1 /* 2 * Hardware monitoring driver for PMBus devices 3 * 4 * Copyright (c) 2010, 2011 Ericsson AB. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/module.h> 23 #include <linux/init.h> 24 #include <linux/err.h> 25 #include <linux/slab.h> 26 #include <linux/i2c.h> 27 #include <linux/hwmon.h> 28 #include <linux/hwmon-sysfs.h> 29 #include <linux/delay.h> 30 #include <linux/i2c/pmbus.h> 31 #include "pmbus.h" 32 33 /* 34 * Constants needed to determine number of sensors, booleans, and labels. 35 */ 36 #define PMBUS_MAX_INPUT_SENSORS 22 /* 10*volt, 7*curr, 5*power */ 37 #define PMBUS_VOUT_SENSORS_PER_PAGE 9 /* input, min, max, lcrit, 38 crit, lowest, highest, avg, 39 reset */ 40 #define PMBUS_IOUT_SENSORS_PER_PAGE 8 /* input, min, max, crit, 41 lowest, highest, avg, 42 reset */ 43 #define PMBUS_POUT_SENSORS_PER_PAGE 4 /* input, cap, max, crit */ 44 #define PMBUS_MAX_SENSORS_PER_FAN 1 /* input */ 45 #define PMBUS_MAX_SENSORS_PER_TEMP 8 /* input, min, max, lcrit, 46 crit, lowest, highest, 47 reset */ 48 49 #define PMBUS_MAX_INPUT_BOOLEANS 7 /* v: min_alarm, max_alarm, 50 lcrit_alarm, crit_alarm; 51 c: alarm, crit_alarm; 52 p: crit_alarm */ 53 #define PMBUS_VOUT_BOOLEANS_PER_PAGE 4 /* min_alarm, max_alarm, 54 lcrit_alarm, crit_alarm */ 55 #define PMBUS_IOUT_BOOLEANS_PER_PAGE 3 /* alarm, lcrit_alarm, 56 crit_alarm */ 57 #define PMBUS_POUT_BOOLEANS_PER_PAGE 2 /* alarm, crit_alarm */ 58 #define PMBUS_MAX_BOOLEANS_PER_FAN 2 /* alarm, fault */ 59 #define PMBUS_MAX_BOOLEANS_PER_TEMP 4 /* min_alarm, max_alarm, 60 lcrit_alarm, crit_alarm */ 61 62 #define PMBUS_MAX_INPUT_LABELS 4 /* vin, vcap, iin, pin */ 63 64 /* 65 * status, status_vout, status_iout, status_fans, status_fan34, and status_temp 66 * are paged. status_input is unpaged. 67 */ 68 #define PB_NUM_STATUS_REG (PMBUS_PAGES * 6 + 1) 69 70 /* 71 * Index into status register array, per status register group 72 */ 73 #define PB_STATUS_BASE 0 74 #define PB_STATUS_VOUT_BASE (PB_STATUS_BASE + PMBUS_PAGES) 75 #define PB_STATUS_IOUT_BASE (PB_STATUS_VOUT_BASE + PMBUS_PAGES) 76 #define PB_STATUS_FAN_BASE (PB_STATUS_IOUT_BASE + PMBUS_PAGES) 77 #define PB_STATUS_FAN34_BASE (PB_STATUS_FAN_BASE + PMBUS_PAGES) 78 #define PB_STATUS_INPUT_BASE (PB_STATUS_FAN34_BASE + PMBUS_PAGES) 79 #define PB_STATUS_TEMP_BASE (PB_STATUS_INPUT_BASE + 1) 80 81 #define PMBUS_NAME_SIZE 24 82 83 struct pmbus_sensor { 84 char name[PMBUS_NAME_SIZE]; /* sysfs sensor name */ 85 struct sensor_device_attribute attribute; 86 u8 page; /* page number */ 87 u16 reg; /* register */ 88 enum pmbus_sensor_classes class; /* sensor class */ 89 bool update; /* runtime sensor update needed */ 90 int data; /* Sensor data. 91 Negative if there was a read error */ 92 }; 93 94 struct pmbus_boolean { 95 char name[PMBUS_NAME_SIZE]; /* sysfs boolean name */ 96 struct sensor_device_attribute attribute; 97 }; 98 99 struct pmbus_label { 100 char name[PMBUS_NAME_SIZE]; /* sysfs label name */ 101 struct sensor_device_attribute attribute; 102 char label[PMBUS_NAME_SIZE]; /* label */ 103 }; 104 105 struct pmbus_data { 106 struct device *hwmon_dev; 107 108 u32 flags; /* from platform data */ 109 110 int exponent; /* linear mode: exponent for output voltages */ 111 112 const struct pmbus_driver_info *info; 113 114 int max_attributes; 115 int num_attributes; 116 struct attribute **attributes; 117 struct attribute_group group; 118 119 /* 120 * Sensors cover both sensor and limit registers. 121 */ 122 int max_sensors; 123 int num_sensors; 124 struct pmbus_sensor *sensors; 125 /* 126 * Booleans are used for alarms. 127 * Values are determined from status registers. 128 */ 129 int max_booleans; 130 int num_booleans; 131 struct pmbus_boolean *booleans; 132 /* 133 * Labels are used to map generic names (e.g., "in1") 134 * to PMBus specific names (e.g., "vin" or "vout1"). 135 */ 136 int max_labels; 137 int num_labels; 138 struct pmbus_label *labels; 139 140 struct mutex update_lock; 141 bool valid; 142 unsigned long last_updated; /* in jiffies */ 143 144 /* 145 * A single status register covers multiple attributes, 146 * so we keep them all together. 147 */ 148 u8 status[PB_NUM_STATUS_REG]; 149 150 u8 currpage; 151 }; 152 153 int pmbus_set_page(struct i2c_client *client, u8 page) 154 { 155 struct pmbus_data *data = i2c_get_clientdata(client); 156 int rv = 0; 157 int newpage; 158 159 if (page != data->currpage) { 160 rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page); 161 newpage = i2c_smbus_read_byte_data(client, PMBUS_PAGE); 162 if (newpage != page) 163 rv = -EIO; 164 else 165 data->currpage = page; 166 } 167 return rv; 168 } 169 EXPORT_SYMBOL_GPL(pmbus_set_page); 170 171 int pmbus_write_byte(struct i2c_client *client, int page, u8 value) 172 { 173 int rv; 174 175 if (page >= 0) { 176 rv = pmbus_set_page(client, page); 177 if (rv < 0) 178 return rv; 179 } 180 181 return i2c_smbus_write_byte(client, value); 182 } 183 EXPORT_SYMBOL_GPL(pmbus_write_byte); 184 185 /* 186 * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if 187 * a device specific mapping funcion exists and calls it if necessary. 188 */ 189 static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value) 190 { 191 struct pmbus_data *data = i2c_get_clientdata(client); 192 const struct pmbus_driver_info *info = data->info; 193 int status; 194 195 if (info->write_byte) { 196 status = info->write_byte(client, page, value); 197 if (status != -ENODATA) 198 return status; 199 } 200 return pmbus_write_byte(client, page, value); 201 } 202 203 int pmbus_write_word_data(struct i2c_client *client, u8 page, u8 reg, u16 word) 204 { 205 int rv; 206 207 rv = pmbus_set_page(client, page); 208 if (rv < 0) 209 return rv; 210 211 return i2c_smbus_write_word_data(client, reg, word); 212 } 213 EXPORT_SYMBOL_GPL(pmbus_write_word_data); 214 215 /* 216 * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if 217 * a device specific mapping function exists and calls it if necessary. 