1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * via686a.c - Part of lm_sensors, Linux kernel modules 4 * for hardware monitoring 5 * 6 * Copyright (c) 1998 - 2002 Frodo Looijaard <frodol@dds.nl>, 7 * Kyösti Mälkki <kmalkki@cc.hut.fi>, 8 * Mark Studebaker <mdsxyz123@yahoo.com>, 9 * and Bob Dougherty <bobd@stanford.edu> 10 * 11 * (Some conversion-factor data were contributed by Jonathan Teh Soon Yew 12 * <j.teh@iname.com> and Alex van Kaam <darkside@chello.nl>.) 13 */ 14 15 /* 16 * Supports the Via VT82C686A, VT82C686B south bridges. 17 * Reports all as a 686A. 18 * Warning - only supports a single device. 19 */ 20 21 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 22 23 #include <linux/module.h> 24 #include <linux/slab.h> 25 #include <linux/pci.h> 26 #include <linux/jiffies.h> 27 #include <linux/platform_device.h> 28 #include <linux/hwmon.h> 29 #include <linux/hwmon-sysfs.h> 30 #include <linux/err.h> 31 #include <linux/init.h> 32 #include <linux/mutex.h> 33 #include <linux/sysfs.h> 34 #include <linux/acpi.h> 35 #include <linux/io.h> 36 37 #define DRIVER_NAME "via686a" 38 39 /* 40 * If force_addr is set to anything different from 0, we forcibly enable 41 * the device at the given address. 42 */ 43 static unsigned short force_addr; 44 module_param(force_addr, ushort, 0); 45 MODULE_PARM_DESC(force_addr, 46 "Initialize the base address of the sensors"); 47 48 static struct platform_device *pdev; 49 50 /* 51 * The Via 686a southbridge has a LM78-like chip integrated on the same IC. 52 * This driver is a customized copy of lm78.c 53 */ 54 55 /* Many VIA686A constants specified below */ 56 57 /* Length of ISA address segment */ 58 #define VIA686A_EXTENT 0x80 59 #define VIA686A_BASE_REG 0x70 60 #define VIA686A_ENABLE_REG 0x74 61 62 /* The VIA686A registers */ 63 /* ins numbered 0-4 */ 64 #define VIA686A_REG_IN_MAX(nr) (0x2b + ((nr) * 2)) 65 #define VIA686A_REG_IN_MIN(nr) (0x2c + ((nr) * 2)) 66 #define VIA686A_REG_IN(nr) (0x22 + (nr)) 67 68 /* fans numbered 1-2 */ 69 #define VIA686A_REG_FAN_MIN(nr) (0x3a + (nr)) 70 #define VIA686A_REG_FAN(nr) (0x28 + (nr)) 71 72 /* temps numbered 1-3 */ 73 static const u8 VIA686A_REG_TEMP[] = { 0x20, 0x21, 0x1f }; 74 static const u8 VIA686A_REG_TEMP_OVER[] = { 0x39, 0x3d, 0x1d }; 75 static const u8 VIA686A_REG_TEMP_HYST[] = { 0x3a, 0x3e, 0x1e }; 76 /* bits 7-6 */ 77 #define VIA686A_REG_TEMP_LOW1 0x4b 78 /* 2 = bits 5-4, 3 = bits 7-6 */ 79 #define VIA686A_REG_TEMP_LOW23 0x49 80 81 #define VIA686A_REG_ALARM1 0x41 82 #define VIA686A_REG_ALARM2 0x42 83 #define VIA686A_REG_FANDIV 0x47 84 #define VIA686A_REG_CONFIG 0x40 85 /* 86 * The following register sets temp interrupt mode (bits 1-0 for temp1, 87 * 3-2 for temp2, 5-4 for temp3). Modes are: 88 * 00 interrupt stays as long as value is out-of-range 89 * 01 interrupt is cleared once register is read (default) 90 * 10 comparator mode- like 00, but ignores hysteresis 91 * 11 same as 00 92 */ 93 #define VIA686A_REG_TEMP_MODE 0x4b 94 /* We'll just assume that you want to set all 3 simultaneously: */ 95 #define VIA686A_TEMP_MODE_MASK 0x3F 96 #define VIA686A_TEMP_MODE_CONTINUOUS 0x00 97 98 /* 99 * Conversions. Limit checking is only done on the TO_REG 100 * variants. 101 * 102 ******** VOLTAGE CONVERSIONS (Bob Dougherty) ******** 103 * From HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew): 104 * voltagefactor[0]=1.25/2628; (2628/1.25=2102.4) // Vccp 105 * voltagefactor[1]=1.25/2628; (2628/1.25=2102.4) // +2.5V 106 * voltagefactor[2]=1.67/2628; (2628/1.67=1573.7) // +3.3V 107 * voltagefactor[3]=2.6/2628; (2628/2.60=1010.8) // +5V 108 * voltagefactor[4]=6.3/2628; (2628/6.30=417.14) // +12V 109 * in[i]=(data[i+2]*25.0+133)*voltagefactor[i]; 110 * That is: 111 * volts = (25*regVal+133)*factor 112 * regVal = (volts/factor-133)/25 113 * (These conversions were contributed by Jonathan Teh Soon Yew 114 * <j.teh@iname.com>) 115 */ 116 static inline u8 IN_TO_REG(long val, int in_num) 117 { 118 /* 119 * To avoid floating point, we multiply constants by 10 (100 for +12V). 120 * Rounding is done (120500 is actually 133000 - 12500). 121 * Remember that val is expressed in 0.001V/bit, which is why we divide 122 * by an additional 10000 (100000 for +12V): 1000 for val and 10 (100) 123 * for the constants. 