xref: /linux/drivers/hwmon/w83791d.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * w83791d.c - Part of lm_sensors, Linux kernel modules for hardware
4  *	       monitoring
5  *
6  * Copyright (C) 2006-2007 Charles Spirakis <bezaur@gmail.com>
7  */
8 
9 /*
10  * Supports following chips:
11  *
12  * Chip		#vin	#fanin	#pwm	#temp	wchipid	vendid	i2c	ISA
13  * w83791d	10	5	5	3	0x71	0x5ca3	yes	no
14  *
15  * The w83791d chip appears to be part way between the 83781d and the
16  * 83792d. Thus, this file is derived from both the w83792d.c and
17  * w83781d.c files.
18  *
19  * The w83791g chip is the same as the w83791d but lead-free.
20  */
21 
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/slab.h>
25 #include <linux/i2c.h>
26 #include <linux/hwmon.h>
27 #include <linux/hwmon-vid.h>
28 #include <linux/hwmon-sysfs.h>
29 #include <linux/err.h>
30 #include <linux/mutex.h>
31 #include <linux/jiffies.h>
32 
33 #define NUMBER_OF_VIN		10
34 #define NUMBER_OF_FANIN		5
35 #define NUMBER_OF_TEMPIN	3
36 #define NUMBER_OF_PWM		5
37 
38 /* Addresses to scan */
39 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, 0x2f,
40 						I2C_CLIENT_END };
41 
42 /* Insmod parameters */
43 
44 static unsigned short force_subclients[4];
45 module_param_array(force_subclients, short, NULL, 0);
46 MODULE_PARM_DESC(force_subclients,
47 		 "List of subclient addresses: {bus, clientaddr, subclientaddr1, subclientaddr2}");
48 
49 static bool reset;
50 module_param(reset, bool, 0);
51 MODULE_PARM_DESC(reset, "Set to one to force a hardware chip reset");
52 
53 static bool init;
54 module_param(init, bool, 0);
55 MODULE_PARM_DESC(init, "Set to one to force extra software initialization");
56 
57 /* The W83791D registers */
58 static const u8 W83791D_REG_IN[NUMBER_OF_VIN] = {
59 	0x20,			/* VCOREA in DataSheet */
60 	0x21,			/* VINR0 in DataSheet */
61 	0x22,			/* +3.3VIN in DataSheet */
62 	0x23,			/* VDD5V in DataSheet */
63 	0x24,			/* +12VIN in DataSheet */
64 	0x25,			/* -12VIN in DataSheet */
65 	0x26,			/* -5VIN in DataSheet */
66 	0xB0,			/* 5VSB in DataSheet */
67 	0xB1,			/* VBAT in DataSheet */
68 	0xB2			/* VINR1 in DataSheet */
69 };
70 
71 static const u8 W83791D_REG_IN_MAX[NUMBER_OF_VIN] = {
72 	0x2B,			/* VCOREA High Limit in DataSheet */
73 	0x2D,			/* VINR0 High Limit in DataSheet */
74 	0x2F,			/* +3.3VIN High Limit in DataSheet */
75 	0x31,			/* VDD5V High Limit in DataSheet */
76 	0x33,			/* +12VIN High Limit in DataSheet */
77 	0x35,			/* -12VIN High Limit in DataSheet */
78 	0x37,			/* -5VIN High Limit in DataSheet */
79 	0xB4,			/* 5VSB High Limit in DataSheet */
80 	0xB6,			/* VBAT High Limit in DataSheet */
81 	0xB8			/* VINR1 High Limit in DataSheet */
82 };
83 static const u8 W83791D_REG_IN_MIN[NUMBER_OF_VIN] = {
84 	0x2C,			/* VCOREA Low Limit in DataSheet */
85 	0x2E,			/* VINR0 Low Limit in DataSheet */
86 	0x30,			/* +3.3VIN Low Limit in DataSheet */
87 	0x32,			/* VDD5V Low Limit in DataSheet */
88 	0x34,			/* +12VIN Low Limit in DataSheet */
89 	0x36,			/* -12VIN Low Limit in DataSheet */
90 	0x38,			/* -5VIN Low Limit in DataSheet */
91 	0xB5,			/* 5VSB Low Limit in DataSheet */
92 	0xB7,			/* VBAT Low Limit in DataSheet */
93 	0xB9			/* VINR1 Low Limit in DataSheet */
94 };
95 static const u8 W83791D_REG_FAN[NUMBER_OF_FANIN] = {
96 	0x28,			/* FAN 1 Count in DataSheet */
97 	0x29,			/* FAN 2 Count in DataSheet */
98 	0x2A,			/* FAN 3 Count in DataSheet */
99 	0xBA,			/* FAN 4 Count in DataSheet */
100 	0xBB,			/* FAN 5 Count in DataSheet */
101 };
102 static const u8 W83791D_REG_FAN_MIN[NUMBER_OF_FANIN] = {
103 	0x3B,			/* FAN 1 Count Low Limit in DataSheet */
104 	0x3C,			/* FAN 2 Count Low Limit in DataSheet */
105 	0x3D,			/* FAN 3 Count Low Limit in DataSheet */
106 	0xBC,			/* FAN 4 Count Low Limit in DataSheet */
107 	0xBD,			/* FAN 5 Count Low Limit in DataSheet */
108 };
109 
110 static const u8 W83791D_REG_PWM[NUMBER_OF_PWM] = {
111 	0x81,			/* PWM 1 duty cycle register in DataSheet */
112 	0x83,			/* PWM 2 duty cycle register in DataSheet */
113 	0x94,			/* PWM 3 duty cycle register in DataSheet */
114 	0xA0,			/* PWM 4 duty cycle register in DataSheet */
115 	0xA1,			/* PWM 5 duty cycle register in DataSheet */
116 };
117 
118 static const u8 W83791D_REG_TEMP_TARGET[3] = {
119 	0x85,			/* PWM 1 target temperature for temp 1 */
120 	0x86,			/* PWM 2 target temperature for temp 2 */
121 	0x96,			/* PWM 3 target temperature for temp 3 */
122 };
123 
124 static const u8 W83791D_REG_TEMP_TOL[2] = {
125 	0x87,			/* PWM 1/2 temperature tolerance */
126 	0x97,			/* PWM 3 temperature tolerance */
127 };
128 
129 static const u8 W83791D_REG_FAN_CFG[2] = {
130 	0x84,			/* FAN 1/2 configuration */
131 	0x95,			/* FAN 3 configuration */
132 };
133 
134 static const u8 W83791D_REG_FAN_DIV[3] = {
135 	0x47,			/* contains FAN1 and FAN2 Divisor */
136 	0x4b,			/* contains FAN3 Divisor */
137 	0x5C,			/* contains FAN4 and FAN5 Divisor */
138 };
139 
140 #define W83791D_REG_BANK		0x4E
141 #define W83791D_REG_TEMP2_CONFIG	0xC2
142 #define W83791D_REG_TEMP3_CONFIG	0xCA
143 
144 static const u8 W83791D_REG_TEMP1[3] = {
145 	0x27,			/* TEMP 1 in DataSheet */
146 	0x39,			/* TEMP 1 Over in DataSheet */
147 	0x3A,			/* TEMP 1 Hyst in DataSheet */
148 };
149 
150 static const u8 W83791D_REG_TEMP_ADD[2][6] = {
151 	{0xC0,			/* TEMP 2 in DataSheet */
152 	 0xC1,			/* TEMP 2(0.5 deg) in DataSheet */
153 	 0xC5,			/* TEMP 2 Over High part in DataSheet */
154 	 0xC6,			/* TEMP 2 Over Low part in DataSheet */
155 	 0xC3,			/* TEMP 2 Thyst High part in DataSheet */
156 	 0xC4},			/* TEMP 2 Thyst Low part in DataSheet */
157 	{0xC8,			/* TEMP 3 in DataSheet */
158 	 0xC9,			/* TEMP 3(0.5 deg) in DataSheet */
159 	 0xCD,			/* TEMP 3 Over High part in DataSheet */
160 	 0xCE,			/* TEMP 3 Over Low part in DataSheet */
161 	 0xCB,			/* TEMP 3 Thyst High part in DataSheet */
162 	 0xCC}			/* TEMP 3 Thyst Low part in DataSheet */
163 };
164 
165 #define W83791D_REG_BEEP_CONFIG		0x4D
166 
167 static const u8 W83791D_REG_BEEP_CTRL[3] = {
168 	0x56,			/* BEEP Control Register 1 */
169 	0x57,			/* BEEP Control Register 2 */
170 	0xA3,			/* BEEP Control Register 3 */
171 };
172 
173 #define W83791D_REG_GPIO		0x15
174 #define W83791D_REG_CONFIG		0x40
175 #define W83791D_REG_VID_FANDIV		0x47
176 #define W83791D_REG_DID_VID4		0x49
177 #define W83791D_REG_WCHIPID		0x58
178 #define W83791D_REG_CHIPMAN		0x4F
179 #define W83791D_REG_PIN			0x4B
180 #define W83791D_REG_I2C_SUBADDR		0x4A
181 
182 #define W83791D_REG_ALARM1 0xA9	/* realtime status register1 */
183 #define W83791D_REG_ALARM2 0xAA	/* realtime status register2 */
184 #define W83791D_REG_ALARM3 0xAB	/* realtime status register3 */
185 
186 #define W83791D_REG_VBAT		0x5D
187 #define W83791D_REG_I2C_ADDR		0x48
188 
189 /*
190  * The SMBus locks itself. The Winbond W83791D has a bank select register
191  * (index 0x4e), but the driver only accesses registers in bank 0. Since
192  * we don't switch banks, we don't need any special code to handle
193  * locking access between bank switches
194  */
195 static inline int w83791d_read(struct i2c_client *client, u8 reg)
196 {
197 	return i2c_smbus_read_byte_data(client, reg);
198 }
199 
200 static inline int w83791d_write(struct i2c_client *client, u8 reg, u8 value)
201 {
202 	return i2c_smbus_write_byte_data(client, reg, value);
203 }
204 
205 /*
206  * The analog voltage inputs have 16mV LSB. Since the sysfs output is
207  * in mV as would be measured on the chip input pin, need to just
208  * multiply/divide by 16 to translate from/to register values.
