xref: /linux/drivers/hwmon/w83627ehf.c (revision 0d456bad36d42d16022be045c8a53ddbb59ee478)
1 /*
2  *  w83627ehf - Driver for the hardware monitoring functionality of
3  *		the Winbond W83627EHF Super-I/O chip
4  *  Copyright (C) 2005-2011  Jean Delvare <khali@linux-fr.org>
5  *  Copyright (C) 2006  Yuan Mu (Winbond),
6  *			Rudolf Marek <r.marek@assembler.cz>
7  *			David Hubbard <david.c.hubbard@gmail.com>
8  *			Daniel J Blueman <daniel.blueman@gmail.com>
9  *  Copyright (C) 2010  Sheng-Yuan Huang (Nuvoton) (PS00)
10  *
11  *  Shamelessly ripped from the w83627hf driver
12  *  Copyright (C) 2003  Mark Studebaker
13  *
14  *  Thanks to Leon Moonen, Steve Cliffe and Grant Coady for their help
15  *  in testing and debugging this driver.
16  *
17  *  This driver also supports the W83627EHG, which is the lead-free
18  *  version of the W83627EHF.
19  *
20  *  This program is free software; you can redistribute it and/or modify
21  *  it under the terms of the GNU General Public License as published by
22  *  the Free Software Foundation; either version 2 of the License, or
23  *  (at your option) any later version.
24  *
25  *  This program is distributed in the hope that it will be useful,
26  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
27  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
28  *  GNU General Public License for more details.
29  *
30  *  You should have received a copy of the GNU General Public License
31  *  along with this program; if not, write to the Free Software
32  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33  *
34  *  Supports the following chips:
35  *
36  *  Chip        #vin    #fan    #pwm    #temp  chip IDs       man ID
37  *  w83627ehf   10      5       4       3      0x8850 0x88    0x5ca3
38  *					       0x8860 0xa1
39  *  w83627dhg    9      5       4       3      0xa020 0xc1    0x5ca3
40  *  w83627dhg-p  9      5       4       3      0xb070 0xc1    0x5ca3
41  *  w83627uhg    8      2       2       3      0xa230 0xc1    0x5ca3
42  *  w83667hg     9      5       3       3      0xa510 0xc1    0x5ca3
43  *  w83667hg-b   9      5       3       4      0xb350 0xc1    0x5ca3
44  *  nct6775f     9      4       3       9      0xb470 0xc1    0x5ca3
45  *  nct6776f     9      5       3       9      0xC330 0xc1    0x5ca3
46  */
47 
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49 
50 #include <linux/module.h>
51 #include <linux/init.h>
52 #include <linux/slab.h>
53 #include <linux/jiffies.h>
54 #include <linux/platform_device.h>
55 #include <linux/hwmon.h>
56 #include <linux/hwmon-sysfs.h>
57 #include <linux/hwmon-vid.h>
58 #include <linux/err.h>
59 #include <linux/mutex.h>
60 #include <linux/acpi.h>
61 #include <linux/io.h>
62 #include "lm75.h"
63 
64 enum kinds {
65 	w83627ehf, w83627dhg, w83627dhg_p, w83627uhg,
66 	w83667hg, w83667hg_b, nct6775, nct6776,
67 };
68 
69 /* used to set data->name = w83627ehf_device_names[data->sio_kind] */
70 static const char * const w83627ehf_device_names[] = {
71 	"w83627ehf",
72 	"w83627dhg",
73 	"w83627dhg",
74 	"w83627uhg",
75 	"w83667hg",
76 	"w83667hg",
77 	"nct6775",
78 	"nct6776",
79 };
80 
81 static unsigned short force_id;
82 module_param(force_id, ushort, 0);
83 MODULE_PARM_DESC(force_id, "Override the detected device ID");
84 
85 static unsigned short fan_debounce;
86 module_param(fan_debounce, ushort, 0);
87 MODULE_PARM_DESC(fan_debounce, "Enable debouncing for fan RPM signal");
88 
89 #define DRVNAME "w83627ehf"
90 
91 /*
92  * Super-I/O constants and functions
93  */
94 
95 #define W83627EHF_LD_HWM	0x0b
96 #define W83667HG_LD_VID		0x0d
97 
98 #define SIO_REG_LDSEL		0x07	/* Logical device select */
99 #define SIO_REG_DEVID		0x20	/* Device ID (2 bytes) */
100 #define SIO_REG_EN_VRM10	0x2C	/* GPIO3, GPIO4 selection */
101 #define SIO_REG_ENABLE		0x30	/* Logical device enable */
102 #define SIO_REG_ADDR		0x60	/* Logical device address (2 bytes) */
103 #define SIO_REG_VID_CTRL	0xF0	/* VID control */
104 #define SIO_REG_VID_DATA	0xF1	/* VID data */
105 
106 #define SIO_W83627EHF_ID	0x8850
107 #define SIO_W83627EHG_ID	0x8860
108 #define SIO_W83627DHG_ID	0xa020
109 #define SIO_W83627DHG_P_ID	0xb070
110 #define SIO_W83627UHG_ID	0xa230
111 #define SIO_W83667HG_ID		0xa510
112 #define SIO_W83667HG_B_ID	0xb350
113 #define SIO_NCT6775_ID		0xb470
114 #define SIO_NCT6776_ID		0xc330
115 #define SIO_ID_MASK		0xFFF0
116 
117 static inline void
118 superio_outb(int ioreg, int reg, int val)
119 {
120 	outb(reg, ioreg);
121 	outb(val, ioreg + 1);
122 }
123 
124 static inline int
125 superio_inb(int ioreg, int reg)
126 {
127 	outb(reg, ioreg);
128 	return inb(ioreg + 1);
129 }
130 
131 static inline void
132 superio_select(int ioreg, int ld)
133 {
134 	outb(SIO_REG_LDSEL, ioreg);
135 	outb(ld, ioreg + 1);
136 }
137 
138 static inline void
139 superio_enter(int ioreg)
140 {
141 	outb(0x87, ioreg);
142 	outb(0x87, ioreg);
143 }
144 
145 static inline void
146 superio_exit(int ioreg)
147 {
148 	outb(0xaa, ioreg);
149 	outb(0x02, ioreg);
150 	outb(0x02, ioreg + 1);
151 }
152 
153 /*
154  * ISA constants
155  */
156 
157 #define IOREGION_ALIGNMENT	(~7)
158 #define IOREGION_OFFSET		5
159 #define IOREGION_LENGTH		2
160 #define ADDR_REG_OFFSET		0
161 #define DATA_REG_OFFSET		1
162 
163 #define W83627EHF_REG_BANK		0x4E
164 #define W83627EHF_REG_CONFIG		0x40
165 
166 /*
167  * Not currently used:
168  * REG_MAN_ID has the value 0x5ca3 for all supported chips.
169  * REG_CHIP_ID == 0x88/0xa1/0xc1 depending on chip model.
170  * REG_MAN_ID is at port 0x4f
171  * REG_CHIP_ID is at port 0x58
172  */
173 
174 static const u16 W83627EHF_REG_FAN[] = { 0x28, 0x29, 0x2a, 0x3f, 0x553 };
175 static const u16 W83627EHF_REG_FAN_MIN[] = { 0x3b, 0x3c, 0x3d, 0x3e, 0x55c };
176 
177 /* The W83627EHF registers for nr=7,8,9 are in bank 5 */
178 #define W83627EHF_REG_IN_MAX(nr)	((nr < 7) ? (0x2b + (nr) * 2) : \
179 					 (0x554 + (((nr) - 7) * 2)))
180 #define W83627EHF_REG_IN_MIN(nr)	((nr < 7) ? (0x2c + (nr) * 2) : \
181 					 (0x555 + (((nr) - 7) * 2)))
182 #define W83627EHF_REG_IN(nr)		((nr < 7) ? (0x20 + (nr)) : \
183 					 (0x550 + (nr) - 7))
184 
185 static const u16 W83627EHF_REG_TEMP[] = { 0x27, 0x150, 0x250, 0x7e };
186 static const u16 W83627EHF_REG_TEMP_HYST[] = { 0x3a, 0x153, 0x253, 0 };
187 static const u16 W83627EHF_REG_TEMP_OVER[] = { 0x39, 0x155, 0x255, 0 };
188 static const u16 W83627EHF_REG_TEMP_CONFIG[] = { 0, 0x152, 0x252, 0 };
189 
190 /* Fan clock dividers are spread over the following five registers */
191 #define W83627EHF_REG_FANDIV1		0x47
192 #define W83627EHF_REG_FANDIV2		0x4B
193 #define W83627EHF_REG_VBAT		0x5D
194 #define W83627EHF_REG_DIODE		0x59
195 #define W83627EHF_REG_SMI_OVT		0x4C
196 
197 /* NCT6775F has its own fan divider registers */
198 #define NCT6775_REG_FANDIV1		0x506
199 #define NCT6775_REG_FANDIV2		0x507
200 #define NCT6775_REG_FAN_DEBOUNCE	0xf0
201 
202 #define W83627EHF_REG_ALARM1		0x459
203 #define W83627EHF_REG_ALARM2		0x45A
204 #define W83627EHF_REG_ALARM3		0x45B
205 
206 #define W83627EHF_REG_CASEOPEN_DET	0x42 /* SMI STATUS #2 */
207 #define W83627EHF_REG_CASEOPEN_CLR	0x46 /* SMI MASK #3 */
208 
209 /* SmartFan registers */
210 #define W83627EHF_REG_FAN_STEPUP_TIME 0x0f
211 #define W83627EHF_REG_FAN_STEPDOWN_TIME 0x0e
212 
213 /* DC or PWM output fan configuration */
214 static const u8 W83627EHF_REG_PWM_ENABLE[] = {
215 	0x04,			/* SYS FAN0 output mode and PWM mode */
216 	0x04,			/* CPU FAN0 output mode and PWM mode */
217 	0x12,			/* AUX FAN mode */
218 	0x62,			/* CPU FAN1 mode */
219 };
220 
221 static const u8 W83627EHF_PWM_MODE_SHIFT[] = { 0, 1, 0, 6 };
222 static const u8 W83627EHF_PWM_ENABLE_SHIFT[] = { 2, 4, 1, 4 };
223 
224 /* FAN Duty Cycle, be used to control */
225 static const u16 W83627EHF_REG_PWM[] = { 0x01, 0x03, 0x11, 0x61 };
226 static const u16 W83627EHF_REG_TARGET[] = { 0x05, 0x06, 0x13, 0x63 };
227 static const u8 W83627EHF_REG_TOLERANCE[] = { 0x07, 0x07, 0x14, 0x62 };
228 
229 /* Advanced Fan control, some values are common for all fans */
230 static const u16 W83627EHF_REG_FAN_START_OUTPUT[] = { 0x0a, 0x0b, 0x16, 0x65 };
231 static const u16 W83627EHF_REG_FAN_STOP_OUTPUT[] = { 0x08, 0x09, 0x15, 0x64 };
232 static const u16 W83627EHF_REG_FAN_STOP_TIME[] = { 0x0c, 0x0d, 0x17, 0x66 };
233 
234 static const u16 W83627EHF_REG_FAN_MAX_OUTPUT_COMMON[]
235 						= { 0xff, 0x67, 0xff, 0x69 };
236 static const u16 W83627EHF_REG_FAN_STEP_OUTPUT_COMMON[]
237 						= { 0xff, 0x68, 0xff, 0x6a };
238 
239 static const u16 W83627EHF_REG_FAN_MAX_OUTPUT_W83667_B[] = { 0x67, 0x69, 0x6b };
240 static const u16 W83627EHF_REG_FAN_STEP_OUTPUT_W83667_B[]
241 						= { 0x68, 0x6a, 0x6c };
242 
243 static const u16 W83627EHF_REG_TEMP_OFFSET[] = { 0x454, 0x455, 0x456 };
244 
245 static const u16 NCT6775_REG_TARGET[] = { 0x101, 0x201, 0x301 };
246 static const u16 NCT6775_REG_FAN_MODE[] = { 0x102, 0x202, 0x302 };
247 static const u16 NCT6775_REG_FAN_STOP_OUTPUT[] = { 0x105, 0x205, 0x305 };
248 static const u16 NCT6775_REG_FAN_START_OUTPUT[] = { 0x106, 0x206, 0x306 };
249 static const u16 NCT6775_REG_FAN_STOP_TIME[] = { 0x107, 0x207, 0x307 };
250 static const u16 NCT6775_REG_PWM[] = { 0x109, 0x209, 0x309 };
251 static const u16 NCT6775_REG_FAN_MAX_OUTPUT[] = { 0x10a, 0x20a, 0x30a };
252 static const u16 NCT6775_REG_FAN_STEP_OUTPUT[] = { 0x10b, 0x20b, 0x30b };
253 static const u16 NCT6775_REG_FAN[] = { 0x630, 0x632, 0x634, 0x636, 0x638 };
254 static const u16 NCT6776_REG_FAN_MIN[] = { 0x63a, 0x63c, 0x63e, 0x640, 0x642};
255 
256 static const u16 NCT6775_REG_TEMP[]
257 	= { 0x27, 0x150, 0x250, 0x73, 0x75, 0x77, 0x62b, 0x62c, 0x62d };
258 static const u16 NCT6775_REG_TEMP_CONFIG[]
259 	= { 0, 0x152, 0x252, 0, 0, 0, 0x628, 0x629, 0x62A };
260 static const u16 NCT6775_REG_TEMP_HYST[]
261 	= { 0x3a, 0x153, 0x253, 0, 0, 0, 0x673, 0x678, 0x67D };
262 static const u16 NCT6775_REG_TEMP_OVER[]
263 	= { 0x39, 0x155, 0x255, 0, 0, 0, 0x672, 0x677, 0x67C };
264 static const u16 NCT6775_REG_TEMP_SOURCE[]
265 	= { 0x621, 0x622, 0x623, 0x100, 0x200, 0x300, 0x624, 0x625, 0x626 };
266 
267 static const char *const w83667hg_b_temp_label[] = {
268 	"SYSTIN",
269 	"CPUTIN",
270 	"AUXTIN",
271 	"AMDTSI",
272 	"PECI Agent 1",
273 	"PECI Agent 2",
274 	"PECI Agent 3",
275 	"PECI Agent 4"
276 };
277 
278 static const char *const nct6775_temp_label[] = {
279 	"",
280 	"SYSTIN",
281 	"CPUTIN",
282 	"AUXTIN",
283 	"AMD SB-TSI",
284 	"PECI Agent 0",
285 	"PECI Agent 1",
286 	"PECI Agent 2",
287 	"PECI Agent 3",
288 	"PECI Agent 4",
289 	"PECI Agent 5",
290 	"PECI Agent 6",
291 	"PECI Agent 7",
292 	"PCH_CHIP_CPU_MAX_TEMP",
293 	"PCH_CHIP_TEMP",
294 	"PCH_CPU_TEMP",
295 	"PCH_MCH_TEMP",
296 	"PCH_DIM0_TEMP",
297 	"PCH_DIM1_TEMP",
298 	"PCH_DIM2_TEMP",
299 	"PCH_DIM3_TEMP"
300 };
301 
302 static const char *const nct6776_temp_label[] = {
303 	"",
304 	"SYSTIN",
305 	"CPUTIN",
306 	"AUXTIN",
307 	"SMBUSMASTER 0",
308 	"SMBUSMASTER 1",
309 	"SMBUSMASTER 2",
310 	"SMBUSMASTER 3",
311 	"SMBUSMASTER 4",
312 	"SMBUSMASTER 5",
313 	"SMBUSMASTER 6",
314 	"SMBUSMASTER 7",
315 	"PECI Agent 0",
316 	"PECI Agent 1",
317 	"PCH_CHIP_CPU_MAX_TEMP",
318 	"PCH_CHIP_TEMP",
319 	"PCH_CPU_TEMP",
320 	"PCH_MCH_TEMP",
321 	"PCH_DIM0_TEMP",
322 	"PCH_DIM1_TEMP",
323 	"PCH_DIM2_TEMP",
324 	"PCH_DIM3_TEMP",
325 	"BYTE_TEMP"
326 };
327 
328 #define NUM_REG_TEMP	ARRAY_SIZE(NCT6775_REG_TEMP)
329 
330 static int is_word_sized(u16 reg)
331 {
332 	return ((((reg & 0xff00) == 0x100
333 	      || (reg & 0xff00) == 0x200)
334 	     && ((reg & 0x00ff) == 0x50
335 	      || (reg & 0x00ff) == 0x53
336 	      || (reg & 0x00ff) == 0x55))
337 	     || (reg & 0xfff0) == 0x630
338 	     || reg == 0x640 || reg == 0x642
339 	     || ((reg & 0xfff0) == 0x650
340 		 && (reg & 0x000f) >= 0x06)
341 	     || reg == 0x73 || reg == 0x75 || reg == 0x77
342 		);
343 }
344 
345 /*
346  * Conversions
347  */
348 
349 /* 1 is PWM mode, output in ms */
350 static inline unsigned int step_time_from_reg(u8 reg, u8 mode)
351 {
352 	return mode ? 100 * reg : 400 * reg;
353 }
354 
355 static inline u8 step_time_to_reg(unsigned int msec, u8 mode)
356 {
357 	return SENSORS_LIMIT((mode ? (msec + 50) / 100 :
358 						(msec + 200) / 400), 1, 255);
359 }
360 
361 static unsigned int fan_from_reg8(u16 reg, unsigned int divreg)
362 {
363 	if (reg == 0 || reg == 255)
364 		return 0;
365 	return 1350000U / (reg << divreg);
366 }
367 
368 static unsigned int fan_from_reg13(u16 reg, unsigned int divreg)
369 {
370 	if ((reg & 0xff1f) == 0xff1f)
371 		return 0;
372 
373 	reg = (reg & 0x1f) | ((reg & 0xff00) >> 3);
374 
375 	if (reg == 0)
376 		return 0;
377 
378 	return 1350000U / reg;
379 }
380 
381 static unsigned int fan_from_reg16(u16 reg, unsigned int divreg)
382 {
383 	if (reg == 0 || reg == 0xffff)
384 		return 0;
385 
386 	/*
387 	 * Even though the registers are 16 bit wide, the fan divisor
388 	 * still applies.