218 */ 219 static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg, 220 u16 word) 221 { 222 struct pmbus_data *data = i2c_get_clientdata(client); 223 const struct pmbus_driver_info *info = data->info; 224 int status; 225 226 if (info->write_word_data) { 227 status = info->write_word_data(client, page, reg, word); 228 if (status != -ENODATA) 229 return status; 230 } 231 if (reg >= PMBUS_VIRT_BASE) 232 return -ENXIO; 233 return pmbus_write_word_data(client, page, reg, word); 234 } 235 236 int pmbus_read_word_data(struct i2c_client *client, u8 page, u8 reg) 237 { 238 int rv; 239 240 rv = pmbus_set_page(client, page); 241 if (rv < 0) 242 return rv; 243 244 return i2c_smbus_read_word_data(client, reg); 245 } 246 EXPORT_SYMBOL_GPL(pmbus_read_word_data); 247 248 /* 249 * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if 250 * a device specific mapping function exists and calls it if necessary. 251 */ 252 static int _pmbus_read_word_data(struct i2c_client *client, int page, int reg) 253 { 254 struct pmbus_data *data = i2c_get_clientdata(client); 255 const struct pmbus_driver_info *info = data->info; 256 int status; 257 258 if (info->read_word_data) { 259 status = info->read_word_data(client, page, reg); 260 if (status != -ENODATA) 261 return status; 262 } 263 if (reg >= PMBUS_VIRT_BASE) 264 return -ENXIO; 265 return pmbus_read_word_data(client, page, reg); 266 } 267 268 int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg) 269 { 270 int rv; 271 272 if (page >= 0) { 273 rv = pmbus_set_page(client, page); 274 if (rv < 0) 275 return rv; 276 } 277 278 return i2c_smbus_read_byte_data(client, reg); 279 } 280 EXPORT_SYMBOL_GPL(pmbus_read_byte_data); 281 282 /* 283 * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if 284 * a device specific mapping function exists and calls it if necessary. 285 */ 286 static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg) 287 { 288 struct pmbus_data *data = i2c_get_clientdata(client); 289 const struct pmbus_driver_info *info = data->info; 290 int status; 291 292 if (info->read_byte_data) { 293 status = info->read_byte_data(client, page, reg); 294 if (status != -ENODATA) 295 return status; 296 } 297 return pmbus_read_byte_data(client, page, reg); 298 } 299 300 static void pmbus_clear_fault_page(struct i2c_client *client, int page) 301 { 302 _pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS); 303 } 304 305 void pmbus_clear_faults(struct i2c_client *client) 306 { 307 struct pmbus_data *data = i2c_get_clientdata(client); 308 int i; 309 310 for (i = 0; i < data->info->pages; i++) 311 pmbus_clear_fault_page(client, i); 312 } 313 EXPORT_SYMBOL_GPL(pmbus_clear_faults); 314 315 static int pmbus_check_status_cml(struct i2c_client *client) 316 { 317 int status, status2; 318 319 status = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_BYTE); 320 if (status < 0 || (status & PB_STATUS_CML)) { 321 status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML); 322 if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND)) 323 return -EIO; 324 } 325 return 0; 326 } 327 328 bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg) 329 { 330 int rv; 331 struct pmbus_data *data = i2c_get_clientdata(client); 332 333 rv = _pmbus_read_byte_data(client, page, reg); 334 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK)) 335 rv = pmbus_check_status_cml(client); 336 pmbus_clear_fault_page(client, -1); 337 return rv >= 0; 338 } 339 EXPORT_SYMBOL_GPL(pmbus_check_byte_register); 340 341 bool pmbus_check_word_register(struct i2c_client *client, int page, int reg) 342 { 343 int rv; 344 struct pmbus_data *data = i2c_get_clientdata(client); 345 346 rv = _pmbus_read_word_data(client, page, reg); 347 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK)) 348 rv = pmbus_check_status_cml(client); 349 pmbus_clear_fault_page(client, -1); 350 return rv >= 0; 351 } 352 EXPORT_SYMBOL_GPL(pmbus_check_word_register); 353 354 const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client) 355 { 356 struct pmbus_data *data = i2c_get_clientdata(client); 357 358 return data->info; 359 } 360 EXPORT_SYMBOL_GPL(pmbus_get_driver_info); 361 362 static struct pmbus_data *pmbus_update_device(struct device *dev) 363 { 364 struct i2c_client *client = to_i2c_client(dev); 365 struct pmbus_data *data = i2c_get_clientdata(client); 366 const struct pmbus_driver_info *info = data->info; 367 368 mutex_lock(&data->update_lock); 369 if (time_after(jiffies, data->last_updated + HZ) || !data->valid) { 370 int i; 371 372 for (i = 0; i < info->pages; i++) 373 data->status[PB_STATUS_BASE + i] 374 = _pmbus_read_byte_data(client, i, 375 PMBUS_STATUS_BYTE); 376 for (i = 0; i < info->pages; i++) { 377 if (!(info->func[i] & PMBUS_HAVE_STATUS_VOUT)) 378 continue; 379 data->status[PB_STATUS_VOUT_BASE + i] 380 = _pmbus_read_byte_data(client, i, PMBUS_STATUS_VOUT); 381 } 382 for (i = 0; i < info->pages; i++) { 383 if (!(info->func[i] & PMBUS_HAVE_STATUS_IOUT)) 384 continue; 385 data->status[PB_STATUS_IOUT_BASE + i] 386 = _pmbus_read_byte_data(client, i, PMBUS_STATUS_IOUT); 387 } 388 for (i = 0; i < info->pages; i++) { 389 if (!(info->func[i] & PMBUS_HAVE_STATUS_TEMP)) 390 continue; 391 data->status[PB_STATUS_TEMP_BASE + i] 392 = _pmbus_read_byte_data(client, i, 393 PMBUS_STATUS_TEMPERATURE); 394 } 395 for (i = 0; i < info->pages; i++) { 396 if (!(info->func[i] & PMBUS_HAVE_STATUS_FAN12)) 397 continue; 398 data->status[PB_STATUS_FAN_BASE + i] 399 = _pmbus_read_byte_data(client, i, 400 PMBUS_STATUS_FAN_12); 401 } 402 403 for (i = 0; i < info->pages; i++) { 404 if (!(info->func[i] & PMBUS_HAVE_STATUS_FAN34)) 405 continue; 406 data->status[PB_STATUS_FAN34_BASE + i] 407 = _pmbus_read_byte_data(client, i, 408 PMBUS_STATUS_FAN_34); 409 } 410 411 if (info->func[0] & PMBUS_HAVE_STATUS_INPUT) 412 data->status[PB_STATUS_INPUT_BASE] 413 = _pmbus_read_byte_data(client, 0, 414 PMBUS_STATUS_INPUT); 415 416 for (i = 0; i < data->num_sensors; i++) { 417 struct pmbus_sensor *sensor = &data->sensors[i]; 418 419 if (!data->valid || sensor->update) 420 sensor->data 421 = _pmbus_read_word_data(client, 422 sensor->page, 423 sensor->reg); 424 } 425 pmbus_clear_faults(client); 426 data->last_updated = jiffies; 427 data->valid = 1; 428 } 429 mutex_unlock(&data->update_lock); 430 return data; 431 } 432 433 /* 434 * Convert linear sensor values to milli- or micro-units 435 * depending on sensor type. 436 */ 437 static long pmbus_reg2data_linear(struct pmbus_data *data, 438 struct pmbus_sensor *sensor) 439 { 440 s16 exponent; 441 s32 mantissa; 442 long val; 443 444 if (sensor->class == PSC_VOLTAGE_OUT) { /* LINEAR16 */ 445 exponent = data->exponent; 446 mantissa = (u16) sensor->data; 447 } else { /* LINEAR11 */ 448 exponent = ((s16)sensor->data) >> 11; 449 mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5; 450 } 451 452 val = mantissa; 453 454 /* scale result to milli-units for all sensors except fans */ 455 if (sensor->class != PSC_FAN) 456 val = val * 1000L; 457 458 /* scale result to micro-units for power sensors */ 459 if (sensor->class == PSC_POWER) 460 val = val * 1000L; 461 462 if (exponent >= 0) 463 val <<= exponent; 464 else 465 val >>= -exponent; 466 467 return val; 468 } 469 470 /* 471 * Convert direct sensor values to milli- or micro-units 472 * depending on sensor type. 473 */ 474 static long pmbus_reg2data_direct(struct pmbus_data *data, 475 struct pmbus_sensor *sensor) 476 { 477 long val = (s16) sensor->data; 478 long m, b, R; 479 480 m = data->info->m[sensor->class]; 481 b = data->info->b[sensor->class]; 482 R = data->info->R[sensor->class]; 483 484 if (m == 0) 485 return 0; 486 487 /* X = 1/m * (Y * 10^-R - b) */ 488 R = -R; 489 /* scale result to milli-units for everything but fans */ 490 if (sensor->class != PSC_FAN) { 491 R += 3; 492 b *= 1000; 493 } 494 495 /* scale result to micro-units for power sensors */ 496 if (sensor->class == PSC_POWER) { 497 R += 3; 498 b *= 1000; 499 } 500 501 while (R > 0) { 502 val *= 10; 503 R--; 504 } 505 while (R < 0) { 506 val = DIV_ROUND_CLOSEST(val, 10); 507 R++; 508 } 509 510 return (val - b) / m; 511 } 512 513 /* 514 * Convert VID sensor values to milli- or micro-units 515 * depending on sensor type. 516 * We currently only support VR11. 517 */ 518 static long pmbus_reg2data_vid(struct pmbus_data *data, 519 struct pmbus_sensor *sensor) 520 { 521 long val = sensor->data; 522 523 if (val < 0x02 || val > 0xb2) 524 return 0; 525 return DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100); 526 } 527 528 static long pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor) 529 { 530 long val; 531 532 switch (data->info->format[sensor->class]) { 533 case direct: 534 val = pmbus_reg2data_direct(data, sensor); 535 break; 536 case vid: 537 val = pmbus_reg2data_vid(data, sensor); 538 break; 539 case linear: 540 default: 541 val = pmbus_reg2data_linear(data, sensor); 542 break; 543 } 544 return val; 545 } 546 547 #define MAX_MANTISSA (1023 * 1000) 548 #define MIN_MANTISSA (511 * 1000) 549 550 static u16 pmbus_data2reg_linear(struct pmbus_data *data, 551 enum pmbus_sensor_classes class, long val) 552 { 553 s16 exponent = 0, mantissa; 554 bool negative = false; 555 556 /* simple case */ 557 if (val == 0) 558 return 0; 559 560 if (class == PSC_VOLTAGE_OUT) { 561 /* LINEAR16 does not support negative voltages */ 562 if (val < 0) 563 return 0; 564 565 /* 566 * For a static exponents, we don't have a choice 567 * but to adjust the value to it. 568 */ 569 if (data->exponent < 0) 570 val <<= -data->exponent; 571 else 572 val >>= data->exponent; 573 val = DIV_ROUND_CLOSEST(val, 1000); 574 return val & 0xffff; 575 } 576 577 if (val < 0) { 578 negative = true; 579 val = -val; 580 } 581 582 /* Power is in uW. Convert to mW before converting. */ 583 if (class == PSC_POWER) 584 val = DIV_ROUND_CLOSEST(val, 1000L); 585 586 /* 587 * For simplicity, convert fan data to milli-units 588 * before calculating the exponent. 589 */ 590 if (class == PSC_FAN) 591 val = val * 1000; 592 593 /* Reduce large mantissa until it fits into 10 bit */ 594 while (val >= MAX_MANTISSA && exponent < 15) { 595 exponent++; 596 val >>= 1; 597 } 598 /* Increase small mantissa to improve precision */ 599 while (val < MIN_MANTISSA && exponent > -15) { 600 exponent--; 601 val <<= 1; 602 } 603 604 /* Convert mantissa from milli-units to units */ 605 mantissa = DIV_ROUND_CLOSEST(val, 1000); 606 607 /* Ensure that resulting number is within range */ 608 if (mantissa > 0x3ff) 609 mantissa = 0x3ff; 610 611 /* restore sign */ 612 if (negative) 613 mantissa = -mantissa; 614 615 /* Convert to 5 bit exponent, 11 bit mantissa */ 616 return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800); 617 } 618 619 static u16 pmbus_data2reg_direct(struct pmbus_data *data, 620 enum pmbus_sensor_classes class, long val) 621 { 622 long m, b, R; 623 624 m = data->info->m[class]; 625 b = data->info->b[class]; 626 R = data->info->R[class]; 627 628 /* Power is in uW. Adjust R and b. */ 629 if (class == PSC_POWER) { 630 R -= 3; 631 b *= 1000; 632 } 633 634 /* Calculate Y = (m * X + b) * 10^R */ 635 if (class != PSC_FAN) { 636 R -= 3; /* Adjust R and b for data in milli-units */ 637 b *= 1000; 638 } 639 val = val * m + b; 640 641 while (R > 0) { 642 val *= 10; 643 R--; 644 } 645 while (R < 0) { 646 val = DIV_ROUND_CLOSEST(val, 10); 647 R++; 648 } 649 650 return val; 651 } 652 653 static u16 pmbus_data2reg_vid(struct pmbus_data *data, 654 enum pmbus_sensor_classes class, long val) 655 { 656 val = SENSORS_LIMIT(val, 500, 1600); 657 658 return 2 + DIV_ROUND_CLOSEST((1600 - val) * 100, 625); 659 } 660 661 static u16 pmbus_data2reg(struct pmbus_data *data, 662 enum pmbus_sensor_classes class, long val) 663 { 664 u16 regval; 665 666 switch (data->info->format[class]) { 667 case direct: 668 regval = pmbus_data2reg_direct(data, class, val); 669 break; 670 case vid: 671 regval = pmbus_data2reg_vid(data, class, val); 672 break; 673 case linear: 674 default: 675 regval = pmbus_data2reg_linear(data, class, val); 676 break; 677 } 678 return regval; 679 } 680 681 /* 682 * Return boolean calculated from converted data. 683 * <index> defines a status register index and mask, and optionally 684 * two sensor indexes. 685 * The upper half-word references the two sensors, 686 * two sensor indices. 687 * The upper half-word references the two optional sensors, 688 * the lower half word references status register and mask. 689 * The function returns true if (status[reg] & mask) is true and, 690 * if specified, if v1 >= v2. 691 * To determine if an object exceeds upper limits, specify <v, limit>. 692 * To determine if an object exceeds lower limits, specify <limit, v>. 693 * 694 * For booleans created with pmbus_add_boolean_reg(), only the lower 16 bits of 695 * index are set. s1 and s2 (the sensor index values) are zero in this case. 696 * The function returns true if (status[reg] & mask) is true. 697 * 698 * If the boolean was created with pmbus_add_boolean_cmp(), a comparison against 699 * a specified limit has to be performed to determine the boolean result. 