209  */
210 #define IN_TO_REG(val)		(clamp_val((((val) + 8) / 16), 0, 255))
211 #define IN_FROM_REG(val)	((val) * 16)
212 
213 static u8 fan_to_reg(long rpm, int div)
214 {
215 	if (rpm == 0)
216 		return 255;
217 	rpm = clamp_val(rpm, 1, 1000000);
218 	return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
219 }
220 
221 #define FAN_FROM_REG(val, div)	((val) == 0 ? -1 : \
222 				((val) == 255 ? 0 : \
223 					1350000 / ((val) * (div))))
224 
225 /* for temp1 which is 8-bit resolution, LSB = 1 degree Celsius */
226 #define TEMP1_FROM_REG(val)	((val) * 1000)
227 #define TEMP1_TO_REG(val)	((val) <= -128000 ? -128 : \
228 				 (val) >= 127000 ? 127 : \
229 				 (val) < 0 ? ((val) - 500) / 1000 : \
230 				 ((val) + 500) / 1000)
231 
232 /*
233  * for temp2 and temp3 which are 9-bit resolution, LSB = 0.5 degree Celsius
234  * Assumes the top 8 bits are the integral amount and the bottom 8 bits
235  * are the fractional amount. Since we only have 0.5 degree resolution,
236  * the bottom 7 bits will always be zero
237  */
238 #define TEMP23_FROM_REG(val)	((val) / 128 * 500)
239 #define TEMP23_TO_REG(val)	(DIV_ROUND_CLOSEST(clamp_val((val), -128000, \
240 						   127500), 500) * 128)
241 
242 /* for thermal cruise target temp, 7-bits, LSB = 1 degree Celsius */
243 #define TARGET_TEMP_TO_REG(val)	DIV_ROUND_CLOSEST(clamp_val((val), 0, 127000), \
244 						  1000)
245 
246 /* for thermal cruise temp tolerance, 4-bits, LSB = 1 degree Celsius */
247 #define TOL_TEMP_TO_REG(val)	DIV_ROUND_CLOSEST(clamp_val((val), 0, 15000), \
248 						  1000)
249 
250 #define BEEP_MASK_TO_REG(val)		((val) & 0xffffff)
251 #define BEEP_MASK_FROM_REG(val)		((val) & 0xffffff)
252 
253 #define DIV_FROM_REG(val)		(1 << (val))
254 
255 static u8 div_to_reg(int nr, long val)
256 {
257 	int i;
258 
259 	/* fan divisors max out at 128 */
260 	val = clamp_val(val, 1, 128) >> 1;
261 	for (i = 0; i < 7; i++) {
262 		if (val == 0)
263 			break;
264 		val >>= 1;
265 	}
266 	return (u8) i;
267 }
268 
269 struct w83791d_data {
270 	struct device *hwmon_dev;
271 	struct mutex update_lock;
272 
273 	char valid;			/* !=0 if following fields are valid */
274 	unsigned long last_updated;	/* In jiffies */
275 
276 	/* array of 2 pointers to subclients */
277 	struct i2c_client *lm75[2];
278 
279 	/* volts */
280 	u8 in[NUMBER_OF_VIN];		/* Register value */
281 	u8 in_max[NUMBER_OF_VIN];	/* Register value */
282 	u8 in_min[NUMBER_OF_VIN];	/* Register value */
283 
284 	/* fans */
285 	u8 fan[NUMBER_OF_FANIN];	/* Register value */
286 	u8 fan_min[NUMBER_OF_FANIN];	/* Register value */
287 	u8 fan_div[NUMBER_OF_FANIN];	/* Register encoding, shifted right */
288 
289 	/* Temperature sensors */
290 
291 	s8 temp1[3];		/* current, over, thyst */
292 	s16 temp_add[2][3];	/* fixed point value. Top 8 bits are the
293 				 * integral part, bottom 8 bits are the
294 				 * fractional part. We only use the top
295 				 * 9 bits as the resolution is only
296 				 * to the 0.5 degree C...
297 				 * two sensors with three values
298 				 * (cur, over, hyst)
299 				 */
300 
301 	/* PWMs */
302 	u8 pwm[5];		/* pwm duty cycle */
303 	u8 pwm_enable[3];	/* pwm enable status for fan 1-3
304 				 * (fan 4-5 only support manual mode)
305 				 */
306 
307 	u8 temp_target[3];	/* pwm 1-3 target temperature */
308 	u8 temp_tolerance[3];	/* pwm 1-3 temperature tolerance */
309 
310 	/* Misc */
311 	u32 alarms;		/* realtime status register encoding,combined */
312 	u8 beep_enable;		/* Global beep enable */
313 	u32 beep_mask;		/* Mask off specific beeps */
314 	u8 vid;			/* Register encoding, combined */
315 	u8 vrm;			/* hwmon-vid */
316 };
317 
318 static int w83791d_probe(struct i2c_client *client,
319 			 const struct i2c_device_id *id);
320 static int w83791d_detect(struct i2c_client *client,
321 			  struct i2c_board_info *info);
322 static int w83791d_remove(struct i2c_client *client);
323 
324 static int w83791d_read(struct i2c_client *client, u8 reg);
325 static int w83791d_write(struct i2c_client *client, u8 reg, u8 value);
326 static struct w83791d_data *w83791d_update_device(struct device *dev);
327 
328 #ifdef DEBUG
329 static void w83791d_print_debug(struct w83791d_data *data, struct device *dev);
330 #endif
331 
332 static void w83791d_init_client(struct i2c_client *client);
333 
334 static const struct i2c_device_id w83791d_id[] = {
335 	{ "w83791d", 0 },
336 	{ }
337 };
338 MODULE_DEVICE_TABLE(i2c, w83791d_id);
339 
340 static struct i2c_driver w83791d_driver = {
341 	.class		= I2C_CLASS_HWMON,
342 	.driver = {
343 		.name = "w83791d",
344 	},
345 	.probe		= w83791d_probe,
346 	.remove		= w83791d_remove,
347 	.id_table	= w83791d_id,
348 	.detect		= w83791d_detect,
349 	.address_list	= normal_i2c,
350 };
351 
352 /* following are the sysfs callback functions */
353 #define show_in_reg(reg) \
354 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
355 			char *buf) \
356 { \
357 	struct sensor_device_attribute *sensor_attr = \
358 						to_sensor_dev_attr(attr); \
359 	struct w83791d_data *data = w83791d_update_device(dev); \
360 	int nr = sensor_attr->index; \
361 	return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \
362 }
363 
364 show_in_reg(in);
365 show_in_reg(in_min);
366 show_in_reg(in_max);
367 
368 #define store_in_reg(REG, reg) \
369 static ssize_t store_in_##reg(struct device *dev, \
370 				struct device_attribute *attr, \
371 				const char *buf, size_t count) \
372 { \
373 	struct sensor_device_attribute *sensor_attr = \
374 						to_sensor_dev_attr(attr); \
375 	struct i2c_client *client = to_i2c_client(dev); \
376 	struct w83791d_data *data = i2c_get_clientdata(client); \
377 	int nr = sensor_attr->index; \
378 	unsigned long val; \
379 	int err = kstrtoul(buf, 10, &val); \
380 	if (err) \
381 		return err; \
382 	mutex_lock(&data->update_lock); \
383 	data->in_##reg[nr] = IN_TO_REG(val); \
384 	w83791d_write(client, W83791D_REG_IN_##REG[nr], data->in_##reg[nr]); \
385 	mutex_unlock(&data->update_lock); \
386 	 \
387 	return count; \
388 }
389 store_in_reg(MIN, min);
390 store_in_reg(MAX, max);
391 
392 static struct sensor_device_attribute sda_in_input[] = {
393 	SENSOR_ATTR(in0_input, S_IRUGO, show_in, NULL, 0),
394 	SENSOR_ATTR(in1_input, S_IRUGO, show_in, NULL, 1),
395 	SENSOR_ATTR(in2_input, S_IRUGO, show_in, NULL, 2),
396 	SENSOR_ATTR(in3_input, S_IRUGO, show_in, NULL, 3),
397 	SENSOR_ATTR(in4_input, S_IRUGO, show_in, NULL, 4),
398 	SENSOR_ATTR(in5_input, S_IRUGO, show_in, NULL, 5),
399 	SENSOR_ATTR(in6_input, S_IRUGO, show_in, NULL, 6),
400 	SENSOR_ATTR(in7_input, S_IRUGO, show_in, NULL, 7),
401 	SENSOR_ATTR(in8_input, S_IRUGO, show_in, NULL, 8),
402 	SENSOR_ATTR(in9_input, S_IRUGO, show_in, NULL, 9),
403 };
404 
405 static struct sensor_device_attribute sda_in_min[] = {
406 	SENSOR_ATTR(in0_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 0),