389 	 */
390 	return 1350000U / (reg << divreg);
391 }
392 
393 static inline unsigned int
394 div_from_reg(u8 reg)
395 {
396 	return 1 << reg;
397 }
398 
399 /*
400  * Some of the voltage inputs have internal scaling, the tables below
401  * contain 8 (the ADC LSB in mV) * scaling factor * 100
402  */
403 static const u16 scale_in_common[10] = {
404 	800, 800, 1600, 1600, 800, 800, 800, 1600, 1600, 800
405 };
406 static const u16 scale_in_w83627uhg[9] = {
407 	800, 800, 3328, 3424, 800, 800, 0, 3328, 3400
408 };
409 
410 static inline long in_from_reg(u8 reg, u8 nr, const u16 *scale_in)
411 {
412 	return DIV_ROUND_CLOSEST(reg * scale_in[nr], 100);
413 }
414 
415 static inline u8 in_to_reg(u32 val, u8 nr, const u16 *scale_in)
416 {
417 	return SENSORS_LIMIT(DIV_ROUND_CLOSEST(val * 100, scale_in[nr]), 0,
418 			     255);
419 }
420 
421 /*
422  * Data structures and manipulation thereof
423  */
424 
425 struct w83627ehf_data {
426 	int addr;	/* IO base of hw monitor block */
427 	const char *name;
428 
429 	struct device *hwmon_dev;
430 	struct mutex lock;
431 
432 	u16 reg_temp[NUM_REG_TEMP];
433 	u16 reg_temp_over[NUM_REG_TEMP];
434 	u16 reg_temp_hyst[NUM_REG_TEMP];
435 	u16 reg_temp_config[NUM_REG_TEMP];
436 	u8 temp_src[NUM_REG_TEMP];
437 	const char * const *temp_label;
438 
439 	const u16 *REG_PWM;
440 	const u16 *REG_TARGET;
441 	const u16 *REG_FAN;
442 	const u16 *REG_FAN_MIN;
443 	const u16 *REG_FAN_START_OUTPUT;
444 	const u16 *REG_FAN_STOP_OUTPUT;
445 	const u16 *REG_FAN_STOP_TIME;
446 	const u16 *REG_FAN_MAX_OUTPUT;
447 	const u16 *REG_FAN_STEP_OUTPUT;
448 	const u16 *scale_in;
449 
450 	unsigned int (*fan_from_reg)(u16 reg, unsigned int divreg);
451 	unsigned int (*fan_from_reg_min)(u16 reg, unsigned int divreg);
452 
453 	struct mutex update_lock;
454 	char valid;		/* !=0 if following fields are valid */
455 	unsigned long last_updated;	/* In jiffies */
456 
457 	/* Register values */
458 	u8 bank;		/* current register bank */
459 	u8 in_num;		/* number of in inputs we have */
460 	u8 in[10];		/* Register value */
461 	u8 in_max[10];		/* Register value */
462 	u8 in_min[10];		/* Register value */
463 	unsigned int rpm[5];
464 	u16 fan_min[5];
465 	u8 fan_div[5];
466 	u8 has_fan;		/* some fan inputs can be disabled */
467 	u8 has_fan_min;		/* some fans don't have min register */
468 	bool has_fan_div;
469 	u8 temp_type[3];
470 	s8 temp_offset[3];
471 	s16 temp[9];
472 	s16 temp_max[9];
473 	s16 temp_max_hyst[9];
474 	u32 alarms;
475 	u8 caseopen;
476 
477 	u8 pwm_mode[4]; /* 0->DC variable voltage, 1->PWM variable duty cycle */
478 	u8 pwm_enable[4]; /* 1->manual
479 			   * 2->thermal cruise mode (also called SmartFan I)
480 			   * 3->fan speed cruise mode
481 			   * 4->variable thermal cruise (also called
482 			   * SmartFan III)
483 			   * 5->enhanced variable thermal cruise (also called
484 			   * SmartFan IV)
485 			   */
486 	u8 pwm_enable_orig[4];	/* original value of pwm_enable */
487 	u8 pwm_num;		/* number of pwm */
488 	u8 pwm[4];
489 	u8 target_temp[4];
490 	u8 tolerance[4];
491 
492 	u8 fan_start_output[4]; /* minimum fan speed when spinning up */
493 	u8 fan_stop_output[4]; /* minimum fan speed when spinning down */
494 	u8 fan_stop_time[4]; /* time at minimum before disabling fan */
495 	u8 fan_max_output[4]; /* maximum fan speed */
496 	u8 fan_step_output[4]; /* rate of change output value */
497 
498 	u8 vid;
499 	u8 vrm;
500 
501 	u16 have_temp;
502 	u16 have_temp_offset;
503 	u8 in6_skip:1;
504 	u8 temp3_val_only:1;
505 };
506 
507 struct w83627ehf_sio_data {
508 	int sioreg;
509 	enum kinds kind;
510 };
511 
512 /*
513  * On older chips, only registers 0x50-0x5f are banked.
514  * On more recent chips, all registers are banked.
515  * Assume that is the case and set the bank number for each access.
516  * Cache the bank number so it only needs to be set if it changes.
517  */
518 static inline void w83627ehf_set_bank(struct w83627ehf_data *data, u16 reg)
519 {
520 	u8 bank = reg >> 8;
521 	if (data->bank != bank) {
522 		outb_p(W83627EHF_REG_BANK, data->addr + ADDR_REG_OFFSET);
523 		outb_p(bank, data->addr + DATA_REG_OFFSET);
524 		data->bank = bank;
525 	}
526 }
527 
528 static u16 w83627ehf_read_value(struct w83627ehf_data *data, u16 reg)
529 {
530 	int res, word_sized = is_word_sized(reg);
531 
532 	mutex_lock(&data->lock);
533 
534 	w83627ehf_set_bank(data, reg);
535 	outb_p(reg & 0xff, data->addr + ADDR_REG_OFFSET);
536 	res = inb_p(data->addr + DATA_REG_OFFSET);
537 	if (word_sized) {
538 		outb_p((reg & 0xff) + 1,
539 		       data->addr + ADDR_REG_OFFSET);
540 		res = (res << 8) + inb_p(data->addr + DATA_REG_OFFSET);
541 	}
542 
543 	mutex_unlock(&data->lock);
544 	return res;
545 }
546 
547 static int w83627ehf_write_value(struct w83627ehf_data *data, u16 reg,
548 				 u16 value)
549 {
550 	int word_sized = is_word_sized(reg);
551 
552 	mutex_lock(&data->lock);
553 
554 	w83627ehf_set_bank(data, reg);
555 	outb_p(reg & 0xff, data->addr + ADDR_REG_OFFSET);
556 	if (word_sized) {
557 		outb_p(value >> 8, data->addr + DATA_REG_OFFSET);
558 		outb_p((reg & 0xff) + 1,
559 		       data->addr + ADDR_REG_OFFSET);
560 	}
561 	outb_p(value & 0xff, data->addr + DATA_REG_OFFSET);
562 
563 	mutex_unlock(&data->lock);
564 	return 0;
565 }
566 
567 /* We left-align 8-bit temperature values to make the code simpler */
568 static u16 w83627ehf_read_temp(struct w83627ehf_data *data, u16 reg)
569 {
570 	u16 res;
571 
572 	res = w83627ehf_read_value(data, reg);
573 	if (!is_word_sized(reg))
574 		res <<= 8;
575 
576 	return res;
577 }
578 
579 static int w83627ehf_write_temp(struct w83627ehf_data *data, u16 reg,
580 				       u16 value)
581 {
582 	if (!is_word_sized(reg))
583 		value >>= 8;
584 	return w83627ehf_write_value(data, reg, value);
585 }
586 
587 /* This function assumes that the caller holds data->update_lock */
588 static void nct6775_write_fan_div(struct w83627ehf_data *data, int nr)
589 {
590 	u8 reg;
591 
592 	switch (nr) {
593 	case 0:
594 		reg = (w83627ehf_read_value(data, NCT6775_REG_FANDIV1) & 0x70)
595 		    | (data->fan_div[0] & 0x7);
596 		w83627ehf_write_value(data, NCT6775_REG_FANDIV1, reg);
597 		break;
598 	case 1:
599 		reg = (w83627ehf_read_value(data, NCT6775_REG_FANDIV1) & 0x7)
600 		    | ((data->fan_div[1] << 4) & 0x70);
601 		w83627ehf_write_value(data, NCT6775_REG_FANDIV1, reg);
602 		break;
603 	case 2:
604 		reg = (w83627ehf_read_value(data, NCT6775_REG_FANDIV2) & 0x70)
605 		    | (data->fan_div[2] & 0x7);
606 		w83627ehf_write_value(data, NCT6775_REG_FANDIV2, reg);
607 		break;
608 	case 3:
609 		reg = (w83627ehf_read_value(data, NCT6775_REG_FANDIV2) & 0x7)
610 		    | ((data->fan_div[3] << 4) & 0x70);
611 		w83627ehf_write_value(data, NCT6775_REG_FANDIV2, reg);
612 		break;
613 	}
614 }
615 
616 /* This function assumes that the caller holds data->update_lock */
617 static void w83627ehf_write_fan_div(struct w83627ehf_data *data, int nr)
618 {
619 	u8 reg;
620 
621 	switch (nr) {
622 	case 0:
623 		reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV1) & 0xcf)
624 		    | ((data->fan_div[0] & 0x03) << 4);
625 		/* fan5 input control bit is write only, compute the value */
626 		reg |= (data->has_fan & (1 << 4)) ? 1 : 0;
627 		w83627ehf_write_value(data, W83627EHF_REG_FANDIV1, reg);
628 		reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0xdf)
629 		    | ((data->fan_div[0] & 0x04) << 3);
630 		w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg);
631 		break;
632 	case 1:
633 		reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV1) & 0x3f)
634 		    | ((data->fan_div[1] & 0x03) << 6);
635 		/* fan5 input control bit is write only, compute the value */
636 		reg |= (data->has_fan & (1 << 4)) ? 1 : 0;
637 		w83627ehf_write_value(data, W83627EHF_REG_FANDIV1, reg);
638 		reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0xbf)
639 		    | ((data->fan_div[1] & 0x04) << 4);
640 		w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg);
641 		break;
642 	case 2:
643 		reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV2) & 0x3f)
644 		    | ((data->fan_div[2] & 0x03) << 6);
645 		w83627ehf_write_value(data, W83627EHF_REG_FANDIV2, reg);
646 		reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0x7f)
647 		    | ((data->fan_div[2] & 0x04) << 5);
648 		w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg);
649 		break;
650 	case 3:
651 		reg = (w83627ehf_read_value(data, W83627EHF_REG_DIODE) & 0xfc)
652 		    | (data->fan_div[3] & 0x03);
653 		w83627ehf_write_value(data, W83627EHF_REG_DIODE, reg);
654 		reg = (w83627ehf_read_value(data, W83627EHF_REG_SMI_OVT) & 0x7f)
655 		    | ((data->fan_div[3] & 0x04) << 5);
656 		w83627ehf_write_value(data, W83627EHF_REG_SMI_OVT, reg);
657 		break;
658 	case 4:
659 		reg = (w83627ehf_read_value(data, W83627EHF_REG_DIODE) & 0x73)
660 		    | ((data->fan_div[4] & 0x03) << 2)
661 		    | ((data->fan_div[4] & 0x04) << 5);
662 		w83627ehf_write_value(data, W83627EHF_REG_DIODE, reg);
663 		break;
664 	}
665 }
666 
667 static void w83627ehf_write_fan_div_common(struct device *dev,
668 					   struct w83627ehf_data *data, int nr)
669 {
670 	struct w83627ehf_sio_data *sio_data = dev->platform_data;
671 
672 	if (sio_data->kind == nct6776)
673 		; /* no dividers, do nothing */
674 	else if (sio_data->kind == nct6775)
675 		nct6775_write_fan_div(data, nr);
676 	else
677 		w83627ehf_write_fan_div(data, nr);
678 }
679 
680 static void nct6775_update_fan_div(struct w83627ehf_data *data)
681 {
682 	u8 i;
683 
684 	i = w83627ehf_read_value(data, NCT6775_REG_FANDIV1);
685 	data->fan_div[0] = i & 0x7;
686 	data->fan_div[1] = (i & 0x70) >> 4;
687 	i = w83627ehf_read_value(data, NCT6775_REG_FANDIV2);
688 	data->fan_div[2] = i & 0x7;
689 	if (data->has_fan & (1<<3))
690 		data->fan_div[3] = (i & 0x70) >> 4;
691 }
692 
693 static void w83627ehf_update_fan_div(struct w83627ehf_data *data)
694 {
695 	int i;
696 
697 	i = w83627ehf_read_value(data, W83627EHF_REG_FANDIV1);
698 	data->fan_div[0] = (i >> 4) & 0x03;
699 	data->fan_div[1] = (i >> 6) & 0x03;
700 	i = w83627ehf_read_value(data, W83627EHF_REG_FANDIV2);
701 	data->fan_div[2] = (i >> 6) & 0x03;
702 	i = w83627ehf_read_value(data, W83627EHF_REG_VBAT);
703 	data->fan_div[0] |= (i >> 3) & 0x04;
704 	data->fan_div[1] |= (i >> 4) & 0x04;
705 	data->fan_div[2] |= (i >> 5) & 0x04;
706 	if (data->has_fan & ((1 << 3) | (1 << 4))) {
707 		i = w83627ehf_read_value(data, W83627EHF_REG_DIODE);
708 		data->fan_div[3] = i & 0x03;
709 		data->fan_div[4] = ((i >> 2) & 0x03)
710 				 | ((i >> 5) & 0x04);
711 	}
712 	if (data->has_fan & (1 << 3)) {
713 		i = w83627ehf_read_value(data, W83627EHF_REG_SMI_OVT);
714 		data->fan_div[3] |= (i >> 5) & 0x04;
715 	}
716 }
717 
718 static void w83627ehf_update_fan_div_common(struct device *dev,
719 					    struct w83627ehf_data *data)
720 {
721 	struct w83627ehf_sio_data *sio_data = dev->platform_data;
722 
723 	if (sio_data->kind == nct6776)
724 		; /* no dividers, do nothing */
725 	else if (sio_data->kind == nct6775)
726 		nct6775_update_fan_div(data);
727 	else
728 		w83627ehf_update_fan_div(data);
729 }
730 
731 static void nct6775_update_pwm(struct w83627ehf_data *data)
732 {
733 	int i;
734 	int pwmcfg, fanmodecfg;
735 
736 	for (i = 0; i < data->pwm_num; i++) {
737 		pwmcfg = w83627ehf_read_value(data,
738 					      W83627EHF_REG_PWM_ENABLE[i]);
739 		fanmodecfg = w83627ehf_read_value(data,
740 						  NCT6775_REG_FAN_MODE[i]);
741 		data->pwm_mode[i] =
742 		  ((pwmcfg >> W83627EHF_PWM_MODE_SHIFT[i]) & 1) ? 0 : 1;
743 		data->pwm_enable[i] = ((fanmodecfg >> 4) & 7) + 1;
744 		data->tolerance[i] = fanmodecfg & 0x0f;
745 		data->pwm[i] = w83627ehf_read_value(data, data->REG_PWM[i]);
746 	}
747 }
748 
749 static void w83627ehf_update_pwm(struct w83627ehf_data *data)
750 {
751 	int i;
752 	int pwmcfg = 0, tolerance = 0; /* shut up the compiler */
753 
754 	for (i = 0; i < data->pwm_num; i++) {
755 		if (!(data->has_fan & (1 << i)))
756 			continue;
757 
758 		/* pwmcfg, tolerance mapped for i=0, i=1 to same reg */
759 		if (i != 1) {
760 			pwmcfg = w83627ehf_read_value(data,
761 					W83627EHF_REG_PWM_ENABLE[i]);
