1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * w83791d.c - Part of lm_sensors, Linux kernel modules for hardware 4 * monitoring 5 * 6 * Copyright (C) 2006-2007 Charles Spirakis <bezaur@gmail.com> 7 */ 8 9 /* 10 * Supports following chips: 11 * 12 * Chip #vin #fanin #pwm #temp wchipid vendid i2c ISA 13 * w83791d 10 5 5 3 0x71 0x5ca3 yes no 14 * 15 * The w83791d chip appears to be part way between the 83781d and the 16 * 83792d. Thus, this file is derived from both the w83792d.c and 17 * w83781d.c files. 18 * 19 * The w83791g chip is the same as the w83791d but lead-free. 20 */ 21 22 #include <linux/module.h> 23 #include <linux/init.h> 24 #include <linux/slab.h> 25 #include <linux/i2c.h> 26 #include <linux/hwmon.h> 27 #include <linux/hwmon-vid.h> 28 #include <linux/hwmon-sysfs.h> 29 #include <linux/err.h> 30 #include <linux/mutex.h> 31 #include <linux/jiffies.h> 32 33 #define NUMBER_OF_VIN 10 34 #define NUMBER_OF_FANIN 5 35 #define NUMBER_OF_TEMPIN 3 36 #define NUMBER_OF_PWM 5 37 38 /* Addresses to scan */ 39 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, 0x2f, 40 I2C_CLIENT_END }; 41 42 /* Insmod parameters */ 43 44 static unsigned short force_subclients[4]; 45 module_param_array(force_subclients, short, NULL, 0); 46 MODULE_PARM_DESC(force_subclients, 47 "List of subclient addresses: {bus, clientaddr, subclientaddr1, subclientaddr2}"); 48 49 static bool reset; 50 module_param(reset, bool, 0); 51 MODULE_PARM_DESC(reset, "Set to one to force a hardware chip reset"); 52 53 static bool init; 54 module_param(init, bool, 0); 55 MODULE_PARM_DESC(init, "Set to one to force extra software initialization"); 56 57 /* The W83791D registers */ 58 static const u8 W83791D_REG_IN[NUMBER_OF_VIN] = { 59 0x20, /* VCOREA in DataSheet */ 60 0x21, /* VINR0 in DataSheet */ 61 0x22, /* +3.3VIN in DataSheet */ 62 0x23, /* VDD5V in DataSheet */ 63 0x24, /* +12VIN in DataSheet */ 64 0x25, /* -12VIN in DataSheet */ 65 0x26, /* -5VIN in DataSheet */ 66 0xB0, /* 5VSB in DataSheet */ 67 0xB1, /* VBAT in DataSheet */ 68 0xB2 /* VINR1 in DataSheet */ 69 }; 70 71 static const u8 W83791D_REG_IN_MAX[NUMBER_OF_VIN] = { 72 0x2B, /* VCOREA High Limit in DataSheet */ 73 0x2D, /* VINR0 High Limit in DataSheet */ 74 0x2F, /* +3.3VIN High Limit in DataSheet */ 75 0x31, /* VDD5V High Limit in DataSheet */ 76 0x33, /* +12VIN High Limit in DataSheet */ 77 0x35, /* -12VIN High Limit in DataSheet */ 78 0x37, /* -5VIN High Limit in DataSheet */ 79 0xB4, /* 5VSB High Limit in DataSheet */ 80 0xB6, /* VBAT High Limit in DataSheet */ 81 0xB8 /* VINR1 High Limit in DataSheet */ 82 }; 83 static const u8 W83791D_REG_IN_MIN[NUMBER_OF_VIN] = { 84 0x2C, /* VCOREA Low Limit in DataSheet */ 85 0x2E, /* VINR0 Low Limit in DataSheet */ 86 0x30, /* +3.3VIN Low Limit in DataSheet */ 87 0x32, /* VDD5V Low Limit in DataSheet */ 88 0x34, /* +12VIN Low Limit in DataSheet */ 89 0x36, /* -12VIN Low Limit in DataSheet */ 90 0x38, /* -5VIN Low Limit in DataSheet */ 91 0xB5, /* 5VSB Low Limit in DataSheet */ 92 0xB7, /* VBAT Low Limit in DataSheet */ 93 0xB9 /* VINR1 Low Limit in DataSheet */ 94 }; 95 static const u8 W83791D_REG_FAN[NUMBER_OF_FANIN] = { 96 0x28, /* FAN 1 Count in DataSheet */ 97 0x29, /* FAN 2 Count in DataSheet */ 98 0x2A, /* FAN 3 Count in DataSheet */ 99 0xBA, /* FAN 4 Count in DataSheet */ 100 0xBB, /* FAN 5 Count in DataSheet */ 101 }; 102 static const u8 W83791D_REG_FAN_MIN[NUMBER_OF_FANIN] = { 103 0x3B, /* FAN 1 Count Low Limit in DataSheet */ 104 0x3C, /* FAN 2 Count Low Limit in DataSheet */ 105 0x3D, /* FAN 3 Count Low Limit in DataSheet */ 106 0xBC, /* FAN 4 Count Low Limit in DataSheet */ 107 0xBD, /* FAN 5 Count Low Limit in DataSheet */ 108 }; 109 110 static const u8 W83791D_REG_PWM[NUMBER_OF_PWM] = { 111 0x81, /* PWM 1 duty cycle register in DataSheet */ 112 0x83, /* PWM 2 duty cycle register in DataSheet */ 113 0x94, /* PWM 3 duty cycle register in DataSheet */ 114 0xA0, /* PWM 4 duty cycle register in DataSheet */ 115 0xA1, /* PWM 5 duty cycle register in DataSheet */ 116 }; 117 118 static const u8 W83791D_REG_TEMP_TARGET[3] = { 119 0x85, /* PWM 1 target temperature for temp 1 */ 120 0x86, /* PWM 2 target temperature for temp 2 */ 121 0x96, /* PWM 3 target temperature for temp 3 */ 122 }; 123 124 static const u8 W83791D_REG_TEMP_TOL[2] = { 125 0x87, /* PWM 1/2 temperature tolerance */ 126 0x97, /* PWM 3 temperature tolerance */ 127 }; 128 129 static const u8 W83791D_REG_FAN_CFG[2] = { 130 0x84, /* FAN 1/2 configuration */ 131 0x95, /* FAN 3 configuration */ 132 }; 133 134 static const u8 W83791D_REG_FAN_DIV[3] = { 135 0x47, /* contains FAN1 and FAN2 Divisor */ 136 0x4b, /* contains FAN3 Divisor */ 137 0x5C, /* contains FAN4 and FAN5 Divisor */ 138 }; 139 140 #define W83791D_REG_BANK 0x4E 141 #define W83791D_REG_TEMP2_CONFIG 0xC2 142 #define W83791D_REG_TEMP3_CONFIG 0xCA 143 144 static const u8 W83791D_REG_TEMP1[3] = { 145 0x27, /* TEMP 1 in DataSheet */ 146 0x39, /* TEMP 1 Over in DataSheet */ 147 0x3A, /* TEMP 1 Hyst in DataSheet */ 148 }; 149 150 static const u8 W83791D_REG_TEMP_ADD[2][6] = { 151 {0xC0, /* TEMP 2 in DataSheet */ 152 0xC1, /* TEMP 2(0.5 deg) in DataSheet */ 153 0xC5, /* TEMP 2 Over High part in DataSheet */ 154 0xC6, /* TEMP 2 Over Low part in DataSheet */ 155 0xC3, /* TEMP 2 Thyst High part in DataSheet */ 156 0xC4}, /* TEMP 2 Thyst Low part in DataSheet */ 157 {0xC8, /* TEMP 3 in DataSheet */ 158 0xC9, /* TEMP 3(0.5 deg) in DataSheet */ 159 0xCD, /* TEMP 3 Over High part in DataSheet */ 160 0xCE, /* TEMP 3 Over Low part in DataSheet */ 161 0xCB, /* TEMP 3 Thyst High part in DataSheet */ 162 0xCC} /* TEMP 3 Thyst Low part in DataSheet */ 163 }; 164 165 #define W83791D_REG_BEEP_CONFIG 0x4D 166 167 static const u8 W83791D_REG_BEEP_CTRL[3] = { 168 0x56, /* BEEP Control Register 1 */ 169 0x57, /* BEEP Control Register 2 */ 170 0xA3, /* BEEP Control Register 3 */ 171 }; 172 173 #define W83791D_REG_GPIO 0x15 174 #define W83791D_REG_CONFIG 0x40 175 #define W83791D_REG_VID_FANDIV 0x47 176 #define W83791D_REG_DID_VID4 0x49 177 #define W83791D_REG_WCHIPID 0x58 178 #define W83791D_REG_CHIPMAN 0x4F 179 #define W83791D_REG_PIN 0x4B 180 #define W83791D_REG_I2C_SUBADDR 0x4A 181 182 #define W83791D_REG_ALARM1 0xA9 /* realtime status register1 */ 183 #define W83791D_REG_ALARM2 0xAA /* realtime status register2 */ 184 #define W83791D_REG_ALARM3 0xAB /* realtime status register3 */ 185 186 #define W83791D_REG_VBAT 0x5D 187 #define W83791D_REG_I2C_ADDR 0x48 188 189 /* 190 * The SMBus locks itself. The Winbond W83791D has a bank select register 191 * (index 0x4e), but the driver only accesses registers in bank 0. Since 192 * we don't switch banks, we don't need any special code to handle 193 * locking access between bank switches 194 */ 195 static inline int w83791d_read(struct i2c_client *client, u8 reg) 196 { 197 return i2c_smbus_read_byte_data(client, reg); 198 } 199 200 static inline int w83791d_write(struct i2c_client *client, u8 reg, u8 value) 201 { 202 return i2c_smbus_write_byte_data(client, reg, value); 203 } 204 205 /* 206 * The analog voltage inputs have 16mV LSB. Since the sysfs output is 207 * in mV as would be measured on the chip input pin, need to just 208 * multiply/divide by 16 to translate from/to register values. 