700 * In this case, the function returns true if v1 >= v2 (where v1 and v2 are 701 * sensor values referenced by sensor indices s1 and s2). 702 * 703 * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>. 704 * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>. 705 * 706 * If a negative value is stored in any of the referenced registers, this value 707 * reflects an error code which will be returned. 708 */ 709 static int pmbus_get_boolean(struct pmbus_data *data, int index, int *val) 710 { 711 u8 s1 = (index >> 24) & 0xff; 712 u8 s2 = (index >> 16) & 0xff; 713 u8 reg = (index >> 8) & 0xff; 714 u8 mask = index & 0xff; 715 int status; 716 u8 regval; 717 718 status = data->status[reg]; 719 if (status < 0) 720 return status; 721 722 regval = status & mask; 723 if (!s1 && !s2) 724 *val = !!regval; 725 else { 726 long v1, v2; 727 struct pmbus_sensor *sensor1, *sensor2; 728 729 sensor1 = &data->sensors[s1]; 730 if (sensor1->data < 0) 731 return sensor1->data; 732 sensor2 = &data->sensors[s2]; 733 if (sensor2->data < 0) 734 return sensor2->data; 735 736 v1 = pmbus_reg2data(data, sensor1); 737 v2 = pmbus_reg2data(data, sensor2); 738 *val = !!(regval && v1 >= v2); 739 } 740 return 0; 741 } 742 743 static ssize_t pmbus_show_boolean(struct device *dev, 744 struct device_attribute *da, char *buf) 745 { 746 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 747 struct pmbus_data *data = pmbus_update_device(dev); 748 int val; 749 int err; 750 751 err = pmbus_get_boolean(data, attr->index, &val); 752 if (err) 753 return err; 754 return snprintf(buf, PAGE_SIZE, "%d\n", val); 755 } 756 757 static ssize_t pmbus_show_sensor(struct device *dev, 758 struct device_attribute *da, char *buf) 759 { 760 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 761 struct pmbus_data *data = pmbus_update_device(dev); 762 struct pmbus_sensor *sensor; 763 764 sensor = &data->sensors[attr->index]; 765 if (sensor->data < 0) 766 return sensor->data; 767 768 return snprintf(buf, PAGE_SIZE, "%ld\n", pmbus_reg2data(data, sensor)); 769 } 770 771 static ssize_t pmbus_set_sensor(struct device *dev, 772 struct device_attribute *devattr, 773 const char *buf, size_t count) 774 { 775 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); 776 struct i2c_client *client = to_i2c_client(dev); 777 struct pmbus_data *data = i2c_get_clientdata(client); 778 struct pmbus_sensor *sensor = &data->sensors[attr->index]; 779 ssize_t rv = count; 780 long val = 0; 781 int ret; 782 u16 regval; 783 784 if (strict_strtol(buf, 10, &val) < 0) 785 return -EINVAL; 786 787 mutex_lock(&data->update_lock); 788 regval = pmbus_data2reg(data, sensor->class, val); 789 ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval); 790 if (ret < 0) 791 rv = ret; 792 else 793 data->sensors[attr->index].data = regval; 794 mutex_unlock(&data->update_lock); 795 return rv; 796 } 797 798 static ssize_t pmbus_show_label(struct device *dev, 799 struct device_attribute *da, char *buf) 800 { 801 struct i2c_client *client = to_i2c_client(dev); 802 struct pmbus_data *data = i2c_get_clientdata(client); 803 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 804 805 return snprintf(buf, PAGE_SIZE, "%s\n", 806 data->labels[attr->index].label); 807 } 808 809 #define PMBUS_ADD_ATTR(data, _name, _idx, _mode, _type, _show, _set) \ 810 do { \ 811 struct sensor_device_attribute *a \ 812 = &data->_type##s[data->num_##_type##s].attribute; \ 813 BUG_ON(data->num_attributes >= data->max_attributes); \ 814 sysfs_attr_init(&a->dev_attr.attr); \ 815 a->dev_attr.attr.name = _name; \ 816 a->dev_attr.attr.mode = _mode; \ 817 a->dev_attr.show = _show; \ 818 a->dev_attr.store = _set; \ 819 a->index = _idx; \ 820 data->attributes[data->num_attributes] = &a->dev_attr.attr; \ 821 data->num_attributes++; \ 822 } while (0) 823 824 #define PMBUS_ADD_GET_ATTR(data, _name, _type, _idx) \ 825 PMBUS_ADD_ATTR(data, _name, _idx, S_IRUGO, _type, \ 826 pmbus_show_##_type, NULL) 827 828 #define PMBUS_ADD_SET_ATTR(data, _name, _type, _idx) \ 829 PMBUS_ADD_ATTR(data, _name, _idx, S_IWUSR | S_IRUGO, _type, \ 830 pmbus_show_##_type, pmbus_set_##_type) 831 832 static void pmbus_add_boolean(struct pmbus_data *data, 833 const char *name, const char *type, int seq, 834 int idx) 835 { 836 struct pmbus_boolean *boolean; 837 838 BUG_ON(data->num_booleans >= data->max_booleans); 839 840 boolean = &data->booleans[data->num_booleans]; 841 842 snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s", 843 name, seq, type); 844 PMBUS_ADD_GET_ATTR(data, boolean->name, boolean, idx); 845 data->num_booleans++; 846 } 847 848 static void pmbus_add_boolean_reg(struct pmbus_data *data, 849 const char *name, const char *type, 850 int seq, int reg, int bit) 851 { 852 pmbus_add_boolean(data, name, type, seq, (reg << 8) | bit); 853 } 854 855 static void pmbus_add_boolean_cmp(struct pmbus_data *data, 856 const char *name, const char *type, 857 int seq, int i1, int i2, int reg, int mask) 858 { 859 pmbus_add_boolean(data, name, type, seq, 860 (i1 << 24) | (i2 << 16) | (reg << 8) | mask); 861 } 862 863 static void pmbus_add_sensor(struct pmbus_data *data, 864 const char *name, const char *type, int seq, 865 int page, int reg, enum pmbus_sensor_classes class, 866 bool update, bool readonly) 867 { 868 struct pmbus_sensor *sensor; 869 870 BUG_ON(data->num_sensors >= data->max_sensors); 871 872 sensor = &data->sensors[data->num_sensors]; 873 snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s", 874 name, seq, type); 875 sensor->page = page; 876 sensor->reg = reg; 877 sensor->class = class; 878 sensor->update = update; 879 if (readonly) 880 PMBUS_ADD_GET_ATTR(data, sensor->name, sensor, 881 data->num_sensors); 882 else 883 PMBUS_ADD_SET_ATTR(data, sensor->name, sensor, 884 data->num_sensors); 885 data->num_sensors++; 886 } 887 888 static void pmbus_add_label(struct pmbus_data *data, 889 const char *name, int seq, 890 const char *lstring, int index) 891 { 892 struct pmbus_label *label; 893 894 BUG_ON(data->num_labels >= data->max_labels); 895 896 label = &data->labels[data->num_labels]; 897 snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq); 898 if (!index) 899 strncpy(label->label, lstring, sizeof(label->label) - 1); 900 else 901 snprintf(label->label, sizeof(label->label), "%s%d", lstring, 902 index); 903 904 PMBUS_ADD_GET_ATTR(data, label->name, label, data->num_labels); 905 data->num_labels++; 906 } 907 908 /* 909 * Determine maximum number of sensors, booleans, and labels. 