124 */ 125 if (in_num <= 1) 126 return (u8) clamp_val((val * 21024 - 1205000) / 250000, 0, 255); 127 else if (in_num == 2) 128 return (u8) clamp_val((val * 15737 - 1205000) / 250000, 0, 255); 129 else if (in_num == 3) 130 return (u8) clamp_val((val * 10108 - 1205000) / 250000, 0, 255); 131 else 132 return (u8) clamp_val((val * 41714 - 12050000) / 2500000, 0, 133 255); 134 } 135 136 static inline long IN_FROM_REG(u8 val, int in_num) 137 { 138 /* 139 * To avoid floating point, we multiply constants by 10 (100 for +12V). 140 * We also multiply them by 1000 because we want 0.001V/bit for the 141 * output value. Rounding is done. 142 */ 143 if (in_num <= 1) 144 return (long) ((250000 * val + 1330000 + 21024 / 2) / 21024); 145 else if (in_num == 2) 146 return (long) ((250000 * val + 1330000 + 15737 / 2) / 15737); 147 else if (in_num == 3) 148 return (long) ((250000 * val + 1330000 + 10108 / 2) / 10108); 149 else 150 return (long) ((2500000 * val + 13300000 + 41714 / 2) / 41714); 151 } 152 153 /********* FAN RPM CONVERSIONS ********/ 154 /* 155 * Higher register values = slower fans (the fan's strobe gates a counter). 156 * But this chip saturates back at 0, not at 255 like all the other chips. 157 * So, 0 means 0 RPM 158 */ 159 static inline u8 FAN_TO_REG(long rpm, int div) 160 { 161 if (rpm == 0) 162 return 0; 163 rpm = clamp_val(rpm, 1, 1000000); 164 return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 255); 165 } 166 167 #define FAN_FROM_REG(val, div) ((val) == 0 ? 0 : (val) == 255 ? 0 : 1350000 / \ 168 ((val) * (div))) 169 170 /******** TEMP CONVERSIONS (Bob Dougherty) *********/ 171 /* 172 * linear fits from HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew) 173 * if(temp<169) 174 * return double(temp)*0.427-32.08; 175 * else if(temp>=169 && temp<=202) 176 * return double(temp)*0.582-58.16; 177 * else 178 * return double(temp)*0.924-127.33; 179 * 180 * A fifth-order polynomial fits the unofficial data (provided by Alex van 181 * Kaam <darkside@chello.nl>) a bit better. It also give more reasonable 182 * numbers on my machine (ie. they agree with what my BIOS tells me). 183 * Here's the fifth-order fit to the 8-bit data: 184 * temp = 1.625093e-10*val^5 - 1.001632e-07*val^4 + 2.457653e-05*val^3 - 185 * 2.967619e-03*val^2 + 2.175144e-01*val - 7.090067e+0. 186 * 187 * (2000-10-25- RFD: thanks to Uwe Andersen <uandersen@mayah.com> for 188 * finding my typos in this formula!) 189 * 190 * Alas, none of the elegant function-fit solutions will work because we 191 * aren't allowed to use floating point in the kernel and doing it with 192 * integers doesn't provide enough precision. So we'll do boring old 193 * look-up table stuff. The unofficial data (see below) have effectively 194 * 7-bit resolution (they are rounded to the nearest degree). I'm assuming 195 * that the transfer function of the device is monotonic and smooth, so a 196 * smooth function fit to the data will allow us to get better precision. 197 * I used the 5th-order poly fit described above and solved for 198 * VIA register values 0-255. I *10 before rounding, so we get tenth-degree 199 * precision. (I could have done all 1024 values for our 10-bit readings, 200 * but the function is very linear in the useful range (0-80 deg C), so 201 * we'll just use linear interpolation for 10-bit readings.) So, temp_lut 202 * is the temp at via register values 0-255: 203 */ 204 static const s16 temp_lut[] = { 205 -709, -688, -667, -646, -627, -607, -589, -570, -553, -536, -519, 206 -503, -487, -471, -456, -442, -428, -414, -400, -387, -375, 207 -362, -350, -339, -327, -316, -305, -295, -285, -275, -265, 208 -255, -246, -237, -229, -220, -212, -204, -196, -188, -180, 209 -173, -166, -159, -152, -145, -139, -132, -126, -120, -114, 210 -108, -102, -96, -91, -85, -80, -74, -69, -64, -59, -54, -49, 211 -44, -39, -34, -29, -25, -20, -15, -11, -6, -2, 3, 7, 12, 16, 212 20, 25, 29, 33, 37, 42, 46, 50, 54, 59, 63, 67, 71, 75, 79, 84, 213 88, 92, 96, 100, 104, 109, 113, 117, 121, 125, 130, 134, 138, 214 142, 146, 151, 155, 159, 163, 168, 172, 176, 181, 185, 189, 215 193, 198, 