1 /* 2 via686a.c - Part of lm_sensors, Linux kernel modules 3 for hardware monitoring 4 5 Copyright (c) 1998 - 2002 Frodo Looijaard <frodol@dds.nl>, 6 Kyösti Mälkki <kmalkki@cc.hut.fi>, 7 Mark Studebaker <mdsxyz123@yahoo.com>, 8 and Bob Dougherty <bobd@stanford.edu> 9 (Some conversion-factor data were contributed by Jonathan Teh Soon Yew 10 <j.teh@iname.com> and Alex van Kaam <darkside@chello.nl>.) 11 12 This program is free software; you can redistribute it and/or modify 13 it under the terms of the GNU General Public License as published by 14 the Free Software Foundation; either version 2 of the License, or 15 (at your option) any later version. 16 17 This program is distributed in the hope that it will be useful, 18 but WITHOUT ANY WARRANTY; without even the implied warranty of 19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 GNU General Public License for more details. 21 22 You should have received a copy of the GNU General Public License 23 along with this program; if not, write to the Free Software 24 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 25 */ 26 27 /* 28 Supports the Via VT82C686A, VT82C686B south bridges. 29 Reports all as a 686A. 30 Warning - only supports a single device. 31 */ 32 33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 34 35 #include <linux/module.h> 36 #include <linux/slab.h> 37 #include <linux/pci.h> 38 #include <linux/jiffies.h> 39 #include <linux/platform_device.h> 40 #include <linux/hwmon.h> 41 #include <linux/hwmon-sysfs.h> 42 #include <linux/err.h> 43 #include <linux/init.h> 44 #include <linux/mutex.h> 45 #include <linux/sysfs.h> 46 #include <linux/acpi.h> 47 #include <linux/io.h> 48 49 50 /* If force_addr is set to anything different from 0, we forcibly enable 51 the device at the given address. */ 52 static unsigned short force_addr; 53 module_param(force_addr, ushort, 0); 54 MODULE_PARM_DESC(force_addr, 55 "Initialize the base address of the sensors"); 56 57 static struct platform_device *pdev; 58 59 /* 60 The Via 686a southbridge has a LM78-like chip integrated on the same IC. 61 This driver is a customized copy of lm78.c 62 */ 63 64 /* Many VIA686A constants specified below */ 65 66 /* Length of ISA address segment */ 67 #define VIA686A_EXTENT 0x80 68 #define VIA686A_BASE_REG 0x70 69 #define VIA686A_ENABLE_REG 0x74 70 71 /* The VIA686A registers */ 72 /* ins numbered 0-4 */ 73 #define VIA686A_REG_IN_MAX(nr) (0x2b + ((nr) * 2)) 74 #define VIA686A_REG_IN_MIN(nr) (0x2c + ((nr) * 2)) 75 #define VIA686A_REG_IN(nr) (0x22 + (nr)) 76 77 /* fans numbered 1-2 */ 78 #define VIA686A_REG_FAN_MIN(nr) (0x3a + (nr)) 79 #define VIA686A_REG_FAN(nr) (0x28 + (nr)) 80 81 /* temps numbered 1-3 */ 82 static const u8 VIA686A_REG_TEMP[] = { 0x20, 0x21, 0x1f }; 83 static const u8 VIA686A_REG_TEMP_OVER[] = { 0x39, 0x3d, 0x1d }; 84 static const u8 VIA686A_REG_TEMP_HYST[] = { 0x3a, 0x3e, 0x1e }; 85 /* bits 7-6 */ 86 #define VIA686A_REG_TEMP_LOW1 0x4b 87 /* 2 = bits 5-4, 3 = bits 7-6 */ 88 #define VIA686A_REG_TEMP_LOW23 0x49 89 90 #define VIA686A_REG_ALARM1 0x41 91 #define VIA686A_REG_ALARM2 0x42 92 #define VIA686A_REG_FANDIV 0x47 93 #define VIA686A_REG_CONFIG 0x40 94 /* The following register sets temp interrupt mode (bits 1-0 for temp1, 95 3-2 for temp2, 5-4 for temp3). Modes are: 96 00 interrupt stays as long as value is out-of-range 97 01 interrupt is cleared once register is read (default) 98 10 comparator mode- like 00, but ignores hysteresis 99 11 same as 00 */ 100 #define VIA686A_REG_TEMP_MODE 0x4b 101 /* We'll just assume that you want to set all 3 simultaneously: */ 102 #define VIA686A_TEMP_MODE_MASK 0x3F 103 #define VIA686A_TEMP_MODE_CONTINUOUS 0x00 104 105 /* Conversions. Limit checking is only done on the TO_REG 106 variants. 107 108 ********* VOLTAGE CONVERSIONS (Bob Dougherty) ******** 109 From HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew): 110 voltagefactor[0]=1.25/2628; (2628/1.25=2102.4) // Vccp 111 voltagefactor[1]=1.25/2628; (2628/1.25=2102.4) // +2.5V 112 voltagefactor[2]=1.67/2628; (2628/1.67=1573.7) // +3.3V 113 voltagefactor[3]=2.6/2628; (2628/2.60=1010.8) // +5V 114 voltagefactor[4]=6.3/2628; (2628/6.30=417.14) // +12V 115 in[i]=(data[i+2]*25.0+133)*voltagefactor[i]; 116 That is: 117 volts = (25*regVal+133)*factor 118 regVal = (volts/factor-133)/25 119 (These conversions were contributed by Jonathan Teh Soon Yew 120 <j.teh@iname.com>) */ 121 static inline u8 IN_TO_REG(long val, int inNum) 122 { 123 /* To avoid floating point, we multiply constants by 10 (100 for +12V). 