209 */ 210 #define IN_TO_REG(val) (clamp_val((((val) + 8) / 16), 0, 255)) 211 #define IN_FROM_REG(val) ((val) * 16) 212 213 static u8 fan_to_reg(long rpm, int div) 214 { 215 if (rpm == 0) 216 return 255; 217 rpm = clamp_val(rpm, 1, 1000000); 218 return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254); 219 } 220 221 static int fan_from_reg(int val, int div) 222 { 223 if (val == 0) 224 return -1; 225 if (val == 255) 226 return 0; 227 return 1350000 / (val * div); 228 } 229 230 /* for temp1 which is 8-bit resolution, LSB = 1 degree Celsius */ 231 #define TEMP1_FROM_REG(val) ((val) * 1000) 232 #define TEMP1_TO_REG(val) ((val) <= -128000 ? -128 : \ 233 (val) >= 127000 ? 127 : \ 234 (val) < 0 ? ((val) - 500) / 1000 : \ 235 ((val) + 500) / 1000) 236 237 /* 238 * for temp2 and temp3 which are 9-bit resolution, LSB = 0.5 degree Celsius 239 * Assumes the top 8 bits are the integral amount and the bottom 8 bits 240 * are the fractional amount. Since we only have 0.5 degree resolution, 241 * the bottom 7 bits will always be zero 242 */ 243 #define TEMP23_FROM_REG(val) ((val) / 128 * 500) 244 #define TEMP23_TO_REG(val) (DIV_ROUND_CLOSEST(clamp_val((val), -128000, \ 245 127500), 500) * 128) 246 247 /* for thermal cruise target temp, 7-bits, LSB = 1 degree Celsius */ 248 #define TARGET_TEMP_TO_REG(val) DIV_ROUND_CLOSEST(clamp_val((val), 0, 127000), \ 249 1000) 250 251 /* for thermal cruise temp tolerance, 4-bits, LSB = 1 degree Celsius */ 252 #define TOL_TEMP_TO_REG(val) DIV_ROUND_CLOSEST(clamp_val((val), 0, 15000), \ 253 1000) 254 255 #define BEEP_MASK_TO_REG(val) ((val) & 0xffffff) 256 #define BEEP_MASK_FROM_REG(val) ((val) & 0xffffff) 257 258 #define DIV_FROM_REG(val) (1 << (val)) 259 260 static u8 div_to_reg(int nr, long val) 261 { 262 int i; 263 264 /* fan divisors max out at 128 */ 265 val = clamp_val(val, 1, 128) >> 1; 266 for (i = 0; i < 7; i++) { 267 if (val == 0) 268 break; 269 val >>= 1; 270 } 271 return (u8) i; 272 } 273 274 struct w83791d_data { 275 struct device *hwmon_dev; 276 struct mutex update_lock; 277 278 bool valid; /* true if following fields are valid */ 279 unsigned long last_updated; /* In jiffies */ 280 281 /* volts */ 282 u8 in[NUMBER_OF_VIN]; /* Register value */ 283 u8 in_max[NUMBER_OF_VIN]; /* Register value */ 284 u8 in_min[NUMBER_OF_VIN]; /* Register value */ 285 286 /* fans */ 287 u8 fan[NUMBER_OF_FANIN]; /* Register value */ 288 u8 fan_min[NUMBER_OF_FANIN]; /* Register value */ 289 u8 fan_div[NUMBER_OF_FANIN]; /* Register encoding, shifted right */ 290 291 /* Temperature sensors */ 292 293 s8 temp1[3]; /* current, over, thyst */ 294 s16 temp_add[2][3]; /* fixed point value. Top 8 bits are the 295 * integral part, bottom 8 bits are the 296 * fractional part. We only use the top 297 * 9 bits as the resolution is only 298 * to the 0.5 degree C... 299 * two sensors with three values 300 * (cur, over, hyst) 301 */ 302 303 /* PWMs */ 304 u8 pwm[5]; /* pwm duty cycle */ 305 u8 pwm_enable[3]; /* pwm enable status for fan 1-3 306 * (fan 4-5 only support manual mode) 307 */ 308 309 u8 temp_target[3]; /* pwm 1-3 target temperature */ 310 u8 temp_tolerance[3]; /* pwm 1-3 temperature tolerance */ 311 312 /* Misc */ 313 u32 alarms; /* realtime status register encoding,combined */ 314 u8 beep_enable; /* Global beep enable */ 315 u32 beep_mask; /* Mask off specific beeps */ 316 u8 vid; /* Register encoding, combined */ 317 u8 vrm; /* hwmon-vid */ 318 }; 319 320 static int w83791d_probe(struct i2c_client *client); 321 static int w83791d_detect(struct i2c_client *client, 322 struct i2c_board_info *info); 323 static void w83791d_remove(struct i2c_client *client); 324 325 static int w83791d_read(struct i2c_client *client, u8 reg); 326 static int w83791d_write(struct i2c_client *client, u8 reg, u8 value); 327 static struct w83791d_data *w83791d_update_device(struct device *dev); 328 329 #ifdef DEBUG 330 static void w83791d_print_debug(struct w83791d_data *data, struct device *dev); 331 #endif 332 333 static void w83791d_init_client(struct i2c_client *client); 334 335 static const struct i2c_device_id w83791d_id[] = { 336 { "w83791d" }, 337 { } 338 }; 339 MODULE_DEVICE_TABLE(i2c, w83791d_id); 340 341 static struct i2c_driver w83791d_driver = { 342 .class = I2C_CLASS_HWMON, 343 .driver = { 344 .name = "w83791d", 345 }, 346 .probe = w83791d_probe, 347 .remove = w83791d_remove, 348 .id_table = w83791d_id, 349 .detect = w83791d_detect, 350 .address_list = normal_i2c, 351 }; 352 353 /* following are the sysfs callback functions */ 354 #define show_in_reg(reg) \ 355 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \ 356 char *buf) \ 357 { \ 358 struct sensor_device_attribute *sensor_attr = \ 359 to_sensor_dev_attr(attr); \ 360 struct w83791d_data *data = w83791d_update_device(dev); \ 361 int nr = sensor_attr->index; \ 362 return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \ 363 } 364 365 show_in_reg(in); 366 show_in_reg(in_min); 367 show_in_reg(in_max); 368 369 #define store_in_reg(REG, reg) \ 370 static ssize_t store_in_##reg(struct device *dev, \ 371 struct device_attribute *attr, \ 372 const char *buf, size_t count) \ 373 { \ 374 struct sensor_device_attribute *sensor_attr = \ 375 to_sensor_dev_attr(attr); \ 376 struct i2c_client *client = to_i2c_client(dev); \ 377 struct w83791d_data *data = i2c_get_clientdata(client); \ 378 int nr = sensor_attr->index; \ 379 unsigned long val; \ 380 int err = kstrtoul(buf, 10, &val); \ 381 if (err) \ 382 return err; \ 383 mutex_lock(&data->update_lock); \ 384 data->in_##reg[nr] = IN_TO_REG(val); \ 385 w83791d_write(client, W83791D_REG_IN_##REG[nr], data->in_##reg[nr]); \ 386 mutex_unlock(&data->update_lock); \ 387 \ 388 return count; \ 389 } 390 store_in_reg(MIN, min); 391 store_in_reg(MAX, max); 392 393 static struct sensor_device_attribute sda_in_input[] = { 394 SENSOR_ATTR(in0_input, S_IRUGO, show_in, NULL, 0), 395 SENSOR_ATTR(in1_input, S_IRUGO, show_in, NULL, 1), 396 SENSOR_ATTR(in2_input, S_IRUGO, show_in, NULL, 2), 397 SENSOR_ATTR(in3_input, S_IRUGO, show_in, NULL, 3), 398 SENSOR_ATTR(in4_input, S_IRUGO, show_in, NULL, 4), 399 SENSOR_ATTR(in5_input, S_IRUGO, show_in, NULL, 5), 400 SENSOR_ATTR(in6_input, S_IRUGO, show_in, NULL, 6), 401 SENSOR_ATTR(in7_input, S_IRUGO, show_in, NULL, 7), 402 SENSOR_ATTR(in8_input, S_IRUGO, show_in, NULL, 8), 403 SENSOR_ATTR(in9_input, S_IRUGO, show_in, NULL, 9), 404 }; 405 406 static struct sensor_device_attribute sda_in_min[] = { 407 SENSOR_ATTR(in0_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 