407 	SENSOR_ATTR(in1_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 1),
408 	SENSOR_ATTR(in2_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 2),
409 	SENSOR_ATTR(in3_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 3),
410 	SENSOR_ATTR(in4_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 4),
411 	SENSOR_ATTR(in5_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 5),
412 	SENSOR_ATTR(in6_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 6),
413 	SENSOR_ATTR(in7_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 7),
414 	SENSOR_ATTR(in8_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 8),
415 	SENSOR_ATTR(in9_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 9),
416 };
417 
418 static struct sensor_device_attribute sda_in_max[] = {
419 	SENSOR_ATTR(in0_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 0),
420 	SENSOR_ATTR(in1_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 1),
421 	SENSOR_ATTR(in2_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 2),
422 	SENSOR_ATTR(in3_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 3),
423 	SENSOR_ATTR(in4_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 4),
424 	SENSOR_ATTR(in5_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 5),
425 	SENSOR_ATTR(in6_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 6),
426 	SENSOR_ATTR(in7_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 7),
427 	SENSOR_ATTR(in8_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 8),
428 	SENSOR_ATTR(in9_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 9),
429 };
430 
431 
432 static ssize_t show_beep(struct device *dev, struct device_attribute *attr,
433 			char *buf)
434 {
435 	struct sensor_device_attribute *sensor_attr =
436 						to_sensor_dev_attr(attr);
437 	struct w83791d_data *data = w83791d_update_device(dev);
438 	int bitnr = sensor_attr->index;
439 
440 	return sprintf(buf, "%d\n", (data->beep_mask >> bitnr) & 1);
441 }
442 
443 static ssize_t store_beep(struct device *dev, struct device_attribute *attr,
444 			const char *buf, size_t count)
445 {
446 	struct sensor_device_attribute *sensor_attr =
447 						to_sensor_dev_attr(attr);
448 	struct i2c_client *client = to_i2c_client(dev);
449 	struct w83791d_data *data = i2c_get_clientdata(client);
450 	int bitnr = sensor_attr->index;
451 	int bytenr = bitnr / 8;
452 	unsigned long val;
453 	int err;
454 
455 	err = kstrtoul(buf, 10, &val);
456 	if (err)
457 		return err;
458 
459 	val = val ? 1 : 0;
460 
461 	mutex_lock(&data->update_lock);
462 
463 	data->beep_mask &= ~(0xff << (bytenr * 8));
464 	data->beep_mask |= w83791d_read(client, W83791D_REG_BEEP_CTRL[bytenr])
465 		<< (bytenr * 8);
466 
467 	data->beep_mask &= ~(1 << bitnr);
468 	data->beep_mask |= val << bitnr;
469 
470 	w83791d_write(client, W83791D_REG_BEEP_CTRL[bytenr],
471 		(data->beep_mask >> (bytenr * 8)) & 0xff);
472 
473 	mutex_unlock(&data->update_lock);
474 
475 	return count;
476 }
477 
478 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
479 			char *buf)
480 {
481 	struct sensor_device_attribute *sensor_attr =
482 						to_sensor_dev_attr(attr);
483 	struct w83791d_data *data = w83791d_update_device(dev);
484 	int bitnr = sensor_attr->index;
485 
486 	return sprintf(buf, "%d\n", (data->alarms >> bitnr) & 1);
487 }
488 
489 /*
490  * Note: The bitmask for the beep enable/disable is different than
491  * the bitmask for the alarm.
492  */
493 static struct sensor_device_attribute sda_in_beep[] = {
494 	SENSOR_ATTR(in0_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 0),
495 	SENSOR_ATTR(in1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 13),
496 	SENSOR_ATTR(in2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 2),
497 	SENSOR_ATTR(in3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 3),
498 	SENSOR_ATTR(in4_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 8),
499 	SENSOR_ATTR(in5_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 9),
500 	SENSOR_ATTR(in6_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 10),
501 	SENSOR_ATTR(in7_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 16),
502 	SENSOR_ATTR(in8_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 17),
503 	SENSOR_ATTR(in9_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 14),
504 };
505 
506 static struct sensor_device_attribute sda_in_alarm[] = {
507 	SENSOR_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0),
508 	SENSOR_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1),
509 	SENSOR_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2),
510 	SENSOR_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3),
511 	SENSOR_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8),
512 	SENSOR_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 9),
513 	SENSOR_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 10),
514 	SENSOR_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 19),
515 	SENSOR_ATTR(in8_alarm, S_IRUGO, show_alarm, NULL, 20),
516 	SENSOR_ATTR(in9_alarm, S_IRUGO, show_alarm, NULL, 14),
517 };
518 
519 #define show_fan_reg(reg) \
520 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
521 				char *buf) \
522 { \
523 	struct sensor_device_attribute *sensor_attr = \
524 						to_sensor_dev_attr(attr); \
525 	struct w83791d_data *data = w83791d_update_device(dev); \
526 	int nr = sensor_attr->index; \
527 	return sprintf(buf, "%d\n", \
528 		FAN_FROM_REG(data->reg[nr], DIV_FROM_REG(data->fan_div[nr]))); \
529 }
530 
531 show_fan_reg(fan);
532 show_fan_reg(fan_min);
533 
534 static ssize_t store_fan_min(struct device *dev, struct device_attribute *attr,
535 				const char *buf, size_t count)
536 {
537 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
538 	struct i2c_client *client = to_i2c_client(dev);
539 	struct w83791d_data *data = i2c_get_clientdata(client);
540 	int nr = sensor_attr->index;
541 	unsigned long val;
542 	int err;
543 
544 	err = kstrtoul(buf, 10, &val);
545 	if (err)
546 		return err;
547 
548 	mutex_lock(&data->update_lock);
549 	data->fan_min[nr] = fan_to_reg(val, DIV_FROM_REG(data->fan_div[nr]));
550 	w83791d_write(client, W83791D_REG_FAN_MIN[nr], data->fan_min[nr]);
551 	mutex_unlock(&data->update_lock);
552 
553 	return count;
554 }
555 
556 static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr,
557 				char *buf)
558 {
559 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
560 	int nr = sensor_attr->index;
561 	struct w83791d_data *data = w83791d_update_device(dev);
562 	return sprintf(buf, "%u\n", DIV_FROM_REG(data->fan_div[nr]));
563 }
564 
565 /*
566  * Note: we save and restore the fan minimum here, because its value is
567  * determined in part by the fan divisor.  This follows the principle of
568  * least surprise; the user doesn't expect the fan minimum to change just
569  * because the divisor changed.