124 Rounding is done (120500 is actually 133000 - 12500). 125 Remember that val is expressed in 0.001V/bit, which is why we divide 126 by an additional 10000 (100000 for +12V): 1000 for val and 10 (100) 127 for the constants. */ 128 if (inNum <= 1) 129 return (u8) 130 SENSORS_LIMIT((val * 21024 - 1205000) / 250000, 0, 255); 131 else if (inNum == 2) 132 return (u8) 133 SENSORS_LIMIT((val * 15737 - 1205000) / 250000, 0, 255); 134 else if (inNum == 3) 135 return (u8) 136 SENSORS_LIMIT((val * 10108 - 1205000) / 250000, 0, 255); 137 else 138 return (u8) 139 SENSORS_LIMIT((val * 41714 - 12050000) / 2500000, 0, 255); 140 } 141 142 static inline long IN_FROM_REG(u8 val, int inNum) 143 { 144 /* To avoid floating point, we multiply constants by 10 (100 for +12V). 145 We also multiply them by 1000 because we want 0.001V/bit for the 146 output value. Rounding is done. */ 147 if (inNum <= 1) 148 return (long) ((250000 * val + 1330000 + 21024 / 2) / 21024); 149 else if (inNum == 2) 150 return (long) ((250000 * val + 1330000 + 15737 / 2) / 15737); 151 else if (inNum == 3) 152 return (long) ((250000 * val + 1330000 + 10108 / 2) / 10108); 153 else 154 return (long) ((2500000 * val + 13300000 + 41714 / 2) / 41714); 155 } 156 157 /********* FAN RPM CONVERSIONS ********/ 158 /* Higher register values = slower fans (the fan's strobe gates a counter). 159 But this chip saturates back at 0, not at 255 like all the other chips. 160 So, 0 means 0 RPM */ 161 static inline u8 FAN_TO_REG(long rpm, int div) 162 { 163 if (rpm == 0) 164 return 0; 165 rpm = SENSORS_LIMIT(rpm, 1, 1000000); 166 return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1, 255); 167 } 168 169 #define FAN_FROM_REG(val,div) ((val)==0?0:(val)==255?0:1350000/((val)*(div))) 170 171 /******** TEMP CONVERSIONS (Bob Dougherty) *********/ 172 /* linear fits from HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew) 173 if(temp<169) 174 return double(temp)*0.427-32.08; 175 else if(temp>=169 && temp<=202) 176 return double(temp)*0.582-58.16; 177 else 178 return double(temp)*0.924-127.33; 179 180 A fifth-order polynomial fits the unofficial data (provided by Alex van 181 Kaam <darkside@chello.nl>) a bit better. It also give more reasonable 182 numbers on my machine (ie. they agree with what my BIOS tells me). 183 Here's the fifth-order fit to the 8-bit data: 184 temp = 1.625093e-10*val^5 - 1.001632e-07*val^4 + 2.457653e-05*val^3 - 185 2.967619e-03*val^2 + 2.175144e-01*val - 7.090067e+0. 186 187 (2000-10-25- RFD: thanks to Uwe Andersen <uandersen@mayah.com> for 188 finding my typos in this formula!) 189 190 Alas, none of the elegant function-fit solutions will work because we 191 aren't allowed to use floating point in the kernel and doing it with 192 integers doesn't provide enough precision. So we'll do boring old 193 look-up table stuff. The unofficial data (see below) have effectively 194 7-bit resolution (they are rounded to the nearest degree). I'm assuming 195 that the transfer function of the device is monotonic and smooth, so a 196 smooth function fit to the data will allow us to get better precision. 197 I used the 5th-order poly fit described above and solved for 198 VIA register values 0-255. I *10 before rounding, so we get tenth-degree 199 precision. (I could have done all 1024 values for our 10-bit readings, 200 but the function is very linear in the useful range (0-80 deg C), so 201 we'll just use linear interpolation for 10-bit readings.) So, tempLUT 202 is the temp at via register values 0-255: */ 203 static const s16 tempLUT[] = 204 { -709, -688, -667, -646, -627, -607, -589, -570, -553, -536, -519, 205 -503, -487, -471, -456, -442, -428, -414, -400, -387, -375, 206 -362, -350, -339, -327, -316, -305, -295, -285, -275, -265, 207 -255, -246, -237, -229, -220, -212, -204, -196, -188, -180, 208 -173, -166, -159, -152, -145, -139, -132, -126, -120, -114, 209 -108, -102, -96, -91, -85, -80, -74, -69, -64, -59, -54, -49, 210 -44, -39, -34, -29, -25, -20, -15, -11, -6, -2, 3, 7, 12, 16, 211 20, 25, 29, 33, 37, 42, 46, 50, 54, 59, 63, 67, 71, 75, 79, 84, 212 88, 92, 96, 100, 104, 109, 113, 117, 121, 125, 130, 134, 138, 213 142, 146, 151, 155, 159, 163, 168, 172, 176, 181, 185, 189, 214 193, 198, 202, 206, 211, 215, 219, 224, 228, 232, 237, 241, 215 245, 250, 254, 259, 263, 267, 272, 276, 281, 285, 290, 294, 216 299, 303, 307, 312, 316, 321, 325, 330, 334, 339, 344, 348, 217 353, 357, 362, 366, 371, 376, 380, 385, 390, 395, 399, 404, 218 409, 414, 419, 423, 428, 433, 438, 443, 449, 454, 459, 464, 219 469, 475, 480, 486, 491, 497, 502, 508, 514, 520, 526, 532, 220 538, 544, 551, 557, 564, 571, 578, 584, 592, 599, 606, 614, 221 621, 629, 637, 645, 654, 662, 671, 680, 689, 698, 708, 718, 222 728, 738, 749, 759, 770, 782, 793, 805, 818, 830, 843, 856, 223 870, 883, 898, 912, 927, 943, 958, 975, 991, 1008, 1026, 1044, 224 1062, 1081, 1101, 1121, 1141, 1162, 1184, 1206, 1229, 1252, 225 1276, 1301, 1326, 1352, 1378, 1406, 1434, 1462 226 }; 227 228 /* the original LUT values from Alex van Kaam <darkside@chello.nl> 229 (for via register values 12-240): 230 {-50,-49,-47,-45,-43,-41,-39,-38,-37,-35,-34,-33,-32,-31, 231 -30,-29,-28,-27,-26,-25,-24,-24,-23,-22,-21,-20,-20,-19,-18,-17,-17,-16,-15, 232 -15,-14,-14,-13,-12,-12,-11,-11,-10,-9,-9,-8,-8,-7,-7,-6,-6,-5,-5,-4,-4,-3, 233 -3,-2,-2,-1,-1,0,0,1,1,1,3,3,3,4,4,4,5,5,5,6,6,7,7,8,8,9,9,9,10,10,11,11,12, 234 12,12,13,13,13,14,14,15,15,16,16,16,17,17,18,18,19,19,20,20,21,21,21,22,22, 235 22,23,23,24,24,25,25,26,26,26,27,27,27,28,28,29,29,30,30,30,31,31,32,32,33, 236 33,34,34,35,35,35,36,36,37,37,38,38,39,39,40,40,41,41,42,42,43,43,44,44,45, 237 45,46,46,47,48,48,49,49,50,51,51,52,52,53,53,54,55,55,56,57,57,58,59,59,60, 238 61,62,62,63,64,65,66,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,83,84, 239 85,86,88,89,91,92,94,96,97,99,101,103,105,107,109,110}; 240 241 242 Here's the reverse LUT. I got it by doing a 6-th order poly fit (needed 243 an extra term for a good fit to these inverse data!) and then 244 solving for each temp value from -50 to 110 (the useable range for 245 this chip). Here's the fit: 246 viaRegVal = -1.160370e-10*val^6 +3.193693e-08*val^5 - 1.464447e-06*val^4 247 - 2.525453e-04*val^3 + 1.424593e-02*val^2 + 2.148941e+00*val +7.275808e+01) 248 Note that n=161: */ 249 static const u8 viaLUT[] = 250 { 12, 12, 13, 14, 14, 15, 16, 16, 17, 18, 18, 19, 20, 20, 21, 22, 23, 251 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40, 252 41, 43, 45, 46, 48, 49, 51, 53, 55, 57, 59, 60, 62, 64, 66, 253 69, 71, 73, 75, 77, 79, 82, 84, 86, 88, 91, 93, 95, 98, 100, 254 103, 105, 107, 110, 112, 115, 117, 119, 122, 124, 126, 129, 255 131, 134, 136, 138, 140, 143, 145, 147, 150, 152, 154, 156, 256 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 257 182, 183, 185, 187, 188, 190, 192, 193, 195, 196, 198, 199, 258 200, 202, 203, 205, 206, 207, 208, 209, 210, 211, 212, 213, 259 214, 215, 216, 217, 218, 219, 220, 221, 222, 222, 223, 224, 260 225, 226, 226, 227, 228, 228, 229, 230, 230, 231, 232, 232, 261 233, 233, 234, 235, 235, 236, 236, 237, 237, 238, 238, 239, 262 239, 240 263 }; 264 265 /* Converting temps to (8-bit) hyst and over registers 266 No interpolation here. 267 The +50 is because the temps start at -50 */ 268 static inline u8 TEMP_TO_REG(long val) 269 { 270 return viaLUT[val <= -50000 ? 0 : val >= 110000 ? 160 : 271 (val < 0 ? val - 500 : val + 500) / 1000 + 50]; 272 } 273 274 /* for 8-bit temperature hyst and over registers */ 275 #define TEMP_FROM_REG(val) ((long)tempLUT[val] * 100) 276 277 /* for 10-bit temperature readings */ 278 static inline long TEMP_FROM_REG10(u16 val) 279 { 280 u16 eightBits = val >> 2; 281 u16 twoBits = val & 3; 282 283 /* no interpolation for these */ 284 if (twoBits == 0 || eightBits == 255) 285 return TEMP_FROM_REG(eightBits); 286 287 /* do some linear interpolation */ 288 return (tempLUT[eightBits] * (4 - twoBits) + 289 tempLUT[eightBits + 1] * twoBits) * 25; 290 } 291 292 #define DIV_FROM_REG(val) (1 << (val)) 293 #define DIV_TO_REG(val) ((val)==8?3:(val)==4?2:(val)==1?0:1) 294 295 /* For each registered chip, we need to keep some data in memory. 