202, 206, 211, 215, 219, 224, 228, 232, 237, 241, 216 245, 250, 254, 259, 263, 267, 272, 276, 281, 285, 290, 294, 217 299, 303, 307, 312, 316, 321, 325, 330, 334, 339, 344, 348, 218 353, 357, 362, 366, 371, 376, 380, 385, 390, 395, 399, 404, 219 409, 414, 419, 423, 428, 433, 438, 443, 449, 454, 459, 464, 220 469, 475, 480, 486, 491, 497, 502, 508, 514, 520, 526, 532, 221 538, 544, 551, 557, 564, 571, 578, 584, 592, 599, 606, 614, 222 621, 629, 637, 645, 654, 662, 671, 680, 689, 698, 708, 718, 223 728, 738, 749, 759, 770, 782, 793, 805, 818, 830, 843, 856, 224 870, 883, 898, 912, 927, 943, 958, 975, 991, 1008, 1026, 1044, 225 1062, 1081, 1101, 1121, 1141, 1162, 1184, 1206, 1229, 1252, 226 1276, 1301, 1326, 1352, 1378, 1406, 1434, 1462 227 }; 228 229 /* 230 * the original LUT values from Alex van Kaam <darkside@chello.nl> 231 * (for via register values 12-240): 232 * {-50,-49,-47,-45,-43,-41,-39,-38,-37,-35,-34,-33,-32,-31, 233 * -30,-29,-28,-27,-26,-25,-24,-24,-23,-22,-21,-20,-20,-19,-18,-17,-17,-16,-15, 234 * -15,-14,-14,-13,-12,-12,-11,-11,-10,-9,-9,-8,-8,-7,-7,-6,-6,-5,-5,-4,-4,-3, 235 * -3,-2,-2,-1,-1,0,0,1,1,1,3,3,3,4,4,4,5,5,5,6,6,7,7,8,8,9,9,9,10,10,11,11,12, 236 * 12,12,13,13,13,14,14,15,15,16,16,16,17,17,18,18,19,19,20,20,21,21,21,22,22, 237 * 22,23,23,24,24,25,25,26,26,26,27,27,27,28,28,29,29,30,30,30,31,31,32,32,33, 238 * 33,34,34,35,35,35,36,36,37,37,38,38,39,39,40,40,41,41,42,42,43,43,44,44,45, 239 * 45,46,46,47,48,48,49,49,50,51,51,52,52,53,53,54,55,55,56,57,57,58,59,59,60, 240 * 61,62,62,63,64,65,66,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,83,84, 241 * 85,86,88,89,91,92,94,96,97,99,101,103,105,107,109,110}; 242 * 243 * 244 * Here's the reverse LUT. I got it by doing a 6-th order poly fit (needed 245 * an extra term for a good fit to these inverse data!) and then 246 * solving for each temp value from -50 to 110 (the useable range for 247 * this chip). Here's the fit: 248 * viaRegVal = -1.160370e-10*val^6 +3.193693e-08*val^5 - 1.464447e-06*val^4 249 * - 2.525453e-04*val^3 + 1.424593e-02*val^2 + 2.148941e+00*val +7.275808e+01) 250 * Note that n=161: 251 */ 252 static const u8 via_lut[] = { 253 12, 12, 13, 14, 14, 15, 16, 16, 17, 18, 18, 19, 20, 20, 21, 22, 23, 254 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40, 255 41, 43, 45, 46, 48, 49, 51, 53, 55, 57, 59, 60, 62, 64, 66, 256 69, 71, 73, 75, 77, 79, 82, 84, 86, 88, 91, 93, 95, 98, 100, 257 103, 105, 107, 110, 112, 115, 117, 119, 122, 124, 126, 129, 258 131, 134, 136, 138, 140, 143, 145, 147, 150, 152, 154, 156, 259 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 260 182, 183, 185, 187, 188, 190, 192, 193, 195, 196, 198, 199, 261 200, 202, 203, 205, 206, 207, 208, 209, 210, 211, 212, 213, 262 214, 215, 216, 217, 218, 219, 220, 221, 222, 222, 223, 224, 263 225, 226, 226, 227, 228, 228, 229, 230, 230, 231, 232, 232, 264 233, 233, 234, 235, 235, 236, 236, 237, 237, 238, 238, 239, 265 239, 240 266 }; 267 268 /* 269 * Converting temps to (8-bit) hyst and over registers 270 * No interpolation here. 271 * The +50 is because the temps start at -50 272 */ 273 static inline u8 TEMP_TO_REG(long val) 274 { 275 return via_lut[val <= -50000 ? 0 : val >= 110000 ? 160 : 276 (val < 0 ? val - 500 : val + 500) / 1000 + 50]; 277 } 278 279 /* for 8-bit temperature hyst and over registers */ 280 #define TEMP_FROM_REG(val) ((long)temp_lut[val] * 100) 281 282 /* for 10-bit temperature readings */ 283 static inline long TEMP_FROM_REG10(u16 val) 284 { 285 u16 eight_bits = val >> 2; 286 u16 two_bits = val & 3; 287 288 /* no interpolation for these */ 289 if (two_bits == 0 || eight_bits == 255) 290 return TEMP_FROM_REG(eight_bits); 291 292 /* do some linear interpolation */ 293 return (temp_lut[eight_bits] * (4 - two_bits) + 294 temp_lut[eight_bits + 1] * two_bits) * 25; 295 } 296 297 #define DIV_FROM_REG(val) (1 << (val)) 298 #define DIV_TO_REG(val) ((val) == 8 ? 3 : (val) == 4 ? 2 : (val) == 1 ? 0 : 1) 299 300 /* 301 * For each registered chip, we need to keep some data in memory. 302 * The structure is dynamically allocated. 