762 			tolerance = w83627ehf_read_value(data,
763 					W83627EHF_REG_TOLERANCE[i]);
764 		}
765 		data->pwm_mode[i] =
766 			((pwmcfg >> W83627EHF_PWM_MODE_SHIFT[i]) & 1) ? 0 : 1;
767 		data->pwm_enable[i] = ((pwmcfg >> W83627EHF_PWM_ENABLE_SHIFT[i])
768 				       & 3) + 1;
769 		data->pwm[i] = w83627ehf_read_value(data, data->REG_PWM[i]);
770 
771 		data->tolerance[i] = (tolerance >> (i == 1 ? 4 : 0)) & 0x0f;
772 	}
773 }
774 
775 static void w83627ehf_update_pwm_common(struct device *dev,
776 					struct w83627ehf_data *data)
777 {
778 	struct w83627ehf_sio_data *sio_data = dev->platform_data;
779 
780 	if (sio_data->kind == nct6775 || sio_data->kind == nct6776)
781 		nct6775_update_pwm(data);
782 	else
783 		w83627ehf_update_pwm(data);
784 }
785 
786 static struct w83627ehf_data *w83627ehf_update_device(struct device *dev)
787 {
788 	struct w83627ehf_data *data = dev_get_drvdata(dev);
789 	struct w83627ehf_sio_data *sio_data = dev->platform_data;
790 
791 	int i;
792 
793 	mutex_lock(&data->update_lock);
794 
795 	if (time_after(jiffies, data->last_updated + HZ + HZ/2)
796 	 || !data->valid) {
797 		/* Fan clock dividers */
798 		w83627ehf_update_fan_div_common(dev, data);
799 
800 		/* Measured voltages and limits */
801 		for (i = 0; i < data->in_num; i++) {
802 			if ((i == 6) && data->in6_skip)
803 				continue;
804 
805 			data->in[i] = w83627ehf_read_value(data,
806 				      W83627EHF_REG_IN(i));
807 			data->in_min[i] = w83627ehf_read_value(data,
808 					  W83627EHF_REG_IN_MIN(i));
809 			data->in_max[i] = w83627ehf_read_value(data,
810 					  W83627EHF_REG_IN_MAX(i));
811 		}
812 
813 		/* Measured fan speeds and limits */
814 		for (i = 0; i < 5; i++) {
815 			u16 reg;
816 
817 			if (!(data->has_fan & (1 << i)))
818 				continue;
819 
820 			reg = w83627ehf_read_value(data, data->REG_FAN[i]);
821 			data->rpm[i] = data->fan_from_reg(reg,
822 							  data->fan_div[i]);
823 
824 			if (data->has_fan_min & (1 << i))
825 				data->fan_min[i] = w83627ehf_read_value(data,
826 					   data->REG_FAN_MIN[i]);
827 
828 			/*
829 			 * If we failed to measure the fan speed and clock
830 			 * divider can be increased, let's try that for next
831 			 * time
832 			 */
833 			if (data->has_fan_div
834 			    && (reg >= 0xff || (sio_data->kind == nct6775
835 						&& reg == 0x00))
836 			    && data->fan_div[i] < 0x07) {
837 				dev_dbg(dev, "Increasing fan%d "
838 					"clock divider from %u to %u\n",
839 					i + 1, div_from_reg(data->fan_div[i]),
840 					div_from_reg(data->fan_div[i] + 1));
841 				data->fan_div[i]++;
842 				w83627ehf_write_fan_div_common(dev, data, i);
843 				/* Preserve min limit if possible */
844 				if ((data->has_fan_min & (1 << i))
845 				 && data->fan_min[i] >= 2
846 				 && data->fan_min[i] != 255)
847 					w83627ehf_write_value(data,
848 						data->REG_FAN_MIN[i],
849 						(data->fan_min[i] /= 2));
850 			}
851 		}
852 
853 		w83627ehf_update_pwm_common(dev, data);
854 
855 		for (i = 0; i < data->pwm_num; i++) {
856 			if (!(data->has_fan & (1 << i)))
857 				continue;
858 
859 			data->fan_start_output[i] =
860 			  w83627ehf_read_value(data,
861 					       data->REG_FAN_START_OUTPUT[i]);
862 			data->fan_stop_output[i] =
863 			  w83627ehf_read_value(data,
864 					       data->REG_FAN_STOP_OUTPUT[i]);
865 			data->fan_stop_time[i] =
866 			  w83627ehf_read_value(data,
867 					       data->REG_FAN_STOP_TIME[i]);
868 
869 			if (data->REG_FAN_MAX_OUTPUT &&
870 			    data->REG_FAN_MAX_OUTPUT[i] != 0xff)
871 				data->fan_max_output[i] =
872 				  w83627ehf_read_value(data,
873 						data->REG_FAN_MAX_OUTPUT[i]);
874 
875 			if (data->REG_FAN_STEP_OUTPUT &&
876 			    data->REG_FAN_STEP_OUTPUT[i] != 0xff)
877 				data->fan_step_output[i] =
878 				  w83627ehf_read_value(data,
879 						data->REG_FAN_STEP_OUTPUT[i]);
880 
881 			data->target_temp[i] =
882 				w83627ehf_read_value(data,
883 					data->REG_TARGET[i]) &
884 					(data->pwm_mode[i] == 1 ? 0x7f : 0xff);
885 		}
886 
887 		/* Measured temperatures and limits */
888 		for (i = 0; i < NUM_REG_TEMP; i++) {
889 			if (!(data->have_temp & (1 << i)))
890 				continue;
891 			data->temp[i] = w83627ehf_read_temp(data,
892 						data->reg_temp[i]);
893 			if (data->reg_temp_over[i])
894 				data->temp_max[i]
895 				  = w83627ehf_read_temp(data,
896 						data->reg_temp_over[i]);
897 			if (data->reg_temp_hyst[i])
898 				data->temp_max_hyst[i]
899 				  = w83627ehf_read_temp(data,
900 						data->reg_temp_hyst[i]);
901 			if (data->have_temp_offset & (1 << i))
902 				data->temp_offset[i]
903 				  = w83627ehf_read_value(data,
904 						W83627EHF_REG_TEMP_OFFSET[i]);
905 		}
906 
907 		data->alarms = w83627ehf_read_value(data,
908 					W83627EHF_REG_ALARM1) |
909 			       (w83627ehf_read_value(data,
910 					W83627EHF_REG_ALARM2) << 8) |
911 			       (w83627ehf_read_value(data,
912 					W83627EHF_REG_ALARM3) << 16);
913 
914 		data->caseopen = w83627ehf_read_value(data,
915 						W83627EHF_REG_CASEOPEN_DET);
916 
917 		data->last_updated = jiffies;
918 		data->valid = 1;
919 	}
920 
921 	mutex_unlock(&data->update_lock);
922 	return data;
923 }
924 
925 /*
926  * Sysfs callback functions
927  */
928 #define show_in_reg(reg) \
929 static ssize_t \
930 show_##reg(struct device *dev, struct device_attribute *attr, \
931 	   char *buf) \
932 { \
933 	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
934 	struct sensor_device_attribute *sensor_attr = \
935 		to_sensor_dev_attr(attr); \
936 	int nr = sensor_attr->index; \
937 	return sprintf(buf, "%ld\n", in_from_reg(data->reg[nr], nr, \
938 		       data->scale_in)); \
939 }
940 show_in_reg(in)
941 show_in_reg(in_min)
942 show_in_reg(in_max)
943 
944 #define store_in_reg(REG, reg) \
945 static ssize_t \
946 store_in_##reg(struct device *dev, struct device_attribute *attr, \
947 	       const char *buf, size_t count) \
948 { \
949 	struct w83627ehf_data *data = dev_get_drvdata(dev); \
950 	struct sensor_device_attribute *sensor_attr = \
951 		to_sensor_dev_attr(attr); \
952 	int nr = sensor_attr->index; \
953 	unsigned long val; \
954 	int err; \
955 	err = kstrtoul(buf, 10, &val); \
956 	if (err < 0) \
957 		return err; \
958 	mutex_lock(&data->update_lock); \
959 	data->in_##reg[nr] = in_to_reg(val, nr, data->scale_in); \
960 	w83627ehf_write_value(data, W83627EHF_REG_IN_##REG(nr), \
961 			      data->in_##reg[nr]); \
962 	mutex_unlock(&data->update_lock); \
963 	return count; \
964 }
965 
966 store_in_reg(MIN, min)
967 store_in_reg(MAX, max)
968 
969 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
970 			  char *buf)
971 {
972 	struct w83627ehf_data *data = w83627ehf_update_device(dev);
973 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
974 	int nr = sensor_attr->index;
975 	return sprintf(buf, "%u\n", (data->alarms >> nr) & 0x01);
976 }
977 
978 static struct sensor_device_attribute sda_in_input[] = {
979 	SENSOR_ATTR(in0_input, S_IRUGO, show_in, NULL, 0),
980 	SENSOR_ATTR(in1_input, S_IRUGO, show_in, NULL, 1),
981 	SENSOR_ATTR(in2_input, S_IRUGO, show_in, NULL, 2),
982 	SENSOR_ATTR(in3_input, S_IRUGO, show_in, NULL, 3),
983 	SENSOR_ATTR(in4_input, S_IRUGO, show_in, NULL, 4),
984 	SENSOR_ATTR(in5_input, S_IRUGO, show_in, NULL, 5),
985 	SENSOR_ATTR(in6_input, S_IRUGO, show_in, NULL, 6),
986 	SENSOR_ATTR(in7_input, S_IRUGO, show_in, NULL, 7),
987 	SENSOR_ATTR(in8_input, S_IRUGO, show_in, NULL, 8),
988 	SENSOR_ATTR(in9_input, S_IRUGO, show_in, NULL, 9),
989 };
990 
991 static struct sensor_device_attribute sda_in_alarm[] = {
992 	SENSOR_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0),
993 	SENSOR_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1),
994 	SENSOR_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2),
995 	SENSOR_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3),
996 	SENSOR_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8),
997 	SENSOR_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 21),
998 	SENSOR_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 20),
999 	SENSOR_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 16),
1000 	SENSOR_ATTR(in8_alarm, S_IRUGO, show_alarm, NULL, 17),
1001 	SENSOR_ATTR(in9_alarm, S_IRUGO, show_alarm, NULL, 19),
1002 };
1003 
1004 static struct sensor_device_attribute sda_in_min[] = {
1005 	SENSOR_ATTR(in0_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 0),
1006 	SENSOR_ATTR(in1_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 1),
1007 	SENSOR_ATTR(in2_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 2),
1008 	SENSOR_ATTR(in3_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 3),
1009 	SENSOR_ATTR(in4_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 4),
1010 	SENSOR_ATTR(in5_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 5),
1011 	SENSOR_ATTR(in6_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 6),
1012 	SENSOR_ATTR(in7_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 7),
1013 	SENSOR_ATTR(in8_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 8),
1014 	SENSOR_ATTR(in9_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 9),
1015 };
1016 
1017 static struct sensor_device_attribute sda_in_max[] = {
1018 	SENSOR_ATTR(in0_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 0),
1019 	SENSOR_ATTR(in1_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 1),
1020 	SENSOR_ATTR(in2_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 2),
1021 	SENSOR_ATTR(in3_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 3),
1022 	SENSOR_ATTR(in4_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 4),
1023 	SENSOR_ATTR(in5_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 5),
1024 	SENSOR_ATTR(in6_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 6),
1025 	SENSOR_ATTR(in7_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 7),
1026 	SENSOR_ATTR(in8_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 8),
1027 	SENSOR_ATTR(in9_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 9),
1028 };
1029 
1030 static ssize_t
1031 show_fan(struct device *dev, struct device_attribute *attr, char *buf)
1032 {
1033 	struct w83627ehf_data *data = w83627ehf_update_device(dev);
1034 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
1035 	int nr = sensor_attr->index;
1036 	return sprintf(buf, "%d\n", data->rpm[nr]);
1037 }
1038 
1039 static ssize_t
1040 show_fan_min(struct device *dev, struct device_attribute *attr, char *buf)
1041 {
1042 	struct w83627ehf_data *data = w83627ehf_update_device(dev);
1043 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
1044 	int nr = sensor_attr->index;
1045 	return sprintf(buf, "%d\n",
1046 		       data->fan_from_reg_min(data->fan_min[nr],
1047 					      data->fan_div[nr]));
1048 }
1049 
1050 static ssize_t
1051 show_fan_div(struct device *dev, struct device_attribute *attr,
1052 	     char *buf)
1053 {
1054 	struct w83627ehf_data *data = w83627ehf_update_device(dev);
1055 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
1056 	int nr = sensor_attr->index;
1057 	return sprintf(buf, "%u\n", div_from_reg(data->fan_div[nr]));
1058 }
1059 
1060 static ssize_t
1061 store_fan_min(struct device *dev, struct device_attribute *attr,
1062 	      const char *buf, size_t count)
1063 {
1064 	struct w83627ehf_data *data = dev_get_drvdata(dev);
1065 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
1066 	int nr = sensor_attr->index;
1067 	unsigned long val;
1068 	int err;
1069 	unsigned int reg;
1070 	u8 new_div;
1071 
1072 	err = kstrtoul(buf, 10, &val);
1073 	if (err < 0)
1074 		return err;
1075 
1076 	mutex_lock(&data->update_lock);
1077 	if (!data->has_fan_div) {
1078 		/*
1079 		 * Only NCT6776F for now, so we know that this is a 13 bit
1080 		 * register
1081 		 */
1082 		if (!val) {
1083 			val = 0xff1f;
1084 		} else {
1085 			if (val > 1350000U)
1086 				val = 135000U;
1087 			val = 1350000U / val;
1088 			val = (val & 0x1f) | ((val << 3) & 0xff00);
1089 		}
1090 		data->fan_min[nr] = val;
1091 		goto done;	/* Leave fan divider alone */
1092 	}
1093 	if (!val) {
1094 		/* No min limit, alarm disabled */
1095 		data->fan_min[nr] = 255;
1096 		new_div = data->fan_div[nr]; /* No change */
