	event->hw.state = PERF_HES_STOPPED;
596 
597 	/*
598 	 * If the handle is not bound to an event anymore
599 	 * (e.g, the sink driver was unable to restart the
600 	 * handle due to lack of buffer space), we don't
601 	 * have to do anything here.
602 	 */
603 	if (handle->event && (mode & PERF_EF_UPDATE)) {
604 		if (WARN_ON_ONCE(handle->event != event))
605 			return;
606 
607 		/* update trace information */
608 		if (!sink_ops(sink)->update_buffer)
609 			return;
610 
611 		size = sink_ops(sink)->update_buffer(sink, handle,
612 					      event_data->snk_config);
613 		/*
614 		 * Make sure the handle is still valid as the
615 		 * sink could have closed it from an IRQ.
616 		 * The sink driver must handle the race with
617 		 * update_buffer() and IRQ. Thus either we
618 		 * should get a valid handle and valid size
619 		 * (which may be 0).
620 		 *
621 		 * But we should never get a non-zero size with
622 		 * an invalid handle.
623 		 */
624 		if (READ_ONCE(handle->event))
625 			perf_aux_output_end(handle, size);
626 		else
627 			WARN_ON(size);
628 	}
629 
630 	/* Disabling the path make its elements available to other sessions */
631 	coresight_disable_path(path);
632 }
633 
634 static int etm_event_add(struct perf_event *event, int mode)
635 {
636 	int ret = 0;
637 	struct hw_perf_event *hwc = &event->hw;
638 
639 	if (mode & PERF_EF_START) {
640 		etm_event_start(event, 0);
641 		if (hwc->state & PERF_HES_STOPPED)
642 			ret = -EINVAL;
643 	} else {
644 		hwc->state = PERF_HES_STOPPED;
645 	}
646 
647 	return ret;
648 }
649 
650 static void etm_event_del(struct perf_event *event, int mode)
651 {
652 	etm_event_stop(event, PERF_EF_UPDATE);
653 }
654 
655 static int etm_addr_filters_validate(struct list_head *filters)
656 {
657 	bool range = false, address = false;
658 	int index = 0;
659 	struct perf_addr_filter *filter;
660 
661 	list_for_each_entry(filter, filters, entry) {
662 		/*
663 		 * No need to go further if there's no more
664 		 * room for filters.
665 		 */
666 		if (++index > ETM_ADDR_CMP_MAX)
667 			return -EOPNOTSUPP;
668 
669 		/* filter::size==0 means single address trigger */
670 		if (filter->size) {
671 			/*
672 			 * The existing code relies on START/STOP filters
673 			 * being address filters.
674 			 */
675 			if (filter->action == PERF_ADDR_FILTER_ACTION_START ||
676 			    filter->action == PERF_ADDR_FILTER_ACTION_STOP)
677 				return -EOPNOTSUPP;
678 
679 			range = true;
680 		} else
681 			address = true;
682 
683 		/*
684 		 * At this time we don't allow range and start/stop filtering
685 		 * to cohabitate, they have to be mutually exclusive.