303 */ 304 struct via686a_data { 305 unsigned short addr; 306 const char *name; 307 struct device *hwmon_dev; 308 struct mutex update_lock; 309 bool valid; /* true if following fields are valid */ 310 unsigned long last_updated; /* In jiffies */ 311 312 u8 in[5]; /* Register value */ 313 u8 in_max[5]; /* Register value */ 314 u8 in_min[5]; /* Register value */ 315 u8 fan[2]; /* Register value */ 316 u8 fan_min[2]; /* Register value */ 317 u16 temp[3]; /* Register value 10 bit */ 318 u8 temp_over[3]; /* Register value */ 319 u8 temp_hyst[3]; /* Register value */ 320 u8 fan_div[2]; /* Register encoding, shifted right */ 321 u16 alarms; /* Register encoding, combined */ 322 }; 323 324 static struct pci_dev *s_bridge; /* pointer to the (only) via686a */ 325 326 static inline int via686a_read_value(struct via686a_data *data, u8 reg) 327 { 328 return inb_p(data->addr + reg); 329 } 330 331 static inline void via686a_write_value(struct via686a_data *data, u8 reg, 332 u8 value) 333 { 334 outb_p(value, data->addr + reg); 335 } 336 337 static void via686a_update_fan_div(struct via686a_data *data) 338 { 339 int reg = via686a_read_value(data, VIA686A_REG_FANDIV); 340 data->fan_div[0] = (reg >> 4) & 0x03; 341 data->fan_div[1] = reg >> 6; 342 } 343 344 static struct via686a_data *via686a_update_device(struct device *dev) 345 { 346 struct via686a_data *data = dev_get_drvdata(dev); 347 int i; 348 349 mutex_lock(&data->update_lock); 350 351 if (time_after(jiffies, data->last_updated + HZ + HZ / 2) 352 || !data->valid) { 353 for (i = 0; i <= 4; i++) { 354 data->in[i] = 355 via686a_read_value(data, VIA686A_REG_IN(i)); 356 data->in_min[i] = via686a_read_value(data, 357 VIA686A_REG_IN_MIN 358 (i)); 359 data->in_max[i] = 360 via686a_read_value(data, VIA686A_REG_IN_MAX(i)); 361 } 362 for (i = 1; i <= 2; i++) { 363 data->fan[i - 1] = 364 via686a_read_value(data, VIA686A_REG_FAN(i)); 365 data->fan_min[i - 1] = via686a_read_value(data, 366 VIA686A_REG_FAN_MIN(i)); 367 } 368 for (i = 0; i <= 2; i++) { 369 data->temp[i] = via686a_read_value(data, 370 VIA686A_REG_TEMP[i]) << 2; 371 data->temp_over[i] = 372 via686a_read_value(data, 373 VIA686A_REG_TEMP_OVER[i]); 374 data->temp_hyst[i] = 375 via686a_read_value(data, 376 VIA686A_REG_TEMP_HYST[i]); 377 } 378 /* 379 * add in lower 2 bits 380 * temp1 uses bits 7-6 of VIA686A_REG_TEMP_LOW1 381 * temp2 uses bits 5-4 of VIA686A_REG_TEMP_LOW23 382 * temp3 uses bits 7-6 of VIA686A_REG_TEMP_LOW23 383 */ 384 data->temp[0] |= (via686a_read_value(data, 385 VIA686A_REG_TEMP_LOW1) 386 & 0xc0) >> 6; 387 data->temp[1] |= 388 (via686a_read_value(data, VIA686A_REG_TEMP_LOW23) & 389 0x30) >> 4; 390 data->temp[2] |= 391 (via686a_read_value(data, VIA686A_REG_TEMP_LOW23) & 392 0xc0) >> 6; 393 394 via686a_update_fan_div(data); 395 data->alarms = 396 via686a_read_value(data, 397 VIA686A_REG_ALARM1) | 398 (via686a_read_value(data, VIA686A_REG_ALARM2) << 8); 399 data->last_updated = jiffies; 400 data->valid = true; 401 } 402 403 mutex_unlock(&data->update_lock); 404 405 return data; 406 } 407 408 /* following are the sysfs callback functions */ 409 410 /* 7 voltage sensors */ 411 static ssize_t in_show(struct device *dev, struct device_attribute *da, 412 char *buf) { 413 struct via686a_data *data = via686a_update_device(dev); 414 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 415 int nr = attr->index; 416 return sprintf(buf, "%ld\n", IN_FROM_REG(data->in[nr], nr)); 417 } 418 419 static ssize_t in_min_show(struct device *dev, struct device_attribute *da, 420 char *buf) { 421 struct via686a_data *data = via686a_update_device(dev); 422 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 423 int nr = attr->index; 424 return sprintf(buf, "%ld\n", IN_FROM_REG(data->in_min[nr], nr)); 425 } 426 427 static ssize_t in_max_show(struct device *dev, struct device_attribute *da, 428 char *buf) { 429 struct via686a_data *data = via686a_update_device(dev); 430 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 431 int nr = attr->index; 432 return sprintf(buf, "%ld\n", IN_FROM_REG(data->in_max[nr], nr)); 433 } 434 435 static ssize_t in_min_store(struct device *dev, struct device_attribute *da, 436 const char *buf, size_t count) { 437 struct via686a_data *data = dev_get_drvdata(dev); 438 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 