1097 		dev_info(dev, "fan%u low limit and alarm disabled\n", nr + 1);
1098 	} else if ((reg = 1350000U / val) >= 128 * 255) {
1099 		/*
1100 		 * Speed below this value cannot possibly be represented,
1101 		 * even with the highest divider (128)
1102 		 */
1103 		data->fan_min[nr] = 254;
1104 		new_div = 7; /* 128 == (1 << 7) */
1105 		dev_warn(dev, "fan%u low limit %lu below minimum %u, set to "
1106 			 "minimum\n", nr + 1, val,
1107 			 data->fan_from_reg_min(254, 7));
1108 	} else if (!reg) {
1109 		/*
1110 		 * Speed above this value cannot possibly be represented,
1111 		 * even with the lowest divider (1)
1112 		 */
1113 		data->fan_min[nr] = 1;
1114 		new_div = 0; /* 1 == (1 << 0) */
1115 		dev_warn(dev, "fan%u low limit %lu above maximum %u, set to "
1116 			 "maximum\n", nr + 1, val,
1117 			 data->fan_from_reg_min(1, 0));
1118 	} else {
1119 		/*
1120 		 * Automatically pick the best divider, i.e. the one such
1121 		 * that the min limit will correspond to a register value
1122 		 * in the 96..192 range
1123 		 */
1124 		new_div = 0;
1125 		while (reg > 192 && new_div < 7) {
1126 			reg >>= 1;
1127 			new_div++;
1128 		}
1129 		data->fan_min[nr] = reg;
1130 	}
1131 
1132 	/*
1133 	 * Write both the fan clock divider (if it changed) and the new
1134 	 * fan min (unconditionally)
1135 	 */
1136 	if (new_div != data->fan_div[nr]) {
1137 		dev_dbg(dev, "fan%u clock divider changed from %u to %u\n",
1138 			nr + 1, div_from_reg(data->fan_div[nr]),
1139 			div_from_reg(new_div));
1140 		data->fan_div[nr] = new_div;
1141 		w83627ehf_write_fan_div_common(dev, data, nr);
1142 		/* Give the chip time to sample a new speed value */
1143 		data->last_updated = jiffies;
1144 	}
1145 done:
1146 	w83627ehf_write_value(data, data->REG_FAN_MIN[nr],
1147 			      data->fan_min[nr]);
1148 	mutex_unlock(&data->update_lock);
1149 
1150 	return count;
1151 }
1152 
1153 static struct sensor_device_attribute sda_fan_input[] = {
1154 	SENSOR_ATTR(fan1_input, S_IRUGO, show_fan, NULL, 0),
1155 	SENSOR_ATTR(fan2_input, S_IRUGO, show_fan, NULL, 1),
1156 	SENSOR_ATTR(fan3_input, S_IRUGO, show_fan, NULL, 2),
1157 	SENSOR_ATTR(fan4_input, S_IRUGO, show_fan, NULL, 3),
1158 	SENSOR_ATTR(fan5_input, S_IRUGO, show_fan, NULL, 4),
1159 };
1160 
1161 static struct sensor_device_attribute sda_fan_alarm[] = {
1162 	SENSOR_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6),
1163 	SENSOR_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7),
1164 	SENSOR_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11),
1165 	SENSOR_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 10),
1166 	SENSOR_ATTR(fan5_alarm, S_IRUGO, show_alarm, NULL, 23),
1167 };
1168 
1169 static struct sensor_device_attribute sda_fan_min[] = {
1170 	SENSOR_ATTR(fan1_min, S_IWUSR | S_IRUGO, show_fan_min,
1171 		    store_fan_min, 0),
1172 	SENSOR_ATTR(fan2_min, S_IWUSR | S_IRUGO, show_fan_min,
1173 		    store_fan_min, 1),
1174 	SENSOR_ATTR(fan3_min, S_IWUSR | S_IRUGO, show_fan_min,
1175 		    store_fan_min, 2),
1176 	SENSOR_ATTR(fan4_min, S_IWUSR | S_IRUGO, show_fan_min,
1177 		    store_fan_min, 3),
1178 	SENSOR_ATTR(fan5_min, S_IWUSR | S_IRUGO, show_fan_min,
1179 		    store_fan_min, 4),
1180 };
1181 
1182 static struct sensor_device_attribute sda_fan_div[] = {
1183 	SENSOR_ATTR(fan1_div, S_IRUGO, show_fan_div, NULL, 0),
1184 	SENSOR_ATTR(fan2_div, S_IRUGO, show_fan_div, NULL, 1),
1185 	SENSOR_ATTR(fan3_div, S_IRUGO, show_fan_div, NULL, 2),
1186 	SENSOR_ATTR(fan4_div, S_IRUGO, show_fan_div, NULL, 3),
1187 	SENSOR_ATTR(fan5_div, S_IRUGO, show_fan_div, NULL, 4),
1188 };
1189 
1190 static ssize_t
1191 show_temp_label(struct device *dev, struct device_attribute *attr, char *buf)
1192 {
1193 	struct w83627ehf_data *data = w83627ehf_update_device(dev);
1194 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
1195 	int nr = sensor_attr->index;
1196 	return sprintf(buf, "%s\n", data->temp_label[data->temp_src[nr]]);
1197 }
1198 
1199 #define show_temp_reg(addr, reg) \
1200 static ssize_t \
1201 show_##reg(struct device *dev, struct device_attribute *attr, \
1202 	   char *buf) \
1203 { \
1204 	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
1205 	struct sensor_device_attribute *sensor_attr = \
1206 		to_sensor_dev_attr(attr); \
1207 	int nr = sensor_attr->index; \
1208 	return sprintf(buf, "%d\n", LM75_TEMP_FROM_REG(data->reg[nr])); \
1209 }
1210 show_temp_reg(reg_temp, temp);
1211 show_temp_reg(reg_temp_over, temp_max);
1212 show_temp_reg(reg_temp_hyst, temp_max_hyst);
1213 
1214 #define store_temp_reg(addr, reg) \
1215 static ssize_t \
1216 store_##reg(struct device *dev, struct device_attribute *attr, \
1217 	    const char *buf, size_t count) \
1218 { \
1219 	struct w83627ehf_data *data = dev_get_drvdata(dev); \
1220 	struct sensor_device_attribute *sensor_attr = \
1221 		to_sensor_dev_attr(attr); \
1222 	int nr = sensor_attr->index; \
1223 	int err; \
1224 	long val; \
1225 	err = kstrtol(buf, 10, &val); \
1226 	if (err < 0) \
1227 		return err; \
1228 	mutex_lock(&data->update_lock); \
1229 	data->reg[nr] = LM75_TEMP_TO_REG(val); \
1230 	w83627ehf_write_temp(data, data->addr[nr], data->reg[nr]); \
1231 	mutex_unlock(&data->update_lock); \
1232 	return count; \
1233 }
1234 store_temp_reg(reg_temp_over, temp_max);
1235 store_temp_reg(reg_temp_hyst, temp_max_hyst);
1236 
1237 static ssize_t
1238 show_temp_offset(struct device *dev, struct device_attribute *attr, char *buf)
1239 {
1240 	struct w83627ehf_data *data = w83627ehf_update_device(dev);
1241 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
1242 
1243 	return sprintf(buf, "%d\n",
1244 		       data->temp_offset[sensor_attr->index] * 1000);
1245 }
1246 
1247 static ssize_t
1248 store_temp_offset(struct device *dev, struct device_attribute *attr,
1249 		  const char *buf, size_t count)
1250 {
1251 	struct w83627ehf_data *data = dev_get_drvdata(dev);
1252 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
1253 	int nr = sensor_attr->index;
1254 	long val;
1255 	int err;
1256 
1257 	err = kstrtol(buf, 10, &val);
1258 	if (err < 0)
1259 		return err;
1260 
1261 	val = SENSORS_LIMIT(DIV_ROUND_CLOSEST(val, 1000), -128, 127);
1262 
1263 	mutex_lock(&data->update_lock);
1264 	data->temp_offset[nr] = val;
1265 	w83627ehf_write_value(data, W83627EHF_REG_TEMP_OFFSET[nr], val);
1266 	mutex_unlock(&data->update_lock);
1267 	return count;
1268 }
1269 
1270 static ssize_t
1271 show_temp_type(struct device *dev, struct device_attribute *attr, char *buf)
1272 {
1273 	struct w83627ehf_data *data = w83627ehf_update_device(dev);
1274 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
1275 	int nr = sensor_attr->index;
1276 	return sprintf(buf, "%d\n", (int)data->temp_type[nr]);
1277 }
1278 
1279 static struct sensor_device_attribute sda_temp_input[] = {
1280 	SENSOR_ATTR(temp1_input, S_IRUGO, show_temp, NULL, 0),
1281 	SENSOR_ATTR(temp2_input, S_IRUGO, show_temp, NULL, 1),
1282 	SENSOR_ATTR(temp3_input, S_IRUGO, show_temp, NULL, 2),
1283 	SENSOR_ATTR(temp4_input, S_IRUGO, show_temp, NULL, 3),
1284 	SENSOR_ATTR(temp5_input, S_IRUGO, show_temp, NULL, 4),
1285 	SENSOR_ATTR(temp6_input, S_IRUGO, show_temp, NULL, 5),
1286 	SENSOR_ATTR(temp7_input, S_IRUGO, show_temp, NULL, 6),
1287 	SENSOR_ATTR(temp8_input, S_IRUGO, show_temp, NULL, 7),
1288 	SENSOR_ATTR(temp9_input, S_IRUGO, show_temp, NULL, 8),
1289 };
1290 
1291 static struct sensor_device_attribute sda_temp_label[] = {
1292 	SENSOR_ATTR(temp1_label, S_IRUGO, show_temp_label, NULL, 0),
1293 	SENSOR_ATTR(temp2_label, S_IRUGO, show_temp_label, NULL, 1),
1294 	SENSOR_ATTR(temp3_label, S_IRUGO, show_temp_label, NULL, 2),
1295 	SENSOR_ATTR(temp4_label, S_IRUGO, show_temp_label, NULL, 3),
1296 	SENSOR_ATTR(temp5_label, S_IRUGO, show_temp_label, NULL, 4),
1297 	SENSOR_ATTR(temp6_label, S_IRUGO, show_temp_label, NULL, 5),
1298 	SENSOR_ATTR(temp7_label, S_IRUGO, show_temp_label, NULL, 6),
1299 	SENSOR_ATTR(temp8_label, S_IRUGO, show_temp_label, NULL, 7),
1300 	SENSOR_ATTR(temp9_label, S_IRUGO, show_temp_label, NULL, 8),
1301 };
1302 
1303 static struct sensor_device_attribute sda_temp_max[] = {
1304 	SENSOR_ATTR(temp1_max, S_IRUGO | S_IWUSR, show_temp_max,
1305 		    store_temp_max, 0),
1306 	SENSOR_ATTR(temp2_max, S_IRUGO | S_IWUSR, show_temp_max,
1307 		    store_temp_max, 1),
1308 	SENSOR_ATTR(temp3_max, S_IRUGO | S_IWUSR, show_temp_max,
1309 		    store_temp_max, 2),
1310 	SENSOR_ATTR(temp4_max, S_IRUGO | S_IWUSR, show_temp_max,
1311 		    store_temp_max, 3),
1312 	SENSOR_ATTR(temp5_max, S_IRUGO | S_IWUSR, show_temp_max,
1313 		    store_temp_max, 4),
1314 	SENSOR_ATTR(temp6_max, S_IRUGO | S_IWUSR, show_temp_max,
1315 		    store_temp_max, 5),
1316 	SENSOR_ATTR(temp7_max, S_IRUGO | S_IWUSR, show_temp_max,
1317 		    store_temp_max, 6),
1318 	SENSOR_ATTR(temp8_max, S_IRUGO | S_IWUSR, show_temp_max,
1319 		    store_temp_max, 7),
1320 	SENSOR_ATTR(temp9_max, S_IRUGO | S_IWUSR, show_temp_max,
1321 		    store_temp_max, 8),
1322 };
1323 
1324 static struct sensor_device_attribute sda_temp_max_hyst[] = {
1325 	SENSOR_ATTR(temp1_max_hyst, S_IRUGO | S_IWUSR, show_temp_max_hyst,
1326 		    store_temp_max_hyst, 0),
1327 	SENSOR_ATTR(temp2_max_hyst, S_IRUGO | S_IWUSR, show_temp_max_hyst,
1328 		    store_temp_max_hyst, 1),
1329 	SENSOR_ATTR(temp3_max_hyst, S_IRUGO | S_IWUSR, show_temp_max_hyst,
1330 		    store_temp_max_hyst, 2),
1331 	SENSOR_ATTR(temp4_max_hyst, S_IRUGO | S_IWUSR, show_temp_max_hyst,
1332 		    store_temp_max_hyst, 3),
1333 	SENSOR_ATTR(temp5_max_hyst, S_IRUGO | S_IWUSR, show_temp_max_hyst,
1334 		    store_temp_max_hyst, 4),
1335 	SENSOR_ATTR(temp6_max_hyst, S_IRUGO | S_IWUSR, show_temp_max_hyst,
1336 		    store_temp_max_hyst, 5),
1337 	SENSOR_ATTR(temp7_max_hyst, S_IRUGO | S_IWUSR, show_temp_max_hyst,
1338 		    store_temp_max_hyst, 6),
1339 	SENSOR_ATTR(temp8_max_hyst, S_IRUGO | S_IWUSR, show_temp_max_hyst,
1340 		    store_temp_max_hyst, 7),
1341 	SENSOR_ATTR(temp9_max_hyst, S_IRUGO | S_IWUSR, show_temp_max_hyst,
1342 		    store_temp_max_hyst, 8),
1343 };
1344 
1345 static struct sensor_device_attribute sda_temp_alarm[] = {
1346 	SENSOR_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4),
1347 	SENSOR_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5),
1348 	SENSOR_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13),
1349 };
1350 
1351 static struct sensor_device_attribute sda_temp_type[] = {
1352 	SENSOR_ATTR(temp1_type, S_IRUGO, show_temp_type, NULL, 0),
1353 	SENSOR_ATTR(temp2_type, S_IRUGO, show_temp_type, NULL, 1),
1354 	SENSOR_ATTR(temp3_type, S_IRUGO, show_temp_type, NULL, 2),
1355 };
1356 
1357 static struct sensor_device_attribute sda_temp_offset[] = {
1358 	SENSOR_ATTR(temp1_offset, S_IRUGO | S_IWUSR, show_temp_offset,
1359 		    store_temp_offset, 0),
1360 	SENSOR_ATTR(temp2_offset, S_IRUGO | S_IWUSR, show_temp_offset,
1361 		    store_temp_offset, 1),
1362 	SENSOR_ATTR(temp3_offset, S_IRUGO | S_IWUSR, show_temp_offset,
1363 		    store_temp_offset, 2),
1364 };
1365 
1366 #define show_pwm_reg(reg) \
1367 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
1368 			  char *buf) \
1369 { \
1370 	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
1371 	struct sensor_device_attribute *sensor_attr = \
1372 		to_sensor_dev_attr(attr); \
1373 	int nr = sensor_attr->index; \
1374 	return sprintf(buf, "%d\n", data->reg[nr]); \
1375 }
1376 
1377 show_pwm_reg(pwm_mode)
1378 show_pwm_reg(pwm_enable)
1379 show_pwm_reg(pwm)
1380 
1381 static ssize_t
1382 store_pwm_mode(struct device *dev, struct device_attribute *attr,
1383 			const char *buf, size_t count)
1384 {
1385 	struct w83627ehf_data *data = dev_get_drvdata(dev);
1386 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
1387 	struct w83627ehf_sio_data *sio_data = dev->platform_data;
1388 	int nr = sensor_attr->index;
1389 	unsigned long val;
1390 	int err;
1391 	u16 reg;
1392 
1393 	err = kstrtoul(buf, 10, &val);
1394 	if (err < 0)
1395 		return err;
1396 
1397 	if (val > 1)
1398 		return -EINVAL;
1399 
1400 	/* On NCT67766F, DC mode is only supported for pwm1 */
1401 	if (sio_data->kind == nct6776 && nr && val != 1)
1402 		return -EINVAL;
1403 