0), 408 SENSOR_ATTR(in1_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 1), 409 SENSOR_ATTR(in2_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 2), 410 SENSOR_ATTR(in3_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 3), 411 SENSOR_ATTR(in4_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 4), 412 SENSOR_ATTR(in5_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 5), 413 SENSOR_ATTR(in6_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 6), 414 SENSOR_ATTR(in7_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 7), 415 SENSOR_ATTR(in8_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 8), 416 SENSOR_ATTR(in9_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 9), 417 }; 418 419 static struct sensor_device_attribute sda_in_max[] = { 420 SENSOR_ATTR(in0_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 0), 421 SENSOR_ATTR(in1_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 1), 422 SENSOR_ATTR(in2_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 2), 423 SENSOR_ATTR(in3_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 3), 424 SENSOR_ATTR(in4_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 4), 425 SENSOR_ATTR(in5_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 5), 426 SENSOR_ATTR(in6_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 6), 427 SENSOR_ATTR(in7_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 7), 428 SENSOR_ATTR(in8_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 8), 429 SENSOR_ATTR(in9_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 9), 430 }; 431 432 433 static ssize_t show_beep(struct device *dev, struct device_attribute *attr, 434 char *buf) 435 { 436 struct sensor_device_attribute *sensor_attr = 437 to_sensor_dev_attr(attr); 438 struct w83791d_data *data = w83791d_update_device(dev); 439 int bitnr = sensor_attr->index; 440 441 return sprintf(buf, "%d\n", (data->beep_mask >> bitnr) & 1); 442 } 443 444 static ssize_t store_beep(struct device *dev, struct device_attribute *attr, 445 const char *buf, size_t count) 446 { 447 struct sensor_device_attribute *sensor_attr = 448 to_sensor_dev_attr(attr); 449 struct i2c_client *client = to_i2c_client(dev); 450 struct w83791d_data *data = i2c_get_clientdata(client); 451 int bitnr = sensor_attr->index; 452 int bytenr = bitnr / 8; 453 unsigned long val; 454 int err; 455 456 err = kstrtoul(buf, 10, &val); 457 if (err) 458 return err; 459 460 val = val ? 1 : 0; 461 462 mutex_lock(&data->update_lock); 463 464 data->beep_mask &= ~(0xff << (bytenr * 8)); 465 data->beep_mask |= w83791d_read(client, W83791D_REG_BEEP_CTRL[bytenr]) 466 << (bytenr * 8); 467 468 data->beep_mask &= ~(1 << bitnr); 469 data->beep_mask |= val << bitnr; 470 471 w83791d_write(client, W83791D_REG_BEEP_CTRL[bytenr], 472 (data->beep_mask >> (bytenr * 8)) & 0xff); 473 474 mutex_unlock(&data->update_lock); 475 476 return count; 477 } 478 479 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr, 480 char *buf) 481 { 482 struct sensor_device_attribute *sensor_attr = 483 to_sensor_dev_attr(attr); 484 struct w83791d_data *data = w83791d_update_device(dev); 485 int bitnr = sensor_attr->index; 486 487 return sprintf(buf, "%d\n", (data->alarms >> bitnr) & 1); 488 } 489 490 /* 491 * Note: The bitmask for the beep enable/disable is different than 492 * the bitmask for the alarm. 493 */ 494 static struct sensor_device_attribute sda_in_beep[] = { 495 SENSOR_ATTR(in0_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 0), 496 SENSOR_ATTR(in1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 13), 497 SENSOR_ATTR(in2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 2), 498 SENSOR_ATTR(in3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 3), 499 SENSOR_ATTR(in4_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 8), 500 SENSOR_ATTR(in5_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 9), 501 SENSOR_ATTR(in6_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 10), 502 SENSOR_ATTR(in7_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 16), 503 SENSOR_ATTR(in8_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 17), 504 SENSOR_ATTR(in9_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 14), 505 }; 506 507 static struct sensor_device_attribute sda_in_alarm[] = { 508 SENSOR_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0), 509 SENSOR_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1), 510 SENSOR_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2), 511 SENSOR_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3), 512 SENSOR_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8), 513 SENSOR_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 9), 514 SENSOR_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 10), 515 SENSOR_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 19), 516 SENSOR_ATTR(in8_alarm, S_IRUGO, show_alarm, NULL, 20), 517 SENSOR_ATTR(in9_alarm, S_IRUGO, show_alarm, NULL, 14), 518 }; 519 520 #define show_fan_reg(reg) \ 521 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \ 522 char *buf) \ 523 { \ 524 struct sensor_device_attribute *sensor_attr = \ 525 to_sensor_dev_attr(attr); \ 526 struct w83791d_data *data = w83791d_update_device(dev); \ 527 int nr = sensor_attr->index; \ 528 return sprintf(buf, "%d\n", \ 529 fan_from_reg(data->reg[nr], DIV_FROM_REG(data->fan_div[nr]))); \ 530 } 531 532 show_fan_reg(fan); 533 show_fan_reg(fan_min); 534 535 static ssize_t store_fan_min(struct device *dev, struct device_attribute *attr, 536 const char *buf, size_t count) 537 { 538 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 539 struct i2c_client *client = to_i2c_client(dev); 540 struct w83791d_data *data = i2c_get_clientdata(client); 541 int nr = sensor_attr->index; 542 unsigned long val; 543 int err; 544 545 err = kstrtoul(buf, 10, &val); 546 if (err) 547 return err; 548 549 mutex_lock(&data->update_lock); 550 data->fan_min[nr] = fan_to_reg(val, DIV_FROM_REG(data->fan_div[nr])); 551 w83791d_write(client, W83791D_REG_FAN_MIN[nr], data->fan_min[nr]); 552 mutex_unlock(&data->update_lock); 553 554 return count; 555 } 556 557 static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr, 558 char *buf) 559 { 560 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 561 int nr = sensor_attr->index; 562 struct w83791d_data *data = w83791d_update_device(dev); 563 return sprintf(buf, "%u\n", DIV_FROM_REG(data->fan_div[nr])); 564 } 565 566 /* 567 * Note: we save and restore the fan minimum here, because its value is 568 * determined in part by the fan divisor. This follows the principle of 569 * least surprise; the user doesn't expect the fan minimum to change just 570 * because the divisor changed. 