570  */
571 static ssize_t store_fan_div(struct device *dev, struct device_attribute *attr,
572 				const char *buf, size_t count)
573 {
574 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
575 	struct i2c_client *client = to_i2c_client(dev);
576 	struct w83791d_data *data = i2c_get_clientdata(client);
577 	int nr = sensor_attr->index;
578 	unsigned long min;
579 	u8 tmp_fan_div;
580 	u8 fan_div_reg;
581 	u8 vbat_reg;
582 	int indx = 0;
583 	u8 keep_mask = 0;
584 	u8 new_shift = 0;
585 	unsigned long val;
586 	int err;
587 
588 	err = kstrtoul(buf, 10, &val);
589 	if (err)
590 		return err;
591 
592 	/* Save fan_min */
593 	min = FAN_FROM_REG(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr]));
594 
595 	mutex_lock(&data->update_lock);
596 	data->fan_div[nr] = div_to_reg(nr, val);
597 
598 	switch (nr) {
599 	case 0:
600 		indx = 0;
601 		keep_mask = 0xcf;
602 		new_shift = 4;
603 		break;
604 	case 1:
605 		indx = 0;
606 		keep_mask = 0x3f;
607 		new_shift = 6;
608 		break;
609 	case 2:
610 		indx = 1;
611 		keep_mask = 0x3f;
612 		new_shift = 6;
613 		break;
614 	case 3:
615 		indx = 2;
616 		keep_mask = 0xf8;
617 		new_shift = 0;
618 		break;
619 	case 4:
620 		indx = 2;
621 		keep_mask = 0x8f;
622 		new_shift = 4;
623 		break;
624 #ifdef DEBUG
625 	default:
626 		dev_warn(dev, "store_fan_div: Unexpected nr seen: %d\n", nr);
627 		count = -EINVAL;
628 		goto err_exit;
629 #endif
630 	}
631 
632 	fan_div_reg = w83791d_read(client, W83791D_REG_FAN_DIV[indx])
633 			& keep_mask;
634 	tmp_fan_div = (data->fan_div[nr] << new_shift) & ~keep_mask;
635 
636 	w83791d_write(client, W83791D_REG_FAN_DIV[indx],
637 				fan_div_reg | tmp_fan_div);
638 
639 	/* Bit 2 of fans 0-2 is stored in the vbat register (bits 5-7) */
640 	if (nr < 3) {
641 		keep_mask = ~(1 << (nr + 5));
642 		vbat_reg = w83791d_read(client, W83791D_REG_VBAT)
643 				& keep_mask;
644 		tmp_fan_div = (data->fan_div[nr] << (3 + nr)) & ~keep_mask;
645 		w83791d_write(client, W83791D_REG_VBAT,
646 				vbat_reg | tmp_fan_div);
647 	}
648 
649 	/* Restore fan_min */
650 	data->fan_min[nr] = fan_to_reg(min, DIV_FROM_REG(data->fan_div[nr]));
651 	w83791d_write(client, W83791D_REG_FAN_MIN[nr], data->fan_min[nr]);
652 
653 #ifdef DEBUG
654 err_exit:
655 #endif
656 	mutex_unlock(&data->update_lock);
657 
658 	return count;
659 }
660 
661 static struct sensor_device_attribute sda_fan_input[] = {
662 	SENSOR_ATTR(fan1_input, S_IRUGO, show_fan, NULL, 0),
663 	SENSOR_ATTR(fan2_input, S_IRUGO, show_fan, NULL, 1),
664 	SENSOR_ATTR(fan3_input, S_IRUGO, show_fan, NULL, 2),
665 	SENSOR_ATTR(fan4_input, S_IRUGO, show_fan, NULL, 3),
666 	SENSOR_ATTR(fan5_input, S_IRUGO, show_fan, NULL, 4),
667 };
668 
669 static struct sensor_device_attribute sda_fan_min[] = {
670 	SENSOR_ATTR(fan1_min, S_IWUSR | S_IRUGO,
671 			show_fan_min, store_fan_min, 0),
672 	SENSOR_ATTR(fan2_min, S_IWUSR | S_IRUGO,
673 			show_fan_min, store_fan_min, 1),
674 	SENSOR_ATTR(fan3_min, S_IWUSR | S_IRUGO,
675 			show_fan_min, store_fan_min, 2),
676 	SENSOR_ATTR(fan4_min, S_IWUSR | S_IRUGO,
677 			show_fan_min, store_fan_min, 3),
678 	SENSOR_ATTR(fan5_min, S_IWUSR | S_IRUGO,
679 			show_fan_min, store_fan_min, 4),
680 };
681 
682 static struct sensor_device_attribute sda_fan_div[] = {
683 	SENSOR_ATTR(fan1_div, S_IWUSR | S_IRUGO,
684 			show_fan_div, store_fan_div, 0),
685 	SENSOR_ATTR(fan2_div, S_IWUSR | S_IRUGO,
686 			show_fan_div, store_fan_div, 1),
687 	SENSOR_ATTR(fan3_div, S_IWUSR | S_IRUGO,
688 			show_fan_div, store_fan_div, 2),
689 	SENSOR_ATTR(fan4_div, S_IWUSR | S_IRUGO,
690 			show_fan_div, store_fan_div, 3),
691 	SENSOR_ATTR(fan5_div, S_IWUSR | S_IRUGO,
692 			show_fan_div, store_fan_div, 4),
693 };
694 
695 static struct sensor_device_attribute sda_fan_beep[] = {
696 	SENSOR_ATTR(fan1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 6),
697 	SENSOR_ATTR(fan2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 7),
698 	SENSOR_ATTR(fan3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 11),
699 	SENSOR_ATTR(fan4_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 21),
700 	SENSOR_ATTR(fan5_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 22),
701 };
702 
703 static struct sensor_device_attribute sda_fan_alarm[] = {
704 	SENSOR_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6),
705 	SENSOR_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7),
706 	SENSOR_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11),
707 	SENSOR_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 21),
708 	SENSOR_ATTR(fan5_alarm, S_IRUGO, show_alarm, NULL, 22),
709 };
710 
711 /* read/write PWMs */
712 static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
713 				char *buf)
714 {
715 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
716 	int nr = sensor_attr->index;
717 	struct w83791d_data *data = w83791d_update_device(dev);
718 	return sprintf(buf, "%u\n", data->pwm[nr]);
719 }
720 
721 static ssize_t store_pwm(struct device *dev, struct device_attribute *attr,
722 		const char *buf, size_t count)
723 {
724 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
725 	struct i2c_client *client = to_i2c_client(dev);
726 	struct w83791d_data *data = i2c_get_clientdata(client);
727 	int nr = sensor_attr->index;
728 	unsigned long val;
729 
730 	if (kstrtoul(buf, 10, &val))
731 		return -EINVAL;
732 
733 	mutex_lock(&data->update_lock);
734 	data->pwm[nr] = clamp_val(val, 0, 255);
735 	w83791d_write(client, W83791D_REG_PWM[nr], data->pwm[nr]);
736 	mutex_unlock(&data->update_lock);
737 	return count;
738 }
739 
740 static struct sensor_device_attribute sda_pwm[] = {
741 	SENSOR_ATTR(pwm1, S_IWUSR | S_IRUGO,
742 			show_pwm, store_pwm, 0),
743 	SENSOR_ATTR(pwm2, S_IWUSR | S_IRUGO,
744 			show_pwm, store_pwm, 1),
745 	SENSOR_ATTR(pwm3, S_IWUSR | S_IRUGO,
746 			show_pwm, store_pwm, 2),
747 	SENSOR_ATTR(pwm4, S_IWUSR | S_IRUGO,
748 			show_pwm, store_pwm, 3),
749 	SENSOR_ATTR(pwm5, S_IWUSR | S_IRUGO,
750 			show_pwm, store_pwm, 4),
751 };
752 
753 static ssize_t show_pwmenable(struct device *dev, struct device_attribute *attr,
754 				char *buf)
755 {
756 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
757 	int nr = sensor_attr->index;
758 	struct w83791d_data *data = w83791d_update_device(dev);
759 	return sprintf(buf, "%u\n", data->pwm_enable[nr] + 1);
760 }
761 
762 static ssize_t store_pwmenable(struct device *dev,
763 		struct device_attribute *attr, const char *buf, size_t count)
764 {
765 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
766 	struct i2c_client *client = to_i2c_client(dev);
767 	struct w83791d_data *data = i2c_get_clientdata(client);
768 	int nr = sensor_attr->index;
769 	unsigned long val;
770 	u8 reg_cfg_tmp;
771 	u8 reg_idx = 0;
772 	u8 val_shift = 0;
773 	u8 keep_mask = 0;
774 
775 	int ret = kstrtoul(buf, 10, &val);
776 
777 	if (ret || val < 1 || val > 3)
778 		return -EINVAL;
779 
780 	mutex_lock(&data->update_lock);
781 	data->pwm_enable[nr] = val - 1;
782 	switch (nr) {
783 	case 0:
784 		reg_idx = 0;
785 		val_shift = 2;
786 		keep_mask = 0xf3;
787 		break;
788 	case 1:
789 		reg_idx = 0;
790 		val_shift = 4;
791 		keep_mask = 0xcf;
792 		break;
793 	case 2:
794 		reg_idx = 1;
795 		val_shift = 2;
796 		keep_mask = 0xf3;
797 		break;
798 	}
799 
800 	reg_cfg_tmp = w83791d_read(client, W83791D_REG_FAN_CFG[reg_idx]);
801 	reg_cfg_tmp = (reg_cfg_tmp & keep_mask) |
802 					data->pwm_enable[nr] << val_shift;
803 