910 * To keep things simple, only make a rough high estimate. 911 */ 912 static void pmbus_find_max_attr(struct i2c_client *client, 913 struct pmbus_data *data) 914 { 915 const struct pmbus_driver_info *info = data->info; 916 int page, max_sensors, max_booleans, max_labels; 917 918 max_sensors = PMBUS_MAX_INPUT_SENSORS; 919 max_booleans = PMBUS_MAX_INPUT_BOOLEANS; 920 max_labels = PMBUS_MAX_INPUT_LABELS; 921 922 for (page = 0; page < info->pages; page++) { 923 if (info->func[page] & PMBUS_HAVE_VOUT) { 924 max_sensors += PMBUS_VOUT_SENSORS_PER_PAGE; 925 max_booleans += PMBUS_VOUT_BOOLEANS_PER_PAGE; 926 max_labels++; 927 } 928 if (info->func[page] & PMBUS_HAVE_IOUT) { 929 max_sensors += PMBUS_IOUT_SENSORS_PER_PAGE; 930 max_booleans += PMBUS_IOUT_BOOLEANS_PER_PAGE; 931 max_labels++; 932 } 933 if (info->func[page] & PMBUS_HAVE_POUT) { 934 max_sensors += PMBUS_POUT_SENSORS_PER_PAGE; 935 max_booleans += PMBUS_POUT_BOOLEANS_PER_PAGE; 936 max_labels++; 937 } 938 if (info->func[page] & PMBUS_HAVE_FAN12) { 939 max_sensors += 2 * PMBUS_MAX_SENSORS_PER_FAN; 940 max_booleans += 2 * PMBUS_MAX_BOOLEANS_PER_FAN; 941 } 942 if (info->func[page] & PMBUS_HAVE_FAN34) { 943 max_sensors += 2 * PMBUS_MAX_SENSORS_PER_FAN; 944 max_booleans += 2 * PMBUS_MAX_BOOLEANS_PER_FAN; 945 } 946 if (info->func[page] & PMBUS_HAVE_TEMP) { 947 max_sensors += PMBUS_MAX_SENSORS_PER_TEMP; 948 max_booleans += PMBUS_MAX_BOOLEANS_PER_TEMP; 949 } 950 if (info->func[page] & PMBUS_HAVE_TEMP2) { 951 max_sensors += PMBUS_MAX_SENSORS_PER_TEMP; 952 max_booleans += PMBUS_MAX_BOOLEANS_PER_TEMP; 953 } 954 if (info->func[page] & PMBUS_HAVE_TEMP3) { 955 max_sensors += PMBUS_MAX_SENSORS_PER_TEMP; 956 max_booleans += PMBUS_MAX_BOOLEANS_PER_TEMP; 957 } 958 } 959 data->max_sensors = max_sensors; 960 data->max_booleans = max_booleans; 961 data->max_labels = max_labels; 962 data->max_attributes = max_sensors + max_booleans + max_labels; 963 } 964 965 /* 966 * Search for attributes. Allocate sensors, booleans, and labels as needed. 967 */ 968 969 /* 970 * The pmbus_limit_attr structure describes a single limit attribute 971 * and its associated alarm attribute. 972 */ 973 struct pmbus_limit_attr { 974 u16 reg; /* Limit register */ 975 bool update; /* True if register needs updates */ 976 bool low; /* True if low limit; for limits with compare 977 functions only */ 978 const char *attr; /* Attribute name */ 979 const char *alarm; /* Alarm attribute name */ 980 u32 sbit; /* Alarm attribute status bit */ 981 }; 982 983 /* 984 * The pmbus_sensor_attr structure describes one sensor attribute. This 985 * description includes a reference to the associated limit attributes. 986 */ 987 struct pmbus_sensor_attr { 988 u8 reg; /* sensor register */ 989 enum pmbus_sensor_classes class;/* sensor class */ 990 const char *label; /* sensor label */ 991 bool paged; /* true if paged sensor */ 992 bool update; /* true if update needed */ 993 bool compare; /* true if compare function needed */ 994 u32 func; /* sensor mask */ 995 u32 sfunc; /* sensor status mask */ 996 int sbase; /* status base register */ 997 u32 gbit; /* generic status bit */ 998 const struct pmbus_limit_attr *limit;/* limit registers */ 999 int nlimit; /* # of limit registers */ 1000 }; 1001 1002 /* 1003 * Add a set of limit attributes and, if supported, the associated 1004 * alarm attributes. 1005 */ 1006 static bool pmbus_add_limit_attrs(struct i2c_client *client, 1007 struct pmbus_data *data, 1008 const struct pmbus_driver_info *info, 1009 const char *name, int index, int page, 1010 int cbase, 1011 const struct pmbus_sensor_attr *attr) 1012 { 1013 const struct pmbus_limit_attr *l = attr->limit; 1014 int nlimit = attr->nlimit; 1015 bool have_alarm = false; 1016 int i, cindex; 1017 1018 for (i = 0; i < nlimit; i++) { 1019 if (pmbus_check_word_register(client, page, l->reg)) { 1020 cindex = data->num_sensors; 1021 pmbus_add_sensor(data, name, l->attr, index, page, 1022 l->reg, attr->class, 1023 attr->update || l->update, 1024 false); 1025 if (l->sbit && (info->func[page] & attr->sfunc)) { 1026 if (attr->compare) { 1027 pmbus_add_boolean_cmp(data, name, 1028 l->alarm, index, 1029 l->low ? cindex : cbase, 1030 l->low ? cbase : cindex, 1031 attr->sbase + page, l->sbit); 1032 } else { 1033 pmbus_add_boolean_reg(data, name, 1034 l->alarm, index, 1035 attr->sbase + page, l->sbit); 1036 } 1037 have_alarm = true; 1038 } 1039 } 1040 l++; 1041 } 1042 return have_alarm; 1043 } 1044 1045 static void pmbus_add_sensor_attrs_one(struct i2c_client *client, 1046 struct pmbus_data *data, 1047 const struct pmbus_driver_info *info, 1048 const char *name, 1049 int index, int page, 1050 const struct pmbus_sensor_attr *attr) 1051 { 1052 bool have_alarm; 1053 int cbase = data->num_sensors; 1054 1055 if (attr->label) 1056 pmbus_add_label(data, name, index, attr->label, 1057 attr->paged ? page + 1 : 0); 1058 pmbus_add_sensor(data, name, "input", index, page, attr->reg, 1059 attr->class, true, true); 1060 if (attr->sfunc) { 1061 have_alarm = pmbus_add_limit_attrs(client, data, info, name, 1062 index, page, cbase, attr); 1063 /* 1064 * Add generic alarm attribute only if there are no individual 1065 * alarm attributes, if there is a global alarm bit, and if 1066 * the generic status register for this page is accessible. 1067 */ 1068 if (!have_alarm && attr->gbit && 1069 pmbus_check_byte_register(client, page, PMBUS_STATUS_BYTE)) 1070 pmbus_add_boolean_reg(data, name, "alarm", index, 1071 PB_STATUS_BASE + page, 1072 attr->gbit); 1073 } 1074 } 1075 1076 static void pmbus_add_sensor_attrs(struct i2c_client *client, 1077 struct pmbus_data *data, 1078 const char *name, 1079 const struct pmbus_sensor_attr *attrs, 1080 int nattrs) 1081 { 1082 const struct pmbus_driver_info *info = data->info; 1083 int index, i; 1084 1085 index = 1; 1086 for (i = 0; i < nattrs; i++) { 1087 int page, pages; 1088 1089 pages = attrs->paged ? info->pages : 1; 1090 for (page = 0; page < pages; page++) { 1091 if (!