439 int nr = attr->index; 440 unsigned long val; 441 int err; 442 443 err = kstrtoul(buf, 10, &val); 444 if (err) 445 return err; 446 447 mutex_lock(&data->update_lock); 448 data->in_min[nr] = IN_TO_REG(val, nr); 449 via686a_write_value(data, VIA686A_REG_IN_MIN(nr), 450 data->in_min[nr]); 451 mutex_unlock(&data->update_lock); 452 return count; 453 } 454 static ssize_t in_max_store(struct device *dev, struct device_attribute *da, 455 const char *buf, size_t count) { 456 struct via686a_data *data = dev_get_drvdata(dev); 457 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 458 int nr = attr->index; 459 unsigned long val; 460 int err; 461 462 err = kstrtoul(buf, 10, &val); 463 if (err) 464 return err; 465 466 mutex_lock(&data->update_lock); 467 data->in_max[nr] = IN_TO_REG(val, nr); 468 via686a_write_value(data, VIA686A_REG_IN_MAX(nr), 469 data->in_max[nr]); 470 mutex_unlock(&data->update_lock); 471 return count; 472 } 473 474 static SENSOR_DEVICE_ATTR_RO(in0_input, in, 0); 475 static SENSOR_DEVICE_ATTR_RW(in0_min, in_min, 0); 476 static SENSOR_DEVICE_ATTR_RW(in0_max, in_max, 0); 477 static SENSOR_DEVICE_ATTR_RO(in1_input, in, 1); 478 static SENSOR_DEVICE_ATTR_RW(in1_min, in_min, 1); 479 static SENSOR_DEVICE_ATTR_RW(in1_max, in_max, 1); 480 static SENSOR_DEVICE_ATTR_RO(in2_input, in, 2); 481 static SENSOR_DEVICE_ATTR_RW(in2_min, in_min, 2); 482 static SENSOR_DEVICE_ATTR_RW(in2_max, in_max, 2); 483 static SENSOR_DEVICE_ATTR_RO(in3_input, in, 3); 484 static SENSOR_DEVICE_ATTR_RW(in3_min, in_min, 3); 485 static SENSOR_DEVICE_ATTR_RW(in3_max, in_max, 3); 486 static SENSOR_DEVICE_ATTR_RO(in4_input, in, 4); 487 static SENSOR_DEVICE_ATTR_RW(in4_min, in_min, 4); 488 static SENSOR_DEVICE_ATTR_RW(in4_max, in_max, 4); 489 490 /* 3 temperatures */ 491 static ssize_t temp_show(struct device *dev, struct device_attribute *da, 492 char *buf) { 493 struct via686a_data *data = via686a_update_device(dev); 494 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 495 int nr = attr->index; 496 return sprintf(buf, "%ld\n", TEMP_FROM_REG10(data->temp[nr])); 497 } 498 static ssize_t temp_over_show(struct device *dev, struct device_attribute *da, 499 char *buf) { 500 struct via686a_data *data = via686a_update_device(dev); 501 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 502 int nr = attr->index; 503 return sprintf(buf, "%ld\n", TEMP_FROM_REG(data->temp_over[nr])); 504 } 505 static ssize_t temp_hyst_show(struct device *dev, struct device_attribute *da, 506 char *buf) { 507 struct via686a_data *data = via686a_update_device(dev); 508 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 509 int nr = attr->index; 510 return sprintf(buf, "%ld\n", TEMP_FROM_REG(data->temp_hyst[nr])); 511 } 512 static ssize_t temp_over_store(struct device *dev, 513 struct device_attribute *da, const char *buf, 514 size_t count) { 515 struct via686a_data *data = dev_get_drvdata(dev); 516 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 517 int nr = attr->index; 518 long val; 519 int err; 520 521 err = kstrtol(buf, 10, &val); 522 if (err) 523 return err; 524 525 mutex_lock(&data->update_lock); 526 data->temp_over[nr] = TEMP_TO_REG(val); 527 via686a_write_value(data, VIA686A_REG_TEMP_OVER[nr], 528 data->temp_over[nr]); 529 mutex_unlock(&data->update_lock); 530 return count; 531 } 532 static ssize_t temp_hyst_store(struct device *dev, 533 struct device_attribute *da, const char *buf, 534 size_t count) { 535 struct via686a_data *data = dev_get_drvdata(dev); 536 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 537 int nr = attr->index; 538 long val; 539 int err; 540 541 err = kstrtol(buf, 10, &val); 542 if (err) 543 return err; 544 545 mutex_lock(&data->update_lock); 546 data->temp_hyst[nr] = TEMP_TO_REG(val); 547 via686a_write_value(data, VIA686A_REG_TEMP_HYST[nr], 548 data->temp_hyst[nr]); 549 mutex_unlock(&data->update_lock); 550 return count; 551 } 552 553 static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0); 554 static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_over, 0); 555 static SENSOR_DEVICE_ATTR_RW(temp1_max_hyst, temp_hyst, 0); 556 static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1); 