804 	w83791d_write(client, W83791D_REG_FAN_CFG[reg_idx], reg_cfg_tmp);
805 	mutex_unlock(&data->update_lock);
806 
807 	return count;
808 }
809 static struct sensor_device_attribute sda_pwmenable[] = {
810 	SENSOR_ATTR(pwm1_enable, S_IWUSR | S_IRUGO,
811 			show_pwmenable, store_pwmenable, 0),
812 	SENSOR_ATTR(pwm2_enable, S_IWUSR | S_IRUGO,
813 			show_pwmenable, store_pwmenable, 1),
814 	SENSOR_ATTR(pwm3_enable, S_IWUSR | S_IRUGO,
815 			show_pwmenable, store_pwmenable, 2),
816 };
817 
818 /* For Smart Fan I / Thermal Cruise */
819 static ssize_t show_temp_target(struct device *dev,
820 			struct device_attribute *attr, char *buf)
821 {
822 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
823 	struct w83791d_data *data = w83791d_update_device(dev);
824 	int nr = sensor_attr->index;
825 	return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp_target[nr]));
826 }
827 
828 static ssize_t store_temp_target(struct device *dev,
829 		struct device_attribute *attr, const char *buf, size_t count)
830 {
831 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
832 	struct i2c_client *client = to_i2c_client(dev);
833 	struct w83791d_data *data = i2c_get_clientdata(client);
834 	int nr = sensor_attr->index;
835 	long val;
836 	u8 target_mask;
837 
838 	if (kstrtol(buf, 10, &val))
839 		return -EINVAL;
840 
841 	mutex_lock(&data->update_lock);
842 	data->temp_target[nr] = TARGET_TEMP_TO_REG(val);
843 	target_mask = w83791d_read(client,
844 				W83791D_REG_TEMP_TARGET[nr]) & 0x80;
845 	w83791d_write(client, W83791D_REG_TEMP_TARGET[nr],
846 				data->temp_target[nr] | target_mask);
847 	mutex_unlock(&data->update_lock);
848 	return count;
849 }
850 
851 static struct sensor_device_attribute sda_temp_target[] = {
852 	SENSOR_ATTR(temp1_target, S_IWUSR | S_IRUGO,
853 			show_temp_target, store_temp_target, 0),
854 	SENSOR_ATTR(temp2_target, S_IWUSR | S_IRUGO,
855 			show_temp_target, store_temp_target, 1),
856 	SENSOR_ATTR(temp3_target, S_IWUSR | S_IRUGO,
857 			show_temp_target, store_temp_target, 2),
858 };
859 
860 static ssize_t show_temp_tolerance(struct device *dev,
861 			struct device_attribute *attr, char *buf)
862 {
863 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
864 	struct w83791d_data *data = w83791d_update_device(dev);
865 	int nr = sensor_attr->index;
866 	return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp_tolerance[nr]));
867 }
868 
869 static ssize_t store_temp_tolerance(struct device *dev,
870 		struct device_attribute *attr, const char *buf, size_t count)
871 {
872 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
873 	struct i2c_client *client = to_i2c_client(dev);
874 	struct w83791d_data *data = i2c_get_clientdata(client);
875 	int nr = sensor_attr->index;
876 	unsigned long val;
877 	u8 target_mask;
878 	u8 reg_idx = 0;
879 	u8 val_shift = 0;
880 	u8 keep_mask = 0;
881 
882 	if (kstrtoul(buf, 10, &val))
883 		return -EINVAL;
884 
885 	switch (nr) {
886 	case 0:
887 		reg_idx = 0;
888 		val_shift = 0;
889 		keep_mask = 0xf0;
890 		break;
891 	case 1:
892 		reg_idx = 0;
893 		val_shift = 4;
894 		keep_mask = 0x0f;
895 		break;
896 	case 2:
897 		reg_idx = 1;
898 		val_shift = 0;
899 		keep_mask = 0xf0;
900 		break;
901 	}
902 
903 	mutex_lock(&data->update_lock);
904 	data->temp_tolerance[nr] = TOL_TEMP_TO_REG(val);
905 	target_mask = w83791d_read(client,
906 			W83791D_REG_TEMP_TOL[reg_idx]) & keep_mask;
907 	w83791d_write(client, W83791D_REG_TEMP_TOL[reg_idx],
908 			(data->temp_tolerance[nr] << val_shift) | target_mask);
909 	mutex_unlock(&data->update_lock);
910 	return count;
911 }
912 
913 static struct sensor_device_attribute sda_temp_tolerance[] = {
914 	SENSOR_ATTR(temp1_tolerance, S_IWUSR | S_IRUGO,
915 			show_temp_tolerance, store_temp_tolerance, 0),
916 	SENSOR_ATTR(temp2_tolerance, S_IWUSR | S_IRUGO,
917 			show_temp_tolerance, store_temp_tolerance, 1),
918 	SENSOR_ATTR(temp3_tolerance, S_IWUSR | S_IRUGO,
919 			show_temp_tolerance, store_temp_tolerance, 2),
920 };
921 
922 /* read/write the temperature1, includes measured value and limits */
923 static ssize_t show_temp1(struct device *dev, struct device_attribute *devattr,
924 				char *buf)
925 {
926 	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
927 	struct w83791d_data *data = w83791d_update_device(dev);
928 	return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp1[attr->index]));
929 }
930 
931 static ssize_t store_temp1(struct device *dev, struct device_attribute *devattr,
932 				const char *buf, size_t count)
933 {
934 	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
935 	struct i2c_client *client = to_i2c_client(dev);
936 	struct w83791d_data *data = i2c_get_clientdata(client);
937 	int nr = attr->index;
938 	long val;
939 	int err;
940 
941 	err = kstrtol(buf, 10, &val);
942 	if (err)
943 		return err;
944 
945 	mutex_lock(&data->update_lock);
946 	data->temp1[nr] = TEMP1_TO_REG(val);
947 	w83791d_write(client, W83791D_REG_TEMP1[nr], data->temp1[nr]);
948 	mutex_unlock(&data->update_lock);
949 	return count;
950 }
951 
952 /* read/write temperature2-3, includes measured value and limits */
953 static ssize_t show_temp23(struct device *dev, struct device_attribute *devattr,
954 				char *buf)
955 {
956 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
957 	struct w83791d_data *data = w83791d_update_device(dev);
958 	int nr = attr->nr;
959 	int index = attr->index;
960 	return sprintf(buf, "%d\n", TEMP23_FROM_REG(data->temp_add[nr][index]));
961 }
962 
963 static ssize_t store_temp23(struct device *dev,
964 				struct device_attribute *devattr,
965 				const char *buf, size_t count)
966 {
967 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
968 	struct i2c_client *client = to_i2c_client(dev);
969 	struct w83791d_data *data = i2c_get_clientdata(client);
970 	long val;
971 	int err;
972 	int nr = attr->nr;
973 	int index = attr->index;
974 
975 	err = kstrtol(buf, 10, &val);
976 	if (err)
977 		return err;
978 
979 	mutex_lock(&data->update_lock);
980 	data->temp_add[nr][index] = TEMP23_TO_REG(val);
981 	w83791d_write(client, W83791D_REG_TEMP_ADD[nr][index * 2],
982 				data->temp_add[nr][index] >> 8);
983 	w83791d_write(client, W83791D_REG_TEMP_ADD[nr][index * 2 + 1],
984 				data->temp_add[nr][index] & 0x80);
985 	mutex_unlock(&data->update_lock);
986 
987 	return count;
988 }
989 
990 static struct sensor_device_attribute_2 sda_temp_input[] = {
991 	SENSOR_ATTR_2(temp1_input, S_IRUGO, show_temp1, NULL, 0, 0),
992 	SENSOR_ATTR_2(temp2_input, S_IRUGO, show_temp23, NULL, 0, 0),
993 	SENSOR_ATTR_2(temp3_input, S_IRUGO, show_temp23, NULL, 1, 0),
994 };
995 
996 static struct sensor_device_attribute_2 sda_temp_max[] = {
997 	SENSOR_ATTR_2(temp1_max, S_IRUGO | S_IWUSR,
998 			show_temp1, store_temp1, 0, 1),
999 	SENSOR_ATTR_2(temp2_max, S_IRUGO | S_IWUSR,
1000 			show_temp23, store_temp23, 0, 1),
1001 	SENSOR_ATTR_2(temp3_max, S_IRUGO | S_IWUSR,
1002 			show_temp23, store_temp23, 1, 1),
1003 };
1004 
1005 static struct sensor_device_attribute_2 sda_temp_max_hyst[] = {
1006 	SENSOR_ATTR_2(temp1_max_hyst, S_IRUGO | S_IWUSR,
1007 			show_temp1, store_temp1, 0, 2),
1008 	SENSOR_ATTR_2(temp2_max_hyst, S_IRUGO | S_IWUSR,
1009 			show_temp23, store_temp23, 0, 2),
1010 	SENSOR_ATTR_2(temp3_max_hyst, S_IRUGO | S_IWUSR,
1011 			show_temp23, store_temp23, 1, 2),
1012 };
1013 
1014 /*
1015  * Note: The bitmask for the beep enable/disable is different than
1016  * the bitmask for the alarm.