296 The structure is dynamically allocated. */ 297 struct via686a_data { 298 unsigned short addr; 299 const char *name; 300 struct device *hwmon_dev; 301 struct mutex update_lock; 302 char valid; /* !=0 if following fields are valid */ 303 unsigned long last_updated; /* In jiffies */ 304 305 u8 in[5]; /* Register value */ 306 u8 in_max[5]; /* Register value */ 307 u8 in_min[5]; /* Register value */ 308 u8 fan[2]; /* Register value */ 309 u8 fan_min[2]; /* Register value */ 310 u16 temp[3]; /* Register value 10 bit */ 311 u8 temp_over[3]; /* Register value */ 312 u8 temp_hyst[3]; /* Register value */ 313 u8 fan_div[2]; /* Register encoding, shifted right */ 314 u16 alarms; /* Register encoding, combined */ 315 }; 316 317 static struct pci_dev *s_bridge; /* pointer to the (only) via686a */ 318 319 static int via686a_probe(struct platform_device *pdev); 320 static int __devexit via686a_remove(struct platform_device *pdev); 321 322 static inline int via686a_read_value(struct via686a_data *data, u8 reg) 323 { 324 return inb_p(data->addr + reg); 325 } 326 327 static inline void via686a_write_value(struct via686a_data *data, u8 reg, 328 u8 value) 329 { 330 outb_p(value, data->addr + reg); 331 } 332 333 static struct via686a_data *via686a_update_device(struct device *dev); 334 static void via686a_init_device(struct via686a_data *data); 335 336 /* following are the sysfs callback functions */ 337 338 /* 7 voltage sensors */ 339 static ssize_t show_in(struct device *dev, struct device_attribute *da, 340 char *buf) { 341 struct via686a_data *data = via686a_update_device(dev); 342 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 343 int nr = attr->index; 344 return sprintf(buf, "%ld\n", IN_FROM_REG(data->in[nr], nr)); 345 } 346 347 static ssize_t show_in_min(struct device *dev, struct device_attribute *da, 348 char *buf) { 349 struct via686a_data *data = via686a_update_device(dev); 350 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 351 int nr = attr->index; 352 return sprintf(buf, "%ld\n", IN_FROM_REG(data->in_min[nr], nr)); 353 } 354 355 static ssize_t show_in_max(struct device *dev, struct device_attribute *da, 356 char *buf) { 357 struct via686a_data *data = via686a_update_device(dev); 358 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 359 int nr = attr->index; 360 return sprintf(buf, "%ld\n", IN_FROM_REG(data->in_max[nr], nr)); 361 } 362 363 static ssize_t set_in_min(struct device *dev, struct device_attribute *da, 364 const char *buf, size_t count) { 365 struct via686a_data *data = dev_get_drvdata(dev); 366 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 367 int nr = attr->index; 368 unsigned long val = simple_strtoul(buf, NULL, 10); 369 370 mutex_lock(&data->update_lock); 371 data->in_min[nr] = IN_TO_REG(val, nr); 372 via686a_write_value(data, VIA686A_REG_IN_MIN(nr), 373 data->in_min[nr]); 374 mutex_unlock(&data->update_lock); 375 return count; 376 } 377 static ssize_t set_in_max(struct device *dev, struct device_attribute *da, 378 const char *buf, size_t count) { 379 struct via686a_data *data = dev_get_drvdata(dev); 380 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 381 int nr = attr->index; 382 unsigned long val = simple_strtoul(buf, NULL, 10); 383 384 mutex_lock(&data->update_lock); 385 data->in_max[nr] = IN_TO_REG(val, nr); 386 via686a_write_value(data, VIA686A_REG_IN_MAX(nr), 387 data->in_max[nr]); 388 mutex_unlock(&data->update_lock); 389 return count; 390 } 391 #define show_in_offset(offset) \ 392 static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \ 393 show_in, NULL, offset); \ 394 static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \ 395 show_in_min, set_in_min, offset); \ 396 static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \ 397 show_in_max, set_in_max, offset); 398 399 show_in_offset(0); 400 show_in_offset(1); 401 show_in_offset(2); 402 show_in_offset(3); 403 show_in_offset(4); 404 405 /* 3 temperatures */ 406 static ssize_t show_temp(struct device *dev, struct device_attribute *da, 407 char *buf) { 408 struct via686a_data *data = via686a_update_device(dev); 