557 static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_over, 1); 558 static SENSOR_DEVICE_ATTR_RW(temp2_max_hyst, temp_hyst, 1); 559 static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2); 560 static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_over, 2); 561 static SENSOR_DEVICE_ATTR_RW(temp3_max_hyst, temp_hyst, 2); 562 563 /* 2 Fans */ 564 static ssize_t fan_show(struct device *dev, struct device_attribute *da, 565 char *buf) { 566 struct via686a_data *data = via686a_update_device(dev); 567 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 568 int nr = attr->index; 569 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr], 570 DIV_FROM_REG(data->fan_div[nr]))); 571 } 572 static ssize_t fan_min_show(struct device *dev, struct device_attribute *da, 573 char *buf) { 574 struct via686a_data *data = via686a_update_device(dev); 575 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 576 int nr = attr->index; 577 return sprintf(buf, "%d\n", 578 FAN_FROM_REG(data->fan_min[nr], 579 DIV_FROM_REG(data->fan_div[nr]))); 580 } 581 static ssize_t fan_div_show(struct device *dev, struct device_attribute *da, 582 char *buf) { 583 struct via686a_data *data = via686a_update_device(dev); 584 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 585 int nr = attr->index; 586 return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr])); 587 } 588 static ssize_t fan_min_store(struct device *dev, struct device_attribute *da, 589 const char *buf, size_t count) { 590 struct via686a_data *data = dev_get_drvdata(dev); 591 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 592 int nr = attr->index; 593 unsigned long val; 594 int err; 595 596 err = kstrtoul(buf, 10, &val); 597 if (err) 598 return err; 599 600 mutex_lock(&data->update_lock); 601 data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr])); 602 via686a_write_value(data, VIA686A_REG_FAN_MIN(nr+1), data->fan_min[nr]); 603 mutex_unlock(&data->update_lock); 604 return count; 605 } 606 static ssize_t fan_div_store(struct device *dev, struct device_attribute *da, 607 const char *buf, size_t count) { 608 struct via686a_data *data = dev_get_drvdata(dev); 609 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 610 int nr = attr->index; 611 int old; 612 unsigned long val; 613 int err; 614 615 err = kstrtoul(buf, 10, &val); 616 if (err) 617 return err; 618 619 mutex_lock(&data->update_lock); 620 old = via686a_read_value(data, VIA686A_REG_FANDIV); 621 data->fan_div[nr] = DIV_TO_REG(val); 622 old = (old & 0x0f) | (data->fan_div[1] << 6) | (data->fan_div[0] << 4); 623 via686a_write_value(data, VIA686A_REG_FANDIV, old); 624 mutex_unlock(&data->update_lock); 625 return count; 626 } 627 628 static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0); 629 static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0); 630 static SENSOR_DEVICE_ATTR_RW(fan1_div, fan_div, 0); 631 static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 1); 632 static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1); 633 static SENSOR_DEVICE_ATTR_RW(fan2_div, fan_div, 1); 634 635 /* Alarms */ 636 static ssize_t alarms_show(struct device *dev, struct device_attribute *attr, 637 char *buf) 638 { 639 struct via686a_data *data = via686a_update_device(dev); 640 return sprintf(buf, "%u\n", data->alarms); 641 } 642 643 static DEVICE_ATTR_RO(alarms); 644 645 static ssize_t alarm_show(struct device *dev, struct device_attribute *attr, 646 char *buf) 647 { 648 int bitnr = to_sensor_dev_attr(attr)->index; 649 struct via686a_data *data = via686a_update_device(dev); 650 return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1); 651 } 652 static SENSOR_DEVICE_ATTR_RO(in0_alarm, alarm, 0); 653 static SENSOR_DEVICE_ATTR_RO(in1_alarm, alarm, 1); 654 static SENSOR_DEVICE_ATTR_RO(in2_alarm, alarm, 2); 655 static SENSOR_DEVICE_ATTR_RO(in3_alarm, alarm, 3); 656 static SENSOR_DEVICE_ATTR_RO(in4_alarm, alarm, 8); 657 static SENSOR_DEVICE_ATTR_RO(temp1_alarm, alarm, 4); 658 static SENSOR_DEVICE_ATTR_RO(temp2_alarm, alarm, 11); 659 static SENSOR_DEVICE_ATTR_RO(temp3_alarm, alarm, 15); 660 static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 6); 661 