(info->func[page] & attrs->func)) 1092 continue; 1093 pmbus_add_sensor_attrs_one(client, data, info, name, 1094 index, page, attrs); 1095 index++; 1096 } 1097 attrs++; 1098 } 1099 } 1100 1101 static const struct pmbus_limit_attr vin_limit_attrs[] = { 1102 { 1103 .reg = PMBUS_VIN_UV_WARN_LIMIT, 1104 .attr = "min", 1105 .alarm = "min_alarm", 1106 .sbit = PB_VOLTAGE_UV_WARNING, 1107 }, { 1108 .reg = PMBUS_VIN_UV_FAULT_LIMIT, 1109 .attr = "lcrit", 1110 .alarm = "lcrit_alarm", 1111 .sbit = PB_VOLTAGE_UV_FAULT, 1112 }, { 1113 .reg = PMBUS_VIN_OV_WARN_LIMIT, 1114 .attr = "max", 1115 .alarm = "max_alarm", 1116 .sbit = PB_VOLTAGE_OV_WARNING, 1117 }, { 1118 .reg = PMBUS_VIN_OV_FAULT_LIMIT, 1119 .attr = "crit", 1120 .alarm = "crit_alarm", 1121 .sbit = PB_VOLTAGE_OV_FAULT, 1122 }, { 1123 .reg = PMBUS_VIRT_READ_VIN_AVG, 1124 .update = true, 1125 .attr = "average", 1126 }, { 1127 .reg = PMBUS_VIRT_READ_VIN_MIN, 1128 .update = true, 1129 .attr = "lowest", 1130 }, { 1131 .reg = PMBUS_VIRT_READ_VIN_MAX, 1132 .update = true, 1133 .attr = "highest", 1134 }, { 1135 .reg = PMBUS_VIRT_RESET_VIN_HISTORY, 1136 .attr = "reset_history", 1137 }, 1138 }; 1139 1140 static const struct pmbus_limit_attr vout_limit_attrs[] = { 1141 { 1142 .reg = PMBUS_VOUT_UV_WARN_LIMIT, 1143 .attr = "min", 1144 .alarm = "min_alarm", 1145 .sbit = PB_VOLTAGE_UV_WARNING, 1146 }, { 1147 .reg = PMBUS_VOUT_UV_FAULT_LIMIT, 1148 .attr = "lcrit", 1149 .alarm = "lcrit_alarm", 1150 .sbit = PB_VOLTAGE_UV_FAULT, 1151 }, { 1152 .reg = PMBUS_VOUT_OV_WARN_LIMIT, 1153 .attr = "max", 1154 .alarm = "max_alarm", 1155 .sbit = PB_VOLTAGE_OV_WARNING, 1156 }, { 1157 .reg = PMBUS_VOUT_OV_FAULT_LIMIT, 1158 .attr = "crit", 1159 .alarm = "crit_alarm", 1160 .sbit = PB_VOLTAGE_OV_FAULT, 1161 }, { 1162 .reg = PMBUS_VIRT_READ_VOUT_AVG, 1163 .update = true, 1164 .attr = "average", 1165 }, { 1166 .reg = PMBUS_VIRT_READ_VOUT_MIN, 1167 .update = true, 1168 .attr = "lowest", 1169 }, { 1170 .reg = PMBUS_VIRT_READ_VOUT_MAX, 1171 .update = true, 1172 .attr = "highest", 1173 }, { 1174 .reg = PMBUS_VIRT_RESET_VOUT_HISTORY, 1175 .attr = "reset_history", 1176 } 1177 }; 1178 1179 static const struct pmbus_sensor_attr voltage_attributes[] = { 1180 { 1181 .reg = PMBUS_READ_VIN, 1182 .class = PSC_VOLTAGE_IN, 1183 .label = "vin", 1184 .func = PMBUS_HAVE_VIN, 1185 .sfunc = PMBUS_HAVE_STATUS_INPUT, 1186 .sbase = PB_STATUS_INPUT_BASE, 1187 .gbit = PB_STATUS_VIN_UV, 1188 .limit = vin_limit_attrs, 1189 .nlimit = ARRAY_SIZE(vin_limit_attrs), 1190 }, { 1191 .reg = PMBUS_READ_VCAP, 1192 .class = PSC_VOLTAGE_IN, 1193 .label = "vcap", 1194 .func = PMBUS_HAVE_VCAP, 1195 }, { 1196 .reg = PMBUS_READ_VOUT, 1197 .class = PSC_VOLTAGE_OUT, 1198 .label = "vout", 1199 .paged = true, 1200 .func = PMBUS_HAVE_VOUT, 1201 .sfunc = PMBUS_HAVE_STATUS_VOUT, 1202 .sbase = PB_STATUS_VOUT_BASE, 1203 .gbit = PB_STATUS_VOUT_OV, 1204 .limit = vout_limit_attrs, 1205 .nlimit = ARRAY_SIZE(vout_limit_attrs), 1206 } 1207 }; 1208 1209 /* Current attributes */ 1210 1211 static const struct pmbus_limit_attr iin_limit_attrs[] = { 1212 { 1213 .reg = PMBUS_IIN_OC_WARN_LIMIT, 1214 .attr = "max", 1215 .alarm = "max_alarm", 1216 .sbit = PB_IIN_OC_WARNING, 1217 }, { 1218 .reg = PMBUS_IIN_OC_FAULT_LIMIT, 1219 .attr = "crit", 1220 .alarm = "crit_alarm", 1221 .sbit = PB_IIN_OC_FAULT, 1222 }, { 1223 .reg = PMBUS_VIRT_READ_IIN_AVG, 1224 .update = true, 1225 .attr = "average", 1226 }, { 1227 .reg = PMBUS_VIRT_READ_IIN_MIN, 1228 .update = true, 1229 .attr = "lowest", 1230 }, { 1231 .reg = PMBUS_VIRT_READ_IIN_MAX, 1232 .update = true, 1233 .attr = "highest", 1234 }, { 1235 .reg = PMBUS_VIRT_RESET_IIN_HISTORY, 1236 .attr = "reset_history", 1237 } 1238 }; 1239 1240 static const struct pmbus_limit_attr iout_limit_attrs[] = { 1241 { 1242 .reg = PMBUS_IOUT_OC_WARN_LIMIT, 1243 .attr = "max", 1244 .alarm = "max_alarm", 1245 .sbit = PB_IOUT_OC_WARNING, 1246 }, { 1247 .reg = PMBUS_IOUT_UC_FAULT_LIMIT, 1248 .attr = "lcrit", 1249 .alarm = "lcrit_alarm", 1250 .sbit = PB_IOUT_UC_FAULT, 1251 }, { 1252 .reg = PMBUS_IOUT_OC_FAULT_LIMIT, 1253 .attr = "crit", 1254 .alarm = "crit_alarm", 1255 .sbit = PB_IOUT_OC_FAULT, 1256 }, { 1257 .reg = PMBUS_VIRT_READ_IOUT_AVG, 1258 .update = true, 1259 .attr = "average", 1260 }, { 1261 .reg = PMBUS_VIRT_READ_IOUT_MIN, 1262 .update = true, 1263 .attr = "lowest", 1264 }, { 1265 .reg = PMBUS_VIRT_READ_IOUT_MAX, 1266 .update = true, 1267 .attr = "highest", 1268 }, { 1269 .reg = PMBUS_VIRT_RESET_IOUT_HISTORY, 1270 .attr = "reset_history", 1271 } 1272 }; 1273 1274 static const struct pmbus_sensor_attr current_attributes[] = { 1275 { 1276 .reg = PMBUS_READ_IIN, 1277 .class = PSC_CURRENT_IN, 1278 .label = "iin", 1279 .func = PMBUS_HAVE_IIN, 1280 .sfunc = PMBUS_HAVE_STATUS_INPUT, 1281 .sbase = PB_STATUS_INPUT_BASE, 1282 .limit = iin_limit_attrs, 1283 .nlimit = ARRAY_SIZE(iin_limit_attrs), 1284 }, { 1285 .reg = PMBUS_READ_IOUT, 1286 .class = PSC_CURRENT_OUT, 1287 .label = "iout", 1288 .paged = true, 1289 .func = PMBUS_HAVE_IOUT, 1290 .sfunc = PMBUS_HAVE_STATUS_IOUT, 1291 .sbase = PB_STATUS_IOUT_BASE, 1292 .gbit = PB_STATUS_IOUT_OC, 1293 .limit = iout_limit_attrs, 1294 .nlimit = ARRAY_SIZE(iout_limit_attrs), 1295 } 1296 }; 1297 1298 /* Power attributes */ 1299 1300 static const struct pmbus_limit_attr pin_limit_attrs[] = { 1301 { 1302 .reg = PMBUS_PIN_OP_WARN_LIMIT, 1303 .attr = "max", 1304 .alarm = "alarm", 1305 .sbit = PB_PIN_OP_WARNING, 1306 }, { 1307 .reg = PMBUS_VIRT_READ_PIN_AVG, 1308 .update = true, 1309 .attr = "average", 1310 }, { 1311 .reg = PMBUS_VIRT_READ_PIN_MAX, 1312 .update = true, 1313 .attr = "input_highest", 1314 }, { 1315 .reg = PMBUS_VIRT_RESET_PIN_HISTORY, 1316 .attr = "reset_history", 1317 } 1318 }; 1319 1320 static const struct pmbus_limit_attr pout_limit_attrs[] = { 1321 { 1322 .reg = PMBUS_POUT_MAX, 1323 .attr = "cap", 1324 .alarm = "cap_alarm", 1325 .sbit = PB_POWER_LIMITING, 1326 }, { 1327 .reg = PMBUS_POUT_OP_WARN_LIMIT, 1328 .attr = "max", 1329 .alarm = "max_alarm", 1330 .sbit = PB_POUT_OP_WARNING, 1331 }, { 1332 .reg = PMBUS_POUT_OP_FAULT_LIMIT, 1333 .attr = "crit", 1334 .alarm = "crit_alarm", 1335 .sbit = PB_POUT_OP_FAULT, 1336 } 1337 }; 1338 1339 static const struct pmbus_sensor_attr power_attributes[] = { 1340 { 1341 .reg = PMBUS_READ_PIN, 1342 .class = PSC_POWER, 1343 .label = "pin", 1344 .func = PMBUS_HAVE_PIN, 1345 .sfunc = PMBUS_HAVE_STATUS_INPUT, 1346 .sbase = PB_STATUS_INPUT_BASE, 1347 .limit = pin_limit_attrs, 