409 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 410 int nr = attr->index; 411 return sprintf(buf, "%ld\n", TEMP_FROM_REG10(data->temp[nr])); 412 } 413 static ssize_t show_temp_over(struct device *dev, struct device_attribute *da, 414 char *buf) { 415 struct via686a_data *data = via686a_update_device(dev); 416 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 417 int nr = attr->index; 418 return sprintf(buf, "%ld\n", TEMP_FROM_REG(data->temp_over[nr])); 419 } 420 static ssize_t show_temp_hyst(struct device *dev, struct device_attribute *da, 421 char *buf) { 422 struct via686a_data *data = via686a_update_device(dev); 423 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 424 int nr = attr->index; 425 return sprintf(buf, "%ld\n", TEMP_FROM_REG(data->temp_hyst[nr])); 426 } 427 static ssize_t set_temp_over(struct device *dev, struct device_attribute *da, 428 const char *buf, size_t count) { 429 struct via686a_data *data = dev_get_drvdata(dev); 430 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 431 int nr = attr->index; 432 int val = simple_strtol(buf, NULL, 10); 433 434 mutex_lock(&data->update_lock); 435 data->temp_over[nr] = TEMP_TO_REG(val); 436 via686a_write_value(data, VIA686A_REG_TEMP_OVER[nr], 437 data->temp_over[nr]); 438 mutex_unlock(&data->update_lock); 439 return count; 440 } 441 static ssize_t set_temp_hyst(struct device *dev, struct device_attribute *da, 442 const char *buf, size_t count) { 443 struct via686a_data *data = dev_get_drvdata(dev); 444 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 445 int nr = attr->index; 446 int val = simple_strtol(buf, NULL, 10); 447 448 mutex_lock(&data->update_lock); 449 data->temp_hyst[nr] = TEMP_TO_REG(val); 450 via686a_write_value(data, VIA686A_REG_TEMP_HYST[nr], 451 data->temp_hyst[nr]); 452 mutex_unlock(&data->update_lock); 453 return count; 454 } 455 #define show_temp_offset(offset) \ 456 static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \ 457 show_temp, NULL, offset - 1); \ 458 static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \ 459 show_temp_over, set_temp_over, offset - 1); \ 460 static SENSOR_DEVICE_ATTR(temp##offset##_max_hyst, S_IRUGO | S_IWUSR, \ 461 show_temp_hyst, set_temp_hyst, offset - 1); 462 463 show_temp_offset(1); 464 show_temp_offset(2); 465 show_temp_offset(3); 466 467 /* 2 Fans */ 468 static ssize_t show_fan(struct device *dev, struct device_attribute *da, 469 char *buf) { 470 struct via686a_data *data = via686a_update_device(dev); 471 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 472 int nr = attr->index; 473 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr], 474 DIV_FROM_REG(data->fan_div[nr])) ); 475 } 476 static ssize_t show_fan_min(struct device *dev, struct device_attribute *da, 477 char *buf) { 478 struct via686a_data *data = via686a_update_device(dev); 479 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 480 int nr = attr->index; 481 return sprintf(buf, "%d\n", 482 FAN_FROM_REG(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr])) ); 483 } 484 static ssize_t show_fan_div(struct device *dev, struct device_attribute *da, 485 char *buf) { 486 struct via686a_data *data = via686a_update_device(dev); 487 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 488 int nr = attr->index; 489 return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]) ); 490 } 491 static ssize_t set_fan_min(struct device *dev, struct device_attribute *da, 492 const char *buf, size_t count) { 493 struct via686a_data *data = dev_get_drvdata(dev); 494 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 495 int nr = attr->index; 496 int val = simple_strtol(buf, NULL, 10); 497 498 mutex_lock(&data->update_lock); 499 data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr])); 500 via686a_write_value(data, VIA686A_REG_FAN_MIN(nr+1), data->fan_min[nr]); 501 mutex_unlock(&data->update_lock); 502 return count; 503 } 504 static ssize_t set_fan_div(struct device *dev, struct device_attribute *da, 505 const char *buf, size_t count) { 506 struct via686a_data *data = dev_get_drvdata(dev); 507 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 508 int nr = attr->index; 509 int val = simple_strtol(buf, NULL, 10); 510 int old; 511 512 mutex_lock(&data->update_lock); 513 old = via686a_read_value(data, VIA686A_REG_FANDIV); 514 data->fan_div[nr] = DIV_TO_REG(val); 515 old = (old & 0x0f) | (data->fan_div[1] << 6) | (data->fan_div[0] << 4); 516 via686a_write_value(data, VIA686A_REG_FANDIV, old); 517 mutex_unlock(&data->update_lock); 518 return count; 519 } 520 521 #define show_fan_offset(offset) \ 522 static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \ 523 show_fan, NULL, offset - 1); \ 524 static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \ 525 show_fan_min, set_fan_min, offset - 1); \ 526 static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \ 527 show_fan_div, set_fan_div, offset - 1); 528 529 show_fan_offset(1); 530 show_fan_offset(2); 531 532 /* Alarms */ 533 static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, char *buf) { 534 struct via686a_data *data = via686a_update_device(dev); 535 return sprintf(buf, "%u\n", data->alarms); 536 } 537 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL); 538 539 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr, 540 char *buf) 541 { 542 int bitnr = to_sensor_dev_attr(attr)->index; 543 struct via686a_data *data = via686a_update_device(dev); 544 return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1); 545 } 546 static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0); 547 static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1); 548 static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2); 549 static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3); 550 static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8); 551 static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4); 552 static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 11); 553 static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 15); 554 static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6); 555 static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7); 556 557 static ssize_t show_name(struct device *dev, struct device_attribute 558 *devattr, char *buf) 559 { 560 struct via686a_data *data = dev_get_drvdata(dev); 561 return sprintf(buf, "%s\n", data->name); 562 } 563 static DEVICE_ATTR(name, S_IRUGO, show_name, NULL); 564 565 static struct attribute *via686a_attributes[] = { 566 &sensor_dev_attr_in0_input.dev_attr.attr, 567 &sensor_dev_attr_in1_input.dev_attr.attr, 568 &sensor_dev_attr_in2_input.dev_attr.attr, 569 &sensor_dev_attr_in3_input.dev_attr.attr, 570 &sensor_dev_attr_in4_input.dev_attr.attr, 571 &sensor_dev_attr_in0_min.dev_attr.attr, 572 &sensor_dev_attr_in1_min.dev_attr.attr, 573 &sensor_dev_attr_in2_min.dev_attr.attr, 574 &sensor_dev_attr_in3_min.dev_attr.attr, 575 &sensor_dev_attr_in4_min.dev_attr.attr, 576 &sensor_dev_attr_in0_max.dev_attr.attr, 577 &sensor_dev_attr_in1_max.dev_attr.attr, 578 &sensor_dev_attr_in2_max.dev_attr.attr, 579 &sensor_dev_attr_in3_max.dev_attr.attr, 580 &sensor_dev_attr_in4_max.dev_attr.attr, 581 &sensor_dev_attr_in0_alarm.dev_attr.attr, 582 &sensor_dev_attr_in1_alarm.dev_attr.attr, 583 &sensor_dev_attr_in2_alarm.dev_attr.attr, 584 &sensor_dev_attr_in3_alarm.dev_attr.attr, 585 &sensor_dev_attr_in4_alarm.dev_attr.attr, 586 587 &sensor_dev_attr_temp1_input.dev_attr.attr, 588 &sensor_dev_attr_temp2_input.dev_attr.attr, 589 &sensor_dev_attr_temp3_input.dev_attr.attr, 590 &sensor_dev_attr_temp1_max.dev_attr.attr, 591 &sensor_dev_attr_temp2_max.dev_attr.attr, 592 &sensor_dev_attr_temp3_max.dev_attr.attr, 593 &sensor_dev_attr_temp1_max_hyst.dev_attr.attr, 594 &sensor_dev_attr_temp2_max_hyst.dev_attr.attr, 595 &sensor_dev_attr_temp3_max_hyst.dev_attr.attr, 596 &sensor_dev_attr_temp1_alarm.dev_attr.attr, 597 &sensor_dev_attr_temp2_alarm.dev_attr.attr, 598 &sensor_dev_attr_temp3_alarm.dev_attr.attr, 599 600 &sensor_dev_attr_fan1_input.dev_attr.attr, 601 &sensor_dev_attr_fan2_input.dev_attr.attr, 602 &sensor_dev_attr_fan1_min.dev_attr.attr, 603 &sensor_dev_attr_fan2_min.dev_attr.attr, 604 &sensor_dev_attr_fan1_div.dev_attr.attr, 605 &sensor_dev_attr_fan2_div.dev_attr.attr, 606 &sensor_dev_attr_fan1_alarm.dev_attr.attr, 607 &sensor_dev_attr_fan2_alarm.dev_attr.attr, 608 609 &dev_attr_alarms.attr, 610 &dev_attr_name.attr, 611 NULL 612 }; 613 614 static const struct attribute_group via686a_group = { 615 .attrs = via686a_attributes, 616 }; 617 618 static struct platform_driver via686a_driver = { 619 .driver = { 620 .owner = THIS_MODULE, 621 .name = "via686a", 622 }, 623 .probe = via686a_probe, 624 .remove = __devexit_p(via686a_remove), 625 }; 626 627 628 /* This is called when the module is loaded */ 629 static int __devinit via686a_probe(struct platform_device *pdev) 630 { 631 struct via686a_data *data; 632 struct resource *res; 633 int err; 634 635 /* Reserve the ISA region */ 636 res = platform_get_resource(pdev, IORESOURCE_IO, 0); 637 if (!request_region(res->start, VIA686A_EXTENT, 638 via686a_driver.driver.name)) { 639 dev_err(&pdev->dev, "Region 0x%lx-0x%lx already in use!\n", 640 (unsigned long)res->start, (unsigned long)res->end); 641 return -ENODEV; 642 } 643 644 if (!(data = kzalloc(sizeof(struct via686a_data), GFP_KERNEL))) { 645 err = -ENOMEM; 646 goto exit_release; 647 } 648 649 platform_set_drvdata(pdev, data); 650 data->addr = res->start; 651 data->name = "via686a"; 652 mutex_init(&data->update_lock); 653 654 /* Initialize the VIA686A chip */ 655 via686a_init_device(data); 656 657 /* Register sysfs hooks */ 658 if ((err = sysfs_create_group(&pdev->dev.kobj, &via686a_group))) 659 goto exit_free; 660 661 data->hwmon_dev = hwmon_device_register(&pdev->dev); 662 if (IS_ERR(data->hwmon_dev)) { 663 err = PTR_ERR(data->hwmon_dev); 664 goto exit_remove_files; 665 } 666 667 return 0; 668 669 exit_remove_files: 670 sysfs_remove_group(&pdev->dev.kobj, &via686a_group); 671 exit_free: 672 kfree(data); 673 exit_release: 674 release_region(res->start, VIA686A_EXTENT); 675 return err; 676 } 677 678 static int __devexit via686a_remove(struct platform_device *pdev) 679 { 680 struct via686a_data *data = platform_get_drvdata(pdev); 681 682 hwmon_device_unregister(data->hwmon_dev); 683 sysfs_remove_group(&pdev->dev.kobj, &via686a_group); 684 685 release_region(data->addr, VIA686A_EXTENT); 686 platform_set_drvdata(pdev, NULL); 687 kfree(data); 688 689 return 0; 690 } 691 692 static void via686a_update_fan_div(struct via686a_data *data) 693 { 694 int reg = via686a_read_value(data, VIA686A_REG_FANDIV); 695 data->fan_div[0] = (reg >> 4) & 0x03; 696 data->fan_div[1] = reg >> 6; 697 } 698 699 static void __devinit via686a_init_device(struct via686a_data *data) 700 { 701 u8 reg; 702 703 /* Start monitoring */ 704 reg = via686a_read_value(data, VIA686A_REG_CONFIG); 705 via686a_write_value(data, VIA686A_REG_CONFIG, (reg | 0x01) & 0x7F); 706 707 /* Configure temp interrupt mode for continuous-interrupt operation */ 708 reg = via686a_read_value(data, VIA686A_REG_TEMP_MODE); 709 via686a_write_value(data, VIA686A_REG_TEMP_MODE, 710 (reg & ~VIA686A_TEMP_MODE_MASK) 711 | VIA686A_TEMP_MODE_CONTINUOUS); 712 713 /* Pre-read fan clock divisor values */ 714 via686a_update_fan_div(data); 715 } 716 717 static struct via686a_data *via686a_update_device(struct device *dev) 718 { 719 struct via686a_data *data = dev_get_drvdata(dev); 720 int i; 721 722 mutex_lock(&data->update_lock); 723 724 if (time_after(jiffies, data->last_updated + HZ + HZ / 2) 725 || !data->valid) { 726 for (i = 0; i <= 4; i++) { 727 data->in[i] = 728 via686a_read_value(data, VIA686A_REG_IN(i)); 729 data->in_min[i] = via686a_read_value(data, 730 VIA686A_REG_IN_MIN 731 (i)); 732 data->in_max[i] = 733 via686a_read_value(data, VIA686A_REG_IN_MAX(i)); 734 } 735 for (i = 1; i <= 2; i++) { 736 data->fan[i - 1] = 737 via686a_read_value(data, VIA686A_REG_FAN(i)); 738 data->fan_min[i - 1] = via686a_read_value(data, 739 VIA686A_REG_FAN_MIN(i)); 740 } 741 for (i = 0; i <= 2; i++) { 742 data->temp[i] = via686a_read_value(data, 743 VIA686A_REG_TEMP[i]) << 2; 744 data->temp_over[i] = 745 via686a_read_value(data, 746 VIA686A_REG_TEMP_OVER[i]); 747 data->temp_hyst[i] = 748 via686a_read_value(data, 749 VIA686A_REG_TEMP_HYST[i]); 750 } 751 /* add in lower 2 bits 752 temp1 uses bits 7-6 of VIA686A_REG_TEMP_LOW1 753 temp2 uses bits 5-4 of VIA686A_REG_TEMP_LOW23 754 temp3 uses bits 7-6 of VIA686A_REG_TEMP_LOW23 755 */ 756 data->temp[0] |= (via686a_read_value(data, 