static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 7); 662 663 static ssize_t name_show(struct device *dev, struct device_attribute 664 *devattr, char *buf) 665 { 666 struct via686a_data *data = dev_get_drvdata(dev); 667 return sprintf(buf, "%s\n", data->name); 668 } 669 static DEVICE_ATTR_RO(name); 670 671 static struct attribute *via686a_attributes[] = { 672 &sensor_dev_attr_in0_input.dev_attr.attr, 673 &sensor_dev_attr_in1_input.dev_attr.attr, 674 &sensor_dev_attr_in2_input.dev_attr.attr, 675 &sensor_dev_attr_in3_input.dev_attr.attr, 676 &sensor_dev_attr_in4_input.dev_attr.attr, 677 &sensor_dev_attr_in0_min.dev_attr.attr, 678 &sensor_dev_attr_in1_min.dev_attr.attr, 679 &sensor_dev_attr_in2_min.dev_attr.attr, 680 &sensor_dev_attr_in3_min.dev_attr.attr, 681 &sensor_dev_attr_in4_min.dev_attr.attr, 682 &sensor_dev_attr_in0_max.dev_attr.attr, 683 &sensor_dev_attr_in1_max.dev_attr.attr, 684 &sensor_dev_attr_in2_max.dev_attr.attr, 685 &sensor_dev_attr_in3_max.dev_attr.attr, 686 &sensor_dev_attr_in4_max.dev_attr.attr, 687 &sensor_dev_attr_in0_alarm.dev_attr.attr, 688 &sensor_dev_attr_in1_alarm.dev_attr.attr, 689 &sensor_dev_attr_in2_alarm.dev_attr.attr, 690 &sensor_dev_attr_in3_alarm.dev_attr.attr, 691 &sensor_dev_attr_in4_alarm.dev_attr.attr, 692 693 &sensor_dev_attr_temp1_input.dev_attr.attr, 694 &sensor_dev_attr_temp2_input.dev_attr.attr, 695 &sensor_dev_attr_temp3_input.dev_attr.attr, 696 &sensor_dev_attr_temp1_max.dev_attr.attr, 697 &sensor_dev_attr_temp2_max.dev_attr.attr, 698 &sensor_dev_attr_temp3_max.dev_attr.attr, 699 &sensor_dev_attr_temp1_max_hyst.dev_attr.attr, 700 &sensor_dev_attr_temp2_max_hyst.dev_attr.attr, 701 &sensor_dev_attr_temp3_max_hyst.dev_attr.attr, 702 &sensor_dev_attr_temp1_alarm.dev_attr.attr, 703 &sensor_dev_attr_temp2_alarm.dev_attr.attr, 704 &sensor_dev_attr_temp3_alarm.dev_attr.attr, 705 706 &sensor_dev_attr_fan1_input.dev_attr.attr, 707 &sensor_dev_attr_fan2_input.dev_attr.attr, 708 &sensor_dev_attr_fan1_min.dev_attr.attr, 709 &sensor_dev_attr_fan2_min.dev_attr.attr, 710 &sensor_dev_attr_fan1_div.dev_attr.attr, 711 &sensor_dev_attr_fan2_div.dev_attr.attr, 712 &sensor_dev_attr_fan1_alarm.dev_attr.attr, 713 &sensor_dev_attr_fan2_alarm.dev_attr.attr, 714 715 &dev_attr_alarms.attr, 716 &dev_attr_name.attr, 717 NULL 718 }; 719 720 static const struct attribute_group via686a_group = { 721 .attrs = via686a_attributes, 722 }; 723 724 static void via686a_init_device(struct via686a_data *data) 725 { 726 u8 reg; 727 728 /* Start monitoring */ 729 reg = via686a_read_value(data, VIA686A_REG_CONFIG); 730 via686a_write_value(data, VIA686A_REG_CONFIG, (reg | 0x01) & 0x7F); 731 732 /* Configure temp interrupt mode for continuous-interrupt operation */ 733 reg = via686a_read_value(data, VIA686A_REG_TEMP_MODE); 734 via686a_write_value(data, VIA686A_REG_TEMP_MODE, 735 (reg & ~VIA686A_TEMP_MODE_MASK) 736 | VIA686A_TEMP_MODE_CONTINUOUS); 737 738 /* Pre-read fan clock divisor values */ 739 via686a_update_fan_div(data); 740 } 741 742 /* This is called when the module is loaded */ 743 static int via686a_probe(struct platform_device *pdev) 744 { 745 struct via686a_data *data; 746 struct resource *res; 747 int err; 748 749 /* Reserve the ISA region */ 750 res = platform_get_resource(pdev, IORESOURCE_IO, 0); 751 if (!devm_request_region(&pdev->dev, res->start, VIA686A_EXTENT, 752 DRIVER_NAME)) { 753 dev_err(&pdev->dev, "Region 0x%lx-0x%lx already in use!\n", 754 (unsigned long)res->start, (unsigned long)res->end); 755 return -ENODEV; 756 } 757 758 data = devm_kzalloc(&pdev->dev, sizeof(struct via686a_data), 759 GFP_KERNEL); 760 if (!data) 761 return -ENOMEM; 762 763 platform_set_drvdata(pdev, data); 764 data->addr = res->start; 765 data->name = DRIVER_NAME; 766 mutex_init(&data->update_lock); 767 768 /* Initialize the VIA686A chip */ 769 via686a_init_device(data); 770 771 /* Register sysfs hooks */ 772 err = sysfs_create_group(&pdev->dev.kobj, &via686a_group); 773 if (err) 774 return err; 775 776 data->hwmon_dev = hwmon_device_register(&pdev->dev); 777 if (IS_ERR(data->hwmon_dev)) { 778 err = PTR_ERR(data->hwmon_dev); 779 goto exit_remove_files; 780 } 781 782 return 0; 783 784 exit_remove_files: 785 