571 */ 572 static ssize_t store_fan_div(struct device *dev, struct device_attribute *attr, 573 const char *buf, size_t count) 574 { 575 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 576 struct i2c_client *client = to_i2c_client(dev); 577 struct w83791d_data *data = i2c_get_clientdata(client); 578 int nr = sensor_attr->index; 579 unsigned long min; 580 u8 tmp_fan_div; 581 u8 fan_div_reg; 582 u8 vbat_reg; 583 int indx = 0; 584 u8 keep_mask = 0; 585 u8 new_shift = 0; 586 unsigned long val; 587 int err; 588 589 err = kstrtoul(buf, 10, &val); 590 if (err) 591 return err; 592 593 mutex_lock(&data->update_lock); 594 /* Save fan_min */ 595 min = fan_from_reg(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr])); 596 597 data->fan_div[nr] = div_to_reg(nr, val); 598 599 switch (nr) { 600 case 0: 601 indx = 0; 602 keep_mask = 0xcf; 603 new_shift = 4; 604 break; 605 case 1: 606 indx = 0; 607 keep_mask = 0x3f; 608 new_shift = 6; 609 break; 610 case 2: 611 indx = 1; 612 keep_mask = 0x3f; 613 new_shift = 6; 614 break; 615 case 3: 616 indx = 2; 617 keep_mask = 0xf8; 618 new_shift = 0; 619 break; 620 case 4: 621 indx = 2; 622 keep_mask = 0x8f; 623 new_shift = 4; 624 break; 625 #ifdef DEBUG 626 default: 627 dev_warn(dev, "store_fan_div: Unexpected nr seen: %d\n", nr); 628 count = -EINVAL; 629 goto err_exit; 630 #endif 631 } 632 633 fan_div_reg = w83791d_read(client, W83791D_REG_FAN_DIV[indx]) 634 & keep_mask; 635 tmp_fan_div = (data->fan_div[nr] << new_shift) & ~keep_mask; 636 637 w83791d_write(client, W83791D_REG_FAN_DIV[indx], 638 fan_div_reg | tmp_fan_div); 639 640 /* Bit 2 of fans 0-2 is stored in the vbat register (bits 5-7) */ 641 if (nr < 3) { 642 keep_mask = ~(1 << (nr + 5)); 643 vbat_reg = w83791d_read(client, W83791D_REG_VBAT) 644 & keep_mask; 645 tmp_fan_div = (data->fan_div[nr] << (3 + nr)) & ~keep_mask; 646 w83791d_write(client, W83791D_REG_VBAT, 647 vbat_reg | tmp_fan_div); 648 } 649 650 /* Restore fan_min */ 651 data->fan_min[nr] = fan_to_reg(min, DIV_FROM_REG(data->fan_div[nr])); 652 w83791d_write(client, W83791D_REG_FAN_MIN[nr], data->fan_min[nr]); 653 654 #ifdef DEBUG 655 err_exit: 656 #endif 657 mutex_unlock(&data->update_lock); 658 659 return count; 660 } 661 662 static struct sensor_device_attribute sda_fan_input[] = { 663 SENSOR_ATTR(fan1_input, S_IRUGO, show_fan, NULL, 0), 664 SENSOR_ATTR(fan2_input, S_IRUGO, show_fan, NULL, 1), 665 SENSOR_ATTR(fan3_input, S_IRUGO, show_fan, NULL, 2), 666 SENSOR_ATTR(fan4_input, S_IRUGO, show_fan, NULL, 3), 667 SENSOR_ATTR(fan5_input, S_IRUGO, show_fan, NULL, 4), 668 }; 669 670 static struct sensor_device_attribute sda_fan_min[] = { 671 SENSOR_ATTR(fan1_min, S_IWUSR | S_IRUGO, 672 show_fan_min, store_fan_min, 0), 673 SENSOR_ATTR(fan2_min, S_IWUSR | S_IRUGO, 674 show_fan_min, store_fan_min, 1), 675 SENSOR_ATTR(fan3_min, S_IWUSR | S_IRUGO, 676 show_fan_min, store_fan_min, 2), 677 SENSOR_ATTR(fan4_min, S_IWUSR | S_IRUGO, 678 show_fan_min, store_fan_min, 3), 679 SENSOR_ATTR(fan5_min, S_IWUSR | S_IRUGO, 680 show_fan_min, store_fan_min, 4), 681 }; 682 683 static struct sensor_device_attribute sda_fan_div[] = { 684 SENSOR_ATTR(fan1_div, S_IWUSR | S_IRUGO, 685 show_fan_div, store_fan_div, 0), 686 SENSOR_ATTR(fan2_div, S_IWUSR | S_IRUGO, 687 show_fan_div, store_fan_div, 1), 688 SENSOR_ATTR(fan3_div, S_IWUSR | S_IRUGO, 689 show_fan_div, store_fan_div, 2), 690 SENSOR_ATTR(fan4_div, S_IWUSR | S_IRUGO, 691 show_fan_div, store_fan_div, 3), 692 SENSOR_ATTR(fan5_div, S_IWUSR | S_IRUGO, 693 show_fan_div, store_fan_div, 4), 694 }; 695 696 static struct sensor_device_attribute sda_fan_beep[] = { 697 SENSOR_ATTR(fan1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 6), 698 SENSOR_ATTR(fan2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 7), 699 SENSOR_ATTR(fan3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 11), 700 SENSOR_ATTR(fan4_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 21), 701 SENSOR_ATTR(fan5_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 22), 702 }; 703 704 static struct sensor_device_attribute sda_fan_alarm[] = { 705 SENSOR_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6), 706 SENSOR_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7), 707 SENSOR_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11), 708 SENSOR_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 21), 709 SENSOR_ATTR(fan5_alarm, S_IRUGO, show_alarm, NULL, 22), 710 }; 711 712 /* read/write PWMs */ 713 static ssize_t show_pwm(struct device *dev, struct device_attribute *attr, 714 char *buf) 715 { 716 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 717 int nr = sensor_attr->index; 718 struct w83791d_data *data = w83791d_update_device(dev); 719 return sprintf(buf, "%u\n", data->pwm[nr]); 720 } 721 722 static ssize_t store_pwm(struct device *dev, struct device_attribute *attr, 723 const char *buf, size_t count) 724 { 725 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 726 struct i2c_client *client = to_i2c_client(dev); 727 struct w83791d_data *data = i2c_get_clientdata(client); 728 int nr = sensor_attr->index; 729 unsigned long val; 730 731 if (kstrtoul(buf, 10, &val)) 732 return -EINVAL; 733 734 mutex_lock(&data->update_lock); 735 data->pwm[nr] = clamp_val(val, 0, 255); 736 w83791d_write(client, W83791D_REG_PWM[nr], data->pwm[nr]); 737 mutex_unlock(&data->update_lock); 738 return count; 739 } 740 741 static struct sensor_device_attribute sda_pwm[] = { 742 SENSOR_ATTR(pwm1, S_IWUSR | S_IRUGO, 743 show_pwm, store_pwm, 0), 744 SENSOR_ATTR(pwm2, S_IWUSR | S_IRUGO, 745 show_pwm, store_pwm, 1), 746 SENSOR_ATTR(pwm3, S_IWUSR | S_IRUGO, 747 show_pwm, store_pwm, 2), 748 SENSOR_ATTR(pwm4, S_IWUSR | S_IRUGO, 749 show_pwm, store_pwm, 3), 750 SENSOR_ATTR(pwm5, S_IWUSR | S_IRUGO, 751 show_pwm, store_pwm, 4), 752 }; 753 754 static ssize_t show_pwmenable(struct device *dev, struct device_attribute *attr, 755 char *buf) 756 { 757 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 758 int nr = sensor_attr->index; 759 struct w83791d_data *data = w83791d_update_device(dev); 760 return sprintf(buf, "%u\n", data->pwm_enable[nr] + 1); 761 } 762 763 static ssize_t store_pwmenable(struct device *dev, 764 struct device_attribute *attr, const char *buf, size_t count) 765 { 766 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 767 struct i2c_client *client = to_i2c_client(dev); 768 struct w83791d_data *data = i2c_get_clientdata(client); 769 int nr = sensor_attr->index; 770 unsigned long val; 771 u8 reg_cfg_tmp; 772 u8 reg_idx = 0; 773 u8 val_shift = 0; 774 u8 keep_mask = 0; 775 776 int ret = kstrtoul(buf, 10, &val); 777 778 if (ret || val < 1 || val > 3) 779 return -EINVAL; 780 781 mutex_lock(&data->update_lock); 782 data->pwm_enable[nr] = val - 1; 783 switch (nr) { 784 case 0: 785 reg_idx = 0; 786 val_shift = 2; 787 keep_mask = 0xf3; 788 break; 789 case 1: 790 reg_idx = 0; 791 val_shift = 4; 792 keep_mask = 0xcf; 793 break; 794 case 2: 795 reg_idx = 1; 796 val_shift = 2; 797 keep_mask = 0xf3; 798 break; 799 } 800 801 reg_cfg_tmp = w83791d_read(client, W83791D_REG_FAN_CFG[reg_idx]); 