1404 	mutex_lock(&data->update_lock);
1405 	reg = w83627ehf_read_value(data, W83627EHF_REG_PWM_ENABLE[nr]);
1406 	data->pwm_mode[nr] = val;
1407 	reg &= ~(1 << W83627EHF_PWM_MODE_SHIFT[nr]);
1408 	if (!val)
1409 		reg |= 1 << W83627EHF_PWM_MODE_SHIFT[nr];
1410 	w83627ehf_write_value(data, W83627EHF_REG_PWM_ENABLE[nr], reg);
1411 	mutex_unlock(&data->update_lock);
1412 	return count;
1413 }
1414 
1415 static ssize_t
1416 store_pwm(struct device *dev, struct device_attribute *attr,
1417 			const char *buf, size_t count)
1418 {
1419 	struct w83627ehf_data *data = dev_get_drvdata(dev);
1420 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
1421 	int nr = sensor_attr->index;
1422 	unsigned long val;
1423 	int err;
1424 
1425 	err = kstrtoul(buf, 10, &val);
1426 	if (err < 0)
1427 		return err;
1428 
1429 	val = SENSORS_LIMIT(val, 0, 255);
1430 
1431 	mutex_lock(&data->update_lock);
1432 	data->pwm[nr] = val;
1433 	w83627ehf_write_value(data, data->REG_PWM[nr], val);
1434 	mutex_unlock(&data->update_lock);
1435 	return count;
1436 }
1437 
1438 static ssize_t
1439 store_pwm_enable(struct device *dev, struct device_attribute *attr,
1440 			const char *buf, size_t count)
1441 {
1442 	struct w83627ehf_data *data = dev_get_drvdata(dev);
1443 	struct w83627ehf_sio_data *sio_data = dev->platform_data;
1444 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
1445 	int nr = sensor_attr->index;
1446 	unsigned long val;
1447 	int err;
1448 	u16 reg;
1449 
1450 	err = kstrtoul(buf, 10, &val);
1451 	if (err < 0)
1452 		return err;
1453 
1454 	if (!val || (val > 4 && val != data->pwm_enable_orig[nr]))
1455 		return -EINVAL;
1456 	/* SmartFan III mode is not supported on NCT6776F */
1457 	if (sio_data->kind == nct6776 && val == 4)
1458 		return -EINVAL;
1459 
1460 	mutex_lock(&data->update_lock);
1461 	data->pwm_enable[nr] = val;
1462 	if (sio_data->kind == nct6775 || sio_data->kind == nct6776) {
1463 		reg = w83627ehf_read_value(data,
1464 					   NCT6775_REG_FAN_MODE[nr]);
1465 		reg &= 0x0f;
1466 		reg |= (val - 1) << 4;
1467 		w83627ehf_write_value(data,
1468 				      NCT6775_REG_FAN_MODE[nr], reg);
1469 	} else {
1470 		reg = w83627ehf_read_value(data, W83627EHF_REG_PWM_ENABLE[nr]);
1471 		reg &= ~(0x03 << W83627EHF_PWM_ENABLE_SHIFT[nr]);
1472 		reg |= (val - 1) << W83627EHF_PWM_ENABLE_SHIFT[nr];
1473 		w83627ehf_write_value(data, W83627EHF_REG_PWM_ENABLE[nr], reg);
1474 	}
1475 	mutex_unlock(&data->update_lock);
1476 	return count;
1477 }
1478 
1479 
1480 #define show_tol_temp(reg) \
1481 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
1482 				char *buf) \
1483 { \
1484 	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
1485 	struct sensor_device_attribute *sensor_attr = \
1486 		to_sensor_dev_attr(attr); \
1487 	int nr = sensor_attr->index; \
1488 	return sprintf(buf, "%d\n", data->reg[nr] * 1000); \
1489 }
1490 
1491 show_tol_temp(tolerance)
1492 show_tol_temp(target_temp)
1493 
1494 static ssize_t
1495 store_target_temp(struct device *dev, struct device_attribute *attr,
1496 			const char *buf, size_t count)
1497 {
1498 	struct w83627ehf_data *data = dev_get_drvdata(dev);
1499 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
1500 	int nr = sensor_attr->index;
1501 	long val;
1502 	int err;
1503 
1504 	err = kstrtol(buf, 10, &val);
1505 	if (err < 0)
1506 		return err;
1507 
1508 	val = SENSORS_LIMIT(DIV_ROUND_CLOSEST(val, 1000), 0, 127);
1509 
1510 	mutex_lock(&data->update_lock);
1511 	data->target_temp[nr] = val;
1512 	w83627ehf_write_value(data, data->REG_TARGET[nr], val);
1513 	mutex_unlock(&data->update_lock);
1514 	return count;
1515 }
1516 
1517 static ssize_t
1518 store_tolerance(struct device *dev, struct device_attribute *attr,
1519 			const char *buf, size_t count)
1520 {
1521 	struct w83627ehf_data *data = dev_get_drvdata(dev);
1522 	struct w83627ehf_sio_data *sio_data = dev->platform_data;
1523 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
1524 	int nr = sensor_attr->index;
1525 	u16 reg;
1526 	long val;
1527 	int err;
1528 
1529 	err = kstrtol(buf, 10, &val);
1530 	if (err < 0)
1531 		return err;
1532 
1533 	/* Limit the temp to 0C - 15C */
1534 	val = SENSORS_LIMIT(DIV_ROUND_CLOSEST(val, 1000), 0, 15);
1535 
1536 	mutex_lock(&data->update_lock);
1537 	if (sio_data->kind == nct6775 || sio_data->kind == nct6776) {
1538 		/* Limit tolerance further for NCT6776F */
1539 		if (sio_data->kind == nct6776 && val > 7)
1540 			val = 7;
1541 		reg = w83627ehf_read_value(data, NCT6775_REG_FAN_MODE[nr]);
1542 		reg = (reg & 0xf0) | val;
1543 		w83627ehf_write_value(data, NCT6775_REG_FAN_MODE[nr], reg);
1544 	} else {
1545 		reg = w83627ehf_read_value(data, W83627EHF_REG_TOLERANCE[nr]);
1546 		if (nr == 1)
1547 			reg = (reg & 0x0f) | (val << 4);
1548 		else
1549 			reg = (reg & 0xf0) | val;
1550 		w83627ehf_write_value(data, W83627EHF_REG_TOLERANCE[nr], reg);
1551 	}
1552 	data->tolerance[nr] = val;
1553 	mutex_unlock(&data->update_lock);
1554 	return count;
1555 }
1556 
1557 static struct sensor_device_attribute sda_pwm[] = {
1558 	SENSOR_ATTR(pwm1, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 0),
1559 	SENSOR_ATTR(pwm2, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 1),
1560 	SENSOR_ATTR(pwm3, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 2),
1561 	SENSOR_ATTR(pwm4, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 3),
1562 };
1563 
1564 static struct sensor_device_attribute sda_pwm_mode[] = {
1565 	SENSOR_ATTR(pwm1_mode, S_IWUSR | S_IRUGO, show_pwm_mode,
1566 		    store_pwm_mode, 0),
1567 	SENSOR_ATTR(pwm2_mode, S_IWUSR | S_IRUGO, show_pwm_mode,
1568 		    store_pwm_mode, 1),
1569 	SENSOR_ATTR(pwm3_mode, S_IWUSR | S_IRUGO, show_pwm_mode,
1570 		    store_pwm_mode, 2),
1571 	SENSOR_ATTR(pwm4_mode, S_IWUSR | S_IRUGO, show_pwm_mode,
1572 		    store_pwm_mode, 3),
1573 };
1574 
1575 static struct sensor_device_attribute sda_pwm_enable[] = {
1576 	SENSOR_ATTR(pwm1_enable, S_IWUSR | S_IRUGO, show_pwm_enable,
1577 		    store_pwm_enable, 0),
1578 	SENSOR_ATTR(pwm2_enable, S_IWUSR | S_IRUGO, show_pwm_enable,
1579 		    store_pwm_enable, 1),
1580 	SENSOR_ATTR(pwm3_enable, S_IWUSR | S_IRUGO, show_pwm_enable,
1581 		    store_pwm_enable, 2),
1582 	SENSOR_ATTR(pwm4_enable, S_IWUSR | S_IRUGO, show_pwm_enable,
1583 		    store_pwm_enable, 3),
1584 };
1585 
1586 static struct sensor_device_attribute sda_target_temp[] = {
1587 	SENSOR_ATTR(pwm1_target, S_IWUSR | S_IRUGO, show_target_temp,
1588 		    store_target_temp, 0),
1589 	SENSOR_ATTR(pwm2_target, S_IWUSR | S_IRUGO, show_target_temp,
1590 		    store_target_temp, 1),
1591 	SENSOR_ATTR(pwm3_target, S_IWUSR | S_IRUGO, show_target_temp,
1592 		    store_target_temp, 2),
1593 	SENSOR_ATTR(pwm4_target, S_IWUSR | S_IRUGO, show_target_temp,
1594 		    store_target_temp, 3),
1595 };
1596 
1597 static struct sensor_device_attribute sda_tolerance[] = {
1598 	SENSOR_ATTR(pwm1_tolerance, S_IWUSR | S_IRUGO, show_tolerance,
1599 		    store_tolerance, 0),
1600 	SENSOR_ATTR(pwm2_tolerance, S_IWUSR | S_IRUGO, show_tolerance,
1601 		    store_tolerance, 1),
1602 	SENSOR_ATTR(pwm3_tolerance, S_IWUSR | S_IRUGO, show_tolerance,
1603 		    store_tolerance, 2),
1604 	SENSOR_ATTR(pwm4_tolerance, S_IWUSR | S_IRUGO, show_tolerance,
1605 		    store_tolerance, 3),
1606 };
1607 
1608 /* Smart Fan registers */
1609 
1610 #define fan_functions(reg, REG) \
1611 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
1612 		       char *buf) \
1613 { \
1614 	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
1615 	struct sensor_device_attribute *sensor_attr = \
1616 		to_sensor_dev_attr(attr); \
1617 	int nr = sensor_attr->index; \
1618 	return sprintf(buf, "%d\n", data->reg[nr]); \
1619 } \
1620 static ssize_t \
1621 store_##reg(struct device *dev, struct device_attribute *attr, \
1622 			    const char *buf, size_t count) \
1623 { \
1624 	struct w83627ehf_data *data = dev_get_drvdata(dev); \
1625 	struct sensor_device_attribute *sensor_attr = \
1626 		to_sensor_dev_attr(attr); \
1627 	int nr = sensor_attr->index; \
1628 	unsigned long val; \
1629 	int err; \
1630 	err = kstrtoul(buf, 10, &val); \
1631 	if (err < 0) \
1632 		return err; \
1633 	val = SENSORS_LIMIT(val, 1, 255); \
1634 	mutex_lock(&data->update_lock); \
1635 	data->reg[nr] = val; \
1636 	w83627ehf_write_value(data, data->REG_##REG[nr], val); \
1637 	mutex_unlock(&data->update_lock); \
1638 	return count; \
1639 }
1640 
1641 fan_functions(fan_start_output, FAN_START_OUTPUT)
1642 fan_functions(fan_stop_output, FAN_STOP_OUTPUT)
1643 fan_functions(fan_max_output, FAN_MAX_OUTPUT)
1644 fan_functions(fan_step_output, FAN_STEP_OUTPUT)
1645 
1646 #define fan_time_functions(reg, REG) \
1647 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
1648 				char *buf) \
1649 { \
1650 	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
1651 	struct sensor_device_attribute *sensor_attr = \
1652 		to_sensor_dev_attr(attr); \
1653 	int nr = sensor_attr->index; \
1654 	return sprintf(buf, "%d\n", \
1655 			step_time_from_reg(data->reg[nr], \
1656 					   data->pwm_mode[nr])); \
1657 } \
1658 \
1659 static ssize_t \
1660 store_##reg(struct device *dev, struct device_attribute *attr, \
1661 			const char *buf, size_t count) \
1662 { \
1663 	struct w83627ehf_data *data = dev_get_drvdata(dev); \
1664 	struct sensor_device_attribute *sensor_attr = \
1665 		to_sensor_dev_attr(attr); \
1666 	int nr = sensor_attr->index; \
1667 	unsigned long val; \
1668 	int err; \
1669 	err = kstrtoul(buf, 10, &val); \
1670 	if (err < 0) \
1671 		return err; \
1672 	val = step_time_to_reg(val, data->pwm_mode[nr]); \
1673 	mutex_lock(&data->update_lock); \
1674 	data->reg[nr] = val; \
1675 	w83627ehf_write_value(data, data->REG_##REG[nr], val); \
1676 	mutex_unlock(&data->update_lock); \
1677 	return count; \
1678 } \
1679 
1680 fan_time_functions(fan_stop_time, FAN_STOP_TIME)
1681 
1682 static ssize_t show_name(struct device *dev, struct device_attribute *attr,
1683 			 char *buf)
1684 {
1685 	struct w83627ehf_data *data = dev_get_drvdata(dev);
1686 
1687 	return sprintf(buf, "%s\n", data->name);
1688 }
1689 static DEVICE_ATTR(name, S_IRUGO, show_name, NULL);
1690 
1691 static struct sensor_device_attribute sda_sf3_arrays_fan4[] = {
1692 	SENSOR_ATTR(pwm4_stop_time, S_IWUSR | S_IRUGO, show_fan_stop_time,
1693 		    store_fan_stop_time, 3),
1694 	SENSOR_ATTR(pwm4_start_output, S_IWUSR | S_IRUGO, show_fan_start_output,
1695 		    store_fan_start_output, 3),
1696 	SENSOR_ATTR(pwm4_stop_output, S_IWUSR | S_IRUGO, show_fan_stop_output,
1697 		    store_fan_stop_output, 3),
1698 	SENSOR_ATTR(pwm4_max_output, S_IWUSR | S_IRUGO, show_fan_max_output,
1699 		    store_fan_max_output, 3),
1700 	SENSOR_ATTR(pwm4_step_output, S_IWUSR | S_IRUGO, show_fan_step_output,
1701 		    store_fan_step_output, 3),
1702 };
1703 
1704 static struct sensor_device_attribute sda_sf3_arrays_fan3[] = {
1705 	SENSOR_ATTR(pwm3_stop_time, S_IWUSR | S_IRUGO, show_fan_stop_time,
1706 		    store_fan_stop_time, 2),
1707 	SENSOR_ATTR(pwm3_start_output, S_IWUSR | S_IRUGO, show_fan_start_output,
1708 		    store_fan_start_output, 2),
1709 	SENSOR_ATTR(pwm3_stop_output, S_IWUSR | S_IRUGO, show_fan_stop_output,
1710 		    store_fan_stop_output, 2),
1711 };
1712 
1713 static struct sensor_device_attribute sda_sf3_arrays[] = {
1714 	SENSOR_ATTR(pwm1_stop_time, S_IWUSR | S_IRUGO, show_fan_stop_time,
1715 		    store_fan_stop_time, 0),
1716 	SENSOR_ATTR(pwm2_stop_time, S_IWUSR | S_IRUGO, show_fan_stop_time,
1717 		    store_fan_stop_time, 1),
1718 	SENSOR_ATTR(pwm1_start_output, S_IWUSR | S_IRUGO, show_fan_start_output,
1719 		    store_fan_start_output, 0),
1720 	SENSOR_ATTR(pwm2_start_output, S_IWUSR | S_IRUGO, show_fan_start_output,
1721 		    store_fan_start_output, 1),
1722 	SENSOR_ATTR(pwm1_stop_output, S_IWUSR | S_IRUGO, show_fan_stop_output,
1723 		    store_fan_stop_output, 0),
1724 	SENSOR_ATTR(pwm2_stop_output, S_IWUSR | S_IRUGO, show_fan_stop_output,
1725 		    store_fan_stop_output, 1),
1726 };
1727 
1728 
1729 /*
1730  * pwm1 and pwm3 don't support max and step settings on all chips.
1731  * Need to check support while generating/removing attribute files.