sysfs_remove_group(&pdev->dev.kobj, &via686a_group); 786 return err; 787 } 788 789 static void via686a_remove(struct platform_device *pdev) 790 { 791 struct via686a_data *data = platform_get_drvdata(pdev); 792 793 hwmon_device_unregister(data->hwmon_dev); 794 sysfs_remove_group(&pdev->dev.kobj, &via686a_group); 795 } 796 797 static struct platform_driver via686a_driver = { 798 .driver = { 799 .name = DRIVER_NAME, 800 }, 801 .probe = via686a_probe, 802 .remove = via686a_remove, 803 }; 804 805 static const struct pci_device_id via686a_pci_ids[] = { 806 { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_82C686_4) }, 807 { } 808 }; 809 MODULE_DEVICE_TABLE(pci, via686a_pci_ids); 810 811 static int via686a_device_add(unsigned short address) 812 { 813 struct resource res = { 814 .start = address, 815 .end = address + VIA686A_EXTENT - 1, 816 .name = DRIVER_NAME, 817 .flags = IORESOURCE_IO, 818 }; 819 int err; 820 821 err = acpi_check_resource_conflict(&res); 822 if (err) 823 goto exit; 824 825 pdev = platform_device_alloc(DRIVER_NAME, address); 826 if (!pdev) { 827 err = -ENOMEM; 828 pr_err("Device allocation failed\n"); 829 goto exit; 830 } 831 832 err = platform_device_add_resources(pdev, &res, 1); 833 if (err) { 834 pr_err("Device resource addition failed (%d)\n", err); 835 goto exit_device_put; 836 } 837 838 err = platform_device_add(pdev); 839 if (err) { 840 pr_err("Device addition failed (%d)\n", err); 841 goto exit_device_put; 842 } 843 844 return 0; 845 846 exit_device_put: 847 platform_device_put(pdev); 848 exit: 849 return err; 850 } 851 852 static int via686a_pci_probe(struct pci_dev *dev, 853 const struct pci_device_id *id) 854 { 855 u16 address, val; 856 int ret; 857 858 if (force_addr) { 859 address = force_addr & ~(VIA686A_EXTENT - 1); 860 dev_warn(&dev->dev, "Forcing ISA address 0x%x\n", address); 861 ret = pci_write_config_word(dev, VIA686A_BASE_REG, address | 1); 862 if (ret != PCIBIOS_SUCCESSFUL) 863 return -ENODEV; 864 } 865 ret = pci_read_config_word(dev, VIA686A_BASE_REG, &val); 866 if (ret != PCIBIOS_SUCCESSFUL) 867 return -ENODEV; 868 869 address = val & ~(VIA686A_EXTENT - 1); 870 if (address == 0) { 871 dev_err(&dev->dev, 872 "base address not set - upgrade BIOS or use force_addr=0xaddr\n"); 873 return -ENODEV; 874 } 875 876 ret = pci_read_config_word(dev, VIA686A_ENABLE_REG, &val); 877 if (ret != PCIBIOS_SUCCESSFUL) 878 return -ENODEV; 879 if (!(val & 0x0001)) { 880 if (!force_addr) { 881 dev_warn(&dev->dev, 882 "Sensors disabled, enable with force_addr=0x%x\n", 883 address); 884 return -ENODEV; 885 } 886 887 dev_warn(&dev->dev, "Enabling sensors\n"); 888 ret = pci_write_config_word(dev, VIA686A_ENABLE_REG, val | 0x1); 889 if (ret != PCIBIOS_SUCCESSFUL) 890 return -ENODEV; 891 } 892 893 if (platform_driver_register(&via686a_driver)) 894 goto exit; 895 896 /* Sets global pdev as a side effect */ 897 if (via686a_device_add(address)) 898 goto exit_unregister; 899 900 /* 901 * Always return failure here. This is to allow other drivers to bind 902 * to this pci device. We don't really want to have control over the 903 * pci device, we only wanted to read as few register values from it. 904 */ 905 s_bridge = pci_dev_get(dev); 906 return -ENODEV; 907 908 exit_unregister: 909 platform_driver_unregister(&via686a_driver); 910 exit: 911 return -ENODEV; 912 } 913 914 static struct pci_driver via686a_pci_driver = { 915 .name = DRIVER_NAME, 916 .id_table = via686a_pci_ids, 917 .probe = via686a_pci_probe, 918 }; 919 920 static int __init sm_via686a_init(void) 921 { 922 return pci_register_driver(&via686a_pci_driver); 923 } 924 925 static void __exit sm_via686a_exit(void) 926 { 927 pci_unregister_driver(&via686a_pci_driver); 928 if (s_bridge != NULL) { 929 platform_device_unregister(pdev); 930 platform_driver_unregister(&via686a_driver); 931 pci_dev_put(s_bridge); 932 s_bridge = NULL; 933 } 934 } 935 936 MODULE_AUTHOR("Kyösti Mälkki <kmalkki@cc.hut.fi>, " 937 "Mark Studebaker <mdsxyz123@yahoo.com> " 938 "and Bob Dougherty <bobd@stanford.edu>"); 939 MODULE_DESCRIPTION("VIA 686A Sensor device"); 940 MODULE_LICENSE("GPL"); 941 942 module_init(sm_via686a_init); 943 module_exit(sm_via686a_exit); 944