1348 .nlimit = ARRAY_SIZE(pin_limit_attrs), 1349 }, { 1350 .reg = PMBUS_READ_POUT, 1351 .class = PSC_POWER, 1352 .label = "pout", 1353 .paged = true, 1354 .func = PMBUS_HAVE_POUT, 1355 .sfunc = PMBUS_HAVE_STATUS_IOUT, 1356 .sbase = PB_STATUS_IOUT_BASE, 1357 .limit = pout_limit_attrs, 1358 .nlimit = ARRAY_SIZE(pout_limit_attrs), 1359 } 1360 }; 1361 1362 /* Temperature atributes */ 1363 1364 static const struct pmbus_limit_attr temp_limit_attrs[] = { 1365 { 1366 .reg = PMBUS_UT_WARN_LIMIT, 1367 .low = true, 1368 .attr = "min", 1369 .alarm = "min_alarm", 1370 .sbit = PB_TEMP_UT_WARNING, 1371 }, { 1372 .reg = PMBUS_UT_FAULT_LIMIT, 1373 .low = true, 1374 .attr = "lcrit", 1375 .alarm = "lcrit_alarm", 1376 .sbit = PB_TEMP_UT_FAULT, 1377 }, { 1378 .reg = PMBUS_OT_WARN_LIMIT, 1379 .attr = "max", 1380 .alarm = "max_alarm", 1381 .sbit = PB_TEMP_OT_WARNING, 1382 }, { 1383 .reg = PMBUS_OT_FAULT_LIMIT, 1384 .attr = "crit", 1385 .alarm = "crit_alarm", 1386 .sbit = PB_TEMP_OT_FAULT, 1387 }, { 1388 .reg = PMBUS_VIRT_READ_TEMP_MIN, 1389 .attr = "lowest", 1390 }, { 1391 .reg = PMBUS_VIRT_READ_TEMP_MAX, 1392 .attr = "highest", 1393 }, { 1394 .reg = PMBUS_VIRT_RESET_TEMP_HISTORY, 1395 .attr = "reset_history", 1396 } 1397 }; 1398 1399 static const struct pmbus_limit_attr temp_limit_attrs2[] = { 1400 { 1401 .reg = PMBUS_UT_WARN_LIMIT, 1402 .low = true, 1403 .attr = "min", 1404 .alarm = "min_alarm", 1405 .sbit = PB_TEMP_UT_WARNING, 1406 }, { 1407 .reg = PMBUS_UT_FAULT_LIMIT, 1408 .low = true, 1409 .attr = "lcrit", 1410 .alarm = "lcrit_alarm", 1411 .sbit = PB_TEMP_UT_FAULT, 1412 }, { 1413 .reg = PMBUS_OT_WARN_LIMIT, 1414 .attr = "max", 1415 .alarm = "max_alarm", 1416 .sbit = PB_TEMP_OT_WARNING, 1417 }, { 1418 .reg = PMBUS_OT_FAULT_LIMIT, 1419 .attr = "crit", 1420 .alarm = "crit_alarm", 1421 .sbit = PB_TEMP_OT_FAULT, 1422 }, { 1423 .reg = PMBUS_VIRT_READ_TEMP2_MIN, 1424 .attr = "lowest", 1425 }, { 1426 .reg = PMBUS_VIRT_READ_TEMP2_MAX, 1427 .attr = "highest", 1428 }, { 1429 .reg = PMBUS_VIRT_RESET_TEMP2_HISTORY, 1430 .attr = "reset_history", 1431 } 1432 }; 1433 1434 static const struct pmbus_limit_attr temp_limit_attrs3[] = { 1435 { 1436 .reg = PMBUS_UT_WARN_LIMIT, 1437 .low = true, 1438 .attr = "min", 1439 .alarm = "min_alarm", 1440 .sbit = PB_TEMP_UT_WARNING, 1441 }, { 1442 .reg = PMBUS_UT_FAULT_LIMIT, 1443 .low = true, 1444 .attr = "lcrit", 1445 .alarm = "lcrit_alarm", 1446 .sbit = PB_TEMP_UT_FAULT, 1447 }, { 1448 .reg = PMBUS_OT_WARN_LIMIT, 1449 .attr = "max", 1450 .alarm = "max_alarm", 1451 .sbit = PB_TEMP_OT_WARNING, 1452 }, { 1453 .reg = PMBUS_OT_FAULT_LIMIT, 1454 .attr = "crit", 1455 .alarm = "crit_alarm", 1456 .sbit = PB_TEMP_OT_FAULT, 1457 } 1458 }; 1459 1460 static const struct pmbus_sensor_attr temp_attributes[] = { 1461 { 1462 .reg = PMBUS_READ_TEMPERATURE_1, 1463 .class = PSC_TEMPERATURE, 1464 .paged = true, 1465 .update = true, 1466 .compare = true, 1467 .func = PMBUS_HAVE_TEMP, 1468 .sfunc = PMBUS_HAVE_STATUS_TEMP, 1469 .sbase = PB_STATUS_TEMP_BASE, 1470 .gbit = PB_STATUS_TEMPERATURE, 1471 .limit = temp_limit_attrs, 1472 .nlimit = ARRAY_SIZE(temp_limit_attrs), 1473 }, { 1474 .reg = PMBUS_READ_TEMPERATURE_2, 1475 .class = PSC_TEMPERATURE, 1476 .paged = true, 1477 .update = true, 1478 .compare = true, 1479 .func = PMBUS_HAVE_TEMP2, 1480 .sfunc = PMBUS_HAVE_STATUS_TEMP, 1481 .sbase = PB_STATUS_TEMP_BASE, 1482 .gbit = PB_STATUS_TEMPERATURE, 1483 .limit = temp_limit_attrs2, 1484 .nlimit = ARRAY_SIZE(temp_limit_attrs2), 1485 }, { 1486 .reg = PMBUS_READ_TEMPERATURE_3, 1487 .class = PSC_TEMPERATURE, 1488 .paged = true, 1489 .update = true, 1490 .compare = true, 1491 .func = PMBUS_HAVE_TEMP3, 1492 .sfunc = PMBUS_HAVE_STATUS_TEMP, 1493 .sbase = PB_STATUS_TEMP_BASE, 1494 .gbit = PB_STATUS_TEMPERATURE, 1495 .limit = temp_limit_attrs3, 1496 .nlimit = ARRAY_SIZE(temp_limit_attrs3), 1497 } 1498 }; 1499 1500 static const int pmbus_fan_registers[] = { 1501 PMBUS_READ_FAN_SPEED_1, 1502 PMBUS_READ_FAN_SPEED_2, 1503 PMBUS_READ_FAN_SPEED_3, 1504 PMBUS_READ_FAN_SPEED_4 1505 }; 1506 1507 static const int pmbus_fan_config_registers[] = { 1508 PMBUS_FAN_CONFIG_12, 1509 PMBUS_FAN_CONFIG_12, 1510 PMBUS_FAN_CONFIG_34, 1511 PMBUS_FAN_CONFIG_34 1512 }; 1513 1514 static const int pmbus_fan_status_registers[] = { 1515 PMBUS_STATUS_FAN_12, 1516 PMBUS_STATUS_FAN_12, 1517 PMBUS_STATUS_FAN_34, 1518 PMBUS_STATUS_FAN_34 1519 }; 1520 1521 static const u32 pmbus_fan_flags[] = { 1522 PMBUS_HAVE_FAN12, 1523 PMBUS_HAVE_FAN12, 1524 PMBUS_HAVE_FAN34, 1525 PMBUS_HAVE_FAN34 1526 }; 1527 1528 static const u32 pmbus_fan_status_flags[] = { 1529 PMBUS_HAVE_STATUS_FAN12, 1530 PMBUS_HAVE_STATUS_FAN12, 1531 PMBUS_HAVE_STATUS_FAN34, 1532 PMBUS_HAVE_STATUS_FAN34 1533 }; 1534 1535 /* Fans */ 1536 static void pmbus_add_fan_attributes(struct i2c_client *client, 1537 struct pmbus_data *data) 1538 { 1539 const struct pmbus_driver_info *info = data->info; 1540 int index = 1; 1541 int page; 1542 1543 for (page = 0; page < info->pages; page++) { 1544 int f; 1545 1546 for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) { 1547 int regval; 1548 1549 if (!(info->func[page] & pmbus_fan_flags[f])) 1550 break; 1551 1552 if (!pmbus_check_word_register(client, page, 1553 pmbus_fan_registers[f])) 1554 break; 1555 1556 /* 1557 * Skip fan if not installed. 1558 * Each fan configuration register covers multiple fans, 1559 * so we have to do some magic. 1560 */ 1561 regval = _pmbus_read_byte_data(client, page, 1562 pmbus_fan_config_registers[f]); 1563 if (regval < 0 || 1564 (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4))))) 1565 continue; 1566 1567 pmbus_add_sensor(data, "fan", "input", index, page, 1568 pmbus_fan_registers[f], PSC_FAN, true, 1569 true); 1570 1571 /* 1572 * Each fan status register covers multiple fans, 1573 * so we have to do some magic. 