1732  */
1733 static struct sensor_device_attribute sda_sf3_max_step_arrays[] = {
1734 	SENSOR_ATTR(pwm1_max_output, S_IWUSR | S_IRUGO, show_fan_max_output,
1735 		    store_fan_max_output, 0),
1736 	SENSOR_ATTR(pwm1_step_output, S_IWUSR | S_IRUGO, show_fan_step_output,
1737 		    store_fan_step_output, 0),
1738 	SENSOR_ATTR(pwm2_max_output, S_IWUSR | S_IRUGO, show_fan_max_output,
1739 		    store_fan_max_output, 1),
1740 	SENSOR_ATTR(pwm2_step_output, S_IWUSR | S_IRUGO, show_fan_step_output,
1741 		    store_fan_step_output, 1),
1742 	SENSOR_ATTR(pwm3_max_output, S_IWUSR | S_IRUGO, show_fan_max_output,
1743 		    store_fan_max_output, 2),
1744 	SENSOR_ATTR(pwm3_step_output, S_IWUSR | S_IRUGO, show_fan_step_output,
1745 		    store_fan_step_output, 2),
1746 };
1747 
1748 static ssize_t
1749 show_vid(struct device *dev, struct device_attribute *attr, char *buf)
1750 {
1751 	struct w83627ehf_data *data = dev_get_drvdata(dev);
1752 	return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
1753 }
1754 static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid, NULL);
1755 
1756 
1757 /* Case open detection */
1758 
1759 static ssize_t
1760 show_caseopen(struct device *dev, struct device_attribute *attr, char *buf)
1761 {
1762 	struct w83627ehf_data *data = w83627ehf_update_device(dev);
1763 
1764 	return sprintf(buf, "%d\n",
1765 		!!(data->caseopen & to_sensor_dev_attr_2(attr)->index));
1766 }
1767 
1768 static ssize_t
1769 clear_caseopen(struct device *dev, struct device_attribute *attr,
1770 			const char *buf, size_t count)
1771 {
1772 	struct w83627ehf_data *data = dev_get_drvdata(dev);
1773 	unsigned long val;
1774 	u16 reg, mask;
1775 
1776 	if (kstrtoul(buf, 10, &val) || val != 0)
1777 		return -EINVAL;
1778 
1779 	mask = to_sensor_dev_attr_2(attr)->nr;
1780 
1781 	mutex_lock(&data->update_lock);
1782 	reg = w83627ehf_read_value(data, W83627EHF_REG_CASEOPEN_CLR);
1783 	w83627ehf_write_value(data, W83627EHF_REG_CASEOPEN_CLR, reg | mask);
1784 	w83627ehf_write_value(data, W83627EHF_REG_CASEOPEN_CLR, reg & ~mask);
1785 	data->valid = 0;	/* Force cache refresh */
1786 	mutex_unlock(&data->update_lock);
1787 
1788 	return count;
1789 }
1790 
1791 static struct sensor_device_attribute_2 sda_caseopen[] = {
1792 	SENSOR_ATTR_2(intrusion0_alarm, S_IWUSR | S_IRUGO, show_caseopen,
1793 			clear_caseopen, 0x80, 0x10),
1794 	SENSOR_ATTR_2(intrusion1_alarm, S_IWUSR | S_IRUGO, show_caseopen,
1795 			clear_caseopen, 0x40, 0x40),
1796 };
1797 
1798 /*
1799  * Driver and device management
1800  */
1801 
1802 static void w83627ehf_device_remove_files(struct device *dev)
1803 {
1804 	/*
1805 	 * some entries in the following arrays may not have been used in
1806 	 * device_create_file(), but device_remove_file() will ignore them
1807 	 */
1808 	int i;
1809 	struct w83627ehf_data *data = dev_get_drvdata(dev);
1810 
1811 	for (i = 0; i < ARRAY_SIZE(sda_sf3_arrays); i++)
1812 		device_remove_file(dev, &sda_sf3_arrays[i].dev_attr);
1813 	for (i = 0; i < ARRAY_SIZE(sda_sf3_max_step_arrays); i++) {
1814 		struct sensor_device_attribute *attr =
1815 		  &sda_sf3_max_step_arrays[i];
1816 		if (data->REG_FAN_STEP_OUTPUT &&
1817 		    data->REG_FAN_STEP_OUTPUT[attr->index] != 0xff)
1818 			device_remove_file(dev, &attr->dev_attr);
1819 	}
1820 	for (i = 0; i < ARRAY_SIZE(sda_sf3_arrays_fan3); i++)
1821 		device_remove_file(dev, &sda_sf3_arrays_fan3[i].dev_attr);
1822 	for (i = 0; i < ARRAY_SIZE(sda_sf3_arrays_fan4); i++)
1823 		device_remove_file(dev, &sda_sf3_arrays_fan4[i].dev_attr);
1824 	for (i = 0; i < data->in_num; i++) {
1825 		if ((i == 6) && data->in6_skip)
1826 			continue;
1827 		device_remove_file(dev, &sda_in_input[i].dev_attr);
1828 		device_remove_file(dev, &sda_in_alarm[i].dev_attr);
1829 		device_remove_file(dev, &sda_in_min[i].dev_attr);
1830 		device_remove_file(dev, &sda_in_max[i].dev_attr);
1831 	}
1832 	for (i = 0; i < 5; i++) {
1833 		device_remove_file(dev, &sda_fan_input[i].dev_attr);
1834 		device_remove_file(dev, &sda_fan_alarm[i].dev_attr);
1835 		device_remove_file(dev, &sda_fan_div[i].dev_attr);
1836 		device_remove_file(dev, &sda_fan_min[i].dev_attr);
1837 	}
1838 	for (i = 0; i < data->pwm_num; i++) {
1839 		device_remove_file(dev, &sda_pwm[i].dev_attr);
1840 		device_remove_file(dev, &sda_pwm_mode[i].dev_attr);
1841 		device_remove_file(dev, &sda_pwm_enable[i].dev_attr);
1842 		device_remove_file(dev, &sda_target_temp[i].dev_attr);
1843 		device_remove_file(dev, &sda_tolerance[i].dev_attr);
1844 	}
1845 	for (i = 0; i < NUM_REG_TEMP; i++) {
1846 		if (!(data->have_temp & (1 << i)))
1847 			continue;
1848 		device_remove_file(dev, &sda_temp_input[i].dev_attr);
1849 		device_remove_file(dev, &sda_temp_label[i].dev_attr);
1850 		if (i == 2 && data->temp3_val_only)
1851 			continue;
1852 		device_remove_file(dev, &sda_temp_max[i].dev_attr);
1853 		device_remove_file(dev, &sda_temp_max_hyst[i].dev_attr);
1854 		if (i > 2)
1855 			continue;
1856 		device_remove_file(dev, &sda_temp_alarm[i].dev_attr);
1857 		device_remove_file(dev, &sda_temp_type[i].dev_attr);
1858 		device_remove_file(dev, &sda_temp_offset[i].dev_attr);
1859 	}
1860 
1861 	device_remove_file(dev, &sda_caseopen[0].dev_attr);
1862 	device_remove_file(dev, &sda_caseopen[1].dev_attr);
1863 
1864 	device_remove_file(dev, &dev_attr_name);
1865 	device_remove_file(dev, &dev_attr_cpu0_vid);
1866 }
1867 
1868 /* Get the monitoring functions started */
1869 static inline void w83627ehf_init_device(struct w83627ehf_data *data,
1870 						   enum kinds kind)
1871 {
1872 	int i;
1873 	u8 tmp, diode;
1874 
1875 	/* Start monitoring is needed */
1876 	tmp = w83627ehf_read_value(data, W83627EHF_REG_CONFIG);
1877 	if (!(tmp & 0x01))
1878 		w83627ehf_write_value(data, W83627EHF_REG_CONFIG,
1879 				      tmp | 0x01);
1880 
1881 	/* Enable temperature sensors if needed */
1882 	for (i = 0; i < NUM_REG_TEMP; i++) {
1883 		if (!(data->have_temp & (1 << i)))
1884 			continue;
1885 		if (!data->reg_temp_config[i])
1886 			continue;
1887 		tmp = w83627ehf_read_value(data,
1888 					   data->reg_temp_config[i]);
1889 		if (tmp & 0x01)
1890 			w83627ehf_write_value(data,
1891 					      data->reg_temp_config[i],
1892 					      tmp & 0xfe);
1893 	}
1894 
1895 	/* Enable VBAT monitoring if needed */
1896 	tmp = w83627ehf_read_value(data, W83627EHF_REG_VBAT);
1897 	if (!(tmp & 0x01))
1898 		w83627ehf_write_value(data, W83627EHF_REG_VBAT, tmp | 0x01);
1899 
1900 	/* Get thermal sensor types */
1901 	switch (kind) {
1902 	case w83627ehf:
1903 		diode = w83627ehf_read_value(data, W83627EHF_REG_DIODE);
1904 		break;
1905 	case w83627uhg:
1906 		diode = 0x00;
1907 		break;
1908 	default:
1909 		diode = 0x70;
1910 	}
1911 	for (i = 0; i < 3; i++) {
1912 		const char *label = NULL;
1913 
1914 		if (data->temp_label)
1915 			label = data->temp_label[data->temp_src[i]];
1916 
1917 		/* Digital source overrides analog type */
1918 		if (label && strncmp(label, "PECI", 4) == 0)
1919 			data->temp_type[i] = 6;
1920 		else if (label && strncmp(label, "AMD", 3) == 0)
1921 			data->temp_type[i] = 5;
1922 		else if ((tmp & (0x02 << i)))
1923 			data->temp_type[i] = (diode & (0x10 << i)) ? 1 : 3;
1924 		else
1925 			data->temp_type[i] = 4; /* thermistor */
1926 	}
1927 }
1928 
1929 static void w82627ehf_swap_tempreg(struct w83627ehf_data *data,
1930 				   int r1, int r2)
1931 {
1932 	u16 tmp;
1933 
1934 	tmp = data->temp_src[r1];
1935 	data->temp_src[r1] = data->temp_src[r2];
1936 	data->temp_src[r2] = tmp;
1937 
1938 	tmp = data->reg_temp[r1];
1939 	data->reg_temp[r1] = data->reg_temp[r2];
1940 	data->reg_temp[r2] = tmp;
1941 
1942 	tmp = data->reg_temp_over[r1];
1943 	data->reg_temp_over[r1] = data->reg_temp_over[r2];
1944 	data->reg_temp_over[r2] = tmp;
1945 
1946 	tmp = data->reg_temp_hyst[r1];
1947 	data->reg_temp_hyst[r1] = data->reg_temp_hyst[r2];
1948 	data->reg_temp_hyst[r2] = tmp;
1949 
1950 	tmp = data->reg_temp_config[r1];
1951 	data->reg_temp_config[r1] = data->reg_temp_config[r2];
1952 	data->reg_temp_config[r2] = tmp;
1953 }
1954 
1955 static void
1956 w83627ehf_set_temp_reg_ehf(struct w83627ehf_data *data, int n_temp)
1957 {
1958 	int i;
1959 
1960 	for (i = 0; i < n_temp; i++) {
1961 		data->reg_temp[i] = W83627EHF_REG_TEMP[i];
1962 		data->reg_temp_over[i] = W83627EHF_REG_TEMP_OVER[i];
1963 		data->reg_temp_hyst[i] = W83627EHF_REG_TEMP_HYST[i];
1964 		data->reg_temp_config[i] = W83627EHF_REG_TEMP_CONFIG[i];
1965 	}
1966 }
1967 
1968 static void
1969 w83627ehf_check_fan_inputs(const struct w83627ehf_sio_data *sio_data,
1970 			   struct w83627ehf_data *data)
1971 {
1972 	int fan3pin, fan4pin, fan4min, fan5pin, regval;
1973 
1974 	/* The W83627UHG is simple, only two fan inputs, no config */
1975 	if (sio_data->kind == w83627uhg) {
1976 		data->has_fan = 0x03; /* fan1 and fan2 */
1977 		data->has_fan_min = 0x03;
1978 		return;
1979 	}
1980 
1981 	superio_enter(sio_data->sioreg);
1982 
1983 	/* fan4 and fan5 share some pins with the GPIO and serial flash */
1984 	if (sio_data->kind == nct6775) {
1985 		/* On NCT6775, fan4 shares pins with the fdc interface */
1986 		fan3pin = 1;
1987 		fan4pin = !(superio_inb(sio_data->sioreg, 0x2A) & 0x80);
1988 		fan4min = 0;
1989 		fan5pin = 0;
1990 	} else if (sio_data->kind == nct6776) {
1991 		bool gpok = superio_inb(sio_data->sioreg, 0x27) & 0x80;
1992 
1993 		superio_select(sio_data->sioreg, W83627EHF_LD_HWM);
1994 		regval = superio_inb(sio_data->sioreg, SIO_REG_ENABLE);
1995 
1996 		if (regval & 0x80)
1997 			fan3pin = gpok;
1998 		else
1999 			fan3pin = !(superio_inb(sio_data->sioreg, 0x24) & 0x40);
2000 
2001 		if (regval & 0x40)
2002 			fan4pin = gpok;
2003 		else
2004 			fan4pin = !!(superio_inb(sio_data->sioreg, 0x1C) & 0x01);
2005 
2006 		if (regval & 0x20)
2007 			fan5pin = gpok;
2008 		else
2009 			fan5pin = !!(superio_inb(sio_data->sioreg, 0x1C) & 0x02);
2010 
2011 		fan4min = fan4pin;
2012 	} else if (sio_data->kind == w83667hg || sio_data->kind == w83667hg_b) {
2013 		fan3pin = 1;
2014 		fan4pin = superio_inb(sio_data->sioreg, 0x27) & 0x40;
2015 		fan5pin = superio_inb(sio_data->sioreg, 0x27) & 0x20;
2016 		fan4min = fan4pin;
2017 	} else {
2018 		fan3pin = 1;
2019 		fan4pin = !(superio_inb(sio_data->sioreg, 0x29) & 0x06);
2020 		fan5pin = !(superio_inb(sio_data->sioreg, 0x24) & 0x02);
2021 		fan4min = fan4pin;
2022 	}
2023 
2024 	superio_exit(sio_data->sioreg);
2025 
2026 	data->has_fan = data->has_fan_min = 0x03; /* fan1 and fan2 */
2027 	data->has_fan |= (fan3pin << 2);
2028 	data->has_fan_min |= (fan3pin << 2);
2029 
2030 	if (sio_data->kind == nct6775 || sio_data->kind == nct6776) {
2031 		/*
2032 		 * NCT6775F and NCT6776F don't have the W83627EHF_REG_FANDIV1
2033 		 * register
2034 		 */
2035 		data->has_fan |= (fan4pin << 3) | (fan5pin << 4);
2036 		data->has_fan_min |= (fan4min << 3) | (fan5pin << 4);
2037 	} else {
2038 		/*
2039 		 * It looks like fan4 and fan5 pins can be alternatively used
2040 		 * as fan on/off switches, but fan5 control is write only :/
2041 		 * We assume that if the serial interface is disabled, designers
2042 		 * connected fan5 as input unless they are emitting log 1, which
2043 		 * is not the default.
2044 		 */
2045 		regval = w83627ehf_read_value(data, W83627EHF_REG_FANDIV1);
2046 		if ((regval & (1 << 2)) && fan4pin) {
2047 			data->has_fan |= (1 << 3);
2048 			data->has_fan_min |= (1 << 3);
2049 		}
2050 		if (!(regval & (1 << 1)) && fan5pin) {
2051 			data->has_fan |= (1 << 4);
2052 			data->has_fan_min |= (1 << 4);
2053 		}
2054 	}
2055 }
2056 
2057 static int w83627ehf_probe(struct platform_device *pdev)
2058 {
2059 	struct device *dev = &pdev->dev;
2060 	struct w83627ehf_sio_data *sio_data = dev->platform_data;
2061 	struct w83627ehf_data *data;
2062 	struct resource *res;
2063 	u8 en_vrm10;
2064 	int i, err = 0;
2065 
2066 	res = platform_get_resource(pdev, IORESOURCE_IO, 0);
2067 	if (!request_region(res->start, IOREGION_LENGTH, DRVNAME)) {
2068 		err = -EBUSY;
2069 		dev_err(dev, "Failed to request region 0x%lx-0x%lx\n",
2070 			(unsigned long)res->start,
2071 			(unsigned long)res->start + IOREGION_LENGTH - 1);
2072 		goto exit;
2073 	}
2074 
2075 	data = devm_kzalloc(&pdev->dev, sizeof(struct w83627ehf_data),
2076 			    GFP_KERNEL);
2077 	if (!data) {
2078 		err = -ENOMEM;
2079 		goto exit_release;
2080 	}
2081 
2082 	data->addr = res->start;
2083 	mutex_init(&data->lock);
2084 	mutex_init(&data->update_lock);
2085 	data->name = w83627ehf_device_names[sio_data->kind];
2086 	data->bank = 0xff;		/* Force initial bank selection */
2087 	platform_set_drvdata(pdev, data);
2088 
2089 	/* 627EHG and 627EHF have 10 voltage inputs; 627DHG and 667HG have 9 */
2090 	data->in_num = (sio_data->kind == w83627ehf) ? 10 : 9;
2091 	/* 667HG, NCT6775F, and NCT6776F have 3 pwms, and 627UHG has only 2 */
2092 	switch (sio_data->kind) {
2093 	default:
2094 		data->pwm_num = 4;
2095 		break;
2096 	case w83667hg:
2097 	case w83667hg_b:
2098 	case nct6775:
2099 	case nct6776:
2100 		data->pwm_num = 3;
2101 		break;
2102 	case w83627uhg:
2103 		data->pwm_num = 2;
2104 		break;
2105 	}
2106 
2107 	/* Default to 3 temperature inputs, code below will adjust as needed */
2108 	data->have_temp = 0x07;
2109 
2110 	/* Deal with temperature register setup first. */
2111 	if (sio_data->kind == nct6775 || sio_data->kind == nct6776) {
2112 		int mask = 0;
2113 
2114 		/*
2115 		 * Display temperature sensor output only if it monitors
2116 		 * a source other than one already reported. Always display
2117 		 * first three temperature registers, though.