757 VIA686A_REG_TEMP_LOW1) 758 & 0xc0) >> 6; 759 data->temp[1] |= 760 (via686a_read_value(data, VIA686A_REG_TEMP_LOW23) & 761 0x30) >> 4; 762 data->temp[2] |= 763 (via686a_read_value(data, VIA686A_REG_TEMP_LOW23) & 764 0xc0) >> 6; 765 766 via686a_update_fan_div(data); 767 data->alarms = 768 via686a_read_value(data, 769 VIA686A_REG_ALARM1) | 770 (via686a_read_value(data, VIA686A_REG_ALARM2) << 8); 771 data->last_updated = jiffies; 772 data->valid = 1; 773 } 774 775 mutex_unlock(&data->update_lock); 776 777 return data; 778 } 779 780 static const struct pci_device_id via686a_pci_ids[] = { 781 { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_82C686_4) }, 782 { 0, } 783 }; 784 785 MODULE_DEVICE_TABLE(pci, via686a_pci_ids); 786 787 static int __devinit via686a_device_add(unsigned short address) 788 { 789 struct resource res = { 790 .start = address, 791 .end = address + VIA686A_EXTENT - 1, 792 .name = "via686a", 793 .flags = IORESOURCE_IO, 794 }; 795 int err; 796 797 err = acpi_check_resource_conflict(&res); 798 if (err) 799 goto exit; 800 801 pdev = platform_device_alloc("via686a", address); 802 if (!pdev) { 803 err = -ENOMEM; 804 pr_err("Device allocation failed\n"); 805 goto exit; 806 } 807 808 err = platform_device_add_resources(pdev, &res, 1); 809 if (err) { 810 pr_err("Device resource addition failed (%d)\n", err); 811 goto exit_device_put; 812 } 813 814 err = platform_device_add(pdev); 815 if (err) { 816 pr_err("Device addition failed (%d)\n", err); 817 goto exit_device_put; 818 } 819 820 return 0; 821 822 exit_device_put: 823 platform_device_put(pdev); 824 exit: 825 return err; 826 } 827 828 static int __devinit via686a_pci_probe(struct pci_dev *dev, 829 const struct pci_device_id *id) 830 { 831 u16 address, val; 832 833 if (force_addr) { 834 address = force_addr & ~(VIA686A_EXTENT - 1); 835 dev_warn(&dev->dev, "Forcing ISA address 0x%x\n", address); 836 if (PCIBIOS_SUCCESSFUL != 837 pci_write_config_word(dev, VIA686A_BASE_REG, address | 1)) 838 return -ENODEV; 839 } 840 if (PCIBIOS_SUCCESSFUL != 841 pci_read_config_word(dev, VIA686A_BASE_REG, &val)) 842 return -ENODEV; 843 844 address = val & ~(VIA686A_EXTENT - 1); 845 if (address == 0) { 846 dev_err(&dev->dev, "base address not set - upgrade BIOS " 847 "or use force_addr=0xaddr\n"); 848 return -ENODEV; 849 } 850 851 if (PCIBIOS_SUCCESSFUL != 852 pci_read_config_word(dev, VIA686A_ENABLE_REG, &val)) 853 return -ENODEV; 854 if (!(val & 0x0001)) { 855 if (!force_addr) { 856 dev_warn(&dev->dev, "Sensors disabled, enable " 857 "with force_addr=0x%x\n", address); 858 return -ENODEV; 859 } 860 861 dev_warn(&dev->dev, "Enabling sensors\n"); 862 if (PCIBIOS_SUCCESSFUL != 863 pci_write_config_word(dev, VIA686A_ENABLE_REG, 864 val | 0x0001)) 865 return -ENODEV; 866 } 867 868 if (platform_driver_register(&via686a_driver)) 869 goto exit; 870 871 /* Sets global pdev as a side effect */ 872 if (via686a_device_add(address)) 873 goto exit_unregister; 874 875 /* Always return failure here. This is to allow other drivers to bind 876 * to this pci device. We don't really want to have control over the 877 * pci device, we only wanted to read as few register values from it. 878 */ 879 s_bridge = pci_dev_get(dev); 880 return -ENODEV; 881 882 exit_unregister: 883 platform_driver_unregister(&via686a_driver); 884 exit: 885 return -ENODEV; 886 } 887 888 static struct pci_driver via686a_pci_driver = { 889 .name = "via686a", 890 .id_table = via686a_pci_ids, 891 .probe = via686a_pci_probe, 892 }; 893 894 static int __init sm_via686a_init(void) 895 { 896 return pci_register_driver(&via686a_pci_driver); 897 } 898 899 static void __exit sm_via686a_exit(void) 900 { 901 pci_unregister_driver(&via686a_pci_driver); 902 if (s_bridge != NULL) { 903 platform_device_unregister(pdev); 904 platform_driver_unregister(&via686a_driver); 905 pci_dev_put(s_bridge); 906 s_bridge = NULL; 907 } 908 } 909 910 MODULE_AUTHOR("Kyösti Mälkki <kmalkki@cc.hut.fi>, " 911 "Mark Studebaker <mdsxyz123@yahoo.com> " 912 "and Bob Dougherty <bobd@stanford.edu>"); 913 MODULE_DESCRIPTION("VIA 686A Sensor device"); 914 MODULE_LICENSE("GPL"); 915 916 module_init(sm_via686a_init); 917 module_exit(sm_via686a_exit); 918