802 reg_cfg_tmp = (reg_cfg_tmp & keep_mask) | 803 data->pwm_enable[nr] << val_shift; 804 805 w83791d_write(client, W83791D_REG_FAN_CFG[reg_idx], reg_cfg_tmp); 806 mutex_unlock(&data->update_lock); 807 808 return count; 809 } 810 static struct sensor_device_attribute sda_pwmenable[] = { 811 SENSOR_ATTR(pwm1_enable, S_IWUSR | S_IRUGO, 812 show_pwmenable, store_pwmenable, 0), 813 SENSOR_ATTR(pwm2_enable, S_IWUSR | S_IRUGO, 814 show_pwmenable, store_pwmenable, 1), 815 SENSOR_ATTR(pwm3_enable, S_IWUSR | S_IRUGO, 816 show_pwmenable, store_pwmenable, 2), 817 }; 818 819 /* For Smart Fan I / Thermal Cruise */ 820 static ssize_t show_temp_target(struct device *dev, 821 struct device_attribute *attr, char *buf) 822 { 823 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 824 struct w83791d_data *data = w83791d_update_device(dev); 825 int nr = sensor_attr->index; 826 return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp_target[nr])); 827 } 828 829 static ssize_t store_temp_target(struct device *dev, 830 struct device_attribute *attr, const char *buf, size_t count) 831 { 832 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 833 struct i2c_client *client = to_i2c_client(dev); 834 struct w83791d_data *data = i2c_get_clientdata(client); 835 int nr = sensor_attr->index; 836 long val; 837 u8 target_mask; 838 839 if (kstrtol(buf, 10, &val)) 840 return -EINVAL; 841 842 mutex_lock(&data->update_lock); 843 data->temp_target[nr] = TARGET_TEMP_TO_REG(val); 844 target_mask = w83791d_read(client, 845 W83791D_REG_TEMP_TARGET[nr]) & 0x80; 846 w83791d_write(client, W83791D_REG_TEMP_TARGET[nr], 847 data->temp_target[nr] | target_mask); 848 mutex_unlock(&data->update_lock); 849 return count; 850 } 851 852 static struct sensor_device_attribute sda_temp_target[] = { 853 SENSOR_ATTR(temp1_target, S_IWUSR | S_IRUGO, 854 show_temp_target, store_temp_target, 0), 855 SENSOR_ATTR(temp2_target, S_IWUSR | S_IRUGO, 856 show_temp_target, store_temp_target, 1), 857 SENSOR_ATTR(temp3_target, S_IWUSR | S_IRUGO, 858 show_temp_target, store_temp_target, 2), 859 }; 860 861 static ssize_t show_temp_tolerance(struct device *dev, 862 struct device_attribute *attr, char *buf) 863 { 864 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 865 struct w83791d_data *data = w83791d_update_device(dev); 866 int nr = sensor_attr->index; 867 return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp_tolerance[nr])); 868 } 869 870 static ssize_t store_temp_tolerance(struct device *dev, 871 struct device_attribute *attr, const char *buf, size_t count) 872 { 873 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 874 struct i2c_client *client = to_i2c_client(dev); 875 struct w83791d_data *data = i2c_get_clientdata(client); 876 int nr = sensor_attr->index; 877 unsigned long val; 878 u8 target_mask; 879 u8 reg_idx = 0; 880 u8 val_shift = 0; 881 u8 keep_mask = 0; 882 883 if (kstrtoul(buf, 10, &val)) 884 return -EINVAL; 885 886 switch (nr) { 887 case 0: 888 reg_idx = 0; 889 val_shift = 0; 890 keep_mask = 0xf0; 891 break; 892 case 1: 893 reg_idx = 0; 894 val_shift = 4; 895 keep_mask = 0x0f; 896 break; 897 case 2: 898 reg_idx = 1; 899 val_shift = 0; 900 keep_mask = 0xf0; 901 break; 902 } 903 904 mutex_lock(&data->update_lock); 905 data->temp_tolerance[nr] = TOL_TEMP_TO_REG(val); 906 target_mask = w83791d_read(client, 907 W83791D_REG_TEMP_TOL[reg_idx]) & keep_mask; 908 w83791d_write(client, W83791D_REG_TEMP_TOL[reg_idx], 909 (data->temp_tolerance[nr] << val_shift) | target_mask); 910 mutex_unlock(&data->update_lock); 911 return count; 912 } 913 914 static struct sensor_device_attribute sda_temp_tolerance[] = { 915 SENSOR_ATTR(temp1_tolerance, S_IWUSR | S_IRUGO, 916 show_temp_tolerance, store_temp_tolerance, 0), 917 SENSOR_ATTR(temp2_tolerance, S_IWUSR | S_IRUGO, 918 show_temp_tolerance, store_temp_tolerance, 1), 919 SENSOR_ATTR(temp3_tolerance, S_IWUSR | S_IRUGO, 920 show_temp_tolerance, store_temp_tolerance, 2), 921 }; 922 923 /* read/write the temperature1, includes measured value and limits */ 924 static ssize_t show_temp1(struct device *dev, struct device_attribute *devattr, 925 char *buf) 926 { 927 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); 928 struct w83791d_data *data = w83791d_update_device(dev); 929 return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp1[attr->index])); 930 } 931 932 static ssize_t store_temp1(struct device *dev, struct device_attribute *devattr, 933 const char *buf, size_t count) 934 { 935 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); 936 struct i2c_client *client = to_i2c_client(dev); 937 struct w83791d_data *data = i2c_get_clientdata(client); 938 int nr = attr->index; 939 long val; 940 int err; 941 942 err = kstrtol(buf, 10, &val); 943 if (err) 944 return err; 945 946 mutex_lock(&data->update_lock); 947 data->temp1[nr] = TEMP1_TO_REG(val); 948 w83791d_write(client, W83791D_REG_TEMP1[nr], data->temp1[nr]); 949 mutex_unlock(&data->update_lock); 950 return count; 951 } 952 953 /* read/write temperature2-3, includes measured value and limits */ 954 static ssize_t show_temp23(struct device *dev, struct device_attribute *devattr, 955 char *buf) 956 { 957 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 958 struct w83791d_data *data = w83791d_update_device(dev); 959 int nr = attr->nr; 960 int index = attr->index; 961 return sprintf(buf, "%d\n", TEMP23_FROM_REG(data->temp_add[nr][index])); 962 } 963 964 static ssize_t store_temp23(struct device *dev, 965 struct device_attribute *devattr, 966 const char *buf, size_t count) 967 { 968 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 969 struct i2c_client *client = to_i2c_client(dev); 970 struct w83791d_data *data = i2c_get_clientdata(client); 971 long val; 972 int err; 973 int nr = attr->nr; 974 int index = attr->index; 975 976 err = kstrtol(buf, 10, &val); 977 if (err) 978 return err; 979 980 mutex_lock(&data->update_lock); 981 data->temp_add[nr][index] = TEMP23_TO_REG(val); 982 w83791d_write(client, W83791D_REG_TEMP_ADD[nr][index * 2], 983 data->temp_add[nr][index] >> 8); 984 w83791d_write(client, W83791D_REG_TEMP_ADD[nr][index * 2 + 1], 985 data->temp_add[nr][index] & 0x80); 986 mutex_unlock(&data->update_lock); 987 988 return count; 989 } 990 991 static struct sensor_device_attribute_2 sda_temp_input[] = { 992 SENSOR_ATTR_2(temp1_input, S_IRUGO, show_temp1, NULL, 0, 0), 993 SENSOR_ATTR_2(temp2_input, S_IRUGO, show_temp23, NULL, 0, 0), 994 SENSOR_ATTR_2(temp3_input, S_IRUGO, show_temp23, NULL, 1, 0), 995 }; 996 997 static struct sensor_device_attribute_2 sda_temp_max[] = { 998 SENSOR_ATTR_2(temp1_max, S_IRUGO | S_IWUSR, 999 show_temp1, store_temp1, 0, 1), 1000 SENSOR_ATTR_2(temp2_max, S_IRUGO | S_IWUSR, 1001 show_temp23, store_temp23, 0, 1), 1002 SENSOR_ATTR_2(temp3_max, S_IRUGO | S_IWUSR, 1003 show_temp23, store_temp23, 1, 1), 1004 }; 1005 1006 static struct sensor_device_attribute_2 sda_temp_max_hyst[] = { 1007 SENSOR_ATTR_2(temp1_max_hyst, S_IRUGO | S_IWUSR, 1008 show_temp1, store_temp1, 0, 2), 1009 SENSOR_ATTR_2(temp2_max_hyst, S_IRUGO | S_IWUSR, 1010 show_temp23, store_temp23, 0, 2), 1011 SENSOR_ATTR_2(temp3_max_hyst, S_IRUGO | S_IWUSR, 1012 show_temp23, store_temp23, 1, 2), 1013 }; 1014 1015 /* 1016 * Note: The bitmask for the beep enable/disable is different than 1017 * the bitmask for the alarm. 