2118 		 */
2119 		for (i = 0; i < NUM_REG_TEMP; i++) {
2120 			u8 src;
2121 
2122 			data->reg_temp[i] = NCT6775_REG_TEMP[i];
2123 			data->reg_temp_over[i] = NCT6775_REG_TEMP_OVER[i];
2124 			data->reg_temp_hyst[i] = NCT6775_REG_TEMP_HYST[i];
2125 			data->reg_temp_config[i] = NCT6775_REG_TEMP_CONFIG[i];
2126 
2127 			src = w83627ehf_read_value(data,
2128 						   NCT6775_REG_TEMP_SOURCE[i]);
2129 			src &= 0x1f;
2130 			if (src && !(mask & (1 << src))) {
2131 				data->have_temp |= 1 << i;
2132 				mask |= 1 << src;
2133 			}
2134 
2135 			data->temp_src[i] = src;
2136 
2137 			/*
2138 			 * Now do some register swapping if index 0..2 don't
2139 			 * point to SYSTIN(1), CPUIN(2), and AUXIN(3).
2140 			 * Idea is to have the first three attributes
2141 			 * report SYSTIN, CPUIN, and AUXIN if possible
2142 			 * without overriding the basic system configuration.
2143 			 */
2144 			if (i > 0 && data->temp_src[0] != 1
2145 			    && data->temp_src[i] == 1)
2146 				w82627ehf_swap_tempreg(data, 0, i);
2147 			if (i > 1 && data->temp_src[1] != 2
2148 			    && data->temp_src[i] == 2)
2149 				w82627ehf_swap_tempreg(data, 1, i);
2150 			if (i > 2 && data->temp_src[2] != 3
2151 			    && data->temp_src[i] == 3)
2152 				w82627ehf_swap_tempreg(data, 2, i);
2153 		}
2154 		if (sio_data->kind == nct6776) {
2155 			/*
2156 			 * On NCT6776, AUXTIN and VIN3 pins are shared.
2157 			 * Only way to detect it is to check if AUXTIN is used
2158 			 * as a temperature source, and if that source is
2159 			 * enabled.
2160 			 *
2161 			 * If that is the case, disable in6, which reports VIN3.
2162 			 * Otherwise disable temp3.
2163 			 */
2164 			if (data->temp_src[2] == 3) {
2165 				u8 reg;
2166 
2167 				if (data->reg_temp_config[2])
2168 					reg = w83627ehf_read_value(data,
2169 						data->reg_temp_config[2]);
2170 				else
2171 					reg = 0; /* Assume AUXTIN is used */
2172 
2173 				if (reg & 0x01)
2174 					data->have_temp &= ~(1 << 2);
2175 				else
2176 					data->in6_skip = 1;
2177 			}
2178 			data->temp_label = nct6776_temp_label;
2179 		} else {
2180 			data->temp_label = nct6775_temp_label;
2181 		}
2182 		data->have_temp_offset = data->have_temp & 0x07;
2183 		for (i = 0; i < 3; i++) {
2184 			if (data->temp_src[i] > 3)
2185 				data->have_temp_offset &= ~(1 << i);
2186 		}
2187 	} else if (sio_data->kind == w83667hg_b) {
2188 		u8 reg;
2189 
2190 		w83627ehf_set_temp_reg_ehf(data, 4);
2191 
2192 		/*
2193 		 * Temperature sources are selected with bank 0, registers 0x49
2194 		 * and 0x4a.
2195 		 */
2196 		reg = w83627ehf_read_value(data, 0x4a);
2197 		data->temp_src[0] = reg >> 5;
2198 		reg = w83627ehf_read_value(data, 0x49);
2199 		data->temp_src[1] = reg & 0x07;
2200 		data->temp_src[2] = (reg >> 4) & 0x07;
2201 
2202 		/*
2203 		 * W83667HG-B has another temperature register at 0x7e.
2204 		 * The temperature source is selected with register 0x7d.
2205 		 * Support it if the source differs from already reported
2206 		 * sources.
2207 		 */
2208 		reg = w83627ehf_read_value(data, 0x7d);
2209 		reg &= 0x07;
2210 		if (reg != data->temp_src[0] && reg != data->temp_src[1]
2211 		    && reg != data->temp_src[2]) {
2212 			data->temp_src[3] = reg;
2213 			data->have_temp |= 1 << 3;
2214 		}
2215 
2216 		/*
2217 		 * Chip supports either AUXTIN or VIN3. Try to find out which
2218 		 * one.
2219 		 */
2220 		reg = w83627ehf_read_value(data, W83627EHF_REG_TEMP_CONFIG[2]);
2221 		if (data->temp_src[2] == 2 && (reg & 0x01))
2222 			data->have_temp &= ~(1 << 2);
2223 
2224 		if ((data->temp_src[2] == 2 && (data->have_temp & (1 << 2)))
2225 		    || (data->temp_src[3] == 2 && (data->have_temp & (1 << 3))))
2226 			data->in6_skip = 1;
2227 
2228 		data->temp_label = w83667hg_b_temp_label;
2229 		data->have_temp_offset = data->have_temp & 0x07;
2230 		for (i = 0; i < 3; i++) {
2231 			if (data->temp_src[i] > 2)
2232 				data->have_temp_offset &= ~(1 << i);
2233 		}
2234 	} else if (sio_data->kind == w83627uhg) {
2235 		u8 reg;
2236 
2237 		w83627ehf_set_temp_reg_ehf(data, 3);
2238 
2239 		/*
2240 		 * Temperature sources for temp2 and temp3 are selected with
2241 		 * bank 0, registers 0x49 and 0x4a.
2242 		 */
2243 		data->temp_src[0] = 0;	/* SYSTIN */
2244 		reg = w83627ehf_read_value(data, 0x49) & 0x07;
2245 		/* Adjust to have the same mapping as other source registers */
2246 		if (reg == 0)
2247 			data->temp_src[1] = 1;
2248 		else if (reg >= 2 && reg <= 5)
2249 			data->temp_src[1] = reg + 2;
2250 		else	/* should never happen */
2251 			data->have_temp &= ~(1 << 1);
2252 		reg = w83627ehf_read_value(data, 0x4a);
2253 		data->temp_src[2] = reg >> 5;
2254 
2255 		/*
2256 		 * Skip temp3 if source is invalid or the same as temp1
2257 		 * or temp2.
2258 		 */
2259 		if (data->temp_src[2] == 2 || data->temp_src[2] == 3 ||
2260 		    data->temp_src[2] == data->temp_src[0] ||
2261 		    ((data->have_temp & (1 << 1)) &&
2262 		     data->temp_src[2] == data->temp_src[1]))
2263 			data->have_temp &= ~(1 << 2);
2264 		else
2265 			data->temp3_val_only = 1;	/* No limit regs */
2266 
2267 		data->in6_skip = 1;			/* No VIN3 */
2268 
2269 		data->temp_label = w83667hg_b_temp_label;
2270 		data->have_temp_offset = data->have_temp & 0x03;
2271 		for (i = 0; i < 3; i++) {
2272 			if (data->temp_src[i] > 1)
2273 				data->have_temp_offset &= ~(1 << i);
2274 		}
2275 	} else {
2276 		w83627ehf_set_temp_reg_ehf(data, 3);
2277 
2278 		/* Temperature sources are fixed */
2279 
2280 		if (sio_data->kind == w83667hg) {
2281 			u8 reg;
2282 
2283 			/*
2284 			 * Chip supports either AUXTIN or VIN3. Try to find
2285 			 * out which one.
2286 			 */
2287 			reg = w83627ehf_read_value(data,
2288 						W83627EHF_REG_TEMP_CONFIG[2]);
2289 			if (reg & 0x01)
2290 				data->have_temp &= ~(1 << 2);
2291 			else
2292 				data->in6_skip = 1;
2293 		}
2294 		data->have_temp_offset = data->have_temp & 0x07;
2295 	}
2296 
2297 	if (sio_data->kind == nct6775) {
2298 		data->has_fan_div = true;
2299 		data->fan_from_reg = fan_from_reg16;
2300 		data->fan_from_reg_min = fan_from_reg8;
2301 		data->REG_PWM = NCT6775_REG_PWM;
2302 		data->REG_TARGET = NCT6775_REG_TARGET;
2303 		data->REG_FAN = NCT6775_REG_FAN;
2304 		data->REG_FAN_MIN = W83627EHF_REG_FAN_MIN;
2305 		data->REG_FAN_START_OUTPUT = NCT6775_REG_FAN_START_OUTPUT;
2306 		data->REG_FAN_STOP_OUTPUT = NCT6775_REG_FAN_STOP_OUTPUT;
2307 		data->REG_FAN_STOP_TIME = NCT6775_REG_FAN_STOP_TIME;
2308 		data->REG_FAN_MAX_OUTPUT = NCT6775_REG_FAN_MAX_OUTPUT;
2309 		data->REG_FAN_STEP_OUTPUT = NCT6775_REG_FAN_STEP_OUTPUT;
2310 	} else if (sio_data->kind == nct6776) {
2311 		data->has_fan_div = false;
2312 		data->fan_from_reg = fan_from_reg13;
2313 		data->fan_from_reg_min = fan_from_reg13;
2314 		data->REG_PWM = NCT6775_REG_PWM;
2315 		data->REG_TARGET = NCT6775_REG_TARGET;
2316 		data->REG_FAN = NCT6775_REG_FAN;
2317 		data->REG_FAN_MIN = NCT6776_REG_FAN_MIN;
2318 		data->REG_FAN_START_OUTPUT = NCT6775_REG_FAN_START_OUTPUT;
2319 		data->REG_FAN_STOP_OUTPUT = NCT6775_REG_FAN_STOP_OUTPUT;
2320 		data->REG_FAN_STOP_TIME = NCT6775_REG_FAN_STOP_TIME;
2321 	} else if (sio_data->kind == w83667hg_b) {
2322 		data->has_fan_div = true;
2323 		data->fan_from_reg = fan_from_reg8;
2324 		data->fan_from_reg_min = fan_from_reg8;
2325 		data->REG_PWM = W83627EHF_REG_PWM;
2326 		data->REG_TARGET = W83627EHF_REG_TARGET;
2327 		data->REG_FAN = W83627EHF_REG_FAN;
2328 		data->REG_FAN_MIN = W83627EHF_REG_FAN_MIN;
2329 		data->REG_FAN_START_OUTPUT = W83627EHF_REG_FAN_START_OUTPUT;
2330 		data->REG_FAN_STOP_OUTPUT = W83627EHF_REG_FAN_STOP_OUTPUT;
2331 		data->REG_FAN_STOP_TIME = W83627EHF_REG_FAN_STOP_TIME;
2332 		data->REG_FAN_MAX_OUTPUT =
2333 		  W83627EHF_REG_FAN_MAX_OUTPUT_W83667_B;
2334 		data->REG_FAN_STEP_OUTPUT =
2335 		  W83627EHF_REG_FAN_STEP_OUTPUT_W83667_B;
2336 	} else {
2337 		data->has_fan_div = true;
2338 		data->fan_from_reg = fan_from_reg8;
2339 		data->fan_from_reg_min = fan_from_reg8;
2340 		data->REG_PWM = W83627EHF_REG_PWM;
2341 		data->REG_TARGET = W83627EHF_REG_TARGET;
2342 		data->REG_FAN = W83627EHF_REG_FAN;
2343 		data->REG_FAN_MIN = W83627EHF_REG_FAN_MIN;
2344 		data->REG_FAN_START_OUTPUT = W83627EHF_REG_FAN_START_OUTPUT;
2345 		data->REG_FAN_STOP_OUTPUT = W83627EHF_REG_FAN_STOP_OUTPUT;
2346 		data->REG_FAN_STOP_TIME = W83627EHF_REG_FAN_STOP_TIME;
2347 		data->REG_FAN_MAX_OUTPUT =
2348 		  W83627EHF_REG_FAN_MAX_OUTPUT_COMMON;
2349 		data->REG_FAN_STEP_OUTPUT =
2350 		  W83627EHF_REG_FAN_STEP_OUTPUT_COMMON;
2351 	}
2352 
2353 	/* Setup input voltage scaling factors */
2354 	if (sio_data->kind == w83627uhg)
2355 		data->scale_in = scale_in_w83627uhg;
2356 	else
2357 		data->scale_in = scale_in_common;
2358 
2359 	/* Initialize the chip */
2360 	w83627ehf_init_device(data, sio_data->kind);
2361 
2362 	data->vrm = vid_which_vrm();
2363 	superio_enter(sio_data->sioreg);
2364 	/* Read VID value */
2365 	if (sio_data->kind == w83667hg || sio_data->kind == w83667hg_b ||
2366 	    sio_data->kind == nct6775 || sio_data->kind == nct6776) {
2367 		/*
2368 		 * W83667HG has different pins for VID input and output, so
2369 		 * we can get the VID input values directly at logical device D
2370 		 * 0xe3.
2371 		 */
2372 		superio_select(sio_data->sioreg, W83667HG_LD_VID);
2373 		data->vid = superio_inb(sio_data->sioreg, 0xe3);
2374 		err = device_create_file(dev, &dev_attr_cpu0_vid);
2375 		if (err)
2376 			goto exit_release;
2377 	} else if (sio_data->kind != w83627uhg) {
2378 		superio_select(sio_data->sioreg, W83627EHF_LD_HWM);
2379 		if (superio_inb(sio_data->sioreg, SIO_REG_VID_CTRL) & 0x80) {
2380 			/*
2381 			 * Set VID input sensibility if needed. In theory the
2382 			 * BIOS should have set it, but in practice it's not
2383 			 * always the case. We only do it for the W83627EHF/EHG
2384 			 * because the W83627DHG is more complex in this
2385 			 * respect.