1017  */
1018 static struct sensor_device_attribute sda_temp_beep[] = {
1019 	SENSOR_ATTR(temp1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 4),
1020 	SENSOR_ATTR(temp2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 5),
1021 	SENSOR_ATTR(temp3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 1),
1022 };
1023 
1024 static struct sensor_device_attribute sda_temp_alarm[] = {
1025 	SENSOR_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4),
1026 	SENSOR_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5),
1027 	SENSOR_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13),
1028 };
1029 
1030 /* get realtime status of all sensors items: voltage, temp, fan */
1031 static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
1032 			   char *buf)
1033 {
1034 	struct w83791d_data *data = w83791d_update_device(dev);
1035 	return sprintf(buf, "%u\n", data->alarms);
1036 }
1037 
1038 static DEVICE_ATTR_RO(alarms);
1039 
1040 /* Beep control */
1041 
1042 #define GLOBAL_BEEP_ENABLE_SHIFT	15
1043 #define GLOBAL_BEEP_ENABLE_MASK		(1 << GLOBAL_BEEP_ENABLE_SHIFT)
1044 
1045 static ssize_t show_beep_enable(struct device *dev,
1046 				struct device_attribute *attr, char *buf)
1047 {
1048 	struct w83791d_data *data = w83791d_update_device(dev);
1049 	return sprintf(buf, "%d\n", data->beep_enable);
1050 }
1051 
1052 static ssize_t show_beep_mask(struct device *dev,
1053 				struct device_attribute *attr, char *buf)
1054 {
1055 	struct w83791d_data *data = w83791d_update_device(dev);
1056 	return sprintf(buf, "%d\n", BEEP_MASK_FROM_REG(data->beep_mask));
1057 }
1058 
1059 
1060 static ssize_t store_beep_mask(struct device *dev,
1061 				struct device_attribute *attr,
1062 				const char *buf, size_t count)
1063 {
1064 	struct i2c_client *client = to_i2c_client(dev);
1065 	struct w83791d_data *data = i2c_get_clientdata(client);
1066 	int i;
1067 	long val;
1068 	int err;
1069 
1070 	err = kstrtol(buf, 10, &val);
1071 	if (err)
1072 		return err;
1073 
1074 	mutex_lock(&data->update_lock);
1075 
1076 	/*
1077 	 * The beep_enable state overrides any enabling request from
1078 	 * the masks
1079 	 */
1080 	data->beep_mask = BEEP_MASK_TO_REG(val) & ~GLOBAL_BEEP_ENABLE_MASK;
1081 	data->beep_mask |= (data->beep_enable << GLOBAL_BEEP_ENABLE_SHIFT);
1082 
1083 	val = data->beep_mask;
1084 
1085 	for (i = 0; i < 3; i++) {
1086 		w83791d_write(client, W83791D_REG_BEEP_CTRL[i], (val & 0xff));
1087 		val >>= 8;
1088 	}
1089 
1090 	mutex_unlock(&data->update_lock);
1091 
1092 	return count;
1093 }
1094 
1095 static ssize_t store_beep_enable(struct device *dev,
1096 				struct device_attribute *attr,
1097 				const char *buf, size_t count)
1098 {
1099 	struct i2c_client *client = to_i2c_client(dev);
1100 	struct w83791d_data *data = i2c_get_clientdata(client);
1101 	long val;
1102 	int err;
1103 
1104 	err = kstrtol(buf, 10, &val);
1105 	if (err)
1106 		return err;
1107 
1108 	mutex_lock(&data->update_lock);
1109 
1110 	data->beep_enable = val ? 1 : 0;
1111 
1112 	/* Keep the full mask value in sync with the current enable */
1113 	data->beep_mask &= ~GLOBAL_BEEP_ENABLE_MASK;
1114 	data->beep_mask |= (data->beep_enable << GLOBAL_BEEP_ENABLE_SHIFT);
1115 
1116 	/*
1117 	 * The global control is in the second beep control register
1118 	 * so only need to update that register
1119 	 */
1120 	val = (data->beep_mask >> 8) & 0xff;
1121 
1122 	w83791d_write(client, W83791D_REG_BEEP_CTRL[1], val);
1123 
1124 	mutex_unlock(&data->update_lock);
1125 
1126 	return count;
1127 }
1128 
1129 static struct sensor_device_attribute sda_beep_ctrl[] = {
1130 	SENSOR_ATTR(beep_enable, S_IRUGO | S_IWUSR,
1131 			show_beep_enable, store_beep_enable, 0),
1132 	SENSOR_ATTR(beep_mask, S_IRUGO | S_IWUSR,
1133 			show_beep_mask, store_beep_mask, 1)
1134 };
1135 
1136 /* cpu voltage regulation information */
1137 static ssize_t cpu0_vid_show(struct device *dev,
1138 			     struct device_attribute *attr, char *buf)
1139 {
1140 	struct w83791d_data *data = w83791d_update_device(dev);
1141 	return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
1142 }
1143 
1144 static DEVICE_ATTR_RO(cpu0_vid);
1145 
1146 static ssize_t vrm_show(struct device *dev, struct device_attribute *attr,
1147 			char *buf)
1148 {
1149 	struct w83791d_data *data = dev_get_drvdata(dev);
1150 	return sprintf(buf, "%d\n", data->vrm);
1151 }
1152 
1153 static ssize_t vrm_store(struct device *dev, struct device_attribute *attr,
1154 			 const char *buf, size_t count)
1155 {
1156 	struct w83791d_data *data = dev_get_drvdata(dev);
1157 	unsigned long val;
1158 	int err;
1159 
1160 	/*
1161 	 * No lock needed as vrm is internal to the driver
1162 	 * (not read from a chip register) and so is not
1163 	 * updated in w83791d_update_device()
1164 	 */
1165 
1166 	err = kstrtoul(buf, 10, &val);
1167 	if (err)
1168 		return err;
1169 
1170 	if (val > 255)
1171 		return -EINVAL;
1172 
1173 	data->vrm = val;
1174 	return count;
1175 }
1176 
1177 static DEVICE_ATTR_RW(vrm);
1178 
1179 #define IN_UNIT_ATTRS(X) \
1180 	&sda_in_input[X].dev_attr.attr,	\
1181 	&sda_in_min[X].dev_attr.attr,	\
1182 	&sda_in_max[X].dev_attr.attr,	\
1183 	&sda_in_beep[X].dev_attr.attr,	\
1184 	&sda_in_alarm[X].dev_attr.attr
1185 
1186 #define FAN_UNIT_ATTRS(X) \
1187 	&sda_fan_input[X].dev_attr.attr,	\
1188 	&sda_fan_min[X].dev_attr.attr,		\
1189 	&sda_fan_div[X].dev_attr.attr,		\
1190 	&sda_fan_beep[X].dev_attr.attr,		\
1191 	&sda_fan_alarm[X].dev_attr.attr
1192 
1193 #define TEMP_UNIT_ATTRS(X) \
1194 	&sda_temp_input[X].dev_attr.attr,	\
1195 	&sda_temp_max[X].dev_attr.attr,		\
1196 	&sda_temp_max_hyst[X].dev_attr.attr,	\
1197 	&sda_temp_beep[X].dev_attr.attr,	\
1198 	&sda_temp_alarm[X].dev_attr.attr
1199 
1200 static struct attribute *w83791d_attributes[] = {
1201 	IN_UNIT_ATTRS(0),
1202 	IN_UNIT_ATTRS(1),
1203 	IN_UNIT_ATTRS(2),
1204 	IN_UNIT_ATTRS(3),
1205 	IN_UNIT_ATTRS(4),
1206 	IN_UNIT_ATTRS(5),
1207 	IN_UNIT_ATTRS(6),
1208 	IN_UNIT_ATTRS(7),
1209 	IN_UNIT_ATTRS(8),
1210 	IN_UNIT_ATTRS(9),
1211 	FAN_UNIT_ATTRS(0),
1212 	FAN_UNIT_ATTRS(1),
1213 	FAN_UNIT_ATTRS(2),
1214 	TEMP_UNIT_ATTRS(0),
1215 	TEMP_UNIT_ATTRS(1),
1216 	TEMP_UNIT_ATTRS(2),
1217 	&dev_attr_alarms.attr,
1218 	&sda_beep_ctrl[0].dev_attr.attr,
1219 	&sda_beep_ctrl[1].dev_attr.attr,
1220 	&dev_attr_cpu0_vid.attr,
1221 	&dev_attr_vrm.attr,
1222 	&sda_pwm[0].dev_attr.attr,
1223 	&sda_pwm[1].dev_attr.attr,
1224 	&sda_pwm[2].dev_attr.attr,
1225 	&sda_pwmenable[0].dev_attr.attr,
1226 	&sda_pwmenable[1].dev_attr.attr,
1227 	&sda_pwmenable[2].dev_attr.attr,
1228 	&sda_temp_target[0].dev_attr.attr,
1229 	&sda_temp_target[1].dev_attr.attr,
1230 	&sda_temp_target[2].dev_attr.attr,
1231 	&sda_temp_tolerance[0].dev_attr.attr,
1232 	&sda_temp_tolerance[1].dev_attr.attr,