1018 */ 1019 static struct sensor_device_attribute sda_temp_beep[] = { 1020 SENSOR_ATTR(temp1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 4), 1021 SENSOR_ATTR(temp2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 5), 1022 SENSOR_ATTR(temp3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 1), 1023 }; 1024 1025 static struct sensor_device_attribute sda_temp_alarm[] = { 1026 SENSOR_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4), 1027 SENSOR_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5), 1028 SENSOR_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13), 1029 }; 1030 1031 /* get realtime status of all sensors items: voltage, temp, fan */ 1032 static ssize_t alarms_show(struct device *dev, struct device_attribute *attr, 1033 char *buf) 1034 { 1035 struct w83791d_data *data = w83791d_update_device(dev); 1036 return sprintf(buf, "%u\n", data->alarms); 1037 } 1038 1039 static DEVICE_ATTR_RO(alarms); 1040 1041 /* Beep control */ 1042 1043 #define GLOBAL_BEEP_ENABLE_SHIFT 15 1044 #define GLOBAL_BEEP_ENABLE_MASK (1 << GLOBAL_BEEP_ENABLE_SHIFT) 1045 1046 static ssize_t show_beep_enable(struct device *dev, 1047 struct device_attribute *attr, char *buf) 1048 { 1049 struct w83791d_data *data = w83791d_update_device(dev); 1050 return sprintf(buf, "%d\n", data->beep_enable); 1051 } 1052 1053 static ssize_t show_beep_mask(struct device *dev, 1054 struct device_attribute *attr, char *buf) 1055 { 1056 struct w83791d_data *data = w83791d_update_device(dev); 1057 return sprintf(buf, "%d\n", BEEP_MASK_FROM_REG(data->beep_mask)); 1058 } 1059 1060 1061 static ssize_t store_beep_mask(struct device *dev, 1062 struct device_attribute *attr, 1063 const char *buf, size_t count) 1064 { 1065 struct i2c_client *client = to_i2c_client(dev); 1066 struct w83791d_data *data = i2c_get_clientdata(client); 1067 int i; 1068 long val; 1069 int err; 1070 1071 err = kstrtol(buf, 10, &val); 1072 if (err) 1073 return err; 1074 1075 mutex_lock(&data->update_lock); 1076 1077 /* 1078 * The beep_enable state overrides any enabling request from 1079 * the masks 1080 */ 1081 data->beep_mask = BEEP_MASK_TO_REG(val) & ~GLOBAL_BEEP_ENABLE_MASK; 1082 data->beep_mask |= (data->beep_enable << GLOBAL_BEEP_ENABLE_SHIFT); 1083 1084 val = data->beep_mask; 1085 1086 for (i = 0; i < 3; i++) { 1087 w83791d_write(client, W83791D_REG_BEEP_CTRL[i], (val & 0xff)); 1088 val >>= 8; 1089 } 1090 1091 mutex_unlock(&data->update_lock); 1092 1093 return count; 1094 } 1095 1096 static ssize_t store_beep_enable(struct device *dev, 1097 struct device_attribute *attr, 1098 const char *buf, size_t count) 1099 { 1100 struct i2c_client *client = to_i2c_client(dev); 1101 struct w83791d_data *data = i2c_get_clientdata(client); 1102 long val; 1103 int err; 1104 1105 err = kstrtol(buf, 10, &val); 1106 if (err) 1107 return err; 1108 1109 mutex_lock(&data->update_lock); 1110 1111 data->beep_enable = val ? 1 : 0; 1112 1113 /* Keep the full mask value in sync with the current enable */ 1114 data->beep_mask &= ~GLOBAL_BEEP_ENABLE_MASK; 1115 data->beep_mask |= (data->beep_enable << GLOBAL_BEEP_ENABLE_SHIFT); 1116 1117 /* 1118 * The global control is in the second beep control register 1119 * so only need to update that register 1120 */ 1121 val = (data->beep_mask >> 8) & 0xff; 1122 1123 w83791d_write(client, W83791D_REG_BEEP_CTRL[1], val); 1124 1125 mutex_unlock(&data->update_lock); 1126 1127 return count; 1128 } 1129 1130 static struct sensor_device_attribute sda_beep_ctrl[] = { 1131 SENSOR_ATTR(beep_enable, S_IRUGO | S_IWUSR, 1132 show_beep_enable, store_beep_enable, 0), 1133 SENSOR_ATTR(beep_mask, S_IRUGO | S_IWUSR, 1134 show_beep_mask, store_beep_mask, 1) 1135 }; 1136 1137 /* cpu voltage regulation information */ 1138 static ssize_t cpu0_vid_show(struct device *dev, 1139 struct device_attribute *attr, char *buf) 1140 { 1141 struct w83791d_data *data = w83791d_update_device(dev); 1142 return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm)); 1143 } 1144 1145 static DEVICE_ATTR_RO(cpu0_vid); 1146 1147 static ssize_t vrm_show(struct device *dev, struct device_attribute *attr, 1148 char *buf) 1149 { 1150 struct w83791d_data *data = dev_get_drvdata(dev); 1151 return sprintf(buf, "%d\n", data->vrm); 1152 } 1153 1154 static ssize_t vrm_store(struct device *dev, struct device_attribute *attr, 1155 const char *buf, size_t count) 1156 { 1157 struct w83791d_data *data = dev_get_drvdata(dev); 1158 unsigned long val; 1159 int err; 1160 1161 /* 1162 * No lock needed as vrm is internal to the driver 1163 * (not read from a chip register) and so is not 1164 * updated in w83791d_update_device() 1165 */ 1166 1167 err = kstrtoul(buf, 10, &val); 1168 if (err) 1169 return err; 1170 1171 if (val > 255) 1172 return -EINVAL; 1173 1174 data->vrm = val; 1175 return count; 1176 } 1177 1178 static DEVICE_ATTR_RW(vrm); 1179 1180 #define IN_UNIT_ATTRS(X) \ 1181 &sda_in_input[X].dev_attr.attr, \ 1182 &sda_in_min[X].dev_attr.attr, \ 1183 &sda_in_max[X].dev_attr.attr, \ 1184 &sda_in_beep[X].dev_attr.attr, \ 1185 &sda_in_alarm[X].dev_attr.attr 1186 1187 #define FAN_UNIT_ATTRS(X) \ 1188 &sda_fan_input[X].dev_attr.attr, \ 1189 &sda_fan_min[X].dev_attr.attr, \ 1190 &sda_fan_div[X].dev_attr.attr, \ 1191 &sda_fan_beep[X].dev_attr.attr, \ 1192 &sda_fan_alarm[X].dev_attr.attr 1193 1194 #define TEMP_UNIT_ATTRS(X) \ 1195 &sda_temp_input[X].dev_attr.attr, \ 1196 &sda_temp_max[X].dev_attr.attr, \ 1197 &sda_temp_max_hyst[X].dev_attr.attr, \ 1198 &sda_temp_beep[X].dev_attr.attr, \ 1199 &sda_temp_alarm[X].dev_attr.attr 1200 1201 static struct attribute *w83791d_attributes[] = { 1202 IN_UNIT_ATTRS(0), 1203 IN_UNIT_ATTRS(1), 1204 IN_UNIT_ATTRS(2), 1205 IN_UNIT_ATTRS(3), 1206 IN_UNIT_ATTRS(4), 1207 IN_UNIT_ATTRS(5), 1208 IN_UNIT_ATTRS(6), 1209 IN_UNIT_ATTRS(7), 1210 IN_UNIT_ATTRS(8), 1211 IN_UNIT_ATTRS(9), 1212 FAN_UNIT_ATTRS(0), 1213 FAN_UNIT_ATTRS(1), 1214 FAN_UNIT_ATTRS(2), 1215 TEMP_UNIT_ATTRS(0), 1216 TEMP_UNIT_ATTRS(1), 1217 TEMP_UNIT_ATTRS(2), 1218 &dev_attr_alarms.attr, 1219 &sda_beep_ctrl[0].dev_attr.attr, 1220 &sda_beep_ctrl[1].dev_attr.attr, 1221 &dev_attr_cpu0_vid.attr, 1222 &dev_attr_vrm.attr, 1223 &sda_pwm[0].dev_attr.attr, 1224 &sda_pwm[1].dev_attr.attr, 1225 &sda_pwm[2].dev_attr.attr, 1226 &sda_pwmenable[0].dev_attr.attr, 1227 &sda_pwmenable[1].dev_attr.attr, 1228 &sda_pwmenable[2].dev_attr.attr, 1229 &sda_temp_target[0].dev_attr.attr, 1230 &sda_temp_target[1].dev_attr.attr, 1231 &sda_temp_target[2].dev_attr.attr, 1232 &sda_temp_tolerance[0].dev_attr.attr, 1233 &sda_temp_tolerance[1].dev_attr.attr, 1234 &sda_temp_tolerance[2].dev_attr.attr, 1235 NULL 1236 }; 1237 1238 static const struct attribute_group w83791d_group = { 1239 .attrs = w83791d_attributes, 1240 }; 1241 1242 /* 1243 * Separate group of attributes for fan/pwm 4-5. Their pins can also be 1244 * in use for GPIO in which case their sysfs-interface should not be made 1245 * available 1246 */ 1247 static struct attribute *w83791d_attributes_fanpwm45[] = { 1248 FAN_UNIT_ATTRS(3), 1249 FAN_UNIT_ATTRS(4), 1250 &sda_pwm[3].dev_attr.attr, 1251 &sda_pwm[4].dev_attr.attr, 1252 NULL 1253 }; 1254 1255 static const struct attribute_group w83791d_group_fanpwm45 = { 1256 .attrs = w83791d_attributes_fanpwm45, 1257 }; 1258 1259 static int w83791d_detect_subclients(struct i2c_client *client) 1260 { 1261 struct i2c_adapter *adapter = client->adapter; 1262 int address = client->addr; 1263 int i, id; 1264 u8 val; 1265 1266 id = i2c_adapter_id(adapter); 1267 if (force_subclients[0] == id && force_subclients[1] == address) { 1268 for (i = 2; i <= 3; i++) { 1269 if (force_subclients[i] < 0x48 || 1270 force_subclients[i] > 0x4f) { 1271 dev_err(&client->dev, 1272 "invalid subclient " 1273 "address %d; must be 0x48-0x4f\n", 1274 force_subclients[i]); 1275 return -ENODEV; 1276 } 1277 } 1278 w83791d_write(client, W83791D_REG_I2C_SUBADDR, 1279 (force_subclients[2] & 0x07) | 1280 ((force_subclients[3] & 0x07) << 4)); 1281 } 1282 1283 val = w83791d_read(client, W83791D_REG_I2C_SUBADDR); 1284 1285 if (!(val & 0x88) && (val & 0x7) == ((val >> 4) & 0x7)) { 1286 dev_err(&client->dev, 1287 "duplicate addresses 0x%x, use force_subclient\n", 0x48 + (val & 0x7)); 1288 return -ENODEV; 1289 } 1290 1291 if (!(val & 0x08)) 1292 devm_i2c_new_dummy_device(&client->dev, adapter, 0x48 + (val & 0x7)); 1293 1294 if (!(val & 0x80)) 1295 devm_i2c_new_dummy_device(&client->dev, adapter, 0x48 + ((val >> 4) & 0x7)); 1296 1297 return 0; 1298 } 1299 1300 1301 /* Return 0 if detection is successful, -ENODEV otherwise */ 1302 static int w83791d_detect(struct i2c_client *client, 1303 struct i2c_board_info *info) 1304 { 1305 struct i2c_adapter *adapter = client->adapter; 1306 int val1, val2; 1307 unsigned short address = client->addr; 1308 1309 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) 1310 return -ENODEV; 1311 1312 if (w83791d_read(client, W83791D_REG_CONFIG) & 0x80) 1313 return -ENODEV; 1314 1315 val1 = w83791d_read(client, W83791D_REG_BANK); 1316 val2 = w83791d_read(client, W83791D_REG_CHIPMAN); 1317 /* Check for Winbond ID if in bank 0 */ 1318 if (!(val1 & 0x07)) { 1319 if ((!(val1 & 0x80) && val2 != 0xa3) || 1320 ((val1 & 0x80) && val2 != 0x5c)) { 1321 return -ENODEV; 1322 } 1323 } 1324 /* 1325 * If Winbond chip, address of chip and W83791D_REG_I2C_ADDR 1326 * should match 1327 */ 1328 if (w83791d_read(client, W83791D_REG_I2C_ADDR) != address) 1329 return -ENODEV; 1330 1331 /* We want bank 0 and Vendor ID high byte */ 1332 val1 = w83791d_read(client, W83791D_REG_BANK) & 0x78; 1333 w83791d_write(client, W83791D_REG_BANK, val1 | 0x80); 1334 1335 /* Verify it is a Winbond w83791d */ 1336 val1 = w83791d_read(client, W83791D_REG_WCHIPID); 1337 val2 = w83791d_read(client, W83791D_REG_CHIPMAN); 1338 if (val1 != 0x71 || val2 != 0x5c) 1339 return -ENODEV; 1340 1341 strscpy(info->type, "w83791d", I2C_NAME_SIZE); 1342 1343 return 0; 1344 } 1345 1346 static int w83791d_probe(struct i2c_client *client) 1347 { 1348 struct w83791d_data *data; 1349 struct device *dev = &client->dev; 1350 int i, err; 1351 u8 has_fanpwm45; 1352 1353 #ifdef DEBUG 1354 int val1; 1355 val1 = w83791d_read(client, W83791D_REG_DID_VID4); 1356 dev_dbg(dev, "Device ID version: %d.%d (0x%02x)\n", 1357 (val1 >> 5) & 0x07, (val1 >> 1) & 0x0f, val1); 1358 #endif 1359 1360 data = devm_kzalloc(&client->dev, sizeof(struct w83791d_data), 1361 GFP_KERNEL); 1362 if (!data) 1363 return -ENOMEM; 1364 1365 i2c_set_clientdata(client, data); 1366 mutex_init(&data->update_lock); 1367 1368 err = w83791d_detect_subclients(client); 1369 if (err) 1370 return err; 1371 1372 /* Initialize the chip */ 1373 w83791d_init_client(client); 1374 1375 /* 1376 * If the fan_div is changed, make sure there is a rational 1377 * fan_min in place 1378 */ 1379 for (i = 0; i < NUMBER_OF_FANIN; i++) 1380 data->fan_min[i] = w83791d_read(client, W83791D_REG_FAN_MIN[i]); 1381 1382 /* Register sysfs hooks */ 1383 err = sysfs_create_group(&client->dev.kobj, &w83791d_group); 1384 if (err) 1385 return err; 1386 1387 /* Check if pins of fan/pwm 4-5 are in use as GPIO */ 1388 has_fanpwm45 = w83791d_read(client, W83791D_REG_GPIO) & 0x10; 1389 if (has_fanpwm45) { 1390 err = sysfs_create_group(&client->dev.kobj, 1391 &w83791d_group_fanpwm45); 1392 if (err) 1393 goto error4; 1394 } 1395 1396 /* Everything is ready, now register the working device */ 1397 data->hwmon_dev = hwmon_device_register(dev); 1398 if (IS_ERR(data->hwmon_dev)) { 1399 err = PTR_ERR(data->hwmon_dev); 1400 goto error5; 1401 } 1402 1403 return 0; 1404 1405 error5: 1406 if (has_fanpwm45) 1407 sysfs_remove_group(&client->dev.kobj, &w83791d_group_fanpwm45); 1408 error4: 1409 sysfs_remove_group(&client->dev.kobj, &w83791d_group); 1410 return err; 1411 } 1412 1413 static void w83791d_remove(struct i2c_client *client) 1414 { 1415 struct w83791d_data *data = i2c_get_clientdata(client); 1416 1417 hwmon_device_unregister(data->hwmon_dev); 1418 sysfs_remove_group(&client->dev.kobj, &w83791d_group); 1419 } 1420 1421 static void w83791d_init_client(struct i2c_client *client) 1422 { 1423 struct w83791d_data *data = i2c_get_clientdata(client); 1424 u8 tmp; 1425 u8 old_beep; 1426 1427 /* 1428 * The difference between reset and init is that reset 1429 * does a hard reset of the chip via index 0x40, bit 7, 1430 * but init simply forces certain registers to have "sane" 1431 * values. The hope is that the BIOS has done the right 1432 * thing (which is why the default is reset=0, init=0), 1433 * but if not, reset is the hard hammer and init 1434 * is the soft mallet both of which are trying to whack 1435 * things into place... 1436 * NOTE: The data sheet makes a distinction between 1437 * "power on defaults" and "reset by MR". As far as I can tell, 1438 * the hard reset puts everything into a power-on state so I'm 1439 * not sure what "reset by MR" means or how it can happen. 