2386 			 */
2387 			if (sio_data->kind == w83627ehf) {
2388 				en_vrm10 = superio_inb(sio_data->sioreg,
2389 						       SIO_REG_EN_VRM10);
2390 				if ((en_vrm10 & 0x08) && data->vrm == 90) {
2391 					dev_warn(dev, "Setting VID input "
2392 						 "voltage to TTL\n");
2393 					superio_outb(sio_data->sioreg,
2394 						     SIO_REG_EN_VRM10,
2395 						     en_vrm10 & ~0x08);
2396 				} else if (!(en_vrm10 & 0x08)
2397 					   && data->vrm == 100) {
2398 					dev_warn(dev, "Setting VID input "
2399 						 "voltage to VRM10\n");
2400 					superio_outb(sio_data->sioreg,
2401 						     SIO_REG_EN_VRM10,
2402 						     en_vrm10 | 0x08);
2403 				}
2404 			}
2405 
2406 			data->vid = superio_inb(sio_data->sioreg,
2407 						SIO_REG_VID_DATA);
2408 			if (sio_data->kind == w83627ehf) /* 6 VID pins only */
2409 				data->vid &= 0x3f;
2410 
2411 			err = device_create_file(dev, &dev_attr_cpu0_vid);
2412 			if (err)
2413 				goto exit_release;
2414 		} else {
2415 			dev_info(dev, "VID pins in output mode, CPU VID not "
2416 				 "available\n");
2417 		}
2418 	}
2419 
2420 	if (fan_debounce &&
2421 	    (sio_data->kind == nct6775 || sio_data->kind == nct6776)) {
2422 		u8 tmp;
2423 
2424 		superio_select(sio_data->sioreg, W83627EHF_LD_HWM);
2425 		tmp = superio_inb(sio_data->sioreg, NCT6775_REG_FAN_DEBOUNCE);
2426 		if (sio_data->kind == nct6776)
2427 			superio_outb(sio_data->sioreg, NCT6775_REG_FAN_DEBOUNCE,
2428 				     0x3e | tmp);
2429 		else
2430 			superio_outb(sio_data->sioreg, NCT6775_REG_FAN_DEBOUNCE,
2431 				     0x1e | tmp);
2432 		pr_info("Enabled fan debounce for chip %s\n", data->name);
2433 	}
2434 
2435 	superio_exit(sio_data->sioreg);
2436 
2437 	w83627ehf_check_fan_inputs(sio_data, data);
2438 
2439 	/* Read fan clock dividers immediately */
2440 	w83627ehf_update_fan_div_common(dev, data);
2441 
2442 	/* Read pwm data to save original values */
2443 	w83627ehf_update_pwm_common(dev, data);
2444 	for (i = 0; i < data->pwm_num; i++)
2445 		data->pwm_enable_orig[i] = data->pwm_enable[i];
2446 
2447 	/* Register sysfs hooks */
2448 	for (i = 0; i < ARRAY_SIZE(sda_sf3_arrays); i++) {
2449 		err = device_create_file(dev, &sda_sf3_arrays[i].dev_attr);
2450 		if (err)
2451 			goto exit_remove;
2452 	}
2453 
2454 	for (i = 0; i < ARRAY_SIZE(sda_sf3_max_step_arrays); i++) {
2455 		struct sensor_device_attribute *attr =
2456 		  &sda_sf3_max_step_arrays[i];
2457 		if (data->REG_FAN_STEP_OUTPUT &&
2458 		    data->REG_FAN_STEP_OUTPUT[attr->index] != 0xff) {
2459 			err = device_create_file(dev, &attr->dev_attr);
2460 			if (err)
2461 				goto exit_remove;
2462 		}
2463 	}
2464 	/* if fan3 and fan4 are enabled create the sf3 files for them */
2465 	if ((data->has_fan & (1 << 2)) && data->pwm_num >= 3)
2466 		for (i = 0; i < ARRAY_SIZE(sda_sf3_arrays_fan3); i++) {
2467 			err = device_create_file(dev,
2468 					&sda_sf3_arrays_fan3[i].dev_attr);
2469 			if (err)
2470 				goto exit_remove;
2471 		}
2472 	if ((data->has_fan & (1 << 3)) && data->pwm_num >= 4)
2473 		for (i = 0; i < ARRAY_SIZE(sda_sf3_arrays_fan4); i++) {
2474 			err = device_create_file(dev,
2475 					&sda_sf3_arrays_fan4[i].dev_attr);
2476 			if (err)
2477 				goto exit_remove;
2478 		}
2479 
2480 	for (i = 0; i < data->in_num; i++) {
2481 		if ((i == 6) && data->in6_skip)
2482 			continue;
2483 		if ((err = device_create_file(dev, &sda_in_input[i].dev_attr))
2484 			|| (err = device_create_file(dev,
2485 				&sda_in_alarm[i].dev_attr))
2486 			|| (err = device_create_file(dev,
2487 				&sda_in_min[i].dev_attr))
2488 			|| (err = device_create_file(dev,
2489 				&sda_in_max[i].dev_attr)))
2490 			goto exit_remove;
2491 	}
2492 
2493 	for (i = 0; i < 5; i++) {
2494 		if (data->has_fan & (1 << i)) {
2495 			if ((err = device_create_file(dev,
2496 					&sda_fan_input[i].dev_attr))
2497 				|| (err = device_create_file(dev,
2498 					&sda_fan_alarm[i].dev_attr)))
2499 				goto exit_remove;
2500 			if (sio_data->kind != nct6776) {
2501 				err = device_create_file(dev,
2502 						&sda_fan_div[i].dev_attr);
2503 				if (err)
2504 					goto exit_remove;
2505 			}
2506 			if (data->has_fan_min & (1 << i)) {
2507 				err = device_create_file(dev,
2508 						&sda_fan_min[i].dev_attr);
2509 				if (err)
2510 					goto exit_remove;
2511 			}
2512 			if (i < data->pwm_num &&
2513 				((err = device_create_file(dev,
2514 					&sda_pwm[i].dev_attr))
2515 				|| (err = device_create_file(dev,
2516 					&sda_pwm_mode[i].dev_attr))
2517 				|| (err = device_create_file(dev,
2518 					&sda_pwm_enable[i].dev_attr))
2519 				|| (err = device_create_file(dev,
2520 					&sda_target_temp[i].dev_attr))
2521 				|| (err = device_create_file(dev,
2522 					&sda_tolerance[i].dev_attr))))
2523 				goto exit_remove;
2524 		}
2525 	}
2526 
2527 	for (i = 0; i < NUM_REG_TEMP; i++) {
2528 		if (!(data->have_temp & (1 << i)))
2529 			continue;
2530 		err = device_create_file(dev, &sda_temp_input[i].dev_attr);
2531 		if (err)
2532 			goto exit_remove;
2533 		if (data->temp_label) {
2534 			err = device_create_file(dev,
2535 						 &sda_temp_label[i].dev_attr);
2536 			if (err)
2537 				goto exit_remove;
2538 		}
2539 		if (i == 2 && data->temp3_val_only)
2540 			continue;
2541 		if (data->reg_temp_over[i]) {
2542 			err = device_create_file(dev,
2543 				&sda_temp_max[i].dev_attr);
2544 			if (err)
2545 				goto exit_remove;
2546 		}
2547 		if (data->reg_temp_hyst[i]) {
2548 			err = device_create_file(dev,
2549 				&sda_temp_max_hyst[i].dev_attr);
2550 			if (err)
2551 				goto exit_remove;
2552 		}
2553 		if (i > 2)
2554 			continue;
2555 		if ((err = device_create_file(dev,
2556 				&sda_temp_alarm[i].dev_attr))
2557 			|| (err = device_create_file(dev,
2558 				&sda_temp_type[i].dev_attr)))
2559 			goto exit_remove;
2560 		if (data->have_temp_offset & (1 << i)) {
2561 			err = device_create_file(dev,
2562 						 &sda_temp_offset[i].dev_attr);
2563 			if (err)
2564 				goto exit_remove;
2565 		}
2566 	}
2567 
2568 	err = device_create_file(dev, &sda_caseopen[0].dev_attr);
2569 	if (err)
2570 		goto exit_remove;
2571 
2572 	if (sio_data->kind == nct6776) {
2573 		err = device_create_file(dev, &sda_caseopen[1].dev_attr);
2574 		if (err)
2575 			goto exit_remove;
2576 	}
2577 
2578 	err = device_create_file(dev, &dev_attr_name);
2579 	if (err)
2580 		goto exit_remove;
2581 
2582 	data->hwmon_dev = hwmon_device_register(dev);
2583 	if (IS_ERR(data->hwmon_dev)) {
2584 		err = PTR_ERR(data->hwmon_dev);
2585 		goto exit_remove;
2586 	}
2587 
2588 	return 0;
2589 
2590 exit_remove:
2591 	w83627ehf_device_remove_files(dev);
2592 exit_release:
2593 	platform_set_drvdata(pdev, NULL);
2594 	release_region(res->start, IOREGION_LENGTH);
2595 exit:
2596 	return err;
2597 }
2598 
2599 static int w83627ehf_remove(struct platform_device *pdev)
2600 {
2601 	struct w83627ehf_data *data = platform_get_drvdata(pdev);
2602 
2603 	hwmon_device_unregister(data->hwmon_dev);
2604 	w83627ehf_device_remove_files(&pdev->dev);
2605 	release_region(data->addr, IOREGION_LENGTH);
2606 	platform_set_drvdata(pdev, NULL);
2607 
2608 	return 0;
2609 }
2610 
2611 static struct platform_driver w83627ehf_driver = {
2612 	.driver = {
2613 		.owner	= THIS_MODULE,
2614 		.name	= DRVNAME,
2615 	},
2616 	.probe		= w83627ehf_probe,
2617 	.remove		= w83627ehf_remove,
2618 };
2619 
2620 /* w83627ehf_find() looks for a '627 in the Super-I/O config space */
2621 static int __init w83627ehf_find(int sioaddr, unsigned short *addr,
2622 				 struct w83627ehf_sio_data *sio_data)
2623 {
2624 	static const char sio_name_W83627EHF[] __initconst = "W83627EHF";
2625 	static const char sio_name_W83627EHG[] __initconst = "W83627EHG";
2626 	static const char sio_name_W83627DHG[] __initconst = "W83627DHG";
2627 	static const char sio_name_W83627DHG_P[] __initconst = "W83627DHG-P";
2628 	static const char sio_name_W83627UHG[] __initconst = "W83627UHG";
2629 	static const char sio_name_W83667HG[] __initconst = "W83667HG";
2630 	static const char sio_name_W83667HG_B[] __initconst = "W83667HG-B";
2631 	static const char sio_name_NCT6775[] __initconst = "NCT6775F";
2632 	static const char sio_name_NCT6776[] __initconst = "NCT6776F";
2633 
2634 	u16 val;
2635 	const char *sio_name;
2636 
2637 	superio_enter(sioaddr);
2638 
2639 	if (force_id)
2640 		val = force_id;
2641 	else
2642 		val = (superio_inb(sioaddr, SIO_REG_DEVID) << 8)
2643 		    | superio_inb(sioaddr, SIO_REG_DEVID + 1);
2644 	switch (val & SIO_ID_MASK) {
2645 	case SIO_W83627EHF_ID:
2646 		sio_data->kind = w83627ehf;
2647 		sio_name = sio_name_W83627EHF;
2648 		break;
2649 	case SIO_W83627EHG_ID:
2650 		sio_data->kind = w83627ehf;
2651 		sio_name = sio_name_W83627EHG;
2652 		break;
2653 	case SIO_W83627DHG_ID:
2654 		sio_data->kind = w83627dhg;
2655 		sio_name = sio_name_W83627DHG;
2656 		break;
2657 	case SIO_W83627DHG_P_ID:
2658 		sio_data->kind = w83627dhg_p;
2659 		sio_name = sio_name_W83627DHG_P;
2660 		break;
2661 	case SIO_W83627UHG_ID:
2662 		sio_data->kind = w83627uhg;
2663 		sio_name = sio_name_W83627UHG;
2664 		break;
2665 	case SIO_W83667HG_ID:
2666 		sio_data->kind = w83667hg;
2667 		sio_name = sio_name_W83667HG;
2668 		break;
2669 	case SIO_W83667HG_B_ID:
2670 		sio_data->kind = w83667hg_b;
2671 		sio_name = sio_name_W83667HG_B;
2672 		break;
2673 	case SIO_NCT6775_ID:
2674 		sio_data->kind = nct6775;
2675 		sio_name = sio_name_NCT6775;
2676 		break;
2677 	case SIO_NCT6776_ID:
2678 		sio_data->kind = nct6776;
2679 		sio_name = sio_name_NCT6776;
2680 		break;
2681 	default:
2682 		if (val != 0xffff)
2683 			pr_debug("unsupported chip ID: 0x%04x\n", val);
2684 		superio_exit(sioaddr);
2685 		return -ENODEV;
2686 	}
2687 
2688 	/* We have a known chip, find the HWM I/O address */
2689 	superio_select(sioaddr, W83627EHF_LD_HWM);
2690 	val = (superio_inb(sioaddr, SIO_REG_ADDR) << 8)
2691 	    | superio_inb(sioaddr, SIO_REG_ADDR + 1);
2692 	*addr = val & IOREGION_ALIGNMENT;
2693 	if (*addr == 0) {
2694 		pr_err("Refusing to enable a Super-I/O device with a base I/O port 0\n");
2695 		superio_exit(sioaddr);
2696 		return -ENODEV;
2697 	}
2698 
2699 	/* Activate logical device if needed */
2700 	val = superio_inb(sioaddr, SIO_REG_ENABLE);
2701 	if (!(val & 0x01)) {
2702 		pr_warn("Forcibly enabling Super-I/O. "
2703 			"Sensor is probably unusable.\n");
2704 		superio_outb(sioaddr, SIO_REG_ENABLE, val | 0x01);
2705 	}
2706 
2707 	superio_exit(sioaddr);
2708 	pr_info("Found %s chip at %#x\n", sio_name, *addr);
2709 	sio_data->sioreg = sioaddr;
2710 
2711 	return 0;
2712 }
2713 
2714 /*
2715  * when Super-I/O functions move to a separate file, the Super-I/O
2716  * bus will manage the lifetime of the device and this module will only keep
2717  * track of the w83627ehf driver. But since we platform_device_alloc(), we
2718  * must keep track of the device
2719  */
2720 static struct platform_device *pdev;
2721 
2722 static int __init sensors_w83627ehf_init(void)
2723 {
2724 	int err;
2725 	unsigned short address;
2726 	struct resource res;
2727 	struct w83627ehf_sio_data sio_data;
2728 
2729 	/*
2730 	 * initialize sio_data->kind and sio_data->sioreg.
2731 	 *
2732 	 * when Super-I/O functions move to a separate file, the Super-I/O
2733 	 * driver will probe 0x2e and 0x4e and auto-detect the presence of a
2734 	 * w83627ehf hardware monitor, and call probe()
2735 	 */
2736 	if (w83627ehf_find(0x2e, &address, &sio_data) &&
2737 	    w83627ehf_find(0x4e, &address, &sio_data))
2738 		return -ENODEV;
2739 
2740 	err = platform_driver_register(&w83627ehf_driver);
2741 	if (err)
2742 		goto exit;
2743 
2744 	pdev = platform_device_alloc(DRVNAME, address);
2745 	if (!pdev) {
2746 		err = -ENOMEM;
2747 		pr_err("Device allocation failed\n");
2748 		goto exit_unregister;
2749 	}
2750 
2751 	err = platform_device_add_data(pdev, &sio_data,
2752 				       sizeof(struct w83627ehf_sio_data));
2753 	if (err) {
2754 		pr_err("Platform data allocation failed\n");
2755 		goto exit_device_put;
2756 	}
2757 
2758 	memset(&res, 0, sizeof(res));
2759 	res.name = DRVNAME;
2760 	res.start = address + IOREGION_OFFSET;
2761 	res.end = address + IOREGION_OFFSET + IOREGION_LENGTH - 1;
2762 	res.flags = IORESOURCE_IO;
2763 
2764 	err = acpi_check_resource_conflict(&res);
2765 	if (err)
2766 		goto exit_device_put;
2767 
2768 	err = platform_device_add_resources(pdev, &res, 1);
2769 	if (err) {
2770 		pr_err("Device resource addition failed (%d)\n", err);
2771 		goto exit_device_put;
2772 	}
2773 
2774 	/* platform_device_add calls probe() */
2775 	err = platform_device_add(pdev);
2776 	if (err) {
2777 		pr_err("Device addition failed (%d)\n", err);
2778 		goto exit_device_put;
2779 	}
2780 
2781 	return 0;
2782 
2783 exit_device_put:
2784 	platform_device_put(pdev);
2785 exit_unregister:
2786 	platform_driver_unregister(&w83627ehf_driver);
2787 exit:
2788 	return err;
2789 }
2790 
2791 static void __exit sensors_w83627ehf_exit(void)
2792 {
2793 	platform_device_unregister(pdev);
2794 	platform_driver_unregister(&w83627ehf_driver);
2795 }
2796 
2797 MODULE_AUTHOR("Jean Delvare <khali@linux-fr.org>");
2798 MODULE_DESCRIPTION("W83627EHF driver");
2799 MODULE_LICENSE("GPL");
2800 
2801 module_init(sensors_w83627ehf_init);
2802 module_exit(sensors_w83627ehf_exit);
2803