1233 	&sda_temp_tolerance[2].dev_attr.attr,
1234 	NULL
1235 };
1236 
1237 static const struct attribute_group w83791d_group = {
1238 	.attrs = w83791d_attributes,
1239 };
1240 
1241 /*
1242  * Separate group of attributes for fan/pwm 4-5. Their pins can also be
1243  * in use for GPIO in which case their sysfs-interface should not be made
1244  * available
1245  */
1246 static struct attribute *w83791d_attributes_fanpwm45[] = {
1247 	FAN_UNIT_ATTRS(3),
1248 	FAN_UNIT_ATTRS(4),
1249 	&sda_pwm[3].dev_attr.attr,
1250 	&sda_pwm[4].dev_attr.attr,
1251 	NULL
1252 };
1253 
1254 static const struct attribute_group w83791d_group_fanpwm45 = {
1255 	.attrs = w83791d_attributes_fanpwm45,
1256 };
1257 
1258 static int w83791d_detect_subclients(struct i2c_client *client)
1259 {
1260 	struct i2c_adapter *adapter = client->adapter;
1261 	struct w83791d_data *data = i2c_get_clientdata(client);
1262 	int address = client->addr;
1263 	int i, id;
1264 	u8 val;
1265 
1266 	id = i2c_adapter_id(adapter);
1267 	if (force_subclients[0] == id && force_subclients[1] == address) {
1268 		for (i = 2; i <= 3; i++) {
1269 			if (force_subclients[i] < 0x48 ||
1270 			    force_subclients[i] > 0x4f) {
1271 				dev_err(&client->dev,
1272 					"invalid subclient "
1273 					"address %d; must be 0x48-0x4f\n",
1274 					force_subclients[i]);
1275 				return -ENODEV;
1276 			}
1277 		}
1278 		w83791d_write(client, W83791D_REG_I2C_SUBADDR,
1279 					(force_subclients[2] & 0x07) |
1280 					((force_subclients[3] & 0x07) << 4));
1281 	}
1282 
1283 	val = w83791d_read(client, W83791D_REG_I2C_SUBADDR);
1284 	if (!(val & 0x08))
1285 		data->lm75[0] = devm_i2c_new_dummy_device(&client->dev, adapter,
1286 							  0x48 + (val & 0x7));
1287 	if (!(val & 0x80)) {
1288 		if (!IS_ERR(data->lm75[0]) &&
1289 				((val & 0x7) == ((val >> 4) & 0x7))) {
1290 			dev_err(&client->dev,
1291 				"duplicate addresses 0x%x, "
1292 				"use force_subclient\n",
1293 				data->lm75[0]->addr);
1294 			return -ENODEV;
1295 		}
1296 		data->lm75[1] = devm_i2c_new_dummy_device(&client->dev, adapter,
1297 							  0x48 + ((val >> 4) & 0x7));
1298 	}
1299 
1300 	return 0;
1301 }
1302 
1303 
1304 /* Return 0 if detection is successful, -ENODEV otherwise */
1305 static int w83791d_detect(struct i2c_client *client,
1306 			  struct i2c_board_info *info)
1307 {
1308 	struct i2c_adapter *adapter = client->adapter;
1309 	int val1, val2;
1310 	unsigned short address = client->addr;
1311 
1312 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1313 		return -ENODEV;
1314 
1315 	if (w83791d_read(client, W83791D_REG_CONFIG) & 0x80)
1316 		return -ENODEV;
1317 
1318 	val1 = w83791d_read(client, W83791D_REG_BANK);
1319 	val2 = w83791d_read(client, W83791D_REG_CHIPMAN);
1320 	/* Check for Winbond ID if in bank 0 */
1321 	if (!(val1 & 0x07)) {
1322 		if ((!(val1 & 0x80) && val2 != 0xa3) ||
1323 		    ((val1 & 0x80) && val2 != 0x5c)) {
1324 			return -ENODEV;
1325 		}
1326 	}
1327 	/*
1328 	 * If Winbond chip, address of chip and W83791D_REG_I2C_ADDR
1329 	 * should match
1330 	 */
1331 	if (w83791d_read(client, W83791D_REG_I2C_ADDR) != address)
1332 		return -ENODEV;
1333 
1334 	/* We want bank 0 and Vendor ID high byte */
1335 	val1 = w83791d_read(client, W83791D_REG_BANK) & 0x78;
1336 	w83791d_write(client, W83791D_REG_BANK, val1 | 0x80);
1337 
1338 	/* Verify it is a Winbond w83791d */
1339 	val1 = w83791d_read(client, W83791D_REG_WCHIPID);
1340 	val2 = w83791d_read(client, W83791D_REG_CHIPMAN);
1341 	if (val1 != 0x71 || val2 != 0x5c)
1342 		return -ENODEV;
1343 
1344 	strlcpy(info->type, "w83791d", I2C_NAME_SIZE);
1345 
1346 	return 0;
1347 }
1348 
1349 static int w83791d_probe(struct i2c_client *client,
1350 			 const struct i2c_device_id *id)
1351 {
1352 	struct w83791d_data *data;
1353 	struct device *dev = &client->dev;
1354 	int i, err;
1355 	u8 has_fanpwm45;
1356 
1357 #ifdef DEBUG
1358 	int val1;
1359 	val1 = w83791d_read(client, W83791D_REG_DID_VID4);
1360 	dev_dbg(dev, "Device ID version: %d.%d (0x%02x)\n",
1361 			(val1 >> 5) & 0x07, (val1 >> 1) & 0x0f, val1);
1362 #endif
1363 
1364 	data = devm_kzalloc(&client->dev, sizeof(struct w83791d_data),
1365 			    GFP_KERNEL);
1366 	if (!data)
1367 		return -ENOMEM;
1368 
1369 	i2c_set_clientdata(client, data);
1370 	mutex_init(&data->update_lock);
1371 
1372 	err = w83791d_detect_subclients(client);
1373 	if (err)
1374 		return err;
1375 
1376 	/* Initialize the chip */
1377 	w83791d_init_client(client);
1378 
1379 	/*
1380 	 * If the fan_div is changed, make sure there is a rational
1381 	 * fan_min in place
1382 	 */
1383 	for (i = 0; i < NUMBER_OF_FANIN; i++)
1384 		data->fan_min[i] = w83791d_read(client, W83791D_REG_FAN_MIN[i]);
1385 
1386 	/* Register sysfs hooks */
1387 	err = sysfs_create_group(&client->dev.kobj, &w83791d_group);
1388 	if (err)
1389 		return err;
1390 
1391 	/* Check if pins of fan/pwm 4-5 are in use as GPIO */
1392 	has_fanpwm45 = w83791d_read(client, W83791D_REG_GPIO) & 0x10;
1393 	if (has_fanpwm45) {
1394 		err = sysfs_create_group(&client->dev.kobj,
1395 					 &w83791d_group_fanpwm45);
1396 		if (err)
1397 			goto error4;
1398 	}
1399 
1400 	/* Everything is ready, now register the working device */
1401 	data->hwmon_dev = hwmon_device_register(dev);
1402 	if (IS_ERR(data->hwmon_dev)) {
1403 		err = PTR_ERR(data->hwmon_dev);
1404 		goto error5;
1405 	}
1406 
1407 	return 0;
1408 
1409 error5:
1410 	if (has_fanpwm45)
1411 		sysfs_remove_group(&client->dev.kobj, &w83791d_group_fanpwm45);
1412 error4:
1413 	sysfs_remove_group(&client->dev.kobj, &w83791d_group);
1414 	return err;
1415 }
1416 
1417 static int w83791d_remove(struct i2c_client *client)
1418 {
1419 	struct w83791d_data *data = i2c_get_clientdata(client);
1420 
1421 	hwmon_device_unregister(data->hwmon_dev);
1422 	sysfs_remove_group(&client->dev.kobj, &w83791d_group);
1423 
1424 	return 0;
1425 }
1426 
1427 static void w83791d_init_client(struct i2c_client *client)
1428 {
1429 	struct w83791d_data *data = i2c_get_clientdata(client);
1430 	u8 tmp;
1431 	u8 old_beep;
1432 
1433 	/*
1434 	 * The difference between reset and init is that reset
1435 	 * does a hard reset of the chip via index 0x40, bit 7,
1436 	 * but init simply forces certain registers to have "sane"
1437 	 * values. The hope is that the BIOS has done the right
1438 	 * thing (which is why the default is reset=0, init=0),
1439 	 * but if not, reset is the hard hammer and init
1440 	 * is the soft mallet both of which are trying to whack
1441 	 * things into place...
1442 	 * NOTE: The data sheet makes a distinction between
1443 	 * "power on defaults" and "reset by MR". As far as I can tell,
1444 	 * the hard reset puts everything into a power-on state so I'm
1445 	 * not sure what "reset by MR" means or how it can happen.