1440 */ 1441 if (reset || init) { 1442 /* keep some BIOS settings when we... */ 1443 old_beep = w83791d_read(client, W83791D_REG_BEEP_CONFIG); 1444 1445 if (reset) { 1446 /* ... reset the chip and ... */ 1447 w83791d_write(client, W83791D_REG_CONFIG, 0x80); 1448 } 1449 1450 /* ... disable power-on abnormal beep */ 1451 w83791d_write(client, W83791D_REG_BEEP_CONFIG, old_beep | 0x80); 1452 1453 /* disable the global beep (not done by hard reset) */ 1454 tmp = w83791d_read(client, W83791D_REG_BEEP_CTRL[1]); 1455 w83791d_write(client, W83791D_REG_BEEP_CTRL[1], tmp & 0xef); 1456 1457 if (init) { 1458 /* Make sure monitoring is turned on for add-ons */ 1459 tmp = w83791d_read(client, W83791D_REG_TEMP2_CONFIG); 1460 if (tmp & 1) { 1461 w83791d_write(client, W83791D_REG_TEMP2_CONFIG, 1462 tmp & 0xfe); 1463 } 1464 1465 tmp = w83791d_read(client, W83791D_REG_TEMP3_CONFIG); 1466 if (tmp & 1) { 1467 w83791d_write(client, W83791D_REG_TEMP3_CONFIG, 1468 tmp & 0xfe); 1469 } 1470 1471 /* Start monitoring */ 1472 tmp = w83791d_read(client, W83791D_REG_CONFIG) & 0xf7; 1473 w83791d_write(client, W83791D_REG_CONFIG, tmp | 0x01); 1474 } 1475 } 1476 1477 data->vrm = vid_which_vrm(); 1478 } 1479 1480 static struct w83791d_data *w83791d_update_device(struct device *dev) 1481 { 1482 struct i2c_client *client = to_i2c_client(dev); 1483 struct w83791d_data *data = i2c_get_clientdata(client); 1484 int i, j; 1485 u8 reg_array_tmp[3]; 1486 u8 vbat_reg; 1487 1488 mutex_lock(&data->update_lock); 1489 1490 if (time_after(jiffies, data->last_updated + (HZ * 3)) 1491 || !data->valid) { 1492 dev_dbg(dev, "Starting w83791d device update\n"); 1493 1494 /* Update the voltages measured value and limits */ 1495 for (i = 0; i < NUMBER_OF_VIN; i++) { 1496 data->in[i] = w83791d_read(client, 1497 W83791D_REG_IN[i]); 1498 data->in_max[i] = w83791d_read(client, 1499 W83791D_REG_IN_MAX[i]); 1500 data->in_min[i] = w83791d_read(client, 1501 W83791D_REG_IN_MIN[i]); 1502 } 1503 1504 /* Update the fan counts and limits */ 1505 for (i = 0; i < NUMBER_OF_FANIN; i++) { 1506 /* Update the Fan measured value and limits */ 1507 data->fan[i] = w83791d_read(client, 1508 W83791D_REG_FAN[i]); 1509 data->fan_min[i] = w83791d_read(client, 1510 W83791D_REG_FAN_MIN[i]); 1511 } 1512 1513 /* Update the fan divisor */ 1514 for (i = 0; i < 3; i++) { 1515 reg_array_tmp[i] = w83791d_read(client, 1516 W83791D_REG_FAN_DIV[i]); 1517 } 1518 data->fan_div[0] = (reg_array_tmp[0] >> 4) & 0x03; 1519 data->fan_div[1] = (reg_array_tmp[0] >> 6) & 0x03; 1520 data->fan_div[2] = (reg_array_tmp[1] >> 6) & 0x03; 1521 data->fan_div[3] = reg_array_tmp[2] & 0x07; 1522 data->fan_div[4] = (reg_array_tmp[2] >> 4) & 0x07; 1523 1524 /* 1525 * The fan divisor for fans 0-2 get bit 2 from 1526 * bits 5-7 respectively of vbat register 1527 */ 1528 vbat_reg = w83791d_read(client, W83791D_REG_VBAT); 1529 for (i = 0; i < 3; i++) 1530 data->fan_div[i] |= (vbat_reg >> (3 + i)) & 0x04; 1531 1532 /* Update PWM duty cycle */ 1533 for (i = 0; i < NUMBER_OF_PWM; i++) { 1534 data->pwm[i] = w83791d_read(client, 1535 W83791D_REG_PWM[i]); 1536 } 1537 1538 /* Update PWM enable status */ 1539 for (i = 0; i < 2; i++) { 1540 reg_array_tmp[i] = w83791d_read(client, 1541 W83791D_REG_FAN_CFG[i]); 1542 } 1543 data->pwm_enable[0] = (reg_array_tmp[0] >> 2) & 0x03; 1544 data->pwm_enable[1] = (reg_array_tmp[0] >> 4) & 0x03; 1545 data->pwm_enable[2] = (reg_array_tmp[1] >> 2) & 0x03; 1546 1547 /* Update PWM target temperature */ 1548 for (i = 0; i < 3; i++) { 1549 data->temp_target[i] = w83791d_read(client, 1550 W83791D_REG_TEMP_TARGET[i]) & 0x7f; 1551 } 1552 1553 /* Update PWM temperature tolerance */ 1554 for (i = 0; i < 2; i++) { 1555 reg_array_tmp[i] = w83791d_read(client, 1556 W83791D_REG_TEMP_TOL[i]); 1557 } 1558 data->temp_tolerance[0] = reg_array_tmp[0] & 0x0f; 1559 data->temp_tolerance[1] = (reg_array_tmp[0] >> 4) & 0x0f; 1560 data->temp_tolerance[2] = reg_array_tmp[1] & 0x0f; 1561 1562 /* Update the first temperature sensor */ 1563 for (i = 0; i < 3; i++) { 1564 data->temp1[i] = w83791d_read(client, 1565 W83791D_REG_TEMP1[i]); 1566 } 1567 1568 /* Update the rest of the temperature sensors */ 1569 for (i = 0; i < 2; i++) { 1570 for (j = 0; j < 3; j++) { 1571 data->temp_add[i][j] = 1572 (w83791d_read(client, 1573 W83791D_REG_TEMP_ADD[i][j * 2]) << 8) | 1574 w83791d_read(client, 1575 W83791D_REG_TEMP_ADD[i][j * 2 + 1]); 1576 } 1577 } 1578 1579 /* Update the realtime status */ 1580 data->alarms = 1581 w83791d_read(client, W83791D_REG_ALARM1) + 1582 (w83791d_read(client, W83791D_REG_ALARM2) << 8) + 1583 (w83791d_read(client, W83791D_REG_ALARM3) << 16); 1584 1585 /* Update the beep configuration information */ 1586 data->beep_mask = 1587 w83791d_read(client, W83791D_REG_BEEP_CTRL[0]) + 1588 (w83791d_read(client, W83791D_REG_BEEP_CTRL[1]) << 8) + 1589 (w83791d_read(client, W83791D_REG_BEEP_CTRL[2]) << 16); 1590 1591 /* Extract global beep enable flag */ 1592 data->beep_enable = 1593 (data->beep_mask >> GLOBAL_BEEP_ENABLE_SHIFT) & 0x01; 1594 1595 /* Update the cpu voltage information */ 1596 i = w83791d_read(client, W83791D_REG_VID_FANDIV); 1597 data->vid = i & 0x0f; 1598 data->vid |= (w83791d_read(client, W83791D_REG_DID_VID4) & 0x01) 1599 << 4; 1600 1601 data->last_updated = jiffies; 1602 data->valid = true; 1603 } 1604 1605 mutex_unlock(&data->update_lock); 1606 1607 #ifdef DEBUG 1608 w83791d_print_debug(data, dev); 1609 #endif 1610 1611 return data; 1612 } 1613 1614 #ifdef DEBUG 1615 static void w83791d_print_debug(struct w83791d_data *data, struct device *dev) 1616 { 1617 int i = 0, j = 0; 1618 1619 dev_dbg(dev, "======Start of w83791d debug values======\n"); 1620 dev_dbg(dev, "%d set of Voltages: ===>\n", NUMBER_OF_VIN); 1621 for (i = 0; i < NUMBER_OF_VIN; i++) { 1622 dev_dbg(dev, "vin[%d] is: 0x%02x\n", i, data->in[i]); 1623 dev_dbg(dev, "vin[%d] min is: 0x%02x\n", i, data->in_min[i]); 1624 dev_dbg(dev, "vin[%d] max is: 0x%02x\n", i, data->in_max[i]); 1625 } 1626 dev_dbg(dev, "%d set of Fan Counts/Divisors: ===>\n", NUMBER_OF_FANIN); 1627 for (i = 0; i < NUMBER_OF_FANIN; i++) { 1628 dev_dbg(dev, "fan[%d] is: 0x%02x\n", i, data->fan[i]); 1629 dev_dbg(dev, "fan[%d] min is: 0x%02x\n", i, data->fan_min[i]); 1630 dev_dbg(dev, "fan_div[%d] is: 0x%02x\n", i, data->fan_div[i]); 1631 } 1632 1633 /* 1634 * temperature math is signed, but only print out the 1635 * bits that matter 1636 */ 1637 dev_dbg(dev, "%d set of Temperatures: ===>\n", NUMBER_OF_TEMPIN); 1638 for (i = 0; i < 3; i++) 1639 dev_dbg(dev, "temp1[%d] is: 0x%02x\n", i, (u8) data->temp1[i]); 1640 for (i = 0; i < 2; i++) { 1641 for (j = 0; j < 3; j++) { 1642 dev_dbg(dev, "temp_add[%d][%d] is: 0x%04x\n", i, j, 1643 (u16) data->temp_add[i][j]); 1644 } 1645 } 1646 1647 dev_dbg(dev, "Misc Information: ===>\n"); 1648 dev_dbg(dev, "alarm is: 0x%08x\n", data->alarms); 1649 dev_dbg(dev, "beep_mask is: 0x%08x\n", data->beep_mask); 1650 dev_dbg(dev, "beep_enable is: %d\n", data->beep_enable); 1651 dev_dbg(dev, "vid is: 0x%02x\n", data->vid); 1652 dev_dbg(dev, "vrm is: 0x%02x\n", data->vrm); 1653 dev_dbg(dev, "=======End of w83791d debug values========\n"); 1654 dev_dbg(dev, "\n"); 1655 } 1656 #endif 1657 1658 module_i2c_driver(w83791d_driver); 1659 1660 MODULE_AUTHOR("Charles Spirakis <bezaur@gmail.com>"); 1661 MODULE_DESCRIPTION("W83791D driver"); 1662 MODULE_LICENSE("GPL"); 1663