1574 */ 1575 if ((info->func[page] & pmbus_fan_status_flags[f]) && 1576 pmbus_check_byte_register(client, 1577 page, pmbus_fan_status_registers[f])) { 1578 int base; 1579 1580 if (f > 1) /* fan 3, 4 */ 1581 base = PB_STATUS_FAN34_BASE + page; 1582 else 1583 base = PB_STATUS_FAN_BASE + page; 1584 pmbus_add_boolean_reg(data, "fan", "alarm", 1585 index, base, 1586 PB_FAN_FAN1_WARNING >> (f & 1)); 1587 pmbus_add_boolean_reg(data, "fan", "fault", 1588 index, base, 1589 PB_FAN_FAN1_FAULT >> (f & 1)); 1590 } 1591 index++; 1592 } 1593 } 1594 } 1595 1596 static void pmbus_find_attributes(struct i2c_client *client, 1597 struct pmbus_data *data) 1598 { 1599 /* Voltage sensors */ 1600 pmbus_add_sensor_attrs(client, data, "in", voltage_attributes, 1601 ARRAY_SIZE(voltage_attributes)); 1602 1603 /* Current sensors */ 1604 pmbus_add_sensor_attrs(client, data, "curr", current_attributes, 1605 ARRAY_SIZE(current_attributes)); 1606 1607 /* Power sensors */ 1608 pmbus_add_sensor_attrs(client, data, "power", power_attributes, 1609 ARRAY_SIZE(power_attributes)); 1610 1611 /* Temperature sensors */ 1612 pmbus_add_sensor_attrs(client, data, "temp", temp_attributes, 1613 ARRAY_SIZE(temp_attributes)); 1614 1615 /* Fans */ 1616 pmbus_add_fan_attributes(client, data); 1617 } 1618 1619 /* 1620 * Identify chip parameters. 1621 * This function is called for all chips. 1622 */ 1623 static int pmbus_identify_common(struct i2c_client *client, 1624 struct pmbus_data *data) 1625 { 1626 int vout_mode = -1; 1627 1628 if (pmbus_check_byte_register(client, 0, PMBUS_VOUT_MODE)) 1629 vout_mode = _pmbus_read_byte_data(client, 0, PMBUS_VOUT_MODE); 1630 if (vout_mode >= 0 && vout_mode != 0xff) { 1631 /* 1632 * Not all chips support the VOUT_MODE command, 1633 * so a failure to read it is not an error. 1634 */ 1635 switch (vout_mode >> 5) { 1636 case 0: /* linear mode */ 1637 if (data->info->format[PSC_VOLTAGE_OUT] != linear) 1638 return -ENODEV; 1639 1640 data->exponent = ((s8)(vout_mode << 3)) >> 3; 1641 break; 1642 case 1: /* VID mode */ 1643 if (data->info->format[PSC_VOLTAGE_OUT] != vid) 1644 return -ENODEV; 1645 break; 1646 case 2: /* direct mode */ 1647 if (data->info->format[PSC_VOLTAGE_OUT] != direct) 1648 return -ENODEV; 1649 break; 1650 default: 1651 return -ENODEV; 1652 } 1653 } 1654 1655 /* Determine maximum number of sensors, booleans, and labels */ 1656 pmbus_find_max_attr(client, data); 1657 pmbus_clear_fault_page(client, 0); 1658 return 0; 1659 } 1660 1661 int pmbus_do_probe(struct i2c_client *client, const struct i2c_device_id *id, 1662 struct pmbus_driver_info *info) 1663 { 1664 const struct pmbus_platform_data *pdata = client->dev.platform_data; 1665 struct pmbus_data *data; 1666 int ret; 1667 1668 if (!info) { 1669 dev_err(&client->dev, "Missing chip information"); 1670 return -ENODEV; 1671 } 1672 1673 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE 1674 | I2C_FUNC_SMBUS_BYTE_DATA 1675 | I2C_FUNC_SMBUS_WORD_DATA)) 1676 return -ENODEV; 1677 1678 data = kzalloc(sizeof(*data), GFP_KERNEL); 1679 if (!data) { 1680 dev_err(&client->dev, "No memory to allocate driver data\n"); 1681 return -ENOMEM; 1682 } 1683 1684 i2c_set_clientdata(client, data); 1685 mutex_init(&data->update_lock); 1686 1687 /* Bail out if PMBus status register does not exist. */ 1688 if (i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE) < 0) { 1689 dev_err(&client->dev, "PMBus status register not found\n"); 1690 ret = -ENODEV; 1691 goto out_data; 1692 } 1693 1694 if (pdata) 1695 data->flags = pdata->flags; 1696 data->info = info; 1697 1698 pmbus_clear_faults(client); 1699 1700 if (info->identify) { 1701 ret = (*info->identify)(client, info); 1702 if (ret < 0) { 1703 dev_err(&client->dev, "Chip identification failed\n"); 1704 goto out_data; 1705 } 1706 } 1707 1708 if (info->pages <= 0 || info->pages > PMBUS_PAGES) { 1709 dev_err(&client->dev, "Bad number of PMBus pages: %d\n", 1710 info->pages); 1711 ret = -ENODEV; 1712 goto out_data; 1713 } 1714 1715 ret = pmbus_identify_common(client, data); 1716 if (ret < 0) { 1717 dev_err(&client->dev, "Failed to identify chip capabilities\n"); 1718 goto out_data; 1719 } 1720 1721 ret = -ENOMEM; 1722 data->sensors = kzalloc(sizeof(struct pmbus_sensor) * data->max_sensors, 1723 GFP_KERNEL); 1724 if (!data->sensors) { 1725 dev_err(&client->dev, "No memory to allocate sensor data\n"); 1726 goto out_data; 1727 } 1728 1729 data->booleans = kzalloc(sizeof(struct pmbus_boolean) 1730 * data->max_booleans, GFP_KERNEL); 1731 if (!data->booleans) { 1732 dev_err(&client->dev, "No memory to allocate boolean data\n"); 1733 goto out_sensors; 1734 } 1735 1736 data->labels = kzalloc(sizeof(struct pmbus_label) * data->max_labels, 1737 GFP_KERNEL); 1738 if (!data->labels) { 1739 dev_err(&client->dev, "No memory to allocate label data\n"); 1740 goto out_booleans; 1741 } 1742 1743 data->attributes = kzalloc(sizeof(struct attribute *) 1744 * data->max_attributes, GFP_KERNEL); 1745 if (!data->attributes) { 1746 dev_err(&client->dev, "No memory to allocate attribute data\n"); 1747 goto out_labels; 1748 } 1749 1750 pmbus_find_attributes(client, data); 1751 1752 /* 1753 * If there are no attributes, something is wrong. 1754 * Bail out instead of trying to register nothing. 1755 */ 1756 if (!data->num_attributes) { 1757 dev_err(&client->dev, "No attributes found\n"); 1758 ret = -ENODEV; 1759 goto out_attributes; 1760 } 1761 1762 /* Register sysfs hooks */ 1763 data->group.attrs = data->attributes; 1764 ret = sysfs_create_group(&client->dev.kobj, &data->group); 1765 if (ret) { 1766 dev_err(&client->dev, "Failed to create sysfs entries\n"); 1767 goto out_attributes; 1768 } 1769 data->hwmon_dev = hwmon_device_register(&client->dev); 1770 if (IS_ERR(data->hwmon_dev)) { 1771 ret = PTR_ERR(data->hwmon_dev); 1772 dev_err(&client->dev, "Failed to register hwmon device\n"); 1773 goto out_hwmon_device_register; 1774 } 1775 return 0; 1776 1777 out_hwmon_device_register: 1778 sysfs_remove_group(&client->dev.kobj, &data->group); 1779 out_attributes: 1780 kfree(data->attributes); 1781 out_labels: 1782 kfree(data->labels); 1783 out_booleans: 1784 kfree(data->booleans); 1785 out_sensors: 1786 kfree(data->sensors); 1787 out_data: 1788 kfree(data); 1789 return ret; 1790 } 1791 EXPORT_SYMBOL_GPL(pmbus_do_probe); 1792 1793 void pmbus_do_remove(struct i2c_client *client) 1794 { 1795 struct pmbus_data *data = i2c_get_clientdata(client); 1796 hwmon_device_unregister(data->hwmon_dev); 1797 sysfs_remove_group(&client->dev.kobj, &data->group); 1798 kfree(data->attributes); 1799 kfree(data->labels); 1800 kfree(data->booleans); 1801 kfree(data->sensors); 1802 kfree(data); 1803 } 1804 EXPORT_SYMBOL_GPL(pmbus_do_remove); 1805 1806 MODULE_AUTHOR("Guenter Roeck"); 1807 MODULE_DESCRIPTION("PMBus core driver"); 1808 MODULE_LICENSE("GPL"); 1809