686 		 */
687 		if (range && address)
688 			return -EOPNOTSUPP;
689 	}
690 
691 	return 0;
692 }
693 
694 static void etm_addr_filters_sync(struct perf_event *event)
695 {
696 	struct perf_addr_filters_head *head = perf_event_addr_filters(event);
697 	unsigned long start, stop;
698 	struct perf_addr_filter_range *fr = event->addr_filter_ranges;
699 	struct etm_filters *filters = event->hw.addr_filters;
700 	struct etm_filter *etm_filter;
701 	struct perf_addr_filter *filter;
702 	int i = 0;
703 
704 	list_for_each_entry(filter, &head->list, entry) {
705 		start = fr[i].start;
706 		stop = start + fr[i].size;
707 		etm_filter = &filters->etm_filter[i];
708 
709 		switch (filter->action) {
710 		case PERF_ADDR_FILTER_ACTION_FILTER:
711 			etm_filter->start_addr = start;
712 			etm_filter->stop_addr = stop;
713 			etm_filter->type = ETM_ADDR_TYPE_RANGE;
714 			break;
715 		case PERF_ADDR_FILTER_ACTION_START:
716 			etm_filter->start_addr = start;
717 			etm_filter->type = ETM_ADDR_TYPE_START;
718 			break;
719 		case PERF_ADDR_FILTER_ACTION_STOP:
720 			etm_filter->stop_addr = stop;
721 			etm_filter->type = ETM_ADDR_TYPE_STOP;
722 			break;
723 		}
724 		i++;
725 	}
726 
727 	filters->nr_filters = i;
728 }
729 
730 int etm_perf_symlink(struct coresight_device *csdev, bool link)
731 {
732 	char entry[sizeof("cpu9999999")];
733 	int ret = 0, cpu = source_ops(csdev)->cpu_id(csdev);
734 	struct device *pmu_dev = etm_pmu.dev;
735 	struct device *cs_dev = &csdev->dev;
736 
737 	sprintf(entry, "cpu%d", cpu);
738 
739 	if (!etm_perf_up)
740 		return -EPROBE_DEFER;
741 
742 	if (link) {
743 		ret = sysfs_create_link(&pmu_dev->kobj, &cs_dev->kobj, entry);
744 		if (ret)
745 			return ret;
746 		per_cpu(csdev_src, cpu) = csdev;
747 	} else {
748 		sysfs_remove_link(&pmu_dev->kobj, entry);
749 		per_cpu(csdev_src, cpu) = NULL;
750 	}
751 
752 	return 0;
753 }
754 EXPORT_SYMBOL_GPL(etm_perf_symlink);
755 
756 static ssize_t etm_perf_sink_name_show(struct device *dev,
757 				       struct device_attribute *dattr,
758 				       char *buf)
759 {
760 	struct dev_ext_attribute *ea;
761 
762 	ea = container_of(dattr, struct dev_ext_attribute, attr);
763 	return scnprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)(ea->var));
764 }
765 
766 static struct dev_ext_attribute *
767 etm_perf_add_symlink_group(struct device *dev, const char *name, const char *group_name)
768 {
769 	struct dev_ext_attribute *ea;
770 	unsigned long hash;
771 	int ret;
772 	struct device *pmu_dev = etm_pmu.dev;
773 
774 	if (!etm_perf_up)
775 		return ERR_PTR(-EPROBE_DEFER);
776 
777 	ea = devm_kzalloc(dev, sizeof(*ea), GFP_KERNEL);
778 	if (!ea)
779 		return ERR_PTR(-ENOMEM);
780 
781 	/*
782 	 * If this function is called adding a sink then the hash is used for
783 	 * sink selection - see function coresight_get_sink_by_id().
784 	 * If adding a configuration then the hash is used for selection in
785 	 * cscfg_activate_config()
786 	 */
787 	hash = hashlen_hash(hashlen_string(NULL, name));
788 
789 	sysfs_attr_init(&ea->attr.attr);
790 	ea->attr.attr.name = devm_kstrdup(dev, name, GFP_KERNEL);
791 	if (!ea->attr.attr.name)
792 		return ERR_PTR(-ENOMEM);
793 
794 	ea->attr.attr.mode = 0444;
795 	ea->var = (unsigned long *)hash;
796 
797 	ret = sysfs_add_file_to_group(&pmu_dev->kobj,
798 				      &ea->attr.attr, group_name);
799 
800 	return ret ? ERR_PTR(ret) : ea;