1446 	 */
1447 	if (reset || init) {
1448 		/* keep some BIOS settings when we... */
1449 		old_beep = w83791d_read(client, W83791D_REG_BEEP_CONFIG);
1450 
1451 		if (reset) {
1452 			/* ... reset the chip and ... */
1453 			w83791d_write(client, W83791D_REG_CONFIG, 0x80);
1454 		}
1455 
1456 		/* ... disable power-on abnormal beep */
1457 		w83791d_write(client, W83791D_REG_BEEP_CONFIG, old_beep | 0x80);
1458 
1459 		/* disable the global beep (not done by hard reset) */
1460 		tmp = w83791d_read(client, W83791D_REG_BEEP_CTRL[1]);
1461 		w83791d_write(client, W83791D_REG_BEEP_CTRL[1], tmp & 0xef);
1462 
1463 		if (init) {
1464 			/* Make sure monitoring is turned on for add-ons */
1465 			tmp = w83791d_read(client, W83791D_REG_TEMP2_CONFIG);
1466 			if (tmp & 1) {
1467 				w83791d_write(client, W83791D_REG_TEMP2_CONFIG,
1468 					tmp & 0xfe);
1469 			}
1470 
1471 			tmp = w83791d_read(client, W83791D_REG_TEMP3_CONFIG);
1472 			if (tmp & 1) {
1473 				w83791d_write(client, W83791D_REG_TEMP3_CONFIG,
1474 					tmp & 0xfe);
1475 			}
1476 
1477 			/* Start monitoring */
1478 			tmp = w83791d_read(client, W83791D_REG_CONFIG) & 0xf7;
1479 			w83791d_write(client, W83791D_REG_CONFIG, tmp | 0x01);
1480 		}
1481 	}
1482 
1483 	data->vrm = vid_which_vrm();
1484 }
1485 
1486 static struct w83791d_data *w83791d_update_device(struct device *dev)
1487 {
1488 	struct i2c_client *client = to_i2c_client(dev);
1489 	struct w83791d_data *data = i2c_get_clientdata(client);
1490 	int i, j;
1491 	u8 reg_array_tmp[3];
1492 	u8 vbat_reg;
1493 
1494 	mutex_lock(&data->update_lock);
1495 
1496 	if (time_after(jiffies, data->last_updated + (HZ * 3))
1497 			|| !data->valid) {
1498 		dev_dbg(dev, "Starting w83791d device update\n");
1499 
1500 		/* Update the voltages measured value and limits */
1501 		for (i = 0; i < NUMBER_OF_VIN; i++) {
1502 			data->in[i] = w83791d_read(client,
1503 						W83791D_REG_IN[i]);
1504 			data->in_max[i] = w83791d_read(client,
1505 						W83791D_REG_IN_MAX[i]);
1506 			data->in_min[i] = w83791d_read(client,
1507 						W83791D_REG_IN_MIN[i]);
1508 		}
1509 
1510 		/* Update the fan counts and limits */
1511 		for (i = 0; i < NUMBER_OF_FANIN; i++) {
1512 			/* Update the Fan measured value and limits */
1513 			data->fan[i] = w83791d_read(client,
1514 						W83791D_REG_FAN[i]);
1515 			data->fan_min[i] = w83791d_read(client,
1516 						W83791D_REG_FAN_MIN[i]);
1517 		}
1518 
1519 		/* Update the fan divisor */
1520 		for (i = 0; i < 3; i++) {
1521 			reg_array_tmp[i] = w83791d_read(client,
1522 						W83791D_REG_FAN_DIV[i]);
1523 		}
1524 		data->fan_div[0] = (reg_array_tmp[0] >> 4) & 0x03;
1525 		data->fan_div[1] = (reg_array_tmp[0] >> 6) & 0x03;
1526 		data->fan_div[2] = (reg_array_tmp[1] >> 6) & 0x03;
1527 		data->fan_div[3] = reg_array_tmp[2] & 0x07;
1528 		data->fan_div[4] = (reg_array_tmp[2] >> 4) & 0x07;
1529 
1530 		/*
1531 		 * The fan divisor for fans 0-2 get bit 2 from
1532 		 * bits 5-7 respectively of vbat register
1533 		 */
1534 		vbat_reg = w83791d_read(client, W83791D_REG_VBAT);
1535 		for (i = 0; i < 3; i++)
1536 			data->fan_div[i] |= (vbat_reg >> (3 + i)) & 0x04;
1537 
1538 		/* Update PWM duty cycle */
1539 		for (i = 0; i < NUMBER_OF_PWM; i++) {
1540 			data->pwm[i] =  w83791d_read(client,
1541 						W83791D_REG_PWM[i]);
1542 		}
1543 
1544 		/* Update PWM enable status */
1545 		for (i = 0; i < 2; i++) {
1546 			reg_array_tmp[i] = w83791d_read(client,
1547 						W83791D_REG_FAN_CFG[i]);
1548 		}
1549 		data->pwm_enable[0] = (reg_array_tmp[0] >> 2) & 0x03;
1550 		data->pwm_enable[1] = (reg_array_tmp[0] >> 4) & 0x03;
1551 		data->pwm_enable[2] = (reg_array_tmp[1] >> 2) & 0x03;
1552 
1553 		/* Update PWM target temperature */
1554 		for (i = 0; i < 3; i++) {
1555 			data->temp_target[i] = w83791d_read(client,
1556 				W83791D_REG_TEMP_TARGET[i]) & 0x7f;
1557 		}
1558 
1559 		/* Update PWM temperature tolerance */
1560 		for (i = 0; i < 2; i++) {
1561 			reg_array_tmp[i] = w83791d_read(client,
1562 					W83791D_REG_TEMP_TOL[i]);
1563 		}
1564 		data->temp_tolerance[0] = reg_array_tmp[0] & 0x0f;
1565 		data->temp_tolerance[1] = (reg_array_tmp[0] >> 4) & 0x0f;
1566 		data->temp_tolerance[2] = reg_array_tmp[1] & 0x0f;
1567 
1568 		/* Update the first temperature sensor */
1569 		for (i = 0; i < 3; i++) {
1570 			data->temp1[i] = w83791d_read(client,
1571 						W83791D_REG_TEMP1[i]);
1572 		}
1573 
1574 		/* Update the rest of the temperature sensors */
1575 		for (i = 0; i < 2; i++) {
1576 			for (j = 0; j < 3; j++) {
1577 				data->temp_add[i][j] =
1578 					(w83791d_read(client,
1579 					W83791D_REG_TEMP_ADD[i][j * 2]) << 8) |
1580 					w83791d_read(client,
1581 					W83791D_REG_TEMP_ADD[i][j * 2 + 1]);
1582 			}
1583 		}
1584 
1585 		/* Update the realtime status */
1586 		data->alarms =
1587 			w83791d_read(client, W83791D_REG_ALARM1) +
1588 			(w83791d_read(client, W83791D_REG_ALARM2) << 8) +
1589 			(w83791d_read(client, W83791D_REG_ALARM3) << 16);
1590 
1591 		/* Update the beep configuration information */
1592 		data->beep_mask =
1593 			w83791d_read(client, W83791D_REG_BEEP_CTRL[0]) +
1594 			(w83791d_read(client, W83791D_REG_BEEP_CTRL[1]) << 8) +
1595 			(w83791d_read(client, W83791D_REG_BEEP_CTRL[2]) << 16);
1596 
1597 		/* Extract global beep enable flag */
1598 		data->beep_enable =
1599 			(data->beep_mask >> GLOBAL_BEEP_ENABLE_SHIFT) & 0x01;
1600 
1601 		/* Update the cpu voltage information */
1602 		i = w83791d_read(client, W83791D_REG_VID_FANDIV);
1603 		data->vid = i & 0x0f;
1604 		data->vid |= (w83791d_read(client, W83791D_REG_DID_VID4) & 0x01)
1605 				<< 4;
1606 
1607 		data->last_updated = jiffies;
1608 		data->valid = 1;
1609 	}
1610 
1611 	mutex_unlock(&data->update_lock);
1612 
1613 #ifdef DEBUG
1614 	w83791d_print_debug(data, dev);
1615 #endif
1616 
1617 	return data;
1618 }
1619 
1620 #ifdef DEBUG
1621 static void w83791d_print_debug(struct w83791d_data *data, struct device *dev)
1622 {
1623 	int i = 0, j = 0;
1624 
1625 	dev_dbg(dev, "======Start of w83791d debug values======\n");
1626 	dev_dbg(dev, "%d set of Voltages: ===>\n", NUMBER_OF_VIN);
1627 	for (i = 0; i < NUMBER_OF_VIN; i++) {
1628 		dev_dbg(dev, "vin[%d] is:     0x%02x\n", i, data->in[i]);
1629 		dev_dbg(dev, "vin[%d] min is: 0x%02x\n", i, data->in_min[i]);
1630 		dev_dbg(dev, "vin[%d] max is: 0x%02x\n", i, data->in_max[i]);
1631 	}
1632 	dev_dbg(dev, "%d set of Fan Counts/Divisors: ===>\n", NUMBER_OF_FANIN);
1633 	for (i = 0; i < NUMBER_OF_FANIN; i++) {
1634 		dev_dbg(dev, "fan[%d] is:     0x%02x\n", i, data->fan[i]);
1635 		dev_dbg(dev, "fan[%d] min is: 0x%02x\n", i, data->fan_min[i]);
1636 		dev_dbg(dev, "fan_div[%d] is: 0x%02x\n", i, data->fan_div[i]);
1637 	}
1638 
1639 	/*
1640 	 * temperature math is signed, but only print out the
1641 	 * bits that matter
1642 	 */
1643 	dev_dbg(dev, "%d set of Temperatures: ===>\n", NUMBER_OF_TEMPIN);
1644 	for (i = 0; i < 3; i++)
1645 		dev_dbg(dev, "temp1[%d] is: 0x%02x\n", i, (u8) data->temp1[i]);
1646 	for (i = 0; i < 2; i++) {
1647 		for (j = 0; j < 3; j++) {
1648 			dev_dbg(dev, "temp_add[%d][%d] is: 0x%04x\n", i, j,
1649 				(u16) data->temp_add[i][j]);
1650 		}
1651 	}
1652 
1653 	dev_dbg(dev, "Misc Information: ===>\n");
1654 	dev_dbg(dev, "alarm is:     0x%08x\n", data->alarms);
1655 	dev_dbg(dev, "beep_mask is: 0x%08x\n", data->beep_mask);
1656 	dev_dbg(dev, "beep_enable is: %d\n", data->beep_enable);
1657 	dev_dbg(dev, "vid is: 0x%02x\n", data->vid);
1658 	dev_dbg(dev, "vrm is: 0x%02x\n", data->vrm);
1659 	dev_dbg(dev, "=======End of w83791d debug values========\n");
1660 	dev_dbg(dev, "\n");
1661 }
1662 #endif
1663 
1664 module_i2c_driver(w83791d_driver);
1665 
1666 MODULE_AUTHOR("Charles Spirakis <bezaur@gmail.com>");
1667 MODULE_DESCRIPTION("W83791D driver");
1668 MODULE_LICENSE("GPL");
1669