801 }
802 
803 int etm_perf_add_symlink_sink(struct coresight_device *csdev)
804 {
805 	const char *name;
806 	struct device *dev = &csdev->dev;
807 	int err = 0;
808 
809 	if (csdev->type != CORESIGHT_DEV_TYPE_SINK &&
810 	    csdev->type != CORESIGHT_DEV_TYPE_LINKSINK)
811 		return -EINVAL;
812 
813 	if (csdev->ea != NULL)
814 		return -EINVAL;
815 
816 	name = dev_name(dev);
817 	csdev->ea = etm_perf_add_symlink_group(dev, name, "sinks");
818 	if (IS_ERR(csdev->ea)) {
819 		err = PTR_ERR(csdev->ea);
820 		csdev->ea = NULL;
821 	} else
822 		csdev->ea->attr.show = etm_perf_sink_name_show;
823 
824 	return err;
825 }
826 
827 static void etm_perf_del_symlink_group(struct dev_ext_attribute *ea, const char *group_name)
828 {
829 	struct device *pmu_dev = etm_pmu.dev;
830 
831 	sysfs_remove_file_from_group(&pmu_dev->kobj,
832 				     &ea->attr.attr, group_name);
833 }
834 
835 void etm_perf_del_symlink_sink(struct coresight_device *csdev)
836 {
837 	if (csdev->type != CORESIGHT_DEV_TYPE_SINK &&
838 	    csdev->type != CORESIGHT_DEV_TYPE_LINKSINK)
839 		return;
840 
841 	if (!csdev->ea)
842 		return;
843 
844 	etm_perf_del_symlink_group(csdev->ea, "sinks");
845 	csdev->ea = NULL;
846 }
847 
848 static ssize_t etm_perf_cscfg_event_show(struct device *dev,
849 					 struct device_attribute *dattr,
850 					 char *buf)
851 {
852 	struct dev_ext_attribute *ea;
853 
854 	ea = container_of(dattr, struct dev_ext_attribute, attr);
855 	return scnprintf(buf, PAGE_SIZE, "configid=0x%lx\n", (unsigned long)(ea->var));
856 }
857 
858 int etm_perf_add_symlink_cscfg(struct device *dev, struct cscfg_config_desc *config_desc)
859 {
860 	int err = 0;
861 
862 	if (config_desc->event_ea != NULL)
863 		return 0;
864 
865 	config_desc->event_ea = etm_perf_add_symlink_group(dev, config_desc->name, "events");
866 
867 	/* set the show function to the custom cscfg event */
868 	if (!IS_ERR(config_desc->event_ea))
869 		config_desc->event_ea->attr.show = etm_perf_cscfg_event_show;
870 	else {
871 		err = PTR_ERR(config_desc->event_ea);
872 		config_desc->event_ea = NULL;
873 	}
874 
875 	return err;
876 }
877 
878 void etm_perf_del_symlink_cscfg(struct cscfg_config_desc *config_desc)
879 {
880 	if (!config_desc->event_ea)
881 		return;
882 
883 	etm_perf_del_symlink_group(config_desc->event_ea, "events");
884 	config_desc->event_ea = NULL;
885 }
886 
887 int __init etm_perf_init(void)
888 {
889 	int ret;
890 
891 	etm_pmu.capabilities		= (PERF_PMU_CAP_EXCLUSIVE |
892 					   PERF_PMU_CAP_ITRACE);
893 
894 	etm_pmu.attr_groups		= etm_pmu_attr_groups;
895 	etm_pmu.task_ctx_nr		= perf_sw_context;
896 	etm_pmu.read			= etm_event_read;
897 	etm_pmu.event_init		= etm_event_init;
898 	etm_pmu.setup_aux		= etm_setup_aux;
899 	etm_pmu.free_aux		= etm_free_aux;
900 	etm_pmu.start			= etm_event_start;
901 	etm_pmu.stop			= etm_event_stop;
902 	etm_pmu.add			= etm_event_add;
903 	etm_pmu.del			= etm_event_del;
904 	etm_pmu.addr_filters_sync	= etm_addr_filters_sync;
905 	etm_pmu.addr_filters_validate	= etm_addr_filters_validate;
906 	etm_pmu.nr_addr_filters		= ETM_ADDR_CMP_MAX;
907 	etm_pmu.module			= THIS_MODULE;
908 
909 	ret = perf_pmu_register(&etm_pmu, CORESIGHT_ETM_PMU_NAME, -1);
910 	if (ret == 0)
911 		etm_perf_up = true;
912 
913 	return ret;
914 }
915 
916 void etm_perf_exit(void)
917 {
918 	perf_pmu_unregister(&etm_pmu);
919 }
920